]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/gup.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / mm / gup.c
CommitLineData
4bbd4c77
KS
1#include <linux/kernel.h>
2#include <linux/errno.h>
3#include <linux/err.h>
4#include <linux/spinlock.h>
5
4bbd4c77 6#include <linux/mm.h>
3565fce3 7#include <linux/memremap.h>
4bbd4c77
KS
8#include <linux/pagemap.h>
9#include <linux/rmap.h>
10#include <linux/swap.h>
11#include <linux/swapops.h>
12
2667f50e
SC
13#include <linux/sched.h>
14#include <linux/rwsem.h>
f30c59e9 15#include <linux/hugetlb.h>
1027e443 16
33a709b2 17#include <asm/mmu_context.h>
2667f50e 18#include <asm/pgtable.h>
1027e443 19#include <asm/tlbflush.h>
2667f50e 20
4bbd4c77
KS
21#include "internal.h"
22
69e68b4f
KS
23static struct page *no_page_table(struct vm_area_struct *vma,
24 unsigned int flags)
4bbd4c77 25{
69e68b4f
KS
26 /*
27 * When core dumping an enormous anonymous area that nobody
28 * has touched so far, we don't want to allocate unnecessary pages or
29 * page tables. Return error instead of NULL to skip handle_mm_fault,
30 * then get_dump_page() will return NULL to leave a hole in the dump.
31 * But we can only make this optimization where a hole would surely
32 * be zero-filled if handle_mm_fault() actually did handle it.
33 */
34 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
35 return ERR_PTR(-EFAULT);
36 return NULL;
37}
4bbd4c77 38
1027e443
KS
39static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
40 pte_t *pte, unsigned int flags)
41{
42 /* No page to get reference */
43 if (flags & FOLL_GET)
44 return -EFAULT;
45
46 if (flags & FOLL_TOUCH) {
47 pte_t entry = *pte;
48
49 if (flags & FOLL_WRITE)
50 entry = pte_mkdirty(entry);
51 entry = pte_mkyoung(entry);
52
53 if (!pte_same(*pte, entry)) {
54 set_pte_at(vma->vm_mm, address, pte, entry);
55 update_mmu_cache(vma, address, pte);
56 }
57 }
58
59 /* Proper page table entry exists, but no corresponding struct page */
60 return -EEXIST;
61}
62
19be0eaf
LT
63/*
64 * FOLL_FORCE can write to even unwritable pte's, but only
65 * after we've gone through a COW cycle and they are dirty.
66 */
67static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
68{
69 return pte_write(pte) ||
70 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
71}
72
69e68b4f
KS
73static struct page *follow_page_pte(struct vm_area_struct *vma,
74 unsigned long address, pmd_t *pmd, unsigned int flags)
75{
76 struct mm_struct *mm = vma->vm_mm;
3565fce3 77 struct dev_pagemap *pgmap = NULL;
69e68b4f
KS
78 struct page *page;
79 spinlock_t *ptl;
80 pte_t *ptep, pte;
4bbd4c77 81
69e68b4f 82retry:
4bbd4c77 83 if (unlikely(pmd_bad(*pmd)))
69e68b4f 84 return no_page_table(vma, flags);
4bbd4c77
KS
85
86 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
87 pte = *ptep;
88 if (!pte_present(pte)) {
89 swp_entry_t entry;
90 /*
91 * KSM's break_ksm() relies upon recognizing a ksm page
92 * even while it is being migrated, so for that case we
93 * need migration_entry_wait().
94 */
95 if (likely(!(flags & FOLL_MIGRATION)))
96 goto no_page;
0661a336 97 if (pte_none(pte))
4bbd4c77
KS
98 goto no_page;
99 entry = pte_to_swp_entry(pte);
100 if (!is_migration_entry(entry))
101 goto no_page;
102 pte_unmap_unlock(ptep, ptl);
103 migration_entry_wait(mm, pmd, address);
69e68b4f 104 goto retry;
4bbd4c77 105 }
8a0516ed 106 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 107 goto no_page;
19be0eaf 108 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
109 pte_unmap_unlock(ptep, ptl);
110 return NULL;
111 }
4bbd4c77
KS
112
113 page = vm_normal_page(vma, address, pte);
3565fce3
DW
114 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
115 /*
116 * Only return device mapping pages in the FOLL_GET case since
117 * they are only valid while holding the pgmap reference.
118 */
119 pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
120 if (pgmap)
121 page = pte_page(pte);
122 else
123 goto no_page;
124 } else if (unlikely(!page)) {
1027e443
KS
125 if (flags & FOLL_DUMP) {
126 /* Avoid special (like zero) pages in core dumps */
127 page = ERR_PTR(-EFAULT);
128 goto out;
129 }
130
131 if (is_zero_pfn(pte_pfn(pte))) {
132 page = pte_page(pte);
133 } else {
134 int ret;
135
136 ret = follow_pfn_pte(vma, address, ptep, flags);
137 page = ERR_PTR(ret);
138 goto out;
139 }
4bbd4c77
KS
140 }
141
6742d293
KS
142 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
143 int ret;
144 get_page(page);
145 pte_unmap_unlock(ptep, ptl);
146 lock_page(page);
147 ret = split_huge_page(page);
148 unlock_page(page);
149 put_page(page);
150 if (ret)
151 return ERR_PTR(ret);
152 goto retry;
153 }
154
3565fce3 155 if (flags & FOLL_GET) {
ddc58f27 156 get_page(page);
3565fce3
DW
157
158 /* drop the pgmap reference now that we hold the page */
159 if (pgmap) {
160 put_dev_pagemap(pgmap);
161 pgmap = NULL;
162 }
163 }
4bbd4c77
KS
164 if (flags & FOLL_TOUCH) {
165 if ((flags & FOLL_WRITE) &&
166 !pte_dirty(pte) && !PageDirty(page))
167 set_page_dirty(page);
168 /*
169 * pte_mkyoung() would be more correct here, but atomic care
170 * is needed to avoid losing the dirty bit: it is easier to use
171 * mark_page_accessed().
172 */
173 mark_page_accessed(page);
174 }
de60f5f1 175 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
176 /* Do not mlock pte-mapped THP */
177 if (PageTransCompound(page))
178 goto out;
179
4bbd4c77
KS
180 /*
181 * The preliminary mapping check is mainly to avoid the
182 * pointless overhead of lock_page on the ZERO_PAGE
183 * which might bounce very badly if there is contention.
184 *
185 * If the page is already locked, we don't need to
186 * handle it now - vmscan will handle it later if and
187 * when it attempts to reclaim the page.
188 */
189 if (page->mapping && trylock_page(page)) {
190 lru_add_drain(); /* push cached pages to LRU */
191 /*
192 * Because we lock page here, and migration is
193 * blocked by the pte's page reference, and we
194 * know the page is still mapped, we don't even
195 * need to check for file-cache page truncation.
196 */
197 mlock_vma_page(page);
198 unlock_page(page);
199 }
200 }
1027e443 201out:
4bbd4c77 202 pte_unmap_unlock(ptep, ptl);
4bbd4c77 203 return page;
4bbd4c77
KS
204no_page:
205 pte_unmap_unlock(ptep, ptl);
206 if (!pte_none(pte))
69e68b4f
KS
207 return NULL;
208 return no_page_table(vma, flags);
209}
210
211/**
212 * follow_page_mask - look up a page descriptor from a user-virtual address
213 * @vma: vm_area_struct mapping @address
214 * @address: virtual address to look up
215 * @flags: flags modifying lookup behaviour
216 * @page_mask: on output, *page_mask is set according to the size of the page
217 *
218 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
219 *
220 * Returns the mapped (struct page *), %NULL if no mapping exists, or
221 * an error pointer if there is a mapping to something not represented
222 * by a page descriptor (see also vm_normal_page()).
223 */
224struct page *follow_page_mask(struct vm_area_struct *vma,
225 unsigned long address, unsigned int flags,
226 unsigned int *page_mask)
227{
228 pgd_t *pgd;
229 pud_t *pud;
230 pmd_t *pmd;
231 spinlock_t *ptl;
232 struct page *page;
233 struct mm_struct *mm = vma->vm_mm;
234
235 *page_mask = 0;
236
237 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
238 if (!IS_ERR(page)) {
239 BUG_ON(flags & FOLL_GET);
4bbd4c77 240 return page;
69e68b4f 241 }
4bbd4c77 242
69e68b4f
KS
243 pgd = pgd_offset(mm, address);
244 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
245 return no_page_table(vma, flags);
246
247 pud = pud_offset(pgd, address);
248 if (pud_none(*pud))
249 return no_page_table(vma, flags);
250 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
e66f17ff
NH
251 page = follow_huge_pud(mm, address, pud, flags);
252 if (page)
253 return page;
254 return no_page_table(vma, flags);
69e68b4f
KS
255 }
256 if (unlikely(pud_bad(*pud)))
257 return no_page_table(vma, flags);
258
259 pmd = pmd_offset(pud, address);
260 if (pmd_none(*pmd))
261 return no_page_table(vma, flags);
262 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
e66f17ff
NH
263 page = follow_huge_pmd(mm, address, pmd, flags);
264 if (page)
265 return page;
266 return no_page_table(vma, flags);
69e68b4f 267 }
3565fce3
DW
268 if (pmd_devmap(*pmd)) {
269 ptl = pmd_lock(mm, pmd);
270 page = follow_devmap_pmd(vma, address, pmd, flags);
271 spin_unlock(ptl);
272 if (page)
273 return page;
274 }
6742d293
KS
275 if (likely(!pmd_trans_huge(*pmd)))
276 return follow_page_pte(vma, address, pmd, flags);
277
f75e9208
AK
278 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
279 return no_page_table(vma, flags);
280
6742d293
KS
281 ptl = pmd_lock(mm, pmd);
282 if (unlikely(!pmd_trans_huge(*pmd))) {
283 spin_unlock(ptl);
284 return follow_page_pte(vma, address, pmd, flags);
285 }
6742d293
KS
286 if (flags & FOLL_SPLIT) {
287 int ret;
288 page = pmd_page(*pmd);
289 if (is_huge_zero_page(page)) {
290 spin_unlock(ptl);
291 ret = 0;
78ddc534 292 split_huge_pmd(vma, pmd, address);
337d9abf
NH
293 if (pmd_trans_unstable(pmd))
294 ret = -EBUSY;
6742d293
KS
295 } else {
296 get_page(page);
69e68b4f 297 spin_unlock(ptl);
6742d293
KS
298 lock_page(page);
299 ret = split_huge_page(page);
300 unlock_page(page);
301 put_page(page);
baa355fd
KS
302 if (pmd_none(*pmd))
303 return no_page_table(vma, flags);
6742d293
KS
304 }
305
306 return ret ? ERR_PTR(ret) :
307 follow_page_pte(vma, address, pmd, flags);
69e68b4f 308 }
6742d293
KS
309
310 page = follow_trans_huge_pmd(vma, address, pmd, flags);
311 spin_unlock(ptl);
312 *page_mask = HPAGE_PMD_NR - 1;
313 return page;
4bbd4c77
KS
314}
315
f2b495ca
KS
316static int get_gate_page(struct mm_struct *mm, unsigned long address,
317 unsigned int gup_flags, struct vm_area_struct **vma,
318 struct page **page)
319{
320 pgd_t *pgd;
321 pud_t *pud;
322 pmd_t *pmd;
323 pte_t *pte;
324 int ret = -EFAULT;
325
326 /* user gate pages are read-only */
327 if (gup_flags & FOLL_WRITE)
328 return -EFAULT;
329 if (address > TASK_SIZE)
330 pgd = pgd_offset_k(address);
331 else
332 pgd = pgd_offset_gate(mm, address);
333 BUG_ON(pgd_none(*pgd));
334 pud = pud_offset(pgd, address);
335 BUG_ON(pud_none(*pud));
336 pmd = pmd_offset(pud, address);
337 if (pmd_none(*pmd))
338 return -EFAULT;
339 VM_BUG_ON(pmd_trans_huge(*pmd));
340 pte = pte_offset_map(pmd, address);
341 if (pte_none(*pte))
342 goto unmap;
343 *vma = get_gate_vma(mm);
344 if (!page)
345 goto out;
346 *page = vm_normal_page(*vma, address, *pte);
347 if (!*page) {
348 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
349 goto unmap;
350 *page = pte_page(*pte);
351 }
352 get_page(*page);
353out:
354 ret = 0;
355unmap:
356 pte_unmap(pte);
357 return ret;
358}
359
9a95f3cf
PC
360/*
361 * mmap_sem must be held on entry. If @nonblocking != NULL and
362 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
363 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
364 */
16744483
KS
365static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
366 unsigned long address, unsigned int *flags, int *nonblocking)
367{
16744483
KS
368 unsigned int fault_flags = 0;
369 int ret;
370
de60f5f1
EM
371 /* mlock all present pages, but do not fault in new pages */
372 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
373 return -ENOENT;
16744483
KS
374 if (*flags & FOLL_WRITE)
375 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
376 if (*flags & FOLL_REMOTE)
377 fault_flags |= FAULT_FLAG_REMOTE;
16744483
KS
378 if (nonblocking)
379 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
380 if (*flags & FOLL_NOWAIT)
381 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b
ALC
382 if (*flags & FOLL_TRIED) {
383 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
384 fault_flags |= FAULT_FLAG_TRIED;
385 }
16744483 386
dcddffd4 387 ret = handle_mm_fault(vma, address, fault_flags);
16744483
KS
388 if (ret & VM_FAULT_ERROR) {
389 if (ret & VM_FAULT_OOM)
390 return -ENOMEM;
391 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
392 return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
33692f27 393 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
16744483
KS
394 return -EFAULT;
395 BUG();
396 }
397
398 if (tsk) {
399 if (ret & VM_FAULT_MAJOR)
400 tsk->maj_flt++;
401 else
402 tsk->min_flt++;
403 }
404
405 if (ret & VM_FAULT_RETRY) {
406 if (nonblocking)
407 *nonblocking = 0;
408 return -EBUSY;
409 }
410
411 /*
412 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
413 * necessary, even if maybe_mkwrite decided not to set pte_write. We
414 * can thus safely do subsequent page lookups as if they were reads.
415 * But only do so when looping for pte_write is futile: in some cases
416 * userspace may also be wanting to write to the gotten user page,
417 * which a read fault here might prevent (a readonly page might get
418 * reCOWed by userspace write).
419 */
420 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
19be0eaf 421 *flags |= FOLL_COW;
16744483
KS
422 return 0;
423}
424
fa5bb209
KS
425static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
426{
427 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
428 int write = (gup_flags & FOLL_WRITE);
429 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
430
431 if (vm_flags & (VM_IO | VM_PFNMAP))
432 return -EFAULT;
433
1b2ee126 434 if (write) {
fa5bb209
KS
435 if (!(vm_flags & VM_WRITE)) {
436 if (!(gup_flags & FOLL_FORCE))
437 return -EFAULT;
438 /*
439 * We used to let the write,force case do COW in a
440 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
441 * set a breakpoint in a read-only mapping of an
442 * executable, without corrupting the file (yet only
443 * when that file had been opened for writing!).
444 * Anon pages in shared mappings are surprising: now
445 * just reject it.
446 */
46435364 447 if (!is_cow_mapping(vm_flags))
fa5bb209 448 return -EFAULT;
fa5bb209
KS
449 }
450 } else if (!(vm_flags & VM_READ)) {
451 if (!(gup_flags & FOLL_FORCE))
452 return -EFAULT;
453 /*
454 * Is there actually any vma we can reach here which does not
455 * have VM_MAYREAD set?
456 */
457 if (!(vm_flags & VM_MAYREAD))
458 return -EFAULT;
459 }
d61172b4
DH
460 /*
461 * gups are always data accesses, not instruction
462 * fetches, so execute=false here
463 */
464 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 465 return -EFAULT;
fa5bb209
KS
466 return 0;
467}
468
4bbd4c77
KS
469/**
470 * __get_user_pages() - pin user pages in memory
471 * @tsk: task_struct of target task
472 * @mm: mm_struct of target mm
473 * @start: starting user address
474 * @nr_pages: number of pages from start to pin
475 * @gup_flags: flags modifying pin behaviour
476 * @pages: array that receives pointers to the pages pinned.
477 * Should be at least nr_pages long. Or NULL, if caller
478 * only intends to ensure the pages are faulted in.
479 * @vmas: array of pointers to vmas corresponding to each page.
480 * Or NULL if the caller does not require them.
481 * @nonblocking: whether waiting for disk IO or mmap_sem contention
482 *
483 * Returns number of pages pinned. This may be fewer than the number
484 * requested. If nr_pages is 0 or negative, returns 0. If no pages
485 * were pinned, returns -errno. Each page returned must be released
486 * with a put_page() call when it is finished with. vmas will only
487 * remain valid while mmap_sem is held.
488 *
9a95f3cf 489 * Must be called with mmap_sem held. It may be released. See below.
4bbd4c77
KS
490 *
491 * __get_user_pages walks a process's page tables and takes a reference to
492 * each struct page that each user address corresponds to at a given
493 * instant. That is, it takes the page that would be accessed if a user
494 * thread accesses the given user virtual address at that instant.
495 *
496 * This does not guarantee that the page exists in the user mappings when
497 * __get_user_pages returns, and there may even be a completely different
498 * page there in some cases (eg. if mmapped pagecache has been invalidated
499 * and subsequently re faulted). However it does guarantee that the page
500 * won't be freed completely. And mostly callers simply care that the page
501 * contains data that was valid *at some point in time*. Typically, an IO
502 * or similar operation cannot guarantee anything stronger anyway because
503 * locks can't be held over the syscall boundary.
504 *
505 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
506 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
507 * appropriate) must be called after the page is finished with, and
508 * before put_page is called.
509 *
510 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
511 * or mmap_sem contention, and if waiting is needed to pin all pages,
9a95f3cf
PC
512 * *@nonblocking will be set to 0. Further, if @gup_flags does not
513 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
514 * this case.
515 *
516 * A caller using such a combination of @nonblocking and @gup_flags
517 * must therefore hold the mmap_sem for reading only, and recognize
518 * when it's been released. Otherwise, it must be held for either
519 * reading or writing and will not be released.
4bbd4c77
KS
520 *
521 * In most cases, get_user_pages or get_user_pages_fast should be used
522 * instead of __get_user_pages. __get_user_pages should be used only if
523 * you need some special @gup_flags.
524 */
0d731759 525static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
4bbd4c77
KS
526 unsigned long start, unsigned long nr_pages,
527 unsigned int gup_flags, struct page **pages,
528 struct vm_area_struct **vmas, int *nonblocking)
529{
fa5bb209 530 long i = 0;
4bbd4c77 531 unsigned int page_mask;
fa5bb209 532 struct vm_area_struct *vma = NULL;
4bbd4c77
KS
533
534 if (!nr_pages)
535 return 0;
536
537 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
538
539 /*
540 * If FOLL_FORCE is set then do not force a full fault as the hinting
541 * fault information is unrelated to the reference behaviour of a task
542 * using the address space
543 */
544 if (!(gup_flags & FOLL_FORCE))
545 gup_flags |= FOLL_NUMA;
546
4bbd4c77 547 do {
fa5bb209
KS
548 struct page *page;
549 unsigned int foll_flags = gup_flags;
550 unsigned int page_increm;
551
552 /* first iteration or cross vma bound */
553 if (!vma || start >= vma->vm_end) {
554 vma = find_extend_vma(mm, start);
555 if (!vma && in_gate_area(mm, start)) {
556 int ret;
557 ret = get_gate_page(mm, start & PAGE_MASK,
558 gup_flags, &vma,
559 pages ? &pages[i] : NULL);
560 if (ret)
561 return i ? : ret;
562 page_mask = 0;
563 goto next_page;
564 }
4bbd4c77 565
fa5bb209
KS
566 if (!vma || check_vma_flags(vma, gup_flags))
567 return i ? : -EFAULT;
568 if (is_vm_hugetlb_page(vma)) {
569 i = follow_hugetlb_page(mm, vma, pages, vmas,
570 &start, &nr_pages, i,
571 gup_flags);
572 continue;
4bbd4c77 573 }
fa5bb209
KS
574 }
575retry:
576 /*
577 * If we have a pending SIGKILL, don't keep faulting pages and
578 * potentially allocating memory.
579 */
580 if (unlikely(fatal_signal_pending(current)))
581 return i ? i : -ERESTARTSYS;
582 cond_resched();
583 page = follow_page_mask(vma, start, foll_flags, &page_mask);
584 if (!page) {
585 int ret;
586 ret = faultin_page(tsk, vma, start, &foll_flags,
587 nonblocking);
588 switch (ret) {
589 case 0:
590 goto retry;
591 case -EFAULT:
592 case -ENOMEM:
593 case -EHWPOISON:
594 return i ? i : ret;
595 case -EBUSY:
596 return i;
597 case -ENOENT:
598 goto next_page;
4bbd4c77 599 }
fa5bb209 600 BUG();
1027e443
KS
601 } else if (PTR_ERR(page) == -EEXIST) {
602 /*
603 * Proper page table entry exists, but no corresponding
604 * struct page.
605 */
606 goto next_page;
607 } else if (IS_ERR(page)) {
fa5bb209 608 return i ? i : PTR_ERR(page);
1027e443 609 }
fa5bb209
KS
610 if (pages) {
611 pages[i] = page;
612 flush_anon_page(vma, page, start);
613 flush_dcache_page(page);
614 page_mask = 0;
4bbd4c77 615 }
4bbd4c77 616next_page:
fa5bb209
KS
617 if (vmas) {
618 vmas[i] = vma;
619 page_mask = 0;
620 }
621 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
622 if (page_increm > nr_pages)
623 page_increm = nr_pages;
624 i += page_increm;
625 start += page_increm * PAGE_SIZE;
626 nr_pages -= page_increm;
4bbd4c77
KS
627 } while (nr_pages);
628 return i;
4bbd4c77 629}
4bbd4c77 630
771ab430
TK
631static bool vma_permits_fault(struct vm_area_struct *vma,
632 unsigned int fault_flags)
d4925e00 633{
1b2ee126
DH
634 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
635 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 636 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
637
638 if (!(vm_flags & vma->vm_flags))
639 return false;
640
33a709b2
DH
641 /*
642 * The architecture might have a hardware protection
1b2ee126 643 * mechanism other than read/write that can deny access.
d61172b4
DH
644 *
645 * gup always represents data access, not instruction
646 * fetches, so execute=false here:
33a709b2 647 */
d61172b4 648 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
649 return false;
650
d4925e00
DH
651 return true;
652}
653
4bbd4c77
KS
654/*
655 * fixup_user_fault() - manually resolve a user page fault
656 * @tsk: the task_struct to use for page fault accounting, or
657 * NULL if faults are not to be recorded.
658 * @mm: mm_struct of target mm
659 * @address: user address
660 * @fault_flags:flags to pass down to handle_mm_fault()
4a9e1cda
DD
661 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
662 * does not allow retry
4bbd4c77
KS
663 *
664 * This is meant to be called in the specific scenario where for locking reasons
665 * we try to access user memory in atomic context (within a pagefault_disable()
666 * section), this returns -EFAULT, and we want to resolve the user fault before
667 * trying again.
668 *
669 * Typically this is meant to be used by the futex code.
670 *
671 * The main difference with get_user_pages() is that this function will
672 * unconditionally call handle_mm_fault() which will in turn perform all the
673 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 674 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
675 *
676 * This is important for some architectures where those bits also gate the
677 * access permission to the page because they are maintained in software. On
678 * such architectures, gup() will not be enough to make a subsequent access
679 * succeed.
680 *
4a9e1cda
DD
681 * This function will not return with an unlocked mmap_sem. So it has not the
682 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
4bbd4c77
KS
683 */
684int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
685 unsigned long address, unsigned int fault_flags,
686 bool *unlocked)
4bbd4c77
KS
687{
688 struct vm_area_struct *vma;
4a9e1cda
DD
689 int ret, major = 0;
690
691 if (unlocked)
692 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4bbd4c77 693
4a9e1cda 694retry:
4bbd4c77
KS
695 vma = find_extend_vma(mm, address);
696 if (!vma || address < vma->vm_start)
697 return -EFAULT;
698
d4925e00 699 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
700 return -EFAULT;
701
dcddffd4 702 ret = handle_mm_fault(vma, address, fault_flags);
4a9e1cda 703 major |= ret & VM_FAULT_MAJOR;
4bbd4c77
KS
704 if (ret & VM_FAULT_ERROR) {
705 if (ret & VM_FAULT_OOM)
706 return -ENOMEM;
707 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
708 return -EHWPOISON;
33692f27 709 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
4bbd4c77
KS
710 return -EFAULT;
711 BUG();
712 }
4a9e1cda
DD
713
714 if (ret & VM_FAULT_RETRY) {
715 down_read(&mm->mmap_sem);
716 if (!(fault_flags & FAULT_FLAG_TRIED)) {
717 *unlocked = true;
718 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
719 fault_flags |= FAULT_FLAG_TRIED;
720 goto retry;
721 }
722 }
723
4bbd4c77 724 if (tsk) {
4a9e1cda 725 if (major)
4bbd4c77
KS
726 tsk->maj_flt++;
727 else
728 tsk->min_flt++;
729 }
730 return 0;
731}
add6a0cd 732EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 733
f0818f47
AA
734static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
735 struct mm_struct *mm,
736 unsigned long start,
737 unsigned long nr_pages,
f0818f47
AA
738 struct page **pages,
739 struct vm_area_struct **vmas,
0fd71a56
AA
740 int *locked, bool notify_drop,
741 unsigned int flags)
f0818f47 742{
f0818f47
AA
743 long ret, pages_done;
744 bool lock_dropped;
745
746 if (locked) {
747 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
748 BUG_ON(vmas);
749 /* check caller initialized locked */
750 BUG_ON(*locked != 1);
751 }
752
753 if (pages)
754 flags |= FOLL_GET;
f0818f47
AA
755
756 pages_done = 0;
757 lock_dropped = false;
758 for (;;) {
759 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
760 vmas, locked);
761 if (!locked)
762 /* VM_FAULT_RETRY couldn't trigger, bypass */
763 return ret;
764
765 /* VM_FAULT_RETRY cannot return errors */
766 if (!*locked) {
767 BUG_ON(ret < 0);
768 BUG_ON(ret >= nr_pages);
769 }
770
771 if (!pages)
772 /* If it's a prefault don't insist harder */
773 return ret;
774
775 if (ret > 0) {
776 nr_pages -= ret;
777 pages_done += ret;
778 if (!nr_pages)
779 break;
780 }
781 if (*locked) {
782 /* VM_FAULT_RETRY didn't trigger */
783 if (!pages_done)
784 pages_done = ret;
785 break;
786 }
787 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
788 pages += ret;
789 start += ret << PAGE_SHIFT;
790
791 /*
792 * Repeat on the address that fired VM_FAULT_RETRY
793 * without FAULT_FLAG_ALLOW_RETRY but with
794 * FAULT_FLAG_TRIED.
795 */
796 *locked = 1;
797 lock_dropped = true;
798 down_read(&mm->mmap_sem);
799 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
800 pages, NULL, NULL);
801 if (ret != 1) {
802 BUG_ON(ret > 1);
803 if (!pages_done)
804 pages_done = ret;
805 break;
806 }
807 nr_pages--;
808 pages_done++;
809 if (!nr_pages)
810 break;
811 pages++;
812 start += PAGE_SIZE;
813 }
814 if (notify_drop && lock_dropped && *locked) {
815 /*
816 * We must let the caller know we temporarily dropped the lock
817 * and so the critical section protected by it was lost.
818 */
819 up_read(&mm->mmap_sem);
820 *locked = 0;
821 }
822 return pages_done;
823}
824
825/*
826 * We can leverage the VM_FAULT_RETRY functionality in the page fault
827 * paths better by using either get_user_pages_locked() or
828 * get_user_pages_unlocked().
829 *
830 * get_user_pages_locked() is suitable to replace the form:
831 *
832 * down_read(&mm->mmap_sem);
833 * do_something()
834 * get_user_pages(tsk, mm, ..., pages, NULL);
835 * up_read(&mm->mmap_sem);
836 *
837 * to:
838 *
839 * int locked = 1;
840 * down_read(&mm->mmap_sem);
841 * do_something()
842 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
843 * if (locked)
844 * up_read(&mm->mmap_sem);
845 */
c12d2da5 846long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 847 unsigned int gup_flags, struct page **pages,
f0818f47
AA
848 int *locked)
849{
cde70140 850 return __get_user_pages_locked(current, current->mm, start, nr_pages,
3b913179
LS
851 pages, NULL, locked, true,
852 gup_flags | FOLL_TOUCH);
f0818f47 853}
c12d2da5 854EXPORT_SYMBOL(get_user_pages_locked);
f0818f47 855
0fd71a56 856/*
80a79516
LS
857 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows for
858 * tsk, mm to be specified.
0fd71a56
AA
859 *
860 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
80a79516
LS
861 * caller if required (just like with __get_user_pages). "FOLL_GET"
862 * is set implicitly if "pages" is non-NULL.
0fd71a56 863 */
8b7457ef
LS
864static __always_inline long __get_user_pages_unlocked(struct task_struct *tsk,
865 struct mm_struct *mm, unsigned long start,
866 unsigned long nr_pages, struct page **pages,
867 unsigned int gup_flags)
0fd71a56
AA
868{
869 long ret;
870 int locked = 1;
859110d7 871
0fd71a56 872 down_read(&mm->mmap_sem);
859110d7
LS
873 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, NULL,
874 &locked, false, gup_flags);
0fd71a56
AA
875 if (locked)
876 up_read(&mm->mmap_sem);
877 return ret;
878}
0fd71a56 879
f0818f47
AA
880/*
881 * get_user_pages_unlocked() is suitable to replace the form:
882 *
883 * down_read(&mm->mmap_sem);
884 * get_user_pages(tsk, mm, ..., pages, NULL);
885 * up_read(&mm->mmap_sem);
886 *
887 * with:
888 *
889 * get_user_pages_unlocked(tsk, mm, ..., pages);
890 *
891 * It is functionally equivalent to get_user_pages_fast so
80a79516
LS
892 * get_user_pages_fast should be used instead if specific gup_flags
893 * (e.g. FOLL_FORCE) are not required.
f0818f47 894 */
c12d2da5 895long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 896 struct page **pages, unsigned int gup_flags)
f0818f47 897{
cde70140 898 return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
c164154f 899 pages, gup_flags | FOLL_TOUCH);
f0818f47 900}
c12d2da5 901EXPORT_SYMBOL(get_user_pages_unlocked);
f0818f47 902
4bbd4c77 903/*
1e987790 904 * get_user_pages_remote() - pin user pages in memory
4bbd4c77
KS
905 * @tsk: the task_struct to use for page fault accounting, or
906 * NULL if faults are not to be recorded.
907 * @mm: mm_struct of target mm
908 * @start: starting user address
909 * @nr_pages: number of pages from start to pin
9beae1ea 910 * @gup_flags: flags modifying lookup behaviour
4bbd4c77
KS
911 * @pages: array that receives pointers to the pages pinned.
912 * Should be at least nr_pages long. Or NULL, if caller
913 * only intends to ensure the pages are faulted in.
914 * @vmas: array of pointers to vmas corresponding to each page.
915 * Or NULL if the caller does not require them.
5b56d49f
LS
916 * @locked: pointer to lock flag indicating whether lock is held and
917 * subsequently whether VM_FAULT_RETRY functionality can be
918 * utilised. Lock must initially be held.
4bbd4c77
KS
919 *
920 * Returns number of pages pinned. This may be fewer than the number
921 * requested. If nr_pages is 0 or negative, returns 0. If no pages
922 * were pinned, returns -errno. Each page returned must be released
923 * with a put_page() call when it is finished with. vmas will only
924 * remain valid while mmap_sem is held.
925 *
926 * Must be called with mmap_sem held for read or write.
927 *
928 * get_user_pages walks a process's page tables and takes a reference to
929 * each struct page that each user address corresponds to at a given
930 * instant. That is, it takes the page that would be accessed if a user
931 * thread accesses the given user virtual address at that instant.
932 *
933 * This does not guarantee that the page exists in the user mappings when
934 * get_user_pages returns, and there may even be a completely different
935 * page there in some cases (eg. if mmapped pagecache has been invalidated
936 * and subsequently re faulted). However it does guarantee that the page
937 * won't be freed completely. And mostly callers simply care that the page
938 * contains data that was valid *at some point in time*. Typically, an IO
939 * or similar operation cannot guarantee anything stronger anyway because
940 * locks can't be held over the syscall boundary.
941 *
9beae1ea
LS
942 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
943 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
944 * be called after the page is finished with, and before put_page is called.
4bbd4c77
KS
945 *
946 * get_user_pages is typically used for fewer-copy IO operations, to get a
947 * handle on the memory by some means other than accesses via the user virtual
948 * addresses. The pages may be submitted for DMA to devices or accessed via
949 * their kernel linear mapping (via the kmap APIs). Care should be taken to
950 * use the correct cache flushing APIs.
951 *
952 * See also get_user_pages_fast, for performance critical applications.
f0818f47
AA
953 *
954 * get_user_pages should be phased out in favor of
955 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
956 * should use get_user_pages because it cannot pass
957 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
4bbd4c77 958 */
1e987790
DH
959long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
960 unsigned long start, unsigned long nr_pages,
9beae1ea 961 unsigned int gup_flags, struct page **pages,
5b56d49f 962 struct vm_area_struct **vmas, int *locked)
4bbd4c77 963{
859110d7 964 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
5b56d49f 965 locked, true,
9beae1ea 966 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1e987790
DH
967}
968EXPORT_SYMBOL(get_user_pages_remote);
969
970/*
d4edcf0d
DH
971 * This is the same as get_user_pages_remote(), just with a
972 * less-flexible calling convention where we assume that the task
5b56d49f
LS
973 * and mm being operated on are the current task's and don't allow
974 * passing of a locked parameter. We also obviously don't pass
975 * FOLL_REMOTE in here.
1e987790 976 */
c12d2da5 977long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 978 unsigned int gup_flags, struct page **pages,
1e987790
DH
979 struct vm_area_struct **vmas)
980{
cde70140 981 return __get_user_pages_locked(current, current->mm, start, nr_pages,
768ae309
LS
982 pages, vmas, NULL, false,
983 gup_flags | FOLL_TOUCH);
4bbd4c77 984}
c12d2da5 985EXPORT_SYMBOL(get_user_pages);
4bbd4c77 986
acc3c8d1
KS
987/**
988 * populate_vma_page_range() - populate a range of pages in the vma.
989 * @vma: target vma
990 * @start: start address
991 * @end: end address
992 * @nonblocking:
993 *
994 * This takes care of mlocking the pages too if VM_LOCKED is set.
995 *
996 * return 0 on success, negative error code on error.
997 *
998 * vma->vm_mm->mmap_sem must be held.
999 *
1000 * If @nonblocking is NULL, it may be held for read or write and will
1001 * be unperturbed.
1002 *
1003 * If @nonblocking is non-NULL, it must held for read only and may be
1004 * released. If it's released, *@nonblocking will be set to 0.
1005 */
1006long populate_vma_page_range(struct vm_area_struct *vma,
1007 unsigned long start, unsigned long end, int *nonblocking)
1008{
1009 struct mm_struct *mm = vma->vm_mm;
1010 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1011 int gup_flags;
1012
1013 VM_BUG_ON(start & ~PAGE_MASK);
1014 VM_BUG_ON(end & ~PAGE_MASK);
1015 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1016 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1017 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1018
de60f5f1
EM
1019 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1020 if (vma->vm_flags & VM_LOCKONFAULT)
1021 gup_flags &= ~FOLL_POPULATE;
acc3c8d1
KS
1022 /*
1023 * We want to touch writable mappings with a write fault in order
1024 * to break COW, except for shared mappings because these don't COW
1025 * and we would not want to dirty them for nothing.
1026 */
1027 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1028 gup_flags |= FOLL_WRITE;
1029
1030 /*
1031 * We want mlock to succeed for regions that have any permissions
1032 * other than PROT_NONE.
1033 */
1034 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1035 gup_flags |= FOLL_FORCE;
1036
1037 /*
1038 * We made sure addr is within a VMA, so the following will
1039 * not result in a stack expansion that recurses back here.
1040 */
1041 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1042 NULL, NULL, nonblocking);
1043}
1044
1045/*
1046 * __mm_populate - populate and/or mlock pages within a range of address space.
1047 *
1048 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1049 * flags. VMAs must be already marked with the desired vm_flags, and
1050 * mmap_sem must not be held.
1051 */
1052int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1053{
1054 struct mm_struct *mm = current->mm;
1055 unsigned long end, nstart, nend;
1056 struct vm_area_struct *vma = NULL;
1057 int locked = 0;
1058 long ret = 0;
1059
1060 VM_BUG_ON(start & ~PAGE_MASK);
1061 VM_BUG_ON(len != PAGE_ALIGN(len));
1062 end = start + len;
1063
1064 for (nstart = start; nstart < end; nstart = nend) {
1065 /*
1066 * We want to fault in pages for [nstart; end) address range.
1067 * Find first corresponding VMA.
1068 */
1069 if (!locked) {
1070 locked = 1;
1071 down_read(&mm->mmap_sem);
1072 vma = find_vma(mm, nstart);
1073 } else if (nstart >= vma->vm_end)
1074 vma = vma->vm_next;
1075 if (!vma || vma->vm_start >= end)
1076 break;
1077 /*
1078 * Set [nstart; nend) to intersection of desired address
1079 * range with the first VMA. Also, skip undesirable VMA types.
1080 */
1081 nend = min(end, vma->vm_end);
1082 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1083 continue;
1084 if (nstart < vma->vm_start)
1085 nstart = vma->vm_start;
1086 /*
1087 * Now fault in a range of pages. populate_vma_page_range()
1088 * double checks the vma flags, so that it won't mlock pages
1089 * if the vma was already munlocked.
1090 */
1091 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1092 if (ret < 0) {
1093 if (ignore_errors) {
1094 ret = 0;
1095 continue; /* continue at next VMA */
1096 }
1097 break;
1098 }
1099 nend = nstart + ret * PAGE_SIZE;
1100 ret = 0;
1101 }
1102 if (locked)
1103 up_read(&mm->mmap_sem);
1104 return ret; /* 0 or negative error code */
1105}
1106
4bbd4c77
KS
1107/**
1108 * get_dump_page() - pin user page in memory while writing it to core dump
1109 * @addr: user address
1110 *
1111 * Returns struct page pointer of user page pinned for dump,
ea1754a0 1112 * to be freed afterwards by put_page().
4bbd4c77
KS
1113 *
1114 * Returns NULL on any kind of failure - a hole must then be inserted into
1115 * the corefile, to preserve alignment with its headers; and also returns
1116 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1117 * allowing a hole to be left in the corefile to save diskspace.
1118 *
1119 * Called without mmap_sem, but after all other threads have been killed.
1120 */
1121#ifdef CONFIG_ELF_CORE
1122struct page *get_dump_page(unsigned long addr)
1123{
1124 struct vm_area_struct *vma;
1125 struct page *page;
1126
1127 if (__get_user_pages(current, current->mm, addr, 1,
1128 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1129 NULL) < 1)
1130 return NULL;
1131 flush_cache_page(vma, addr, page_to_pfn(page));
1132 return page;
1133}
1134#endif /* CONFIG_ELF_CORE */
2667f50e
SC
1135
1136/*
1137 * Generic RCU Fast GUP
1138 *
1139 * get_user_pages_fast attempts to pin user pages by walking the page
1140 * tables directly and avoids taking locks. Thus the walker needs to be
1141 * protected from page table pages being freed from under it, and should
1142 * block any THP splits.
1143 *
1144 * One way to achieve this is to have the walker disable interrupts, and
1145 * rely on IPIs from the TLB flushing code blocking before the page table
1146 * pages are freed. This is unsuitable for architectures that do not need
1147 * to broadcast an IPI when invalidating TLBs.
1148 *
1149 * Another way to achieve this is to batch up page table containing pages
1150 * belonging to more than one mm_user, then rcu_sched a callback to free those
1151 * pages. Disabling interrupts will allow the fast_gup walker to both block
1152 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1153 * (which is a relatively rare event). The code below adopts this strategy.
1154 *
1155 * Before activating this code, please be aware that the following assumptions
1156 * are currently made:
1157 *
1158 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1159 * pages containing page tables.
1160 *
2667f50e
SC
1161 * *) ptes can be read atomically by the architecture.
1162 *
1163 * *) access_ok is sufficient to validate userspace address ranges.
1164 *
1165 * The last two assumptions can be relaxed by the addition of helper functions.
1166 *
1167 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1168 */
1169#ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1170
1171#ifdef __HAVE_ARCH_PTE_SPECIAL
1172static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1173 int write, struct page **pages, int *nr)
1174{
1175 pte_t *ptep, *ptem;
1176 int ret = 0;
1177
1178 ptem = ptep = pte_offset_map(&pmd, addr);
1179 do {
1180 /*
1181 * In the line below we are assuming that the pte can be read
1182 * atomically. If this is not the case for your architecture,
1183 * please wrap this in a helper function!
1184 *
1185 * for an example see gup_get_pte in arch/x86/mm/gup.c
1186 */
9d8c47e4 1187 pte_t pte = READ_ONCE(*ptep);
7aef4172 1188 struct page *head, *page;
2667f50e
SC
1189
1190 /*
1191 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 1192 * path using the pte_protnone check.
2667f50e
SC
1193 */
1194 if (!pte_present(pte) || pte_special(pte) ||
8a0516ed 1195 pte_protnone(pte) || (write && !pte_write(pte)))
2667f50e
SC
1196 goto pte_unmap;
1197
33a709b2
DH
1198 if (!arch_pte_access_permitted(pte, write))
1199 goto pte_unmap;
1200
2667f50e
SC
1201 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1202 page = pte_page(pte);
7aef4172 1203 head = compound_head(page);
2667f50e 1204
7aef4172 1205 if (!page_cache_get_speculative(head))
2667f50e
SC
1206 goto pte_unmap;
1207
1208 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
7aef4172 1209 put_page(head);
2667f50e
SC
1210 goto pte_unmap;
1211 }
1212
7aef4172 1213 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2667f50e
SC
1214 pages[*nr] = page;
1215 (*nr)++;
1216
1217 } while (ptep++, addr += PAGE_SIZE, addr != end);
1218
1219 ret = 1;
1220
1221pte_unmap:
1222 pte_unmap(ptem);
1223 return ret;
1224}
1225#else
1226
1227/*
1228 * If we can't determine whether or not a pte is special, then fail immediately
1229 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1230 * to be special.
1231 *
1232 * For a futex to be placed on a THP tail page, get_futex_key requires a
1233 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1234 * useful to have gup_huge_pmd even if we can't operate on ptes.
1235 */
1236static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1237 int write, struct page **pages, int *nr)
1238{
1239 return 0;
1240}
1241#endif /* __HAVE_ARCH_PTE_SPECIAL */
1242
1243static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1244 unsigned long end, int write, struct page **pages, int *nr)
1245{
ddc58f27 1246 struct page *head, *page;
2667f50e
SC
1247 int refs;
1248
1249 if (write && !pmd_write(orig))
1250 return 0;
1251
1252 refs = 0;
1253 head = pmd_page(orig);
1254 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2667f50e
SC
1255 do {
1256 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1257 pages[*nr] = page;
1258 (*nr)++;
1259 page++;
1260 refs++;
1261 } while (addr += PAGE_SIZE, addr != end);
1262
1263 if (!page_cache_add_speculative(head, refs)) {
1264 *nr -= refs;
1265 return 0;
1266 }
1267
1268 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1269 *nr -= refs;
1270 while (refs--)
1271 put_page(head);
1272 return 0;
1273 }
1274
2667f50e
SC
1275 return 1;
1276}
1277
1278static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1279 unsigned long end, int write, struct page **pages, int *nr)
1280{
ddc58f27 1281 struct page *head, *page;
2667f50e
SC
1282 int refs;
1283
1284 if (write && !pud_write(orig))
1285 return 0;
1286
1287 refs = 0;
1288 head = pud_page(orig);
1289 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2667f50e
SC
1290 do {
1291 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1292 pages[*nr] = page;
1293 (*nr)++;
1294 page++;
1295 refs++;
1296 } while (addr += PAGE_SIZE, addr != end);
1297
1298 if (!page_cache_add_speculative(head, refs)) {
1299 *nr -= refs;
1300 return 0;
1301 }
1302
1303 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1304 *nr -= refs;
1305 while (refs--)
1306 put_page(head);
1307 return 0;
1308 }
1309
2667f50e
SC
1310 return 1;
1311}
1312
f30c59e9
AK
1313static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1314 unsigned long end, int write,
1315 struct page **pages, int *nr)
1316{
1317 int refs;
ddc58f27 1318 struct page *head, *page;
f30c59e9
AK
1319
1320 if (write && !pgd_write(orig))
1321 return 0;
1322
1323 refs = 0;
1324 head = pgd_page(orig);
1325 page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
f30c59e9
AK
1326 do {
1327 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1328 pages[*nr] = page;
1329 (*nr)++;
1330 page++;
1331 refs++;
1332 } while (addr += PAGE_SIZE, addr != end);
1333
1334 if (!page_cache_add_speculative(head, refs)) {
1335 *nr -= refs;
1336 return 0;
1337 }
1338
1339 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1340 *nr -= refs;
1341 while (refs--)
1342 put_page(head);
1343 return 0;
1344 }
1345
f30c59e9
AK
1346 return 1;
1347}
1348
2667f50e
SC
1349static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1350 int write, struct page **pages, int *nr)
1351{
1352 unsigned long next;
1353 pmd_t *pmdp;
1354
1355 pmdp = pmd_offset(&pud, addr);
1356 do {
38c5ce93 1357 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
1358
1359 next = pmd_addr_end(addr, end);
4b471e88 1360 if (pmd_none(pmd))
2667f50e
SC
1361 return 0;
1362
1363 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1364 /*
1365 * NUMA hinting faults need to be handled in the GUP
1366 * slowpath for accounting purposes and so that they
1367 * can be serialised against THP migration.
1368 */
8a0516ed 1369 if (pmd_protnone(pmd))
2667f50e
SC
1370 return 0;
1371
1372 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1373 pages, nr))
1374 return 0;
1375
f30c59e9
AK
1376 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1377 /*
1378 * architecture have different format for hugetlbfs
1379 * pmd format and THP pmd format
1380 */
1381 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1382 PMD_SHIFT, next, write, pages, nr))
1383 return 0;
2667f50e
SC
1384 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1385 return 0;
1386 } while (pmdp++, addr = next, addr != end);
1387
1388 return 1;
1389}
1390
f30c59e9
AK
1391static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
1392 int write, struct page **pages, int *nr)
2667f50e
SC
1393{
1394 unsigned long next;
1395 pud_t *pudp;
1396
f30c59e9 1397 pudp = pud_offset(&pgd, addr);
2667f50e 1398 do {
e37c6982 1399 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
1400
1401 next = pud_addr_end(addr, end);
1402 if (pud_none(pud))
1403 return 0;
f30c59e9 1404 if (unlikely(pud_huge(pud))) {
2667f50e 1405 if (!gup_huge_pud(pud, pudp, addr, next, write,
f30c59e9
AK
1406 pages, nr))
1407 return 0;
1408 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1409 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1410 PUD_SHIFT, next, write, pages, nr))
2667f50e
SC
1411 return 0;
1412 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1413 return 0;
1414 } while (pudp++, addr = next, addr != end);
1415
1416 return 1;
1417}
1418
1419/*
1420 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1421 * the regular GUP. It will only return non-negative values.
1422 */
1423int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1424 struct page **pages)
1425{
1426 struct mm_struct *mm = current->mm;
1427 unsigned long addr, len, end;
1428 unsigned long next, flags;
1429 pgd_t *pgdp;
1430 int nr = 0;
1431
1432 start &= PAGE_MASK;
1433 addr = start;
1434 len = (unsigned long) nr_pages << PAGE_SHIFT;
1435 end = start + len;
1436
1437 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1438 start, len)))
1439 return 0;
1440
1441 /*
1442 * Disable interrupts. We use the nested form as we can already have
1443 * interrupts disabled by get_futex_key.
1444 *
1445 * With interrupts disabled, we block page table pages from being
1446 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1447 * for more details.
1448 *
1449 * We do not adopt an rcu_read_lock(.) here as we also want to
1450 * block IPIs that come from THPs splitting.
1451 */
1452
1453 local_irq_save(flags);
1454 pgdp = pgd_offset(mm, addr);
1455 do {
9d8c47e4 1456 pgd_t pgd = READ_ONCE(*pgdp);
f30c59e9 1457
2667f50e 1458 next = pgd_addr_end(addr, end);
f30c59e9 1459 if (pgd_none(pgd))
2667f50e 1460 break;
f30c59e9
AK
1461 if (unlikely(pgd_huge(pgd))) {
1462 if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1463 pages, &nr))
1464 break;
1465 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1466 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1467 PGDIR_SHIFT, next, write, pages, &nr))
1468 break;
1469 } else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
2667f50e
SC
1470 break;
1471 } while (pgdp++, addr = next, addr != end);
1472 local_irq_restore(flags);
1473
1474 return nr;
1475}
1476
1477/**
1478 * get_user_pages_fast() - pin user pages in memory
1479 * @start: starting user address
1480 * @nr_pages: number of pages from start to pin
1481 * @write: whether pages will be written to
1482 * @pages: array that receives pointers to the pages pinned.
1483 * Should be at least nr_pages long.
1484 *
1485 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1486 * If not successful, it will fall back to taking the lock and
1487 * calling get_user_pages().
1488 *
1489 * Returns number of pages pinned. This may be fewer than the number
1490 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1491 * were pinned, returns -errno.
1492 */
1493int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1494 struct page **pages)
1495{
2667f50e
SC
1496 int nr, ret;
1497
1498 start &= PAGE_MASK;
1499 nr = __get_user_pages_fast(start, nr_pages, write, pages);
1500 ret = nr;
1501
1502 if (nr < nr_pages) {
1503 /* Try to get the remaining pages with get_user_pages */
1504 start += nr << PAGE_SHIFT;
1505 pages += nr;
1506
c164154f
LS
1507 ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1508 write ? FOLL_WRITE : 0);
2667f50e
SC
1509
1510 /* Have to be a bit careful with return values */
1511 if (nr > 0) {
1512 if (ret < 0)
1513 ret = nr;
1514 else
1515 ret += nr;
1516 }
1517 }
1518
1519 return ret;
1520}
1521
1522#endif /* CONFIG_HAVE_GENERIC_RCU_GUP */