]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/gup.c
mm: enlarge stack guard gap
[mirror_ubuntu-zesty-kernel.git] / mm / gup.c
CommitLineData
4bbd4c77
KS
1#include <linux/kernel.h>
2#include <linux/errno.h>
3#include <linux/err.h>
4#include <linux/spinlock.h>
5
4bbd4c77 6#include <linux/mm.h>
3565fce3 7#include <linux/memremap.h>
4bbd4c77
KS
8#include <linux/pagemap.h>
9#include <linux/rmap.h>
10#include <linux/swap.h>
11#include <linux/swapops.h>
12
2667f50e
SC
13#include <linux/sched.h>
14#include <linux/rwsem.h>
f30c59e9 15#include <linux/hugetlb.h>
1027e443 16
33a709b2 17#include <asm/mmu_context.h>
2667f50e 18#include <asm/pgtable.h>
1027e443 19#include <asm/tlbflush.h>
2667f50e 20
4bbd4c77
KS
21#include "internal.h"
22
69e68b4f
KS
23static struct page *no_page_table(struct vm_area_struct *vma,
24 unsigned int flags)
4bbd4c77 25{
69e68b4f
KS
26 /*
27 * When core dumping an enormous anonymous area that nobody
28 * has touched so far, we don't want to allocate unnecessary pages or
29 * page tables. Return error instead of NULL to skip handle_mm_fault,
30 * then get_dump_page() will return NULL to leave a hole in the dump.
31 * But we can only make this optimization where a hole would surely
32 * be zero-filled if handle_mm_fault() actually did handle it.
33 */
34 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
35 return ERR_PTR(-EFAULT);
36 return NULL;
37}
4bbd4c77 38
1027e443
KS
39static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
40 pte_t *pte, unsigned int flags)
41{
42 /* No page to get reference */
43 if (flags & FOLL_GET)
44 return -EFAULT;
45
46 if (flags & FOLL_TOUCH) {
47 pte_t entry = *pte;
48
49 if (flags & FOLL_WRITE)
50 entry = pte_mkdirty(entry);
51 entry = pte_mkyoung(entry);
52
53 if (!pte_same(*pte, entry)) {
54 set_pte_at(vma->vm_mm, address, pte, entry);
55 update_mmu_cache(vma, address, pte);
56 }
57 }
58
59 /* Proper page table entry exists, but no corresponding struct page */
60 return -EEXIST;
61}
62
19be0eaf
LT
63/*
64 * FOLL_FORCE can write to even unwritable pte's, but only
65 * after we've gone through a COW cycle and they are dirty.
66 */
67static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
68{
69 return pte_write(pte) ||
70 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
71}
72
69e68b4f
KS
73static struct page *follow_page_pte(struct vm_area_struct *vma,
74 unsigned long address, pmd_t *pmd, unsigned int flags)
75{
76 struct mm_struct *mm = vma->vm_mm;
3565fce3 77 struct dev_pagemap *pgmap = NULL;
69e68b4f
KS
78 struct page *page;
79 spinlock_t *ptl;
80 pte_t *ptep, pte;
4bbd4c77 81
69e68b4f 82retry:
4bbd4c77 83 if (unlikely(pmd_bad(*pmd)))
69e68b4f 84 return no_page_table(vma, flags);
4bbd4c77
KS
85
86 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
87 pte = *ptep;
88 if (!pte_present(pte)) {
89 swp_entry_t entry;
90 /*
91 * KSM's break_ksm() relies upon recognizing a ksm page
92 * even while it is being migrated, so for that case we
93 * need migration_entry_wait().
94 */
95 if (likely(!(flags & FOLL_MIGRATION)))
96 goto no_page;
0661a336 97 if (pte_none(pte))
4bbd4c77
KS
98 goto no_page;
99 entry = pte_to_swp_entry(pte);
100 if (!is_migration_entry(entry))
101 goto no_page;
102 pte_unmap_unlock(ptep, ptl);
103 migration_entry_wait(mm, pmd, address);
69e68b4f 104 goto retry;
4bbd4c77 105 }
8a0516ed 106 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 107 goto no_page;
19be0eaf 108 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
109 pte_unmap_unlock(ptep, ptl);
110 return NULL;
111 }
4bbd4c77
KS
112
113 page = vm_normal_page(vma, address, pte);
3565fce3
DW
114 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
115 /*
116 * Only return device mapping pages in the FOLL_GET case since
117 * they are only valid while holding the pgmap reference.
118 */
119 pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
120 if (pgmap)
121 page = pte_page(pte);
122 else
123 goto no_page;
124 } else if (unlikely(!page)) {
1027e443
KS
125 if (flags & FOLL_DUMP) {
126 /* Avoid special (like zero) pages in core dumps */
127 page = ERR_PTR(-EFAULT);
128 goto out;
129 }
130
131 if (is_zero_pfn(pte_pfn(pte))) {
132 page = pte_page(pte);
133 } else {
134 int ret;
135
136 ret = follow_pfn_pte(vma, address, ptep, flags);
137 page = ERR_PTR(ret);
138 goto out;
139 }
4bbd4c77
KS
140 }
141
6742d293
KS
142 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
143 int ret;
144 get_page(page);
145 pte_unmap_unlock(ptep, ptl);
146 lock_page(page);
147 ret = split_huge_page(page);
148 unlock_page(page);
149 put_page(page);
150 if (ret)
151 return ERR_PTR(ret);
152 goto retry;
153 }
154
3565fce3 155 if (flags & FOLL_GET) {
ddc58f27 156 get_page(page);
3565fce3
DW
157
158 /* drop the pgmap reference now that we hold the page */
159 if (pgmap) {
160 put_dev_pagemap(pgmap);
161 pgmap = NULL;
162 }
163 }
4bbd4c77
KS
164 if (flags & FOLL_TOUCH) {
165 if ((flags & FOLL_WRITE) &&
166 !pte_dirty(pte) && !PageDirty(page))
167 set_page_dirty(page);
168 /*
169 * pte_mkyoung() would be more correct here, but atomic care
170 * is needed to avoid losing the dirty bit: it is easier to use
171 * mark_page_accessed().
172 */
173 mark_page_accessed(page);
174 }
de60f5f1 175 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
176 /* Do not mlock pte-mapped THP */
177 if (PageTransCompound(page))
178 goto out;
179
4bbd4c77
KS
180 /*
181 * The preliminary mapping check is mainly to avoid the
182 * pointless overhead of lock_page on the ZERO_PAGE
183 * which might bounce very badly if there is contention.
184 *
185 * If the page is already locked, we don't need to
186 * handle it now - vmscan will handle it later if and
187 * when it attempts to reclaim the page.
188 */
189 if (page->mapping && trylock_page(page)) {
190 lru_add_drain(); /* push cached pages to LRU */
191 /*
192 * Because we lock page here, and migration is
193 * blocked by the pte's page reference, and we
194 * know the page is still mapped, we don't even
195 * need to check for file-cache page truncation.
196 */
197 mlock_vma_page(page);
198 unlock_page(page);
199 }
200 }
1027e443 201out:
4bbd4c77 202 pte_unmap_unlock(ptep, ptl);
4bbd4c77 203 return page;
4bbd4c77
KS
204no_page:
205 pte_unmap_unlock(ptep, ptl);
206 if (!pte_none(pte))
69e68b4f
KS
207 return NULL;
208 return no_page_table(vma, flags);
209}
210
211/**
212 * follow_page_mask - look up a page descriptor from a user-virtual address
213 * @vma: vm_area_struct mapping @address
214 * @address: virtual address to look up
215 * @flags: flags modifying lookup behaviour
216 * @page_mask: on output, *page_mask is set according to the size of the page
217 *
218 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
219 *
220 * Returns the mapped (struct page *), %NULL if no mapping exists, or
221 * an error pointer if there is a mapping to something not represented
222 * by a page descriptor (see also vm_normal_page()).
223 */
224struct page *follow_page_mask(struct vm_area_struct *vma,
225 unsigned long address, unsigned int flags,
226 unsigned int *page_mask)
227{
228 pgd_t *pgd;
229 pud_t *pud;
230 pmd_t *pmd;
231 spinlock_t *ptl;
232 struct page *page;
233 struct mm_struct *mm = vma->vm_mm;
234
235 *page_mask = 0;
236
237 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
238 if (!IS_ERR(page)) {
239 BUG_ON(flags & FOLL_GET);
4bbd4c77 240 return page;
69e68b4f 241 }
4bbd4c77 242
69e68b4f
KS
243 pgd = pgd_offset(mm, address);
244 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
245 return no_page_table(vma, flags);
246
247 pud = pud_offset(pgd, address);
248 if (pud_none(*pud))
249 return no_page_table(vma, flags);
250 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
e66f17ff
NH
251 page = follow_huge_pud(mm, address, pud, flags);
252 if (page)
253 return page;
254 return no_page_table(vma, flags);
69e68b4f
KS
255 }
256 if (unlikely(pud_bad(*pud)))
257 return no_page_table(vma, flags);
258
259 pmd = pmd_offset(pud, address);
260 if (pmd_none(*pmd))
261 return no_page_table(vma, flags);
262 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
e66f17ff
NH
263 page = follow_huge_pmd(mm, address, pmd, flags);
264 if (page)
265 return page;
266 return no_page_table(vma, flags);
69e68b4f 267 }
3565fce3
DW
268 if (pmd_devmap(*pmd)) {
269 ptl = pmd_lock(mm, pmd);
270 page = follow_devmap_pmd(vma, address, pmd, flags);
271 spin_unlock(ptl);
272 if (page)
273 return page;
274 }
6742d293
KS
275 if (likely(!pmd_trans_huge(*pmd)))
276 return follow_page_pte(vma, address, pmd, flags);
277
f75e9208
AK
278 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
279 return no_page_table(vma, flags);
280
6742d293
KS
281 ptl = pmd_lock(mm, pmd);
282 if (unlikely(!pmd_trans_huge(*pmd))) {
283 spin_unlock(ptl);
284 return follow_page_pte(vma, address, pmd, flags);
285 }
6742d293
KS
286 if (flags & FOLL_SPLIT) {
287 int ret;
288 page = pmd_page(*pmd);
289 if (is_huge_zero_page(page)) {
290 spin_unlock(ptl);
291 ret = 0;
78ddc534 292 split_huge_pmd(vma, pmd, address);
337d9abf
NH
293 if (pmd_trans_unstable(pmd))
294 ret = -EBUSY;
6742d293
KS
295 } else {
296 get_page(page);
69e68b4f 297 spin_unlock(ptl);
6742d293
KS
298 lock_page(page);
299 ret = split_huge_page(page);
300 unlock_page(page);
301 put_page(page);
baa355fd
KS
302 if (pmd_none(*pmd))
303 return no_page_table(vma, flags);
6742d293
KS
304 }
305
306 return ret ? ERR_PTR(ret) :
307 follow_page_pte(vma, address, pmd, flags);
69e68b4f 308 }
6742d293
KS
309
310 page = follow_trans_huge_pmd(vma, address, pmd, flags);
311 spin_unlock(ptl);
312 *page_mask = HPAGE_PMD_NR - 1;
313 return page;
4bbd4c77
KS
314}
315
f2b495ca
KS
316static int get_gate_page(struct mm_struct *mm, unsigned long address,
317 unsigned int gup_flags, struct vm_area_struct **vma,
318 struct page **page)
319{
320 pgd_t *pgd;
321 pud_t *pud;
322 pmd_t *pmd;
323 pte_t *pte;
324 int ret = -EFAULT;
325
326 /* user gate pages are read-only */
327 if (gup_flags & FOLL_WRITE)
328 return -EFAULT;
329 if (address > TASK_SIZE)
330 pgd = pgd_offset_k(address);
331 else
332 pgd = pgd_offset_gate(mm, address);
333 BUG_ON(pgd_none(*pgd));
334 pud = pud_offset(pgd, address);
335 BUG_ON(pud_none(*pud));
336 pmd = pmd_offset(pud, address);
337 if (pmd_none(*pmd))
338 return -EFAULT;
339 VM_BUG_ON(pmd_trans_huge(*pmd));
340 pte = pte_offset_map(pmd, address);
341 if (pte_none(*pte))
342 goto unmap;
343 *vma = get_gate_vma(mm);
344 if (!page)
345 goto out;
346 *page = vm_normal_page(*vma, address, *pte);
347 if (!*page) {
348 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
349 goto unmap;
350 *page = pte_page(*pte);
351 }
352 get_page(*page);
353out:
354 ret = 0;
355unmap:
356 pte_unmap(pte);
357 return ret;
358}
359
9a95f3cf
PC
360/*
361 * mmap_sem must be held on entry. If @nonblocking != NULL and
362 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
363 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
364 */
16744483
KS
365static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
366 unsigned long address, unsigned int *flags, int *nonblocking)
367{
16744483
KS
368 unsigned int fault_flags = 0;
369 int ret;
370
de60f5f1
EM
371 /* mlock all present pages, but do not fault in new pages */
372 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
373 return -ENOENT;
84d33df2 374 /* For mm_populate(), just skip the stack guard page. */
fe388e57 375 if ((*flags & FOLL_POPULATE) && stack_guard_area(vma, address))
16744483
KS
376 return -ENOENT;
377 if (*flags & FOLL_WRITE)
378 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
379 if (*flags & FOLL_REMOTE)
380 fault_flags |= FAULT_FLAG_REMOTE;
16744483
KS
381 if (nonblocking)
382 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
383 if (*flags & FOLL_NOWAIT)
384 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b
ALC
385 if (*flags & FOLL_TRIED) {
386 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
387 fault_flags |= FAULT_FLAG_TRIED;
388 }
16744483 389
dcddffd4 390 ret = handle_mm_fault(vma, address, fault_flags);
16744483
KS
391 if (ret & VM_FAULT_ERROR) {
392 if (ret & VM_FAULT_OOM)
393 return -ENOMEM;
394 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
395 return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
33692f27 396 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
16744483
KS
397 return -EFAULT;
398 BUG();
399 }
400
401 if (tsk) {
402 if (ret & VM_FAULT_MAJOR)
403 tsk->maj_flt++;
404 else
405 tsk->min_flt++;
406 }
407
408 if (ret & VM_FAULT_RETRY) {
409 if (nonblocking)
410 *nonblocking = 0;
411 return -EBUSY;
412 }
413
414 /*
415 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
416 * necessary, even if maybe_mkwrite decided not to set pte_write. We
417 * can thus safely do subsequent page lookups as if they were reads.
418 * But only do so when looping for pte_write is futile: in some cases
419 * userspace may also be wanting to write to the gotten user page,
420 * which a read fault here might prevent (a readonly page might get
421 * reCOWed by userspace write).
422 */
423 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
19be0eaf 424 *flags |= FOLL_COW;
16744483
KS
425 return 0;
426}
427
fa5bb209
KS
428static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
429{
430 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
431 int write = (gup_flags & FOLL_WRITE);
432 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
433
434 if (vm_flags & (VM_IO | VM_PFNMAP))
435 return -EFAULT;
436
1b2ee126 437 if (write) {
fa5bb209
KS
438 if (!(vm_flags & VM_WRITE)) {
439 if (!(gup_flags & FOLL_FORCE))
440 return -EFAULT;
441 /*
442 * We used to let the write,force case do COW in a
443 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
444 * set a breakpoint in a read-only mapping of an
445 * executable, without corrupting the file (yet only
446 * when that file had been opened for writing!).
447 * Anon pages in shared mappings are surprising: now
448 * just reject it.
449 */
46435364 450 if (!is_cow_mapping(vm_flags))
fa5bb209 451 return -EFAULT;
fa5bb209
KS
452 }
453 } else if (!(vm_flags & VM_READ)) {
454 if (!(gup_flags & FOLL_FORCE))
455 return -EFAULT;
456 /*
457 * Is there actually any vma we can reach here which does not
458 * have VM_MAYREAD set?
459 */
460 if (!(vm_flags & VM_MAYREAD))
461 return -EFAULT;
462 }
d61172b4
DH
463 /*
464 * gups are always data accesses, not instruction
465 * fetches, so execute=false here
466 */
467 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 468 return -EFAULT;
fa5bb209
KS
469 return 0;
470}
471
4bbd4c77
KS
472/**
473 * __get_user_pages() - pin user pages in memory
474 * @tsk: task_struct of target task
475 * @mm: mm_struct of target mm
476 * @start: starting user address
477 * @nr_pages: number of pages from start to pin
478 * @gup_flags: flags modifying pin behaviour
479 * @pages: array that receives pointers to the pages pinned.
480 * Should be at least nr_pages long. Or NULL, if caller
481 * only intends to ensure the pages are faulted in.
482 * @vmas: array of pointers to vmas corresponding to each page.
483 * Or NULL if the caller does not require them.
484 * @nonblocking: whether waiting for disk IO or mmap_sem contention
485 *
486 * Returns number of pages pinned. This may be fewer than the number
487 * requested. If nr_pages is 0 or negative, returns 0. If no pages
488 * were pinned, returns -errno. Each page returned must be released
489 * with a put_page() call when it is finished with. vmas will only
490 * remain valid while mmap_sem is held.
491 *
9a95f3cf 492 * Must be called with mmap_sem held. It may be released. See below.
4bbd4c77
KS
493 *
494 * __get_user_pages walks a process's page tables and takes a reference to
495 * each struct page that each user address corresponds to at a given
496 * instant. That is, it takes the page that would be accessed if a user
497 * thread accesses the given user virtual address at that instant.
498 *
499 * This does not guarantee that the page exists in the user mappings when
500 * __get_user_pages returns, and there may even be a completely different
501 * page there in some cases (eg. if mmapped pagecache has been invalidated
502 * and subsequently re faulted). However it does guarantee that the page
503 * won't be freed completely. And mostly callers simply care that the page
504 * contains data that was valid *at some point in time*. Typically, an IO
505 * or similar operation cannot guarantee anything stronger anyway because
506 * locks can't be held over the syscall boundary.
507 *
508 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
509 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
510 * appropriate) must be called after the page is finished with, and
511 * before put_page is called.
512 *
513 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
514 * or mmap_sem contention, and if waiting is needed to pin all pages,
9a95f3cf
PC
515 * *@nonblocking will be set to 0. Further, if @gup_flags does not
516 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
517 * this case.
518 *
519 * A caller using such a combination of @nonblocking and @gup_flags
520 * must therefore hold the mmap_sem for reading only, and recognize
521 * when it's been released. Otherwise, it must be held for either
522 * reading or writing and will not be released.
4bbd4c77
KS
523 *
524 * In most cases, get_user_pages or get_user_pages_fast should be used
525 * instead of __get_user_pages. __get_user_pages should be used only if
526 * you need some special @gup_flags.
527 */
0d731759 528static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
4bbd4c77
KS
529 unsigned long start, unsigned long nr_pages,
530 unsigned int gup_flags, struct page **pages,
531 struct vm_area_struct **vmas, int *nonblocking)
532{
fa5bb209 533 long i = 0;
4bbd4c77 534 unsigned int page_mask;
fa5bb209 535 struct vm_area_struct *vma = NULL;
4bbd4c77
KS
536
537 if (!nr_pages)
538 return 0;
539
540 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
541
542 /*
543 * If FOLL_FORCE is set then do not force a full fault as the hinting
544 * fault information is unrelated to the reference behaviour of a task
545 * using the address space
546 */
547 if (!(gup_flags & FOLL_FORCE))
548 gup_flags |= FOLL_NUMA;
549
4bbd4c77 550 do {
fa5bb209
KS
551 struct page *page;
552 unsigned int foll_flags = gup_flags;
553 unsigned int page_increm;
554
555 /* first iteration or cross vma bound */
556 if (!vma || start >= vma->vm_end) {
557 vma = find_extend_vma(mm, start);
558 if (!vma && in_gate_area(mm, start)) {
559 int ret;
560 ret = get_gate_page(mm, start & PAGE_MASK,
561 gup_flags, &vma,
562 pages ? &pages[i] : NULL);
563 if (ret)
564 return i ? : ret;
565 page_mask = 0;
566 goto next_page;
567 }
4bbd4c77 568
fa5bb209
KS
569 if (!vma || check_vma_flags(vma, gup_flags))
570 return i ? : -EFAULT;
571 if (is_vm_hugetlb_page(vma)) {
572 i = follow_hugetlb_page(mm, vma, pages, vmas,
573 &start, &nr_pages, i,
574 gup_flags);
575 continue;
4bbd4c77 576 }
fa5bb209
KS
577 }
578retry:
579 /*
580 * If we have a pending SIGKILL, don't keep faulting pages and
581 * potentially allocating memory.
582 */
583 if (unlikely(fatal_signal_pending(current)))
584 return i ? i : -ERESTARTSYS;
585 cond_resched();
586 page = follow_page_mask(vma, start, foll_flags, &page_mask);
587 if (!page) {
588 int ret;
589 ret = faultin_page(tsk, vma, start, &foll_flags,
590 nonblocking);
591 switch (ret) {
592 case 0:
593 goto retry;
594 case -EFAULT:
595 case -ENOMEM:
596 case -EHWPOISON:
597 return i ? i : ret;
598 case -EBUSY:
599 return i;
600 case -ENOENT:
601 goto next_page;
4bbd4c77 602 }
fa5bb209 603 BUG();
1027e443
KS
604 } else if (PTR_ERR(page) == -EEXIST) {
605 /*
606 * Proper page table entry exists, but no corresponding
607 * struct page.
608 */
609 goto next_page;
610 } else if (IS_ERR(page)) {
fa5bb209 611 return i ? i : PTR_ERR(page);
1027e443 612 }
fa5bb209
KS
613 if (pages) {
614 pages[i] = page;
615 flush_anon_page(vma, page, start);
616 flush_dcache_page(page);
617 page_mask = 0;
4bbd4c77 618 }
4bbd4c77 619next_page:
fa5bb209
KS
620 if (vmas) {
621 vmas[i] = vma;
622 page_mask = 0;
623 }
624 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
625 if (page_increm > nr_pages)
626 page_increm = nr_pages;
627 i += page_increm;
628 start += page_increm * PAGE_SIZE;
629 nr_pages -= page_increm;
4bbd4c77
KS
630 } while (nr_pages);
631 return i;
4bbd4c77 632}
4bbd4c77 633
771ab430
TK
634static bool vma_permits_fault(struct vm_area_struct *vma,
635 unsigned int fault_flags)
d4925e00 636{
1b2ee126
DH
637 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
638 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 639 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
640
641 if (!(vm_flags & vma->vm_flags))
642 return false;
643
33a709b2
DH
644 /*
645 * The architecture might have a hardware protection
1b2ee126 646 * mechanism other than read/write that can deny access.
d61172b4
DH
647 *
648 * gup always represents data access, not instruction
649 * fetches, so execute=false here:
33a709b2 650 */
d61172b4 651 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
652 return false;
653
d4925e00
DH
654 return true;
655}
656
4bbd4c77
KS
657/*
658 * fixup_user_fault() - manually resolve a user page fault
659 * @tsk: the task_struct to use for page fault accounting, or
660 * NULL if faults are not to be recorded.
661 * @mm: mm_struct of target mm
662 * @address: user address
663 * @fault_flags:flags to pass down to handle_mm_fault()
4a9e1cda
DD
664 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
665 * does not allow retry
4bbd4c77
KS
666 *
667 * This is meant to be called in the specific scenario where for locking reasons
668 * we try to access user memory in atomic context (within a pagefault_disable()
669 * section), this returns -EFAULT, and we want to resolve the user fault before
670 * trying again.
671 *
672 * Typically this is meant to be used by the futex code.
673 *
674 * The main difference with get_user_pages() is that this function will
675 * unconditionally call handle_mm_fault() which will in turn perform all the
676 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 677 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
678 *
679 * This is important for some architectures where those bits also gate the
680 * access permission to the page because they are maintained in software. On
681 * such architectures, gup() will not be enough to make a subsequent access
682 * succeed.
683 *
4a9e1cda
DD
684 * This function will not return with an unlocked mmap_sem. So it has not the
685 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
4bbd4c77
KS
686 */
687int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
688 unsigned long address, unsigned int fault_flags,
689 bool *unlocked)
4bbd4c77
KS
690{
691 struct vm_area_struct *vma;
4a9e1cda
DD
692 int ret, major = 0;
693
694 if (unlocked)
695 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4bbd4c77 696
4a9e1cda 697retry:
4bbd4c77
KS
698 vma = find_extend_vma(mm, address);
699 if (!vma || address < vma->vm_start)
700 return -EFAULT;
701
d4925e00 702 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
703 return -EFAULT;
704
dcddffd4 705 ret = handle_mm_fault(vma, address, fault_flags);
4a9e1cda 706 major |= ret & VM_FAULT_MAJOR;
4bbd4c77
KS
707 if (ret & VM_FAULT_ERROR) {
708 if (ret & VM_FAULT_OOM)
709 return -ENOMEM;
710 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
711 return -EHWPOISON;
33692f27 712 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
4bbd4c77
KS
713 return -EFAULT;
714 BUG();
715 }
4a9e1cda
DD
716
717 if (ret & VM_FAULT_RETRY) {
718 down_read(&mm->mmap_sem);
719 if (!(fault_flags & FAULT_FLAG_TRIED)) {
720 *unlocked = true;
721 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
722 fault_flags |= FAULT_FLAG_TRIED;
723 goto retry;
724 }
725 }
726
4bbd4c77 727 if (tsk) {
4a9e1cda 728 if (major)
4bbd4c77
KS
729 tsk->maj_flt++;
730 else
731 tsk->min_flt++;
732 }
733 return 0;
734}
add6a0cd 735EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 736
f0818f47
AA
737static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
738 struct mm_struct *mm,
739 unsigned long start,
740 unsigned long nr_pages,
f0818f47
AA
741 struct page **pages,
742 struct vm_area_struct **vmas,
0fd71a56
AA
743 int *locked, bool notify_drop,
744 unsigned int flags)
f0818f47 745{
f0818f47
AA
746 long ret, pages_done;
747 bool lock_dropped;
748
749 if (locked) {
750 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
751 BUG_ON(vmas);
752 /* check caller initialized locked */
753 BUG_ON(*locked != 1);
754 }
755
756 if (pages)
757 flags |= FOLL_GET;
f0818f47
AA
758
759 pages_done = 0;
760 lock_dropped = false;
761 for (;;) {
762 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
763 vmas, locked);
764 if (!locked)
765 /* VM_FAULT_RETRY couldn't trigger, bypass */
766 return ret;
767
768 /* VM_FAULT_RETRY cannot return errors */
769 if (!*locked) {
770 BUG_ON(ret < 0);
771 BUG_ON(ret >= nr_pages);
772 }
773
774 if (!pages)
775 /* If it's a prefault don't insist harder */
776 return ret;
777
778 if (ret > 0) {
779 nr_pages -= ret;
780 pages_done += ret;
781 if (!nr_pages)
782 break;
783 }
784 if (*locked) {
785 /* VM_FAULT_RETRY didn't trigger */
786 if (!pages_done)
787 pages_done = ret;
788 break;
789 }
790 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
791 pages += ret;
792 start += ret << PAGE_SHIFT;
793
794 /*
795 * Repeat on the address that fired VM_FAULT_RETRY
796 * without FAULT_FLAG_ALLOW_RETRY but with
797 * FAULT_FLAG_TRIED.
798 */
799 *locked = 1;
800 lock_dropped = true;
801 down_read(&mm->mmap_sem);
802 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
803 pages, NULL, NULL);
804 if (ret != 1) {
805 BUG_ON(ret > 1);
806 if (!pages_done)
807 pages_done = ret;
808 break;
809 }
810 nr_pages--;
811 pages_done++;
812 if (!nr_pages)
813 break;
814 pages++;
815 start += PAGE_SIZE;
816 }
817 if (notify_drop && lock_dropped && *locked) {
818 /*
819 * We must let the caller know we temporarily dropped the lock
820 * and so the critical section protected by it was lost.
821 */
822 up_read(&mm->mmap_sem);
823 *locked = 0;
824 }
825 return pages_done;
826}
827
828/*
829 * We can leverage the VM_FAULT_RETRY functionality in the page fault
830 * paths better by using either get_user_pages_locked() or
831 * get_user_pages_unlocked().
832 *
833 * get_user_pages_locked() is suitable to replace the form:
834 *
835 * down_read(&mm->mmap_sem);
836 * do_something()
837 * get_user_pages(tsk, mm, ..., pages, NULL);
838 * up_read(&mm->mmap_sem);
839 *
840 * to:
841 *
842 * int locked = 1;
843 * down_read(&mm->mmap_sem);
844 * do_something()
845 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
846 * if (locked)
847 * up_read(&mm->mmap_sem);
848 */
c12d2da5 849long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 850 unsigned int gup_flags, struct page **pages,
f0818f47
AA
851 int *locked)
852{
cde70140 853 return __get_user_pages_locked(current, current->mm, start, nr_pages,
3b913179
LS
854 pages, NULL, locked, true,
855 gup_flags | FOLL_TOUCH);
f0818f47 856}
c12d2da5 857EXPORT_SYMBOL(get_user_pages_locked);
f0818f47 858
0fd71a56 859/*
80a79516
LS
860 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows for
861 * tsk, mm to be specified.
0fd71a56
AA
862 *
863 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
80a79516
LS
864 * caller if required (just like with __get_user_pages). "FOLL_GET"
865 * is set implicitly if "pages" is non-NULL.
0fd71a56 866 */
8b7457ef
LS
867static __always_inline long __get_user_pages_unlocked(struct task_struct *tsk,
868 struct mm_struct *mm, unsigned long start,
869 unsigned long nr_pages, struct page **pages,
870 unsigned int gup_flags)
0fd71a56
AA
871{
872 long ret;
873 int locked = 1;
859110d7 874
0fd71a56 875 down_read(&mm->mmap_sem);
859110d7
LS
876 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, NULL,
877 &locked, false, gup_flags);
0fd71a56
AA
878 if (locked)
879 up_read(&mm->mmap_sem);
880 return ret;
881}
0fd71a56 882
f0818f47
AA
883/*
884 * get_user_pages_unlocked() is suitable to replace the form:
885 *
886 * down_read(&mm->mmap_sem);
887 * get_user_pages(tsk, mm, ..., pages, NULL);
888 * up_read(&mm->mmap_sem);
889 *
890 * with:
891 *
892 * get_user_pages_unlocked(tsk, mm, ..., pages);
893 *
894 * It is functionally equivalent to get_user_pages_fast so
80a79516
LS
895 * get_user_pages_fast should be used instead if specific gup_flags
896 * (e.g. FOLL_FORCE) are not required.
f0818f47 897 */
c12d2da5 898long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 899 struct page **pages, unsigned int gup_flags)
f0818f47 900{
cde70140 901 return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
c164154f 902 pages, gup_flags | FOLL_TOUCH);
f0818f47 903}
c12d2da5 904EXPORT_SYMBOL(get_user_pages_unlocked);
f0818f47 905
4bbd4c77 906/*
1e987790 907 * get_user_pages_remote() - pin user pages in memory
4bbd4c77
KS
908 * @tsk: the task_struct to use for page fault accounting, or
909 * NULL if faults are not to be recorded.
910 * @mm: mm_struct of target mm
911 * @start: starting user address
912 * @nr_pages: number of pages from start to pin
9beae1ea 913 * @gup_flags: flags modifying lookup behaviour
4bbd4c77
KS
914 * @pages: array that receives pointers to the pages pinned.
915 * Should be at least nr_pages long. Or NULL, if caller
916 * only intends to ensure the pages are faulted in.
917 * @vmas: array of pointers to vmas corresponding to each page.
918 * Or NULL if the caller does not require them.
5b56d49f
LS
919 * @locked: pointer to lock flag indicating whether lock is held and
920 * subsequently whether VM_FAULT_RETRY functionality can be
921 * utilised. Lock must initially be held.
4bbd4c77
KS
922 *
923 * Returns number of pages pinned. This may be fewer than the number
924 * requested. If nr_pages is 0 or negative, returns 0. If no pages
925 * were pinned, returns -errno. Each page returned must be released
926 * with a put_page() call when it is finished with. vmas will only
927 * remain valid while mmap_sem is held.
928 *
929 * Must be called with mmap_sem held for read or write.
930 *
931 * get_user_pages walks a process's page tables and takes a reference to
932 * each struct page that each user address corresponds to at a given
933 * instant. That is, it takes the page that would be accessed if a user
934 * thread accesses the given user virtual address at that instant.
935 *
936 * This does not guarantee that the page exists in the user mappings when
937 * get_user_pages returns, and there may even be a completely different
938 * page there in some cases (eg. if mmapped pagecache has been invalidated
939 * and subsequently re faulted). However it does guarantee that the page
940 * won't be freed completely. And mostly callers simply care that the page
941 * contains data that was valid *at some point in time*. Typically, an IO
942 * or similar operation cannot guarantee anything stronger anyway because
943 * locks can't be held over the syscall boundary.
944 *
9beae1ea
LS
945 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
946 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
947 * be called after the page is finished with, and before put_page is called.
4bbd4c77
KS
948 *
949 * get_user_pages is typically used for fewer-copy IO operations, to get a
950 * handle on the memory by some means other than accesses via the user virtual
951 * addresses. The pages may be submitted for DMA to devices or accessed via
952 * their kernel linear mapping (via the kmap APIs). Care should be taken to
953 * use the correct cache flushing APIs.
954 *
955 * See also get_user_pages_fast, for performance critical applications.
f0818f47
AA
956 *
957 * get_user_pages should be phased out in favor of
958 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
959 * should use get_user_pages because it cannot pass
960 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
4bbd4c77 961 */
1e987790
DH
962long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
963 unsigned long start, unsigned long nr_pages,
9beae1ea 964 unsigned int gup_flags, struct page **pages,
5b56d49f 965 struct vm_area_struct **vmas, int *locked)
4bbd4c77 966{
859110d7 967 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
5b56d49f 968 locked, true,
9beae1ea 969 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1e987790
DH
970}
971EXPORT_SYMBOL(get_user_pages_remote);
972
973/*
d4edcf0d
DH
974 * This is the same as get_user_pages_remote(), just with a
975 * less-flexible calling convention where we assume that the task
5b56d49f
LS
976 * and mm being operated on are the current task's and don't allow
977 * passing of a locked parameter. We also obviously don't pass
978 * FOLL_REMOTE in here.
1e987790 979 */
c12d2da5 980long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 981 unsigned int gup_flags, struct page **pages,
1e987790
DH
982 struct vm_area_struct **vmas)
983{
cde70140 984 return __get_user_pages_locked(current, current->mm, start, nr_pages,
768ae309
LS
985 pages, vmas, NULL, false,
986 gup_flags | FOLL_TOUCH);
4bbd4c77 987}
c12d2da5 988EXPORT_SYMBOL(get_user_pages);
4bbd4c77 989
acc3c8d1
KS
990/**
991 * populate_vma_page_range() - populate a range of pages in the vma.
992 * @vma: target vma
993 * @start: start address
994 * @end: end address
995 * @nonblocking:
996 *
997 * This takes care of mlocking the pages too if VM_LOCKED is set.
998 *
999 * return 0 on success, negative error code on error.
1000 *
1001 * vma->vm_mm->mmap_sem must be held.
1002 *
1003 * If @nonblocking is NULL, it may be held for read or write and will
1004 * be unperturbed.
1005 *
1006 * If @nonblocking is non-NULL, it must held for read only and may be
1007 * released. If it's released, *@nonblocking will be set to 0.
1008 */
1009long populate_vma_page_range(struct vm_area_struct *vma,
1010 unsigned long start, unsigned long end, int *nonblocking)
1011{
1012 struct mm_struct *mm = vma->vm_mm;
1013 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1014 int gup_flags;
1015
1016 VM_BUG_ON(start & ~PAGE_MASK);
1017 VM_BUG_ON(end & ~PAGE_MASK);
1018 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1019 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1020 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1021
de60f5f1
EM
1022 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1023 if (vma->vm_flags & VM_LOCKONFAULT)
1024 gup_flags &= ~FOLL_POPULATE;
acc3c8d1
KS
1025 /*
1026 * We want to touch writable mappings with a write fault in order
1027 * to break COW, except for shared mappings because these don't COW
1028 * and we would not want to dirty them for nothing.
1029 */
1030 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1031 gup_flags |= FOLL_WRITE;
1032
1033 /*
1034 * We want mlock to succeed for regions that have any permissions
1035 * other than PROT_NONE.
1036 */
1037 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1038 gup_flags |= FOLL_FORCE;
1039
1040 /*
1041 * We made sure addr is within a VMA, so the following will
1042 * not result in a stack expansion that recurses back here.
1043 */
1044 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1045 NULL, NULL, nonblocking);
1046}
1047
1048/*
1049 * __mm_populate - populate and/or mlock pages within a range of address space.
1050 *
1051 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1052 * flags. VMAs must be already marked with the desired vm_flags, and
1053 * mmap_sem must not be held.
1054 */
1055int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1056{
1057 struct mm_struct *mm = current->mm;
1058 unsigned long end, nstart, nend;
1059 struct vm_area_struct *vma = NULL;
1060 int locked = 0;
1061 long ret = 0;
1062
1063 VM_BUG_ON(start & ~PAGE_MASK);
1064 VM_BUG_ON(len != PAGE_ALIGN(len));
1065 end = start + len;
1066
1067 for (nstart = start; nstart < end; nstart = nend) {
1068 /*
1069 * We want to fault in pages for [nstart; end) address range.
1070 * Find first corresponding VMA.
1071 */
1072 if (!locked) {
1073 locked = 1;
1074 down_read(&mm->mmap_sem);
1075 vma = find_vma(mm, nstart);
1076 } else if (nstart >= vma->vm_end)
1077 vma = vma->vm_next;
1078 if (!vma || vma->vm_start >= end)
1079 break;
1080 /*
1081 * Set [nstart; nend) to intersection of desired address
1082 * range with the first VMA. Also, skip undesirable VMA types.
1083 */
1084 nend = min(end, vma->vm_end);
1085 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1086 continue;
1087 if (nstart < vma->vm_start)
1088 nstart = vma->vm_start;
1089 /*
1090 * Now fault in a range of pages. populate_vma_page_range()
1091 * double checks the vma flags, so that it won't mlock pages
1092 * if the vma was already munlocked.
1093 */
1094 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1095 if (ret < 0) {
1096 if (ignore_errors) {
1097 ret = 0;
1098 continue; /* continue at next VMA */
1099 }
1100 break;
1101 }
1102 nend = nstart + ret * PAGE_SIZE;
1103 ret = 0;
1104 }
1105 if (locked)
1106 up_read(&mm->mmap_sem);
1107 return ret; /* 0 or negative error code */
1108}
1109
4bbd4c77
KS
1110/**
1111 * get_dump_page() - pin user page in memory while writing it to core dump
1112 * @addr: user address
1113 *
1114 * Returns struct page pointer of user page pinned for dump,
ea1754a0 1115 * to be freed afterwards by put_page().
4bbd4c77
KS
1116 *
1117 * Returns NULL on any kind of failure - a hole must then be inserted into
1118 * the corefile, to preserve alignment with its headers; and also returns
1119 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1120 * allowing a hole to be left in the corefile to save diskspace.
1121 *
1122 * Called without mmap_sem, but after all other threads have been killed.
1123 */
1124#ifdef CONFIG_ELF_CORE
1125struct page *get_dump_page(unsigned long addr)
1126{
1127 struct vm_area_struct *vma;
1128 struct page *page;
1129
1130 if (__get_user_pages(current, current->mm, addr, 1,
1131 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1132 NULL) < 1)
1133 return NULL;
1134 flush_cache_page(vma, addr, page_to_pfn(page));
1135 return page;
1136}
1137#endif /* CONFIG_ELF_CORE */
2667f50e
SC
1138
1139/*
1140 * Generic RCU Fast GUP
1141 *
1142 * get_user_pages_fast attempts to pin user pages by walking the page
1143 * tables directly and avoids taking locks. Thus the walker needs to be
1144 * protected from page table pages being freed from under it, and should
1145 * block any THP splits.
1146 *
1147 * One way to achieve this is to have the walker disable interrupts, and
1148 * rely on IPIs from the TLB flushing code blocking before the page table
1149 * pages are freed. This is unsuitable for architectures that do not need
1150 * to broadcast an IPI when invalidating TLBs.
1151 *
1152 * Another way to achieve this is to batch up page table containing pages
1153 * belonging to more than one mm_user, then rcu_sched a callback to free those
1154 * pages. Disabling interrupts will allow the fast_gup walker to both block
1155 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1156 * (which is a relatively rare event). The code below adopts this strategy.
1157 *
1158 * Before activating this code, please be aware that the following assumptions
1159 * are currently made:
1160 *
1161 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1162 * pages containing page tables.
1163 *
2667f50e
SC
1164 * *) ptes can be read atomically by the architecture.
1165 *
1166 * *) access_ok is sufficient to validate userspace address ranges.
1167 *
1168 * The last two assumptions can be relaxed by the addition of helper functions.
1169 *
1170 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1171 */
1172#ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1173
1174#ifdef __HAVE_ARCH_PTE_SPECIAL
1175static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1176 int write, struct page **pages, int *nr)
1177{
1178 pte_t *ptep, *ptem;
1179 int ret = 0;
1180
1181 ptem = ptep = pte_offset_map(&pmd, addr);
1182 do {
1183 /*
1184 * In the line below we are assuming that the pte can be read
1185 * atomically. If this is not the case for your architecture,
1186 * please wrap this in a helper function!
1187 *
1188 * for an example see gup_get_pte in arch/x86/mm/gup.c
1189 */
9d8c47e4 1190 pte_t pte = READ_ONCE(*ptep);
7aef4172 1191 struct page *head, *page;
2667f50e
SC
1192
1193 /*
1194 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 1195 * path using the pte_protnone check.
2667f50e
SC
1196 */
1197 if (!pte_present(pte) || pte_special(pte) ||
8a0516ed 1198 pte_protnone(pte) || (write && !pte_write(pte)))
2667f50e
SC
1199 goto pte_unmap;
1200
33a709b2
DH
1201 if (!arch_pte_access_permitted(pte, write))
1202 goto pte_unmap;
1203
2667f50e
SC
1204 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1205 page = pte_page(pte);
7aef4172 1206 head = compound_head(page);
2667f50e 1207
7aef4172 1208 if (!page_cache_get_speculative(head))
2667f50e
SC
1209 goto pte_unmap;
1210
1211 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
7aef4172 1212 put_page(head);
2667f50e
SC
1213 goto pte_unmap;
1214 }
1215
7aef4172 1216 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2667f50e
SC
1217 pages[*nr] = page;
1218 (*nr)++;
1219
1220 } while (ptep++, addr += PAGE_SIZE, addr != end);
1221
1222 ret = 1;
1223
1224pte_unmap:
1225 pte_unmap(ptem);
1226 return ret;
1227}
1228#else
1229
1230/*
1231 * If we can't determine whether or not a pte is special, then fail immediately
1232 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1233 * to be special.
1234 *
1235 * For a futex to be placed on a THP tail page, get_futex_key requires a
1236 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1237 * useful to have gup_huge_pmd even if we can't operate on ptes.
1238 */
1239static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1240 int write, struct page **pages, int *nr)
1241{
1242 return 0;
1243}
1244#endif /* __HAVE_ARCH_PTE_SPECIAL */
1245
1246static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1247 unsigned long end, int write, struct page **pages, int *nr)
1248{
ddc58f27 1249 struct page *head, *page;
2667f50e
SC
1250 int refs;
1251
1252 if (write && !pmd_write(orig))
1253 return 0;
1254
1255 refs = 0;
1256 head = pmd_page(orig);
1257 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2667f50e
SC
1258 do {
1259 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1260 pages[*nr] = page;
1261 (*nr)++;
1262 page++;
1263 refs++;
1264 } while (addr += PAGE_SIZE, addr != end);
1265
1266 if (!page_cache_add_speculative(head, refs)) {
1267 *nr -= refs;
1268 return 0;
1269 }
1270
1271 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1272 *nr -= refs;
1273 while (refs--)
1274 put_page(head);
1275 return 0;
1276 }
1277
2667f50e
SC
1278 return 1;
1279}
1280
1281static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1282 unsigned long end, int write, struct page **pages, int *nr)
1283{
ddc58f27 1284 struct page *head, *page;
2667f50e
SC
1285 int refs;
1286
1287 if (write && !pud_write(orig))
1288 return 0;
1289
1290 refs = 0;
1291 head = pud_page(orig);
1292 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2667f50e
SC
1293 do {
1294 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1295 pages[*nr] = page;
1296 (*nr)++;
1297 page++;
1298 refs++;
1299 } while (addr += PAGE_SIZE, addr != end);
1300
1301 if (!page_cache_add_speculative(head, refs)) {
1302 *nr -= refs;
1303 return 0;
1304 }
1305
1306 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1307 *nr -= refs;
1308 while (refs--)
1309 put_page(head);
1310 return 0;
1311 }
1312
2667f50e
SC
1313 return 1;
1314}
1315
f30c59e9
AK
1316static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1317 unsigned long end, int write,
1318 struct page **pages, int *nr)
1319{
1320 int refs;
ddc58f27 1321 struct page *head, *page;
f30c59e9
AK
1322
1323 if (write && !pgd_write(orig))
1324 return 0;
1325
1326 refs = 0;
1327 head = pgd_page(orig);
1328 page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
f30c59e9
AK
1329 do {
1330 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1331 pages[*nr] = page;
1332 (*nr)++;
1333 page++;
1334 refs++;
1335 } while (addr += PAGE_SIZE, addr != end);
1336
1337 if (!page_cache_add_speculative(head, refs)) {
1338 *nr -= refs;
1339 return 0;
1340 }
1341
1342 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1343 *nr -= refs;
1344 while (refs--)
1345 put_page(head);
1346 return 0;
1347 }
1348
f30c59e9
AK
1349 return 1;
1350}
1351
2667f50e
SC
1352static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1353 int write, struct page **pages, int *nr)
1354{
1355 unsigned long next;
1356 pmd_t *pmdp;
1357
1358 pmdp = pmd_offset(&pud, addr);
1359 do {
38c5ce93 1360 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
1361
1362 next = pmd_addr_end(addr, end);
4b471e88 1363 if (pmd_none(pmd))
2667f50e
SC
1364 return 0;
1365
1366 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1367 /*
1368 * NUMA hinting faults need to be handled in the GUP
1369 * slowpath for accounting purposes and so that they
1370 * can be serialised against THP migration.
1371 */
8a0516ed 1372 if (pmd_protnone(pmd))
2667f50e
SC
1373 return 0;
1374
1375 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1376 pages, nr))
1377 return 0;
1378
f30c59e9
AK
1379 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1380 /*
1381 * architecture have different format for hugetlbfs
1382 * pmd format and THP pmd format
1383 */
1384 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1385 PMD_SHIFT, next, write, pages, nr))
1386 return 0;
2667f50e
SC
1387 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1388 return 0;
1389 } while (pmdp++, addr = next, addr != end);
1390
1391 return 1;
1392}
1393
f30c59e9
AK
1394static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
1395 int write, struct page **pages, int *nr)
2667f50e
SC
1396{
1397 unsigned long next;
1398 pud_t *pudp;
1399
f30c59e9 1400 pudp = pud_offset(&pgd, addr);
2667f50e 1401 do {
e37c6982 1402 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
1403
1404 next = pud_addr_end(addr, end);
1405 if (pud_none(pud))
1406 return 0;
f30c59e9 1407 if (unlikely(pud_huge(pud))) {
2667f50e 1408 if (!gup_huge_pud(pud, pudp, addr, next, write,
f30c59e9
AK
1409 pages, nr))
1410 return 0;
1411 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1412 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1413 PUD_SHIFT, next, write, pages, nr))
2667f50e
SC
1414 return 0;
1415 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1416 return 0;
1417 } while (pudp++, addr = next, addr != end);
1418
1419 return 1;
1420}
1421
1422/*
1423 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1424 * the regular GUP. It will only return non-negative values.
1425 */
1426int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1427 struct page **pages)
1428{
1429 struct mm_struct *mm = current->mm;
1430 unsigned long addr, len, end;
1431 unsigned long next, flags;
1432 pgd_t *pgdp;
1433 int nr = 0;
1434
1435 start &= PAGE_MASK;
1436 addr = start;
1437 len = (unsigned long) nr_pages << PAGE_SHIFT;
1438 end = start + len;
1439
1440 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1441 start, len)))
1442 return 0;
1443
1444 /*
1445 * Disable interrupts. We use the nested form as we can already have
1446 * interrupts disabled by get_futex_key.
1447 *
1448 * With interrupts disabled, we block page table pages from being
1449 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1450 * for more details.
1451 *
1452 * We do not adopt an rcu_read_lock(.) here as we also want to
1453 * block IPIs that come from THPs splitting.
1454 */
1455
1456 local_irq_save(flags);
1457 pgdp = pgd_offset(mm, addr);
1458 do {
9d8c47e4 1459 pgd_t pgd = READ_ONCE(*pgdp);
f30c59e9 1460
2667f50e 1461 next = pgd_addr_end(addr, end);
f30c59e9 1462 if (pgd_none(pgd))
2667f50e 1463 break;
f30c59e9
AK
1464 if (unlikely(pgd_huge(pgd))) {
1465 if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1466 pages, &nr))
1467 break;
1468 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1469 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1470 PGDIR_SHIFT, next, write, pages, &nr))
1471 break;
1472 } else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
2667f50e
SC
1473 break;
1474 } while (pgdp++, addr = next, addr != end);
1475 local_irq_restore(flags);
1476
1477 return nr;
1478}
1479
1480/**
1481 * get_user_pages_fast() - pin user pages in memory
1482 * @start: starting user address
1483 * @nr_pages: number of pages from start to pin
1484 * @write: whether pages will be written to
1485 * @pages: array that receives pointers to the pages pinned.
1486 * Should be at least nr_pages long.
1487 *
1488 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1489 * If not successful, it will fall back to taking the lock and
1490 * calling get_user_pages().
1491 *
1492 * Returns number of pages pinned. This may be fewer than the number
1493 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1494 * were pinned, returns -errno.
1495 */
1496int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1497 struct page **pages)
1498{
2667f50e
SC
1499 int nr, ret;
1500
1501 start &= PAGE_MASK;
1502 nr = __get_user_pages_fast(start, nr_pages, write, pages);
1503 ret = nr;
1504
1505 if (nr < nr_pages) {
1506 /* Try to get the remaining pages with get_user_pages */
1507 start += nr << PAGE_SHIFT;
1508 pages += nr;
1509
c164154f
LS
1510 ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1511 write ? FOLL_WRITE : 0);
2667f50e
SC
1512
1513 /* Have to be a bit careful with return values */
1514 if (nr > 0) {
1515 if (ret < 0)
1516 ret = nr;
1517 else
1518 ret += nr;
1519 }
1520 }
1521
1522 return ret;
1523}
1524
1525#endif /* CONFIG_HAVE_GENERIC_RCU_GUP */