]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/hugetlb.c
hwpoison, hugetlbfs: fix RSS-counter warning
[mirror_ubuntu-zesty-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
d6606683 24
63551ae0
DG
25#include <asm/page.h>
26#include <asm/pgtable.h>
24669e58 27#include <asm/tlb.h>
63551ae0 28
24669e58 29#include <linux/io.h>
63551ae0 30#include <linux/hugetlb.h>
9dd540e2 31#include <linux/hugetlb_cgroup.h>
9a305230 32#include <linux/node.h>
7835e98b 33#include "internal.h"
1da177e4
LT
34
35const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
36static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37unsigned long hugepages_treat_as_movable;
a5516438 38
c3f38a38 39int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42
53ba51d2
JT
43__initdata LIST_HEAD(huge_boot_pages);
44
e5ff2159
AK
45/* for command line parsing */
46static struct hstate * __initdata parsed_hstate;
47static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 48static unsigned long __initdata default_hstate_size;
e5ff2159 49
3935baa9
DG
50/*
51 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52 */
c3f38a38 53DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 54
90481622
DG
55static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56{
57 bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59 spin_unlock(&spool->lock);
60
61 /* If no pages are used, and no other handles to the subpool
62 * remain, free the subpool the subpool remain */
63 if (free)
64 kfree(spool);
65}
66
67struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68{
69 struct hugepage_subpool *spool;
70
71 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72 if (!spool)
73 return NULL;
74
75 spin_lock_init(&spool->lock);
76 spool->count = 1;
77 spool->max_hpages = nr_blocks;
78 spool->used_hpages = 0;
79
80 return spool;
81}
82
83void hugepage_put_subpool(struct hugepage_subpool *spool)
84{
85 spin_lock(&spool->lock);
86 BUG_ON(!spool->count);
87 spool->count--;
88 unlock_or_release_subpool(spool);
89}
90
91static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92 long delta)
93{
94 int ret = 0;
95
96 if (!spool)
97 return 0;
98
99 spin_lock(&spool->lock);
100 if ((spool->used_hpages + delta) <= spool->max_hpages) {
101 spool->used_hpages += delta;
102 } else {
103 ret = -ENOMEM;
104 }
105 spin_unlock(&spool->lock);
106
107 return ret;
108}
109
110static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111 long delta)
112{
113 if (!spool)
114 return;
115
116 spin_lock(&spool->lock);
117 spool->used_hpages -= delta;
118 /* If hugetlbfs_put_super couldn't free spool due to
119 * an outstanding quota reference, free it now. */
120 unlock_or_release_subpool(spool);
121}
122
123static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124{
125 return HUGETLBFS_SB(inode->i_sb)->spool;
126}
127
128static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129{
130 return subpool_inode(vma->vm_file->f_dentry->d_inode);
131}
132
96822904
AW
133/*
134 * Region tracking -- allows tracking of reservations and instantiated pages
135 * across the pages in a mapping.
84afd99b
AW
136 *
137 * The region data structures are protected by a combination of the mmap_sem
138 * and the hugetlb_instantion_mutex. To access or modify a region the caller
139 * must either hold the mmap_sem for write, or the mmap_sem for read and
140 * the hugetlb_instantiation mutex:
141 *
32f84528 142 * down_write(&mm->mmap_sem);
84afd99b 143 * or
32f84528
CF
144 * down_read(&mm->mmap_sem);
145 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
146 */
147struct file_region {
148 struct list_head link;
149 long from;
150 long to;
151};
152
153static long region_add(struct list_head *head, long f, long t)
154{
155 struct file_region *rg, *nrg, *trg;
156
157 /* Locate the region we are either in or before. */
158 list_for_each_entry(rg, head, link)
159 if (f <= rg->to)
160 break;
161
162 /* Round our left edge to the current segment if it encloses us. */
163 if (f > rg->from)
164 f = rg->from;
165
166 /* Check for and consume any regions we now overlap with. */
167 nrg = rg;
168 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169 if (&rg->link == head)
170 break;
171 if (rg->from > t)
172 break;
173
174 /* If this area reaches higher then extend our area to
175 * include it completely. If this is not the first area
176 * which we intend to reuse, free it. */
177 if (rg->to > t)
178 t = rg->to;
179 if (rg != nrg) {
180 list_del(&rg->link);
181 kfree(rg);
182 }
183 }
184 nrg->from = f;
185 nrg->to = t;
186 return 0;
187}
188
189static long region_chg(struct list_head *head, long f, long t)
190{
191 struct file_region *rg, *nrg;
192 long chg = 0;
193
194 /* Locate the region we are before or in. */
195 list_for_each_entry(rg, head, link)
196 if (f <= rg->to)
197 break;
198
199 /* If we are below the current region then a new region is required.
200 * Subtle, allocate a new region at the position but make it zero
201 * size such that we can guarantee to record the reservation. */
202 if (&rg->link == head || t < rg->from) {
203 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204 if (!nrg)
205 return -ENOMEM;
206 nrg->from = f;
207 nrg->to = f;
208 INIT_LIST_HEAD(&nrg->link);
209 list_add(&nrg->link, rg->link.prev);
210
211 return t - f;
212 }
213
214 /* Round our left edge to the current segment if it encloses us. */
215 if (f > rg->from)
216 f = rg->from;
217 chg = t - f;
218
219 /* Check for and consume any regions we now overlap with. */
220 list_for_each_entry(rg, rg->link.prev, link) {
221 if (&rg->link == head)
222 break;
223 if (rg->from > t)
224 return chg;
225
25985edc 226 /* We overlap with this area, if it extends further than
96822904
AW
227 * us then we must extend ourselves. Account for its
228 * existing reservation. */
229 if (rg->to > t) {
230 chg += rg->to - t;
231 t = rg->to;
232 }
233 chg -= rg->to - rg->from;
234 }
235 return chg;
236}
237
238static long region_truncate(struct list_head *head, long end)
239{
240 struct file_region *rg, *trg;
241 long chg = 0;
242
243 /* Locate the region we are either in or before. */
244 list_for_each_entry(rg, head, link)
245 if (end <= rg->to)
246 break;
247 if (&rg->link == head)
248 return 0;
249
250 /* If we are in the middle of a region then adjust it. */
251 if (end > rg->from) {
252 chg = rg->to - end;
253 rg->to = end;
254 rg = list_entry(rg->link.next, typeof(*rg), link);
255 }
256
257 /* Drop any remaining regions. */
258 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259 if (&rg->link == head)
260 break;
261 chg += rg->to - rg->from;
262 list_del(&rg->link);
263 kfree(rg);
264 }
265 return chg;
266}
267
84afd99b
AW
268static long region_count(struct list_head *head, long f, long t)
269{
270 struct file_region *rg;
271 long chg = 0;
272
273 /* Locate each segment we overlap with, and count that overlap. */
274 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
275 long seg_from;
276 long seg_to;
84afd99b
AW
277
278 if (rg->to <= f)
279 continue;
280 if (rg->from >= t)
281 break;
282
283 seg_from = max(rg->from, f);
284 seg_to = min(rg->to, t);
285
286 chg += seg_to - seg_from;
287 }
288
289 return chg;
290}
291
e7c4b0bf
AW
292/*
293 * Convert the address within this vma to the page offset within
294 * the mapping, in pagecache page units; huge pages here.
295 */
a5516438
AK
296static pgoff_t vma_hugecache_offset(struct hstate *h,
297 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 298{
a5516438
AK
299 return ((address - vma->vm_start) >> huge_page_shift(h)) +
300 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
301}
302
0fe6e20b
NH
303pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304 unsigned long address)
305{
306 return vma_hugecache_offset(hstate_vma(vma), vma, address);
307}
308
08fba699
MG
309/*
310 * Return the size of the pages allocated when backing a VMA. In the majority
311 * cases this will be same size as used by the page table entries.
312 */
313unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314{
315 struct hstate *hstate;
316
317 if (!is_vm_hugetlb_page(vma))
318 return PAGE_SIZE;
319
320 hstate = hstate_vma(vma);
321
322 return 1UL << (hstate->order + PAGE_SHIFT);
323}
f340ca0f 324EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 325
3340289d
MG
326/*
327 * Return the page size being used by the MMU to back a VMA. In the majority
328 * of cases, the page size used by the kernel matches the MMU size. On
329 * architectures where it differs, an architecture-specific version of this
330 * function is required.
331 */
332#ifndef vma_mmu_pagesize
333unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334{
335 return vma_kernel_pagesize(vma);
336}
337#endif
338
84afd99b
AW
339/*
340 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
341 * bits of the reservation map pointer, which are always clear due to
342 * alignment.
343 */
344#define HPAGE_RESV_OWNER (1UL << 0)
345#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 346#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 347
a1e78772
MG
348/*
349 * These helpers are used to track how many pages are reserved for
350 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351 * is guaranteed to have their future faults succeed.
352 *
353 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354 * the reserve counters are updated with the hugetlb_lock held. It is safe
355 * to reset the VMA at fork() time as it is not in use yet and there is no
356 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
357 *
358 * The private mapping reservation is represented in a subtly different
359 * manner to a shared mapping. A shared mapping has a region map associated
360 * with the underlying file, this region map represents the backing file
361 * pages which have ever had a reservation assigned which this persists even
362 * after the page is instantiated. A private mapping has a region map
363 * associated with the original mmap which is attached to all VMAs which
364 * reference it, this region map represents those offsets which have consumed
365 * reservation ie. where pages have been instantiated.
a1e78772 366 */
e7c4b0bf
AW
367static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368{
369 return (unsigned long)vma->vm_private_data;
370}
371
372static void set_vma_private_data(struct vm_area_struct *vma,
373 unsigned long value)
374{
375 vma->vm_private_data = (void *)value;
376}
377
84afd99b
AW
378struct resv_map {
379 struct kref refs;
380 struct list_head regions;
381};
382
2a4b3ded 383static struct resv_map *resv_map_alloc(void)
84afd99b
AW
384{
385 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386 if (!resv_map)
387 return NULL;
388
389 kref_init(&resv_map->refs);
390 INIT_LIST_HEAD(&resv_map->regions);
391
392 return resv_map;
393}
394
2a4b3ded 395static void resv_map_release(struct kref *ref)
84afd99b
AW
396{
397 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399 /* Clear out any active regions before we release the map. */
400 region_truncate(&resv_map->regions, 0);
401 kfree(resv_map);
402}
403
404static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
405{
406 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 407 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
408 return (struct resv_map *)(get_vma_private_data(vma) &
409 ~HPAGE_RESV_MASK);
2a4b3ded 410 return NULL;
a1e78772
MG
411}
412
84afd99b 413static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
414{
415 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 416 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 417
84afd99b
AW
418 set_vma_private_data(vma, (get_vma_private_data(vma) &
419 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
420}
421
422static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423{
04f2cbe3 424 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 425 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
426
427 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
428}
429
430static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431{
432 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
433
434 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
435}
436
437/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
438static void decrement_hugepage_resv_vma(struct hstate *h,
439 struct vm_area_struct *vma)
a1e78772 440{
c37f9fb1
AW
441 if (vma->vm_flags & VM_NORESERVE)
442 return;
443
f83a275d 444 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 445 /* Shared mappings always use reserves */
a5516438 446 h->resv_huge_pages--;
84afd99b 447 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
448 /*
449 * Only the process that called mmap() has reserves for
450 * private mappings.
451 */
a5516438 452 h->resv_huge_pages--;
a1e78772
MG
453 }
454}
455
04f2cbe3 456/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
457void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
458{
459 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 460 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
461 vma->vm_private_data = (void *)0;
462}
463
464/* Returns true if the VMA has associated reserve pages */
7f09ca51 465static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 466{
f83a275d 467 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
468 return 1;
469 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
470 return 1;
471 return 0;
a1e78772
MG
472}
473
0ebabb41
NH
474static void copy_gigantic_page(struct page *dst, struct page *src)
475{
476 int i;
477 struct hstate *h = page_hstate(src);
478 struct page *dst_base = dst;
479 struct page *src_base = src;
480
481 for (i = 0; i < pages_per_huge_page(h); ) {
482 cond_resched();
483 copy_highpage(dst, src);
484
485 i++;
486 dst = mem_map_next(dst, dst_base, i);
487 src = mem_map_next(src, src_base, i);
488 }
489}
490
491void copy_huge_page(struct page *dst, struct page *src)
492{
493 int i;
494 struct hstate *h = page_hstate(src);
495
496 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
497 copy_gigantic_page(dst, src);
498 return;
499 }
500
501 might_sleep();
502 for (i = 0; i < pages_per_huge_page(h); i++) {
503 cond_resched();
504 copy_highpage(dst + i, src + i);
505 }
506}
507
a5516438 508static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
509{
510 int nid = page_to_nid(page);
0edaecfa 511 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
512 h->free_huge_pages++;
513 h->free_huge_pages_node[nid]++;
1da177e4
LT
514}
515
bf50bab2
NH
516static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
517{
518 struct page *page;
519
520 if (list_empty(&h->hugepage_freelists[nid]))
521 return NULL;
522 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
0edaecfa 523 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 524 set_page_refcounted(page);
bf50bab2
NH
525 h->free_huge_pages--;
526 h->free_huge_pages_node[nid]--;
527 return page;
528}
529
a5516438
AK
530static struct page *dequeue_huge_page_vma(struct hstate *h,
531 struct vm_area_struct *vma,
04f2cbe3 532 unsigned long address, int avoid_reserve)
1da177e4 533{
b1c12cbc 534 struct page *page = NULL;
480eccf9 535 struct mempolicy *mpol;
19770b32 536 nodemask_t *nodemask;
c0ff7453 537 struct zonelist *zonelist;
dd1a239f
MG
538 struct zone *zone;
539 struct zoneref *z;
cc9a6c87 540 unsigned int cpuset_mems_cookie;
1da177e4 541
cc9a6c87
MG
542retry_cpuset:
543 cpuset_mems_cookie = get_mems_allowed();
c0ff7453
MX
544 zonelist = huge_zonelist(vma, address,
545 htlb_alloc_mask, &mpol, &nodemask);
a1e78772
MG
546 /*
547 * A child process with MAP_PRIVATE mappings created by their parent
548 * have no page reserves. This check ensures that reservations are
549 * not "stolen". The child may still get SIGKILLed
550 */
7f09ca51 551 if (!vma_has_reserves(vma) &&
a5516438 552 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 553 goto err;
a1e78772 554
04f2cbe3 555 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 556 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 557 goto err;
04f2cbe3 558
19770b32
MG
559 for_each_zone_zonelist_nodemask(zone, z, zonelist,
560 MAX_NR_ZONES - 1, nodemask) {
bf50bab2
NH
561 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
562 page = dequeue_huge_page_node(h, zone_to_nid(zone));
563 if (page) {
564 if (!avoid_reserve)
565 decrement_hugepage_resv_vma(h, vma);
566 break;
567 }
3abf7afd 568 }
1da177e4 569 }
cc9a6c87 570
52cd3b07 571 mpol_cond_put(mpol);
cc9a6c87
MG
572 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
573 goto retry_cpuset;
1da177e4 574 return page;
cc9a6c87
MG
575
576err:
577 mpol_cond_put(mpol);
578 return NULL;
1da177e4
LT
579}
580
a5516438 581static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
582{
583 int i;
a5516438 584
18229df5
AW
585 VM_BUG_ON(h->order >= MAX_ORDER);
586
a5516438
AK
587 h->nr_huge_pages--;
588 h->nr_huge_pages_node[page_to_nid(page)]--;
589 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
590 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
591 1 << PG_referenced | 1 << PG_dirty |
592 1 << PG_active | 1 << PG_reserved |
593 1 << PG_private | 1 << PG_writeback);
6af2acb6 594 }
9dd540e2 595 VM_BUG_ON(hugetlb_cgroup_from_page(page));
6af2acb6
AL
596 set_compound_page_dtor(page, NULL);
597 set_page_refcounted(page);
7f2e9525 598 arch_release_hugepage(page);
a5516438 599 __free_pages(page, huge_page_order(h));
6af2acb6
AL
600}
601
e5ff2159
AK
602struct hstate *size_to_hstate(unsigned long size)
603{
604 struct hstate *h;
605
606 for_each_hstate(h) {
607 if (huge_page_size(h) == size)
608 return h;
609 }
610 return NULL;
611}
612
27a85ef1
DG
613static void free_huge_page(struct page *page)
614{
a5516438
AK
615 /*
616 * Can't pass hstate in here because it is called from the
617 * compound page destructor.
618 */
e5ff2159 619 struct hstate *h = page_hstate(page);
7893d1d5 620 int nid = page_to_nid(page);
90481622
DG
621 struct hugepage_subpool *spool =
622 (struct hugepage_subpool *)page_private(page);
27a85ef1 623
e5df70ab 624 set_page_private(page, 0);
23be7468 625 page->mapping = NULL;
7893d1d5 626 BUG_ON(page_count(page));
0fe6e20b 627 BUG_ON(page_mapcount(page));
27a85ef1
DG
628
629 spin_lock(&hugetlb_lock);
6d76dcf4
AK
630 hugetlb_cgroup_uncharge_page(hstate_index(h),
631 pages_per_huge_page(h), page);
aa888a74 632 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
633 /* remove the page from active list */
634 list_del(&page->lru);
a5516438
AK
635 update_and_free_page(h, page);
636 h->surplus_huge_pages--;
637 h->surplus_huge_pages_node[nid]--;
7893d1d5 638 } else {
5d3a551c 639 arch_clear_hugepage_flags(page);
a5516438 640 enqueue_huge_page(h, page);
7893d1d5 641 }
27a85ef1 642 spin_unlock(&hugetlb_lock);
90481622 643 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
644}
645
a5516438 646static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 647{
0edaecfa 648 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
649 set_compound_page_dtor(page, free_huge_page);
650 spin_lock(&hugetlb_lock);
9dd540e2 651 set_hugetlb_cgroup(page, NULL);
a5516438
AK
652 h->nr_huge_pages++;
653 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
654 spin_unlock(&hugetlb_lock);
655 put_page(page); /* free it into the hugepage allocator */
656}
657
20a0307c
WF
658static void prep_compound_gigantic_page(struct page *page, unsigned long order)
659{
660 int i;
661 int nr_pages = 1 << order;
662 struct page *p = page + 1;
663
664 /* we rely on prep_new_huge_page to set the destructor */
665 set_compound_order(page, order);
666 __SetPageHead(page);
667 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
668 __SetPageTail(p);
58a84aa9 669 set_page_count(p, 0);
20a0307c
WF
670 p->first_page = page;
671 }
672}
673
7795912c
AM
674/*
675 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
676 * transparent huge pages. See the PageTransHuge() documentation for more
677 * details.
678 */
20a0307c
WF
679int PageHuge(struct page *page)
680{
681 compound_page_dtor *dtor;
682
683 if (!PageCompound(page))
684 return 0;
685
686 page = compound_head(page);
687 dtor = get_compound_page_dtor(page);
688
689 return dtor == free_huge_page;
690}
43131e14
NH
691EXPORT_SYMBOL_GPL(PageHuge);
692
a5516438 693static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 694{
1da177e4 695 struct page *page;
f96efd58 696
aa888a74
AK
697 if (h->order >= MAX_ORDER)
698 return NULL;
699
6484eb3e 700 page = alloc_pages_exact_node(nid,
551883ae
NA
701 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
702 __GFP_REPEAT|__GFP_NOWARN,
a5516438 703 huge_page_order(h));
1da177e4 704 if (page) {
7f2e9525 705 if (arch_prepare_hugepage(page)) {
caff3a2c 706 __free_pages(page, huge_page_order(h));
7b8ee84d 707 return NULL;
7f2e9525 708 }
a5516438 709 prep_new_huge_page(h, page, nid);
1da177e4 710 }
63b4613c
NA
711
712 return page;
713}
714
9a76db09 715/*
6ae11b27
LS
716 * common helper functions for hstate_next_node_to_{alloc|free}.
717 * We may have allocated or freed a huge page based on a different
718 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
719 * be outside of *nodes_allowed. Ensure that we use an allowed
720 * node for alloc or free.
9a76db09 721 */
6ae11b27 722static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 723{
6ae11b27 724 nid = next_node(nid, *nodes_allowed);
9a76db09 725 if (nid == MAX_NUMNODES)
6ae11b27 726 nid = first_node(*nodes_allowed);
9a76db09
LS
727 VM_BUG_ON(nid >= MAX_NUMNODES);
728
729 return nid;
730}
731
6ae11b27
LS
732static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
733{
734 if (!node_isset(nid, *nodes_allowed))
735 nid = next_node_allowed(nid, nodes_allowed);
736 return nid;
737}
738
5ced66c9 739/*
6ae11b27
LS
740 * returns the previously saved node ["this node"] from which to
741 * allocate a persistent huge page for the pool and advance the
742 * next node from which to allocate, handling wrap at end of node
743 * mask.
5ced66c9 744 */
6ae11b27
LS
745static int hstate_next_node_to_alloc(struct hstate *h,
746 nodemask_t *nodes_allowed)
5ced66c9 747{
6ae11b27
LS
748 int nid;
749
750 VM_BUG_ON(!nodes_allowed);
751
752 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
753 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 754
9a76db09 755 return nid;
5ced66c9
AK
756}
757
6ae11b27 758static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
63b4613c
NA
759{
760 struct page *page;
761 int start_nid;
762 int next_nid;
763 int ret = 0;
764
6ae11b27 765 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 766 next_nid = start_nid;
63b4613c
NA
767
768 do {
e8c5c824 769 page = alloc_fresh_huge_page_node(h, next_nid);
9a76db09 770 if (page) {
63b4613c 771 ret = 1;
9a76db09
LS
772 break;
773 }
6ae11b27 774 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
9a76db09 775 } while (next_nid != start_nid);
63b4613c 776
3b116300
AL
777 if (ret)
778 count_vm_event(HTLB_BUDDY_PGALLOC);
779 else
780 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
781
63b4613c 782 return ret;
1da177e4
LT
783}
784
e8c5c824 785/*
6ae11b27
LS
786 * helper for free_pool_huge_page() - return the previously saved
787 * node ["this node"] from which to free a huge page. Advance the
788 * next node id whether or not we find a free huge page to free so
789 * that the next attempt to free addresses the next node.
e8c5c824 790 */
6ae11b27 791static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 792{
6ae11b27
LS
793 int nid;
794
795 VM_BUG_ON(!nodes_allowed);
796
797 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
798 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 799
9a76db09 800 return nid;
e8c5c824
LS
801}
802
803/*
804 * Free huge page from pool from next node to free.
805 * Attempt to keep persistent huge pages more or less
806 * balanced over allowed nodes.
807 * Called with hugetlb_lock locked.
808 */
6ae11b27
LS
809static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
810 bool acct_surplus)
e8c5c824
LS
811{
812 int start_nid;
813 int next_nid;
814 int ret = 0;
815
6ae11b27 816 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
817 next_nid = start_nid;
818
819 do {
685f3457
LS
820 /*
821 * If we're returning unused surplus pages, only examine
822 * nodes with surplus pages.
823 */
824 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
825 !list_empty(&h->hugepage_freelists[next_nid])) {
e8c5c824
LS
826 struct page *page =
827 list_entry(h->hugepage_freelists[next_nid].next,
828 struct page, lru);
829 list_del(&page->lru);
830 h->free_huge_pages--;
831 h->free_huge_pages_node[next_nid]--;
685f3457
LS
832 if (acct_surplus) {
833 h->surplus_huge_pages--;
834 h->surplus_huge_pages_node[next_nid]--;
835 }
e8c5c824
LS
836 update_and_free_page(h, page);
837 ret = 1;
9a76db09 838 break;
e8c5c824 839 }
6ae11b27 840 next_nid = hstate_next_node_to_free(h, nodes_allowed);
9a76db09 841 } while (next_nid != start_nid);
e8c5c824
LS
842
843 return ret;
844}
845
bf50bab2 846static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
847{
848 struct page *page;
bf50bab2 849 unsigned int r_nid;
7893d1d5 850
aa888a74
AK
851 if (h->order >= MAX_ORDER)
852 return NULL;
853
d1c3fb1f
NA
854 /*
855 * Assume we will successfully allocate the surplus page to
856 * prevent racing processes from causing the surplus to exceed
857 * overcommit
858 *
859 * This however introduces a different race, where a process B
860 * tries to grow the static hugepage pool while alloc_pages() is
861 * called by process A. B will only examine the per-node
862 * counters in determining if surplus huge pages can be
863 * converted to normal huge pages in adjust_pool_surplus(). A
864 * won't be able to increment the per-node counter, until the
865 * lock is dropped by B, but B doesn't drop hugetlb_lock until
866 * no more huge pages can be converted from surplus to normal
867 * state (and doesn't try to convert again). Thus, we have a
868 * case where a surplus huge page exists, the pool is grown, and
869 * the surplus huge page still exists after, even though it
870 * should just have been converted to a normal huge page. This
871 * does not leak memory, though, as the hugepage will be freed
872 * once it is out of use. It also does not allow the counters to
873 * go out of whack in adjust_pool_surplus() as we don't modify
874 * the node values until we've gotten the hugepage and only the
875 * per-node value is checked there.
876 */
877 spin_lock(&hugetlb_lock);
a5516438 878 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
879 spin_unlock(&hugetlb_lock);
880 return NULL;
881 } else {
a5516438
AK
882 h->nr_huge_pages++;
883 h->surplus_huge_pages++;
d1c3fb1f
NA
884 }
885 spin_unlock(&hugetlb_lock);
886
bf50bab2
NH
887 if (nid == NUMA_NO_NODE)
888 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
889 __GFP_REPEAT|__GFP_NOWARN,
890 huge_page_order(h));
891 else
892 page = alloc_pages_exact_node(nid,
893 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
894 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 895
caff3a2c
GS
896 if (page && arch_prepare_hugepage(page)) {
897 __free_pages(page, huge_page_order(h));
ea5768c7 898 page = NULL;
caff3a2c
GS
899 }
900
d1c3fb1f 901 spin_lock(&hugetlb_lock);
7893d1d5 902 if (page) {
0edaecfa 903 INIT_LIST_HEAD(&page->lru);
bf50bab2 904 r_nid = page_to_nid(page);
7893d1d5 905 set_compound_page_dtor(page, free_huge_page);
9dd540e2 906 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
907 /*
908 * We incremented the global counters already
909 */
bf50bab2
NH
910 h->nr_huge_pages_node[r_nid]++;
911 h->surplus_huge_pages_node[r_nid]++;
3b116300 912 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 913 } else {
a5516438
AK
914 h->nr_huge_pages--;
915 h->surplus_huge_pages--;
3b116300 916 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 917 }
d1c3fb1f 918 spin_unlock(&hugetlb_lock);
7893d1d5
AL
919
920 return page;
921}
922
bf50bab2
NH
923/*
924 * This allocation function is useful in the context where vma is irrelevant.
925 * E.g. soft-offlining uses this function because it only cares physical
926 * address of error page.
927 */
928struct page *alloc_huge_page_node(struct hstate *h, int nid)
929{
930 struct page *page;
931
932 spin_lock(&hugetlb_lock);
933 page = dequeue_huge_page_node(h, nid);
934 spin_unlock(&hugetlb_lock);
935
94ae8ba7 936 if (!page)
bf50bab2
NH
937 page = alloc_buddy_huge_page(h, nid);
938
939 return page;
940}
941
e4e574b7 942/*
25985edc 943 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
944 * of size 'delta'.
945 */
a5516438 946static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
947{
948 struct list_head surplus_list;
949 struct page *page, *tmp;
950 int ret, i;
951 int needed, allocated;
28073b02 952 bool alloc_ok = true;
e4e574b7 953
a5516438 954 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 955 if (needed <= 0) {
a5516438 956 h->resv_huge_pages += delta;
e4e574b7 957 return 0;
ac09b3a1 958 }
e4e574b7
AL
959
960 allocated = 0;
961 INIT_LIST_HEAD(&surplus_list);
962
963 ret = -ENOMEM;
964retry:
965 spin_unlock(&hugetlb_lock);
966 for (i = 0; i < needed; i++) {
bf50bab2 967 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
968 if (!page) {
969 alloc_ok = false;
970 break;
971 }
e4e574b7
AL
972 list_add(&page->lru, &surplus_list);
973 }
28073b02 974 allocated += i;
e4e574b7
AL
975
976 /*
977 * After retaking hugetlb_lock, we need to recalculate 'needed'
978 * because either resv_huge_pages or free_huge_pages may have changed.
979 */
980 spin_lock(&hugetlb_lock);
a5516438
AK
981 needed = (h->resv_huge_pages + delta) -
982 (h->free_huge_pages + allocated);
28073b02
HD
983 if (needed > 0) {
984 if (alloc_ok)
985 goto retry;
986 /*
987 * We were not able to allocate enough pages to
988 * satisfy the entire reservation so we free what
989 * we've allocated so far.
990 */
991 goto free;
992 }
e4e574b7
AL
993 /*
994 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 995 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 996 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
997 * allocator. Commit the entire reservation here to prevent another
998 * process from stealing the pages as they are added to the pool but
999 * before they are reserved.
e4e574b7
AL
1000 */
1001 needed += allocated;
a5516438 1002 h->resv_huge_pages += delta;
e4e574b7 1003 ret = 0;
a9869b83 1004
19fc3f0a 1005 /* Free the needed pages to the hugetlb pool */
e4e574b7 1006 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1007 if ((--needed) < 0)
1008 break;
a9869b83
NH
1009 /*
1010 * This page is now managed by the hugetlb allocator and has
1011 * no users -- drop the buddy allocator's reference.
1012 */
1013 put_page_testzero(page);
1014 VM_BUG_ON(page_count(page));
a5516438 1015 enqueue_huge_page(h, page);
19fc3f0a 1016 }
28073b02 1017free:
b0365c8d 1018 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1019
1020 /* Free unnecessary surplus pages to the buddy allocator */
1021 if (!list_empty(&surplus_list)) {
19fc3f0a 1022 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
a9869b83 1023 put_page(page);
af767cbd 1024 }
e4e574b7 1025 }
a9869b83 1026 spin_lock(&hugetlb_lock);
e4e574b7
AL
1027
1028 return ret;
1029}
1030
1031/*
1032 * When releasing a hugetlb pool reservation, any surplus pages that were
1033 * allocated to satisfy the reservation must be explicitly freed if they were
1034 * never used.
685f3457 1035 * Called with hugetlb_lock held.
e4e574b7 1036 */
a5516438
AK
1037static void return_unused_surplus_pages(struct hstate *h,
1038 unsigned long unused_resv_pages)
e4e574b7 1039{
e4e574b7
AL
1040 unsigned long nr_pages;
1041
ac09b3a1 1042 /* Uncommit the reservation */
a5516438 1043 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1044
aa888a74
AK
1045 /* Cannot return gigantic pages currently */
1046 if (h->order >= MAX_ORDER)
1047 return;
1048
a5516438 1049 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1050
685f3457
LS
1051 /*
1052 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1053 * evenly across all nodes with memory. Iterate across these nodes
1054 * until we can no longer free unreserved surplus pages. This occurs
1055 * when the nodes with surplus pages have no free pages.
1056 * free_pool_huge_page() will balance the the freed pages across the
1057 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1058 */
1059 while (nr_pages--) {
8cebfcd0 1060 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1061 break;
e4e574b7
AL
1062 }
1063}
1064
c37f9fb1
AW
1065/*
1066 * Determine if the huge page at addr within the vma has an associated
1067 * reservation. Where it does not we will need to logically increase
90481622
DG
1068 * reservation and actually increase subpool usage before an allocation
1069 * can occur. Where any new reservation would be required the
1070 * reservation change is prepared, but not committed. Once the page
1071 * has been allocated from the subpool and instantiated the change should
1072 * be committed via vma_commit_reservation. No action is required on
1073 * failure.
c37f9fb1 1074 */
e2f17d94 1075static long vma_needs_reservation(struct hstate *h,
a5516438 1076 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1077{
1078 struct address_space *mapping = vma->vm_file->f_mapping;
1079 struct inode *inode = mapping->host;
1080
f83a275d 1081 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1082 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
1083 return region_chg(&inode->i_mapping->private_list,
1084 idx, idx + 1);
1085
84afd99b
AW
1086 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1087 return 1;
c37f9fb1 1088
84afd99b 1089 } else {
e2f17d94 1090 long err;
a5516438 1091 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1092 struct resv_map *reservations = vma_resv_map(vma);
1093
1094 err = region_chg(&reservations->regions, idx, idx + 1);
1095 if (err < 0)
1096 return err;
1097 return 0;
1098 }
c37f9fb1 1099}
a5516438
AK
1100static void vma_commit_reservation(struct hstate *h,
1101 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1102{
1103 struct address_space *mapping = vma->vm_file->f_mapping;
1104 struct inode *inode = mapping->host;
1105
f83a275d 1106 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1107 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1108 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1109
1110 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1111 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1112 struct resv_map *reservations = vma_resv_map(vma);
1113
1114 /* Mark this page used in the map. */
1115 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1116 }
1117}
1118
a1e78772 1119static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1120 unsigned long addr, int avoid_reserve)
1da177e4 1121{
90481622 1122 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1123 struct hstate *h = hstate_vma(vma);
348ea204 1124 struct page *page;
e2f17d94 1125 long chg;
6d76dcf4
AK
1126 int ret, idx;
1127 struct hugetlb_cgroup *h_cg;
a1e78772 1128
6d76dcf4 1129 idx = hstate_index(h);
a1e78772 1130 /*
90481622
DG
1131 * Processes that did not create the mapping will have no
1132 * reserves and will not have accounted against subpool
1133 * limit. Check that the subpool limit can be made before
1134 * satisfying the allocation MAP_NORESERVE mappings may also
1135 * need pages and subpool limit allocated allocated if no reserve
1136 * mapping overlaps.
a1e78772 1137 */
a5516438 1138 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1139 if (chg < 0)
76dcee75 1140 return ERR_PTR(-ENOMEM);
c37f9fb1 1141 if (chg)
90481622 1142 if (hugepage_subpool_get_pages(spool, chg))
76dcee75 1143 return ERR_PTR(-ENOSPC);
1da177e4 1144
6d76dcf4
AK
1145 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1146 if (ret) {
1147 hugepage_subpool_put_pages(spool, chg);
1148 return ERR_PTR(-ENOSPC);
1149 }
1da177e4 1150 spin_lock(&hugetlb_lock);
a5516438 1151 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
94ae8ba7
AK
1152 if (page) {
1153 /* update page cgroup details */
1154 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1155 h_cg, page);
1156 spin_unlock(&hugetlb_lock);
1157 } else {
1158 spin_unlock(&hugetlb_lock);
bf50bab2 1159 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1160 if (!page) {
6d76dcf4
AK
1161 hugetlb_cgroup_uncharge_cgroup(idx,
1162 pages_per_huge_page(h),
1163 h_cg);
90481622 1164 hugepage_subpool_put_pages(spool, chg);
76dcee75 1165 return ERR_PTR(-ENOSPC);
68842c9b 1166 }
79dbb236 1167 spin_lock(&hugetlb_lock);
94ae8ba7
AK
1168 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1169 h_cg, page);
79dbb236
AK
1170 list_move(&page->lru, &h->hugepage_activelist);
1171 spin_unlock(&hugetlb_lock);
68842c9b 1172 }
348ea204 1173
90481622 1174 set_page_private(page, (unsigned long)spool);
90d8b7e6 1175
a5516438 1176 vma_commit_reservation(h, vma, addr);
90d8b7e6 1177 return page;
b45b5bd6
DG
1178}
1179
91f47662 1180int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1181{
1182 struct huge_bootmem_page *m;
8cebfcd0 1183 int nr_nodes = nodes_weight(node_states[N_MEMORY]);
aa888a74
AK
1184
1185 while (nr_nodes) {
1186 void *addr;
1187
1188 addr = __alloc_bootmem_node_nopanic(
6ae11b27 1189 NODE_DATA(hstate_next_node_to_alloc(h,
8cebfcd0 1190 &node_states[N_MEMORY])),
aa888a74
AK
1191 huge_page_size(h), huge_page_size(h), 0);
1192
1193 if (addr) {
1194 /*
1195 * Use the beginning of the huge page to store the
1196 * huge_bootmem_page struct (until gather_bootmem
1197 * puts them into the mem_map).
1198 */
1199 m = addr;
91f47662 1200 goto found;
aa888a74 1201 }
aa888a74
AK
1202 nr_nodes--;
1203 }
1204 return 0;
1205
1206found:
1207 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1208 /* Put them into a private list first because mem_map is not up yet */
1209 list_add(&m->list, &huge_boot_pages);
1210 m->hstate = h;
1211 return 1;
1212}
1213
18229df5
AW
1214static void prep_compound_huge_page(struct page *page, int order)
1215{
1216 if (unlikely(order > (MAX_ORDER - 1)))
1217 prep_compound_gigantic_page(page, order);
1218 else
1219 prep_compound_page(page, order);
1220}
1221
aa888a74
AK
1222/* Put bootmem huge pages into the standard lists after mem_map is up */
1223static void __init gather_bootmem_prealloc(void)
1224{
1225 struct huge_bootmem_page *m;
1226
1227 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1228 struct hstate *h = m->hstate;
ee8f248d
BB
1229 struct page *page;
1230
1231#ifdef CONFIG_HIGHMEM
1232 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1233 free_bootmem_late((unsigned long)m,
1234 sizeof(struct huge_bootmem_page));
1235#else
1236 page = virt_to_page(m);
1237#endif
aa888a74
AK
1238 __ClearPageReserved(page);
1239 WARN_ON(page_count(page) != 1);
18229df5 1240 prep_compound_huge_page(page, h->order);
aa888a74 1241 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1242 /*
1243 * If we had gigantic hugepages allocated at boot time, we need
1244 * to restore the 'stolen' pages to totalram_pages in order to
1245 * fix confusing memory reports from free(1) and another
1246 * side-effects, like CommitLimit going negative.
1247 */
1248 if (h->order > (MAX_ORDER - 1))
1249 totalram_pages += 1 << h->order;
aa888a74
AK
1250 }
1251}
1252
8faa8b07 1253static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1254{
1255 unsigned long i;
a5516438 1256
e5ff2159 1257 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1258 if (h->order >= MAX_ORDER) {
1259 if (!alloc_bootmem_huge_page(h))
1260 break;
9b5e5d0f 1261 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1262 &node_states[N_MEMORY]))
1da177e4 1263 break;
1da177e4 1264 }
8faa8b07 1265 h->max_huge_pages = i;
e5ff2159
AK
1266}
1267
1268static void __init hugetlb_init_hstates(void)
1269{
1270 struct hstate *h;
1271
1272 for_each_hstate(h) {
8faa8b07
AK
1273 /* oversize hugepages were init'ed in early boot */
1274 if (h->order < MAX_ORDER)
1275 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1276 }
1277}
1278
4abd32db
AK
1279static char * __init memfmt(char *buf, unsigned long n)
1280{
1281 if (n >= (1UL << 30))
1282 sprintf(buf, "%lu GB", n >> 30);
1283 else if (n >= (1UL << 20))
1284 sprintf(buf, "%lu MB", n >> 20);
1285 else
1286 sprintf(buf, "%lu KB", n >> 10);
1287 return buf;
1288}
1289
e5ff2159
AK
1290static void __init report_hugepages(void)
1291{
1292 struct hstate *h;
1293
1294 for_each_hstate(h) {
4abd32db
AK
1295 char buf[32];
1296 printk(KERN_INFO "HugeTLB registered %s page size, "
1297 "pre-allocated %ld pages\n",
1298 memfmt(buf, huge_page_size(h)),
1299 h->free_huge_pages);
e5ff2159
AK
1300 }
1301}
1302
1da177e4 1303#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1304static void try_to_free_low(struct hstate *h, unsigned long count,
1305 nodemask_t *nodes_allowed)
1da177e4 1306{
4415cc8d
CL
1307 int i;
1308
aa888a74
AK
1309 if (h->order >= MAX_ORDER)
1310 return;
1311
6ae11b27 1312 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1313 struct page *page, *next;
a5516438
AK
1314 struct list_head *freel = &h->hugepage_freelists[i];
1315 list_for_each_entry_safe(page, next, freel, lru) {
1316 if (count >= h->nr_huge_pages)
6b0c880d 1317 return;
1da177e4
LT
1318 if (PageHighMem(page))
1319 continue;
1320 list_del(&page->lru);
e5ff2159 1321 update_and_free_page(h, page);
a5516438
AK
1322 h->free_huge_pages--;
1323 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1324 }
1325 }
1326}
1327#else
6ae11b27
LS
1328static inline void try_to_free_low(struct hstate *h, unsigned long count,
1329 nodemask_t *nodes_allowed)
1da177e4
LT
1330{
1331}
1332#endif
1333
20a0307c
WF
1334/*
1335 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1336 * balanced by operating on them in a round-robin fashion.
1337 * Returns 1 if an adjustment was made.
1338 */
6ae11b27
LS
1339static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1340 int delta)
20a0307c 1341{
e8c5c824 1342 int start_nid, next_nid;
20a0307c
WF
1343 int ret = 0;
1344
1345 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1346
e8c5c824 1347 if (delta < 0)
6ae11b27 1348 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 1349 else
6ae11b27 1350 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
1351 next_nid = start_nid;
1352
1353 do {
1354 int nid = next_nid;
1355 if (delta < 0) {
e8c5c824
LS
1356 /*
1357 * To shrink on this node, there must be a surplus page
1358 */
9a76db09 1359 if (!h->surplus_huge_pages_node[nid]) {
6ae11b27
LS
1360 next_nid = hstate_next_node_to_alloc(h,
1361 nodes_allowed);
e8c5c824 1362 continue;
9a76db09 1363 }
e8c5c824
LS
1364 }
1365 if (delta > 0) {
e8c5c824
LS
1366 /*
1367 * Surplus cannot exceed the total number of pages
1368 */
1369 if (h->surplus_huge_pages_node[nid] >=
9a76db09 1370 h->nr_huge_pages_node[nid]) {
6ae11b27
LS
1371 next_nid = hstate_next_node_to_free(h,
1372 nodes_allowed);
e8c5c824 1373 continue;
9a76db09 1374 }
e8c5c824 1375 }
20a0307c
WF
1376
1377 h->surplus_huge_pages += delta;
1378 h->surplus_huge_pages_node[nid] += delta;
1379 ret = 1;
1380 break;
e8c5c824 1381 } while (next_nid != start_nid);
20a0307c 1382
20a0307c
WF
1383 return ret;
1384}
1385
a5516438 1386#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1387static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1388 nodemask_t *nodes_allowed)
1da177e4 1389{
7893d1d5 1390 unsigned long min_count, ret;
1da177e4 1391
aa888a74
AK
1392 if (h->order >= MAX_ORDER)
1393 return h->max_huge_pages;
1394
7893d1d5
AL
1395 /*
1396 * Increase the pool size
1397 * First take pages out of surplus state. Then make up the
1398 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1399 *
1400 * We might race with alloc_buddy_huge_page() here and be unable
1401 * to convert a surplus huge page to a normal huge page. That is
1402 * not critical, though, it just means the overall size of the
1403 * pool might be one hugepage larger than it needs to be, but
1404 * within all the constraints specified by the sysctls.
7893d1d5 1405 */
1da177e4 1406 spin_lock(&hugetlb_lock);
a5516438 1407 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1408 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1409 break;
1410 }
1411
a5516438 1412 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1413 /*
1414 * If this allocation races such that we no longer need the
1415 * page, free_huge_page will handle it by freeing the page
1416 * and reducing the surplus.
1417 */
1418 spin_unlock(&hugetlb_lock);
6ae11b27 1419 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1420 spin_lock(&hugetlb_lock);
1421 if (!ret)
1422 goto out;
1423
536240f2
MG
1424 /* Bail for signals. Probably ctrl-c from user */
1425 if (signal_pending(current))
1426 goto out;
7893d1d5 1427 }
7893d1d5
AL
1428
1429 /*
1430 * Decrease the pool size
1431 * First return free pages to the buddy allocator (being careful
1432 * to keep enough around to satisfy reservations). Then place
1433 * pages into surplus state as needed so the pool will shrink
1434 * to the desired size as pages become free.
d1c3fb1f
NA
1435 *
1436 * By placing pages into the surplus state independent of the
1437 * overcommit value, we are allowing the surplus pool size to
1438 * exceed overcommit. There are few sane options here. Since
1439 * alloc_buddy_huge_page() is checking the global counter,
1440 * though, we'll note that we're not allowed to exceed surplus
1441 * and won't grow the pool anywhere else. Not until one of the
1442 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1443 */
a5516438 1444 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1445 min_count = max(count, min_count);
6ae11b27 1446 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1447 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1448 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1449 break;
1da177e4 1450 }
a5516438 1451 while (count < persistent_huge_pages(h)) {
6ae11b27 1452 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1453 break;
1454 }
1455out:
a5516438 1456 ret = persistent_huge_pages(h);
1da177e4 1457 spin_unlock(&hugetlb_lock);
7893d1d5 1458 return ret;
1da177e4
LT
1459}
1460
a3437870
NA
1461#define HSTATE_ATTR_RO(_name) \
1462 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1463
1464#define HSTATE_ATTR(_name) \
1465 static struct kobj_attribute _name##_attr = \
1466 __ATTR(_name, 0644, _name##_show, _name##_store)
1467
1468static struct kobject *hugepages_kobj;
1469static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1470
9a305230
LS
1471static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1472
1473static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1474{
1475 int i;
9a305230 1476
a3437870 1477 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1478 if (hstate_kobjs[i] == kobj) {
1479 if (nidp)
1480 *nidp = NUMA_NO_NODE;
a3437870 1481 return &hstates[i];
9a305230
LS
1482 }
1483
1484 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1485}
1486
06808b08 1487static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1488 struct kobj_attribute *attr, char *buf)
1489{
9a305230
LS
1490 struct hstate *h;
1491 unsigned long nr_huge_pages;
1492 int nid;
1493
1494 h = kobj_to_hstate(kobj, &nid);
1495 if (nid == NUMA_NO_NODE)
1496 nr_huge_pages = h->nr_huge_pages;
1497 else
1498 nr_huge_pages = h->nr_huge_pages_node[nid];
1499
1500 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1501}
adbe8726 1502
06808b08
LS
1503static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1504 struct kobject *kobj, struct kobj_attribute *attr,
1505 const char *buf, size_t len)
a3437870
NA
1506{
1507 int err;
9a305230 1508 int nid;
06808b08 1509 unsigned long count;
9a305230 1510 struct hstate *h;
bad44b5b 1511 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1512
06808b08 1513 err = strict_strtoul(buf, 10, &count);
73ae31e5 1514 if (err)
adbe8726 1515 goto out;
a3437870 1516
9a305230 1517 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1518 if (h->order >= MAX_ORDER) {
1519 err = -EINVAL;
1520 goto out;
1521 }
1522
9a305230
LS
1523 if (nid == NUMA_NO_NODE) {
1524 /*
1525 * global hstate attribute
1526 */
1527 if (!(obey_mempolicy &&
1528 init_nodemask_of_mempolicy(nodes_allowed))) {
1529 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1530 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1531 }
1532 } else if (nodes_allowed) {
1533 /*
1534 * per node hstate attribute: adjust count to global,
1535 * but restrict alloc/free to the specified node.
1536 */
1537 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1538 init_nodemask_of_node(nodes_allowed, nid);
1539 } else
8cebfcd0 1540 nodes_allowed = &node_states[N_MEMORY];
9a305230 1541
06808b08 1542 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1543
8cebfcd0 1544 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1545 NODEMASK_FREE(nodes_allowed);
1546
1547 return len;
adbe8726
EM
1548out:
1549 NODEMASK_FREE(nodes_allowed);
1550 return err;
06808b08
LS
1551}
1552
1553static ssize_t nr_hugepages_show(struct kobject *kobj,
1554 struct kobj_attribute *attr, char *buf)
1555{
1556 return nr_hugepages_show_common(kobj, attr, buf);
1557}
1558
1559static ssize_t nr_hugepages_store(struct kobject *kobj,
1560 struct kobj_attribute *attr, const char *buf, size_t len)
1561{
1562 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1563}
1564HSTATE_ATTR(nr_hugepages);
1565
06808b08
LS
1566#ifdef CONFIG_NUMA
1567
1568/*
1569 * hstate attribute for optionally mempolicy-based constraint on persistent
1570 * huge page alloc/free.
1571 */
1572static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1573 struct kobj_attribute *attr, char *buf)
1574{
1575 return nr_hugepages_show_common(kobj, attr, buf);
1576}
1577
1578static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1579 struct kobj_attribute *attr, const char *buf, size_t len)
1580{
1581 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1582}
1583HSTATE_ATTR(nr_hugepages_mempolicy);
1584#endif
1585
1586
a3437870
NA
1587static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1588 struct kobj_attribute *attr, char *buf)
1589{
9a305230 1590 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1591 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1592}
adbe8726 1593
a3437870
NA
1594static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1595 struct kobj_attribute *attr, const char *buf, size_t count)
1596{
1597 int err;
1598 unsigned long input;
9a305230 1599 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1600
adbe8726
EM
1601 if (h->order >= MAX_ORDER)
1602 return -EINVAL;
1603
a3437870
NA
1604 err = strict_strtoul(buf, 10, &input);
1605 if (err)
73ae31e5 1606 return err;
a3437870
NA
1607
1608 spin_lock(&hugetlb_lock);
1609 h->nr_overcommit_huge_pages = input;
1610 spin_unlock(&hugetlb_lock);
1611
1612 return count;
1613}
1614HSTATE_ATTR(nr_overcommit_hugepages);
1615
1616static ssize_t free_hugepages_show(struct kobject *kobj,
1617 struct kobj_attribute *attr, char *buf)
1618{
9a305230
LS
1619 struct hstate *h;
1620 unsigned long free_huge_pages;
1621 int nid;
1622
1623 h = kobj_to_hstate(kobj, &nid);
1624 if (nid == NUMA_NO_NODE)
1625 free_huge_pages = h->free_huge_pages;
1626 else
1627 free_huge_pages = h->free_huge_pages_node[nid];
1628
1629 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1630}
1631HSTATE_ATTR_RO(free_hugepages);
1632
1633static ssize_t resv_hugepages_show(struct kobject *kobj,
1634 struct kobj_attribute *attr, char *buf)
1635{
9a305230 1636 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1637 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1638}
1639HSTATE_ATTR_RO(resv_hugepages);
1640
1641static ssize_t surplus_hugepages_show(struct kobject *kobj,
1642 struct kobj_attribute *attr, char *buf)
1643{
9a305230
LS
1644 struct hstate *h;
1645 unsigned long surplus_huge_pages;
1646 int nid;
1647
1648 h = kobj_to_hstate(kobj, &nid);
1649 if (nid == NUMA_NO_NODE)
1650 surplus_huge_pages = h->surplus_huge_pages;
1651 else
1652 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1653
1654 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1655}
1656HSTATE_ATTR_RO(surplus_hugepages);
1657
1658static struct attribute *hstate_attrs[] = {
1659 &nr_hugepages_attr.attr,
1660 &nr_overcommit_hugepages_attr.attr,
1661 &free_hugepages_attr.attr,
1662 &resv_hugepages_attr.attr,
1663 &surplus_hugepages_attr.attr,
06808b08
LS
1664#ifdef CONFIG_NUMA
1665 &nr_hugepages_mempolicy_attr.attr,
1666#endif
a3437870
NA
1667 NULL,
1668};
1669
1670static struct attribute_group hstate_attr_group = {
1671 .attrs = hstate_attrs,
1672};
1673
094e9539
JM
1674static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1675 struct kobject **hstate_kobjs,
1676 struct attribute_group *hstate_attr_group)
a3437870
NA
1677{
1678 int retval;
972dc4de 1679 int hi = hstate_index(h);
a3437870 1680
9a305230
LS
1681 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1682 if (!hstate_kobjs[hi])
a3437870
NA
1683 return -ENOMEM;
1684
9a305230 1685 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1686 if (retval)
9a305230 1687 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1688
1689 return retval;
1690}
1691
1692static void __init hugetlb_sysfs_init(void)
1693{
1694 struct hstate *h;
1695 int err;
1696
1697 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1698 if (!hugepages_kobj)
1699 return;
1700
1701 for_each_hstate(h) {
9a305230
LS
1702 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1703 hstate_kobjs, &hstate_attr_group);
a3437870
NA
1704 if (err)
1705 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1706 h->name);
1707 }
1708}
1709
9a305230
LS
1710#ifdef CONFIG_NUMA
1711
1712/*
1713 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1714 * with node devices in node_devices[] using a parallel array. The array
1715 * index of a node device or _hstate == node id.
1716 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1717 * the base kernel, on the hugetlb module.
1718 */
1719struct node_hstate {
1720 struct kobject *hugepages_kobj;
1721 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1722};
1723struct node_hstate node_hstates[MAX_NUMNODES];
1724
1725/*
10fbcf4c 1726 * A subset of global hstate attributes for node devices
9a305230
LS
1727 */
1728static struct attribute *per_node_hstate_attrs[] = {
1729 &nr_hugepages_attr.attr,
1730 &free_hugepages_attr.attr,
1731 &surplus_hugepages_attr.attr,
1732 NULL,
1733};
1734
1735static struct attribute_group per_node_hstate_attr_group = {
1736 .attrs = per_node_hstate_attrs,
1737};
1738
1739/*
10fbcf4c 1740 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1741 * Returns node id via non-NULL nidp.
1742 */
1743static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1744{
1745 int nid;
1746
1747 for (nid = 0; nid < nr_node_ids; nid++) {
1748 struct node_hstate *nhs = &node_hstates[nid];
1749 int i;
1750 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1751 if (nhs->hstate_kobjs[i] == kobj) {
1752 if (nidp)
1753 *nidp = nid;
1754 return &hstates[i];
1755 }
1756 }
1757
1758 BUG();
1759 return NULL;
1760}
1761
1762/*
10fbcf4c 1763 * Unregister hstate attributes from a single node device.
9a305230
LS
1764 * No-op if no hstate attributes attached.
1765 */
1766void hugetlb_unregister_node(struct node *node)
1767{
1768 struct hstate *h;
10fbcf4c 1769 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1770
1771 if (!nhs->hugepages_kobj)
9b5e5d0f 1772 return; /* no hstate attributes */
9a305230 1773
972dc4de
AK
1774 for_each_hstate(h) {
1775 int idx = hstate_index(h);
1776 if (nhs->hstate_kobjs[idx]) {
1777 kobject_put(nhs->hstate_kobjs[idx]);
1778 nhs->hstate_kobjs[idx] = NULL;
9a305230 1779 }
972dc4de 1780 }
9a305230
LS
1781
1782 kobject_put(nhs->hugepages_kobj);
1783 nhs->hugepages_kobj = NULL;
1784}
1785
1786/*
10fbcf4c 1787 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1788 * that have them.
1789 */
1790static void hugetlb_unregister_all_nodes(void)
1791{
1792 int nid;
1793
1794 /*
10fbcf4c 1795 * disable node device registrations.
9a305230
LS
1796 */
1797 register_hugetlbfs_with_node(NULL, NULL);
1798
1799 /*
1800 * remove hstate attributes from any nodes that have them.
1801 */
1802 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 1803 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
1804}
1805
1806/*
10fbcf4c 1807 * Register hstate attributes for a single node device.
9a305230
LS
1808 * No-op if attributes already registered.
1809 */
1810void hugetlb_register_node(struct node *node)
1811{
1812 struct hstate *h;
10fbcf4c 1813 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1814 int err;
1815
1816 if (nhs->hugepages_kobj)
1817 return; /* already allocated */
1818
1819 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1820 &node->dev.kobj);
9a305230
LS
1821 if (!nhs->hugepages_kobj)
1822 return;
1823
1824 for_each_hstate(h) {
1825 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1826 nhs->hstate_kobjs,
1827 &per_node_hstate_attr_group);
1828 if (err) {
1829 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1830 " for node %d\n",
10fbcf4c 1831 h->name, node->dev.id);
9a305230
LS
1832 hugetlb_unregister_node(node);
1833 break;
1834 }
1835 }
1836}
1837
1838/*
9b5e5d0f 1839 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1840 * devices of nodes that have memory. All on-line nodes should have
1841 * registered their associated device by this time.
9a305230
LS
1842 */
1843static void hugetlb_register_all_nodes(void)
1844{
1845 int nid;
1846
8cebfcd0 1847 for_each_node_state(nid, N_MEMORY) {
8732794b 1848 struct node *node = node_devices[nid];
10fbcf4c 1849 if (node->dev.id == nid)
9a305230
LS
1850 hugetlb_register_node(node);
1851 }
1852
1853 /*
10fbcf4c 1854 * Let the node device driver know we're here so it can
9a305230
LS
1855 * [un]register hstate attributes on node hotplug.
1856 */
1857 register_hugetlbfs_with_node(hugetlb_register_node,
1858 hugetlb_unregister_node);
1859}
1860#else /* !CONFIG_NUMA */
1861
1862static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1863{
1864 BUG();
1865 if (nidp)
1866 *nidp = -1;
1867 return NULL;
1868}
1869
1870static void hugetlb_unregister_all_nodes(void) { }
1871
1872static void hugetlb_register_all_nodes(void) { }
1873
1874#endif
1875
a3437870
NA
1876static void __exit hugetlb_exit(void)
1877{
1878 struct hstate *h;
1879
9a305230
LS
1880 hugetlb_unregister_all_nodes();
1881
a3437870 1882 for_each_hstate(h) {
972dc4de 1883 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1884 }
1885
1886 kobject_put(hugepages_kobj);
1887}
1888module_exit(hugetlb_exit);
1889
1890static int __init hugetlb_init(void)
1891{
0ef89d25
BH
1892 /* Some platform decide whether they support huge pages at boot
1893 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1894 * there is no such support
1895 */
1896 if (HPAGE_SHIFT == 0)
1897 return 0;
a3437870 1898
e11bfbfc
NP
1899 if (!size_to_hstate(default_hstate_size)) {
1900 default_hstate_size = HPAGE_SIZE;
1901 if (!size_to_hstate(default_hstate_size))
1902 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1903 }
972dc4de 1904 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1905 if (default_hstate_max_huge_pages)
1906 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1907
1908 hugetlb_init_hstates();
1909
aa888a74
AK
1910 gather_bootmem_prealloc();
1911
a3437870
NA
1912 report_hugepages();
1913
1914 hugetlb_sysfs_init();
1915
9a305230
LS
1916 hugetlb_register_all_nodes();
1917
a3437870
NA
1918 return 0;
1919}
1920module_init(hugetlb_init);
1921
1922/* Should be called on processing a hugepagesz=... option */
1923void __init hugetlb_add_hstate(unsigned order)
1924{
1925 struct hstate *h;
8faa8b07
AK
1926 unsigned long i;
1927
a3437870
NA
1928 if (size_to_hstate(PAGE_SIZE << order)) {
1929 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1930 return;
1931 }
47d38344 1932 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 1933 BUG_ON(order == 0);
47d38344 1934 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
1935 h->order = order;
1936 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1937 h->nr_huge_pages = 0;
1938 h->free_huge_pages = 0;
1939 for (i = 0; i < MAX_NUMNODES; ++i)
1940 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 1941 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
1942 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1943 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
1944 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1945 huge_page_size(h)/1024);
abb8206c
AK
1946 /*
1947 * Add cgroup control files only if the huge page consists
1948 * of more than two normal pages. This is because we use
1949 * page[2].lru.next for storing cgoup details.
1950 */
1951 if (order >= HUGETLB_CGROUP_MIN_ORDER)
1952 hugetlb_cgroup_file_init(hugetlb_max_hstate - 1);
8faa8b07 1953
a3437870
NA
1954 parsed_hstate = h;
1955}
1956
e11bfbfc 1957static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1958{
1959 unsigned long *mhp;
8faa8b07 1960 static unsigned long *last_mhp;
a3437870
NA
1961
1962 /*
47d38344 1963 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
1964 * so this hugepages= parameter goes to the "default hstate".
1965 */
47d38344 1966 if (!hugetlb_max_hstate)
a3437870
NA
1967 mhp = &default_hstate_max_huge_pages;
1968 else
1969 mhp = &parsed_hstate->max_huge_pages;
1970
8faa8b07
AK
1971 if (mhp == last_mhp) {
1972 printk(KERN_WARNING "hugepages= specified twice without "
1973 "interleaving hugepagesz=, ignoring\n");
1974 return 1;
1975 }
1976
a3437870
NA
1977 if (sscanf(s, "%lu", mhp) <= 0)
1978 *mhp = 0;
1979
8faa8b07
AK
1980 /*
1981 * Global state is always initialized later in hugetlb_init.
1982 * But we need to allocate >= MAX_ORDER hstates here early to still
1983 * use the bootmem allocator.
1984 */
47d38344 1985 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
1986 hugetlb_hstate_alloc_pages(parsed_hstate);
1987
1988 last_mhp = mhp;
1989
a3437870
NA
1990 return 1;
1991}
e11bfbfc
NP
1992__setup("hugepages=", hugetlb_nrpages_setup);
1993
1994static int __init hugetlb_default_setup(char *s)
1995{
1996 default_hstate_size = memparse(s, &s);
1997 return 1;
1998}
1999__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2000
8a213460
NA
2001static unsigned int cpuset_mems_nr(unsigned int *array)
2002{
2003 int node;
2004 unsigned int nr = 0;
2005
2006 for_each_node_mask(node, cpuset_current_mems_allowed)
2007 nr += array[node];
2008
2009 return nr;
2010}
2011
2012#ifdef CONFIG_SYSCTL
06808b08
LS
2013static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2014 struct ctl_table *table, int write,
2015 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2016{
e5ff2159
AK
2017 struct hstate *h = &default_hstate;
2018 unsigned long tmp;
08d4a246 2019 int ret;
e5ff2159 2020
c033a93c 2021 tmp = h->max_huge_pages;
e5ff2159 2022
adbe8726
EM
2023 if (write && h->order >= MAX_ORDER)
2024 return -EINVAL;
2025
e5ff2159
AK
2026 table->data = &tmp;
2027 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2028 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2029 if (ret)
2030 goto out;
e5ff2159 2031
06808b08 2032 if (write) {
bad44b5b
DR
2033 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2034 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2035 if (!(obey_mempolicy &&
2036 init_nodemask_of_mempolicy(nodes_allowed))) {
2037 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2038 nodes_allowed = &node_states[N_MEMORY];
06808b08
LS
2039 }
2040 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2041
8cebfcd0 2042 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2043 NODEMASK_FREE(nodes_allowed);
2044 }
08d4a246
MH
2045out:
2046 return ret;
1da177e4 2047}
396faf03 2048
06808b08
LS
2049int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2050 void __user *buffer, size_t *length, loff_t *ppos)
2051{
2052
2053 return hugetlb_sysctl_handler_common(false, table, write,
2054 buffer, length, ppos);
2055}
2056
2057#ifdef CONFIG_NUMA
2058int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2059 void __user *buffer, size_t *length, loff_t *ppos)
2060{
2061 return hugetlb_sysctl_handler_common(true, table, write,
2062 buffer, length, ppos);
2063}
2064#endif /* CONFIG_NUMA */
2065
396faf03 2066int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 2067 void __user *buffer,
396faf03
MG
2068 size_t *length, loff_t *ppos)
2069{
8d65af78 2070 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
2071 if (hugepages_treat_as_movable)
2072 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2073 else
2074 htlb_alloc_mask = GFP_HIGHUSER;
2075 return 0;
2076}
2077
a3d0c6aa 2078int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2079 void __user *buffer,
a3d0c6aa
NA
2080 size_t *length, loff_t *ppos)
2081{
a5516438 2082 struct hstate *h = &default_hstate;
e5ff2159 2083 unsigned long tmp;
08d4a246 2084 int ret;
e5ff2159 2085
c033a93c 2086 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2087
adbe8726
EM
2088 if (write && h->order >= MAX_ORDER)
2089 return -EINVAL;
2090
e5ff2159
AK
2091 table->data = &tmp;
2092 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2093 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2094 if (ret)
2095 goto out;
e5ff2159
AK
2096
2097 if (write) {
2098 spin_lock(&hugetlb_lock);
2099 h->nr_overcommit_huge_pages = tmp;
2100 spin_unlock(&hugetlb_lock);
2101 }
08d4a246
MH
2102out:
2103 return ret;
a3d0c6aa
NA
2104}
2105
1da177e4
LT
2106#endif /* CONFIG_SYSCTL */
2107
e1759c21 2108void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2109{
a5516438 2110 struct hstate *h = &default_hstate;
e1759c21 2111 seq_printf(m,
4f98a2fe
RR
2112 "HugePages_Total: %5lu\n"
2113 "HugePages_Free: %5lu\n"
2114 "HugePages_Rsvd: %5lu\n"
2115 "HugePages_Surp: %5lu\n"
2116 "Hugepagesize: %8lu kB\n",
a5516438
AK
2117 h->nr_huge_pages,
2118 h->free_huge_pages,
2119 h->resv_huge_pages,
2120 h->surplus_huge_pages,
2121 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2122}
2123
2124int hugetlb_report_node_meminfo(int nid, char *buf)
2125{
a5516438 2126 struct hstate *h = &default_hstate;
1da177e4
LT
2127 return sprintf(buf,
2128 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2129 "Node %d HugePages_Free: %5u\n"
2130 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2131 nid, h->nr_huge_pages_node[nid],
2132 nid, h->free_huge_pages_node[nid],
2133 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2134}
2135
1da177e4
LT
2136/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2137unsigned long hugetlb_total_pages(void)
2138{
a5516438
AK
2139 struct hstate *h = &default_hstate;
2140 return h->nr_huge_pages * pages_per_huge_page(h);
1da177e4 2141}
1da177e4 2142
a5516438 2143static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2144{
2145 int ret = -ENOMEM;
2146
2147 spin_lock(&hugetlb_lock);
2148 /*
2149 * When cpuset is configured, it breaks the strict hugetlb page
2150 * reservation as the accounting is done on a global variable. Such
2151 * reservation is completely rubbish in the presence of cpuset because
2152 * the reservation is not checked against page availability for the
2153 * current cpuset. Application can still potentially OOM'ed by kernel
2154 * with lack of free htlb page in cpuset that the task is in.
2155 * Attempt to enforce strict accounting with cpuset is almost
2156 * impossible (or too ugly) because cpuset is too fluid that
2157 * task or memory node can be dynamically moved between cpusets.
2158 *
2159 * The change of semantics for shared hugetlb mapping with cpuset is
2160 * undesirable. However, in order to preserve some of the semantics,
2161 * we fall back to check against current free page availability as
2162 * a best attempt and hopefully to minimize the impact of changing
2163 * semantics that cpuset has.
2164 */
2165 if (delta > 0) {
a5516438 2166 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2167 goto out;
2168
a5516438
AK
2169 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2170 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2171 goto out;
2172 }
2173 }
2174
2175 ret = 0;
2176 if (delta < 0)
a5516438 2177 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2178
2179out:
2180 spin_unlock(&hugetlb_lock);
2181 return ret;
2182}
2183
84afd99b
AW
2184static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2185{
2186 struct resv_map *reservations = vma_resv_map(vma);
2187
2188 /*
2189 * This new VMA should share its siblings reservation map if present.
2190 * The VMA will only ever have a valid reservation map pointer where
2191 * it is being copied for another still existing VMA. As that VMA
25985edc 2192 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2193 * after this open call completes. It is therefore safe to take a
2194 * new reference here without additional locking.
2195 */
2196 if (reservations)
2197 kref_get(&reservations->refs);
2198}
2199
c50ac050
DH
2200static void resv_map_put(struct vm_area_struct *vma)
2201{
2202 struct resv_map *reservations = vma_resv_map(vma);
2203
2204 if (!reservations)
2205 return;
2206 kref_put(&reservations->refs, resv_map_release);
2207}
2208
a1e78772
MG
2209static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2210{
a5516438 2211 struct hstate *h = hstate_vma(vma);
84afd99b 2212 struct resv_map *reservations = vma_resv_map(vma);
90481622 2213 struct hugepage_subpool *spool = subpool_vma(vma);
84afd99b
AW
2214 unsigned long reserve;
2215 unsigned long start;
2216 unsigned long end;
2217
2218 if (reservations) {
a5516438
AK
2219 start = vma_hugecache_offset(h, vma, vma->vm_start);
2220 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2221
2222 reserve = (end - start) -
2223 region_count(&reservations->regions, start, end);
2224
c50ac050 2225 resv_map_put(vma);
84afd99b 2226
7251ff78 2227 if (reserve) {
a5516438 2228 hugetlb_acct_memory(h, -reserve);
90481622 2229 hugepage_subpool_put_pages(spool, reserve);
7251ff78 2230 }
84afd99b 2231 }
a1e78772
MG
2232}
2233
1da177e4
LT
2234/*
2235 * We cannot handle pagefaults against hugetlb pages at all. They cause
2236 * handle_mm_fault() to try to instantiate regular-sized pages in the
2237 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2238 * this far.
2239 */
d0217ac0 2240static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2241{
2242 BUG();
d0217ac0 2243 return 0;
1da177e4
LT
2244}
2245
f0f37e2f 2246const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2247 .fault = hugetlb_vm_op_fault,
84afd99b 2248 .open = hugetlb_vm_op_open,
a1e78772 2249 .close = hugetlb_vm_op_close,
1da177e4
LT
2250};
2251
1e8f889b
DG
2252static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2253 int writable)
63551ae0
DG
2254{
2255 pte_t entry;
2256
1e8f889b 2257 if (writable) {
63551ae0
DG
2258 entry =
2259 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2260 } else {
7f2e9525 2261 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
63551ae0
DG
2262 }
2263 entry = pte_mkyoung(entry);
2264 entry = pte_mkhuge(entry);
d9ed9faa 2265 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2266
2267 return entry;
2268}
2269
1e8f889b
DG
2270static void set_huge_ptep_writable(struct vm_area_struct *vma,
2271 unsigned long address, pte_t *ptep)
2272{
2273 pte_t entry;
2274
7f2e9525 2275 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2276 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2277 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2278}
2279
2280
63551ae0
DG
2281int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2282 struct vm_area_struct *vma)
2283{
2284 pte_t *src_pte, *dst_pte, entry;
2285 struct page *ptepage;
1c59827d 2286 unsigned long addr;
1e8f889b 2287 int cow;
a5516438
AK
2288 struct hstate *h = hstate_vma(vma);
2289 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2290
2291 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2292
a5516438 2293 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2294 src_pte = huge_pte_offset(src, addr);
2295 if (!src_pte)
2296 continue;
a5516438 2297 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2298 if (!dst_pte)
2299 goto nomem;
c5c99429
LW
2300
2301 /* If the pagetables are shared don't copy or take references */
2302 if (dst_pte == src_pte)
2303 continue;
2304
c74df32c 2305 spin_lock(&dst->page_table_lock);
46478758 2306 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 2307 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2308 if (cow)
7f2e9525
GS
2309 huge_ptep_set_wrprotect(src, addr, src_pte);
2310 entry = huge_ptep_get(src_pte);
1c59827d
HD
2311 ptepage = pte_page(entry);
2312 get_page(ptepage);
0fe6e20b 2313 page_dup_rmap(ptepage);
1c59827d
HD
2314 set_huge_pte_at(dst, addr, dst_pte, entry);
2315 }
2316 spin_unlock(&src->page_table_lock);
c74df32c 2317 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2318 }
2319 return 0;
2320
2321nomem:
2322 return -ENOMEM;
2323}
2324
290408d4
NH
2325static int is_hugetlb_entry_migration(pte_t pte)
2326{
2327 swp_entry_t swp;
2328
2329 if (huge_pte_none(pte) || pte_present(pte))
2330 return 0;
2331 swp = pte_to_swp_entry(pte);
32f84528 2332 if (non_swap_entry(swp) && is_migration_entry(swp))
290408d4 2333 return 1;
32f84528 2334 else
290408d4
NH
2335 return 0;
2336}
2337
fd6a03ed
NH
2338static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2339{
2340 swp_entry_t swp;
2341
2342 if (huge_pte_none(pte) || pte_present(pte))
2343 return 0;
2344 swp = pte_to_swp_entry(pte);
32f84528 2345 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
fd6a03ed 2346 return 1;
32f84528 2347 else
fd6a03ed
NH
2348 return 0;
2349}
2350
24669e58
AK
2351void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2352 unsigned long start, unsigned long end,
2353 struct page *ref_page)
63551ae0 2354{
24669e58 2355 int force_flush = 0;
63551ae0
DG
2356 struct mm_struct *mm = vma->vm_mm;
2357 unsigned long address;
c7546f8f 2358 pte_t *ptep;
63551ae0
DG
2359 pte_t pte;
2360 struct page *page;
a5516438
AK
2361 struct hstate *h = hstate_vma(vma);
2362 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2363 const unsigned long mmun_start = start; /* For mmu_notifiers */
2364 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2365
63551ae0 2366 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2367 BUG_ON(start & ~huge_page_mask(h));
2368 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2369
24669e58 2370 tlb_start_vma(tlb, vma);
2ec74c3e 2371 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
24669e58 2372again:
508034a3 2373 spin_lock(&mm->page_table_lock);
a5516438 2374 for (address = start; address < end; address += sz) {
c7546f8f 2375 ptep = huge_pte_offset(mm, address);
4c887265 2376 if (!ptep)
c7546f8f
DG
2377 continue;
2378
39dde65c
KC
2379 if (huge_pmd_unshare(mm, &address, ptep))
2380 continue;
2381
6629326b
HD
2382 pte = huge_ptep_get(ptep);
2383 if (huge_pte_none(pte))
2384 continue;
2385
2386 /*
2387 * HWPoisoned hugepage is already unmapped and dropped reference
2388 */
8c4894c6
NH
2389 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2390 pte_clear(mm, address, ptep);
6629326b 2391 continue;
8c4894c6 2392 }
6629326b
HD
2393
2394 page = pte_page(pte);
04f2cbe3
MG
2395 /*
2396 * If a reference page is supplied, it is because a specific
2397 * page is being unmapped, not a range. Ensure the page we
2398 * are about to unmap is the actual page of interest.
2399 */
2400 if (ref_page) {
04f2cbe3
MG
2401 if (page != ref_page)
2402 continue;
2403
2404 /*
2405 * Mark the VMA as having unmapped its page so that
2406 * future faults in this VMA will fail rather than
2407 * looking like data was lost
2408 */
2409 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2410 }
2411
c7546f8f 2412 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2413 tlb_remove_tlb_entry(tlb, ptep, address);
6649a386
KC
2414 if (pte_dirty(pte))
2415 set_page_dirty(page);
9e81130b 2416
24669e58
AK
2417 page_remove_rmap(page);
2418 force_flush = !__tlb_remove_page(tlb, page);
2419 if (force_flush)
2420 break;
9e81130b
HD
2421 /* Bail out after unmapping reference page if supplied */
2422 if (ref_page)
2423 break;
63551ae0 2424 }
cd2934a3 2425 spin_unlock(&mm->page_table_lock);
24669e58
AK
2426 /*
2427 * mmu_gather ran out of room to batch pages, we break out of
2428 * the PTE lock to avoid doing the potential expensive TLB invalidate
2429 * and page-free while holding it.
2430 */
2431 if (force_flush) {
2432 force_flush = 0;
2433 tlb_flush_mmu(tlb);
2434 if (address < end && !ref_page)
2435 goto again;
fe1668ae 2436 }
2ec74c3e 2437 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2438 tlb_end_vma(tlb, vma);
1da177e4 2439}
63551ae0 2440
d833352a
MG
2441void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2442 struct vm_area_struct *vma, unsigned long start,
2443 unsigned long end, struct page *ref_page)
2444{
2445 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2446
2447 /*
2448 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2449 * test will fail on a vma being torn down, and not grab a page table
2450 * on its way out. We're lucky that the flag has such an appropriate
2451 * name, and can in fact be safely cleared here. We could clear it
2452 * before the __unmap_hugepage_range above, but all that's necessary
2453 * is to clear it before releasing the i_mmap_mutex. This works
2454 * because in the context this is called, the VMA is about to be
2455 * destroyed and the i_mmap_mutex is held.
2456 */
2457 vma->vm_flags &= ~VM_MAYSHARE;
2458}
2459
502717f4 2460void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2461 unsigned long end, struct page *ref_page)
502717f4 2462{
24669e58
AK
2463 struct mm_struct *mm;
2464 struct mmu_gather tlb;
2465
2466 mm = vma->vm_mm;
2467
2468 tlb_gather_mmu(&tlb, mm, 0);
2469 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2470 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
2471}
2472
04f2cbe3
MG
2473/*
2474 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2475 * mappping it owns the reserve page for. The intention is to unmap the page
2476 * from other VMAs and let the children be SIGKILLed if they are faulting the
2477 * same region.
2478 */
2a4b3ded
HH
2479static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2480 struct page *page, unsigned long address)
04f2cbe3 2481{
7526674d 2482 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2483 struct vm_area_struct *iter_vma;
2484 struct address_space *mapping;
04f2cbe3
MG
2485 pgoff_t pgoff;
2486
2487 /*
2488 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2489 * from page cache lookup which is in HPAGE_SIZE units.
2490 */
7526674d 2491 address = address & huge_page_mask(h);
36e4f20a
MH
2492 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2493 vma->vm_pgoff;
90481622 2494 mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
04f2cbe3 2495
4eb2b1dc
MG
2496 /*
2497 * Take the mapping lock for the duration of the table walk. As
2498 * this mapping should be shared between all the VMAs,
2499 * __unmap_hugepage_range() is called as the lock is already held
2500 */
3d48ae45 2501 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2502 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2503 /* Do not unmap the current VMA */
2504 if (iter_vma == vma)
2505 continue;
2506
2507 /*
2508 * Unmap the page from other VMAs without their own reserves.
2509 * They get marked to be SIGKILLed if they fault in these
2510 * areas. This is because a future no-page fault on this VMA
2511 * could insert a zeroed page instead of the data existing
2512 * from the time of fork. This would look like data corruption
2513 */
2514 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2515 unmap_hugepage_range(iter_vma, address,
2516 address + huge_page_size(h), page);
04f2cbe3 2517 }
3d48ae45 2518 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2519
2520 return 1;
2521}
2522
0fe6e20b
NH
2523/*
2524 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2525 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2526 * cannot race with other handlers or page migration.
2527 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2528 */
1e8f889b 2529static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2530 unsigned long address, pte_t *ptep, pte_t pte,
2531 struct page *pagecache_page)
1e8f889b 2532{
a5516438 2533 struct hstate *h = hstate_vma(vma);
1e8f889b 2534 struct page *old_page, *new_page;
79ac6ba4 2535 int avoidcopy;
04f2cbe3 2536 int outside_reserve = 0;
2ec74c3e
SG
2537 unsigned long mmun_start; /* For mmu_notifiers */
2538 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2539
2540 old_page = pte_page(pte);
2541
04f2cbe3 2542retry_avoidcopy:
1e8f889b
DG
2543 /* If no-one else is actually using this page, avoid the copy
2544 * and just make the page writable */
0fe6e20b 2545 avoidcopy = (page_mapcount(old_page) == 1);
1e8f889b 2546 if (avoidcopy) {
56c9cfb1
NH
2547 if (PageAnon(old_page))
2548 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2549 set_huge_ptep_writable(vma, address, ptep);
83c54070 2550 return 0;
1e8f889b
DG
2551 }
2552
04f2cbe3
MG
2553 /*
2554 * If the process that created a MAP_PRIVATE mapping is about to
2555 * perform a COW due to a shared page count, attempt to satisfy
2556 * the allocation without using the existing reserves. The pagecache
2557 * page is used to determine if the reserve at this address was
2558 * consumed or not. If reserves were used, a partial faulted mapping
2559 * at the time of fork() could consume its reserves on COW instead
2560 * of the full address range.
2561 */
f83a275d 2562 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
2563 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2564 old_page != pagecache_page)
2565 outside_reserve = 1;
2566
1e8f889b 2567 page_cache_get(old_page);
b76c8cfb
LW
2568
2569 /* Drop page_table_lock as buddy allocator may be called */
2570 spin_unlock(&mm->page_table_lock);
04f2cbe3 2571 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2572
2fc39cec 2573 if (IS_ERR(new_page)) {
76dcee75 2574 long err = PTR_ERR(new_page);
1e8f889b 2575 page_cache_release(old_page);
04f2cbe3
MG
2576
2577 /*
2578 * If a process owning a MAP_PRIVATE mapping fails to COW,
2579 * it is due to references held by a child and an insufficient
2580 * huge page pool. To guarantee the original mappers
2581 * reliability, unmap the page from child processes. The child
2582 * may get SIGKILLed if it later faults.
2583 */
2584 if (outside_reserve) {
2585 BUG_ON(huge_pte_none(pte));
2586 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2587 BUG_ON(huge_pte_none(pte));
b76c8cfb 2588 spin_lock(&mm->page_table_lock);
a734bcc8
HD
2589 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2590 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2591 goto retry_avoidcopy;
2592 /*
2593 * race occurs while re-acquiring page_table_lock, and
2594 * our job is done.
2595 */
2596 return 0;
04f2cbe3
MG
2597 }
2598 WARN_ON_ONCE(1);
2599 }
2600
b76c8cfb
LW
2601 /* Caller expects lock to be held */
2602 spin_lock(&mm->page_table_lock);
76dcee75
AK
2603 if (err == -ENOMEM)
2604 return VM_FAULT_OOM;
2605 else
2606 return VM_FAULT_SIGBUS;
1e8f889b
DG
2607 }
2608
0fe6e20b
NH
2609 /*
2610 * When the original hugepage is shared one, it does not have
2611 * anon_vma prepared.
2612 */
44e2aa93 2613 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2614 page_cache_release(new_page);
2615 page_cache_release(old_page);
44e2aa93
DN
2616 /* Caller expects lock to be held */
2617 spin_lock(&mm->page_table_lock);
0fe6e20b 2618 return VM_FAULT_OOM;
44e2aa93 2619 }
0fe6e20b 2620
47ad8475
AA
2621 copy_user_huge_page(new_page, old_page, address, vma,
2622 pages_per_huge_page(h));
0ed361de 2623 __SetPageUptodate(new_page);
1e8f889b 2624
2ec74c3e
SG
2625 mmun_start = address & huge_page_mask(h);
2626 mmun_end = mmun_start + huge_page_size(h);
2627 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
b76c8cfb
LW
2628 /*
2629 * Retake the page_table_lock to check for racing updates
2630 * before the page tables are altered
2631 */
2632 spin_lock(&mm->page_table_lock);
a5516438 2633 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2634 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2635 /* Break COW */
8fe627ec 2636 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2637 set_huge_pte_at(mm, address, ptep,
2638 make_huge_pte(vma, new_page, 1));
0fe6e20b 2639 page_remove_rmap(old_page);
cd67f0d2 2640 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2641 /* Make the old page be freed below */
2642 new_page = old_page;
2643 }
2ec74c3e
SG
2644 spin_unlock(&mm->page_table_lock);
2645 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2646 /* Caller expects lock to be held */
2647 spin_lock(&mm->page_table_lock);
1e8f889b
DG
2648 page_cache_release(new_page);
2649 page_cache_release(old_page);
83c54070 2650 return 0;
1e8f889b
DG
2651}
2652
04f2cbe3 2653/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2654static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2655 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2656{
2657 struct address_space *mapping;
e7c4b0bf 2658 pgoff_t idx;
04f2cbe3
MG
2659
2660 mapping = vma->vm_file->f_mapping;
a5516438 2661 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2662
2663 return find_lock_page(mapping, idx);
2664}
2665
3ae77f43
HD
2666/*
2667 * Return whether there is a pagecache page to back given address within VMA.
2668 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2669 */
2670static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2671 struct vm_area_struct *vma, unsigned long address)
2672{
2673 struct address_space *mapping;
2674 pgoff_t idx;
2675 struct page *page;
2676
2677 mapping = vma->vm_file->f_mapping;
2678 idx = vma_hugecache_offset(h, vma, address);
2679
2680 page = find_get_page(mapping, idx);
2681 if (page)
2682 put_page(page);
2683 return page != NULL;
2684}
2685
a1ed3dda 2686static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2687 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2688{
a5516438 2689 struct hstate *h = hstate_vma(vma);
ac9b9c66 2690 int ret = VM_FAULT_SIGBUS;
409eb8c2 2691 int anon_rmap = 0;
e7c4b0bf 2692 pgoff_t idx;
4c887265 2693 unsigned long size;
4c887265
AL
2694 struct page *page;
2695 struct address_space *mapping;
1e8f889b 2696 pte_t new_pte;
4c887265 2697
04f2cbe3
MG
2698 /*
2699 * Currently, we are forced to kill the process in the event the
2700 * original mapper has unmapped pages from the child due to a failed
25985edc 2701 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2702 */
2703 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2704 printk(KERN_WARNING
2705 "PID %d killed due to inadequate hugepage pool\n",
2706 current->pid);
2707 return ret;
2708 }
2709
4c887265 2710 mapping = vma->vm_file->f_mapping;
a5516438 2711 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2712
2713 /*
2714 * Use page lock to guard against racing truncation
2715 * before we get page_table_lock.
2716 */
6bda666a
CL
2717retry:
2718 page = find_lock_page(mapping, idx);
2719 if (!page) {
a5516438 2720 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2721 if (idx >= size)
2722 goto out;
04f2cbe3 2723 page = alloc_huge_page(vma, address, 0);
2fc39cec 2724 if (IS_ERR(page)) {
76dcee75
AK
2725 ret = PTR_ERR(page);
2726 if (ret == -ENOMEM)
2727 ret = VM_FAULT_OOM;
2728 else
2729 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2730 goto out;
2731 }
47ad8475 2732 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2733 __SetPageUptodate(page);
ac9b9c66 2734
f83a275d 2735 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2736 int err;
45c682a6 2737 struct inode *inode = mapping->host;
6bda666a
CL
2738
2739 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2740 if (err) {
2741 put_page(page);
6bda666a
CL
2742 if (err == -EEXIST)
2743 goto retry;
2744 goto out;
2745 }
45c682a6
KC
2746
2747 spin_lock(&inode->i_lock);
a5516438 2748 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2749 spin_unlock(&inode->i_lock);
23be7468 2750 } else {
6bda666a 2751 lock_page(page);
0fe6e20b
NH
2752 if (unlikely(anon_vma_prepare(vma))) {
2753 ret = VM_FAULT_OOM;
2754 goto backout_unlocked;
2755 }
409eb8c2 2756 anon_rmap = 1;
23be7468 2757 }
0fe6e20b 2758 } else {
998b4382
NH
2759 /*
2760 * If memory error occurs between mmap() and fault, some process
2761 * don't have hwpoisoned swap entry for errored virtual address.
2762 * So we need to block hugepage fault by PG_hwpoison bit check.
2763 */
2764 if (unlikely(PageHWPoison(page))) {
32f84528 2765 ret = VM_FAULT_HWPOISON |
972dc4de 2766 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2767 goto backout_unlocked;
2768 }
6bda666a 2769 }
1e8f889b 2770
57303d80
AW
2771 /*
2772 * If we are going to COW a private mapping later, we examine the
2773 * pending reservations for this page now. This will ensure that
2774 * any allocations necessary to record that reservation occur outside
2775 * the spinlock.
2776 */
788c7df4 2777 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2778 if (vma_needs_reservation(h, vma, address) < 0) {
2779 ret = VM_FAULT_OOM;
2780 goto backout_unlocked;
2781 }
57303d80 2782
ac9b9c66 2783 spin_lock(&mm->page_table_lock);
a5516438 2784 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2785 if (idx >= size)
2786 goto backout;
2787
83c54070 2788 ret = 0;
7f2e9525 2789 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2790 goto backout;
2791
409eb8c2
HD
2792 if (anon_rmap)
2793 hugepage_add_new_anon_rmap(page, vma, address);
2794 else
2795 page_dup_rmap(page);
1e8f889b
DG
2796 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2797 && (vma->vm_flags & VM_SHARED)));
2798 set_huge_pte_at(mm, address, ptep, new_pte);
2799
788c7df4 2800 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2801 /* Optimization, do the COW without a second fault */
04f2cbe3 2802 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2803 }
2804
ac9b9c66 2805 spin_unlock(&mm->page_table_lock);
4c887265
AL
2806 unlock_page(page);
2807out:
ac9b9c66 2808 return ret;
4c887265
AL
2809
2810backout:
2811 spin_unlock(&mm->page_table_lock);
2b26736c 2812backout_unlocked:
4c887265
AL
2813 unlock_page(page);
2814 put_page(page);
2815 goto out;
ac9b9c66
HD
2816}
2817
86e5216f 2818int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2819 unsigned long address, unsigned int flags)
86e5216f
AL
2820{
2821 pte_t *ptep;
2822 pte_t entry;
1e8f889b 2823 int ret;
0fe6e20b 2824 struct page *page = NULL;
57303d80 2825 struct page *pagecache_page = NULL;
3935baa9 2826 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2827 struct hstate *h = hstate_vma(vma);
86e5216f 2828
1e16a539
KH
2829 address &= huge_page_mask(h);
2830
fd6a03ed
NH
2831 ptep = huge_pte_offset(mm, address);
2832 if (ptep) {
2833 entry = huge_ptep_get(ptep);
290408d4
NH
2834 if (unlikely(is_hugetlb_entry_migration(entry))) {
2835 migration_entry_wait(mm, (pmd_t *)ptep, address);
2836 return 0;
2837 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2838 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2839 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2840 }
2841
a5516438 2842 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2843 if (!ptep)
2844 return VM_FAULT_OOM;
2845
3935baa9
DG
2846 /*
2847 * Serialize hugepage allocation and instantiation, so that we don't
2848 * get spurious allocation failures if two CPUs race to instantiate
2849 * the same page in the page cache.
2850 */
2851 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2852 entry = huge_ptep_get(ptep);
2853 if (huge_pte_none(entry)) {
788c7df4 2854 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2855 goto out_mutex;
3935baa9 2856 }
86e5216f 2857
83c54070 2858 ret = 0;
1e8f889b 2859
57303d80
AW
2860 /*
2861 * If we are going to COW the mapping later, we examine the pending
2862 * reservations for this page now. This will ensure that any
2863 * allocations necessary to record that reservation occur outside the
2864 * spinlock. For private mappings, we also lookup the pagecache
2865 * page now as it is used to determine if a reservation has been
2866 * consumed.
2867 */
788c7df4 2868 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2b26736c
AW
2869 if (vma_needs_reservation(h, vma, address) < 0) {
2870 ret = VM_FAULT_OOM;
b4d1d99f 2871 goto out_mutex;
2b26736c 2872 }
57303d80 2873
f83a275d 2874 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2875 pagecache_page = hugetlbfs_pagecache_page(h,
2876 vma, address);
2877 }
2878
56c9cfb1
NH
2879 /*
2880 * hugetlb_cow() requires page locks of pte_page(entry) and
2881 * pagecache_page, so here we need take the former one
2882 * when page != pagecache_page or !pagecache_page.
2883 * Note that locking order is always pagecache_page -> page,
2884 * so no worry about deadlock.
2885 */
2886 page = pte_page(entry);
66aebce7 2887 get_page(page);
56c9cfb1 2888 if (page != pagecache_page)
0fe6e20b 2889 lock_page(page);
0fe6e20b 2890
1e8f889b
DG
2891 spin_lock(&mm->page_table_lock);
2892 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2893 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2894 goto out_page_table_lock;
2895
2896
788c7df4 2897 if (flags & FAULT_FLAG_WRITE) {
b4d1d99f 2898 if (!pte_write(entry)) {
57303d80
AW
2899 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2900 pagecache_page);
b4d1d99f
DG
2901 goto out_page_table_lock;
2902 }
2903 entry = pte_mkdirty(entry);
2904 }
2905 entry = pte_mkyoung(entry);
788c7df4
HD
2906 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2907 flags & FAULT_FLAG_WRITE))
4b3073e1 2908 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
2909
2910out_page_table_lock:
1e8f889b 2911 spin_unlock(&mm->page_table_lock);
57303d80
AW
2912
2913 if (pagecache_page) {
2914 unlock_page(pagecache_page);
2915 put_page(pagecache_page);
2916 }
1f64d69c
DN
2917 if (page != pagecache_page)
2918 unlock_page(page);
66aebce7 2919 put_page(page);
57303d80 2920
b4d1d99f 2921out_mutex:
3935baa9 2922 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2923
2924 return ret;
86e5216f
AL
2925}
2926
ceb86879
AK
2927/* Can be overriden by architectures */
2928__attribute__((weak)) struct page *
2929follow_huge_pud(struct mm_struct *mm, unsigned long address,
2930 pud_t *pud, int write)
2931{
2932 BUG();
2933 return NULL;
2934}
2935
63551ae0
DG
2936int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2937 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8 2938 unsigned long *position, int *length, int i,
2a15efc9 2939 unsigned int flags)
63551ae0 2940{
d5d4b0aa
KC
2941 unsigned long pfn_offset;
2942 unsigned long vaddr = *position;
63551ae0 2943 int remainder = *length;
a5516438 2944 struct hstate *h = hstate_vma(vma);
63551ae0 2945
1c59827d 2946 spin_lock(&mm->page_table_lock);
63551ae0 2947 while (vaddr < vma->vm_end && remainder) {
4c887265 2948 pte_t *pte;
2a15efc9 2949 int absent;
4c887265 2950 struct page *page;
63551ae0 2951
4c887265
AL
2952 /*
2953 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2954 * each hugepage. We have to make sure we get the
4c887265
AL
2955 * first, for the page indexing below to work.
2956 */
a5516438 2957 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2958 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2959
2960 /*
2961 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2962 * an error where there's an empty slot with no huge pagecache
2963 * to back it. This way, we avoid allocating a hugepage, and
2964 * the sparse dumpfile avoids allocating disk blocks, but its
2965 * huge holes still show up with zeroes where they need to be.
2a15efc9 2966 */
3ae77f43
HD
2967 if (absent && (flags & FOLL_DUMP) &&
2968 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2969 remainder = 0;
2970 break;
2971 }
63551ae0 2972
2a15efc9
HD
2973 if (absent ||
2974 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
4c887265 2975 int ret;
63551ae0 2976
4c887265 2977 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
2978 ret = hugetlb_fault(mm, vma, vaddr,
2979 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 2980 spin_lock(&mm->page_table_lock);
a89182c7 2981 if (!(ret & VM_FAULT_ERROR))
4c887265 2982 continue;
63551ae0 2983
4c887265 2984 remainder = 0;
4c887265
AL
2985 break;
2986 }
2987
a5516438 2988 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2989 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2990same_page:
d6692183 2991 if (pages) {
2a15efc9 2992 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2993 get_page(pages[i]);
d6692183 2994 }
63551ae0
DG
2995
2996 if (vmas)
2997 vmas[i] = vma;
2998
2999 vaddr += PAGE_SIZE;
d5d4b0aa 3000 ++pfn_offset;
63551ae0
DG
3001 --remainder;
3002 ++i;
d5d4b0aa 3003 if (vaddr < vma->vm_end && remainder &&
a5516438 3004 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
3005 /*
3006 * We use pfn_offset to avoid touching the pageframes
3007 * of this compound page.
3008 */
3009 goto same_page;
3010 }
63551ae0 3011 }
1c59827d 3012 spin_unlock(&mm->page_table_lock);
63551ae0
DG
3013 *length = remainder;
3014 *position = vaddr;
3015
2a15efc9 3016 return i ? i : -EFAULT;
63551ae0 3017}
8f860591
ZY
3018
3019void hugetlb_change_protection(struct vm_area_struct *vma,
3020 unsigned long address, unsigned long end, pgprot_t newprot)
3021{
3022 struct mm_struct *mm = vma->vm_mm;
3023 unsigned long start = address;
3024 pte_t *ptep;
3025 pte_t pte;
a5516438 3026 struct hstate *h = hstate_vma(vma);
8f860591
ZY
3027
3028 BUG_ON(address >= end);
3029 flush_cache_range(vma, address, end);
3030
3d48ae45 3031 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591 3032 spin_lock(&mm->page_table_lock);
a5516438 3033 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
3034 ptep = huge_pte_offset(mm, address);
3035 if (!ptep)
3036 continue;
39dde65c
KC
3037 if (huge_pmd_unshare(mm, &address, ptep))
3038 continue;
7f2e9525 3039 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591
ZY
3040 pte = huge_ptep_get_and_clear(mm, address, ptep);
3041 pte = pte_mkhuge(pte_modify(pte, newprot));
3042 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
3043 }
3044 }
3045 spin_unlock(&mm->page_table_lock);
d833352a
MG
3046 /*
3047 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3048 * may have cleared our pud entry and done put_page on the page table:
3049 * once we release i_mmap_mutex, another task can do the final put_page
3050 * and that page table be reused and filled with junk.
3051 */
8f860591 3052 flush_tlb_range(vma, start, end);
d833352a 3053 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591
ZY
3054}
3055
a1e78772
MG
3056int hugetlb_reserve_pages(struct inode *inode,
3057 long from, long to,
5a6fe125 3058 struct vm_area_struct *vma,
ca16d140 3059 vm_flags_t vm_flags)
e4e574b7 3060{
17c9d12e 3061 long ret, chg;
a5516438 3062 struct hstate *h = hstate_inode(inode);
90481622 3063 struct hugepage_subpool *spool = subpool_inode(inode);
e4e574b7 3064
17c9d12e
MG
3065 /*
3066 * Only apply hugepage reservation if asked. At fault time, an
3067 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3068 * without using reserves
17c9d12e 3069 */
ca16d140 3070 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3071 return 0;
3072
a1e78772
MG
3073 /*
3074 * Shared mappings base their reservation on the number of pages that
3075 * are already allocated on behalf of the file. Private mappings need
3076 * to reserve the full area even if read-only as mprotect() may be
3077 * called to make the mapping read-write. Assume !vma is a shm mapping
3078 */
f83a275d 3079 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3080 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
3081 else {
3082 struct resv_map *resv_map = resv_map_alloc();
3083 if (!resv_map)
3084 return -ENOMEM;
3085
a1e78772 3086 chg = to - from;
84afd99b 3087
17c9d12e
MG
3088 set_vma_resv_map(vma, resv_map);
3089 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3090 }
3091
c50ac050
DH
3092 if (chg < 0) {
3093 ret = chg;
3094 goto out_err;
3095 }
8a630112 3096
90481622 3097 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3098 if (hugepage_subpool_get_pages(spool, chg)) {
3099 ret = -ENOSPC;
3100 goto out_err;
3101 }
5a6fe125
MG
3102
3103 /*
17c9d12e 3104 * Check enough hugepages are available for the reservation.
90481622 3105 * Hand the pages back to the subpool if there are not
5a6fe125 3106 */
a5516438 3107 ret = hugetlb_acct_memory(h, chg);
68842c9b 3108 if (ret < 0) {
90481622 3109 hugepage_subpool_put_pages(spool, chg);
c50ac050 3110 goto out_err;
68842c9b 3111 }
17c9d12e
MG
3112
3113 /*
3114 * Account for the reservations made. Shared mappings record regions
3115 * that have reservations as they are shared by multiple VMAs.
3116 * When the last VMA disappears, the region map says how much
3117 * the reservation was and the page cache tells how much of
3118 * the reservation was consumed. Private mappings are per-VMA and
3119 * only the consumed reservations are tracked. When the VMA
3120 * disappears, the original reservation is the VMA size and the
3121 * consumed reservations are stored in the map. Hence, nothing
3122 * else has to be done for private mappings here
3123 */
f83a275d 3124 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3125 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39 3126 return 0;
c50ac050 3127out_err:
4523e145
DH
3128 if (vma)
3129 resv_map_put(vma);
c50ac050 3130 return ret;
a43a8c39
KC
3131}
3132
3133void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3134{
a5516438 3135 struct hstate *h = hstate_inode(inode);
a43a8c39 3136 long chg = region_truncate(&inode->i_mapping->private_list, offset);
90481622 3137 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6
KC
3138
3139 spin_lock(&inode->i_lock);
e4c6f8be 3140 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3141 spin_unlock(&inode->i_lock);
3142
90481622 3143 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3144 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3145}
93f70f90 3146
d5bd9106
AK
3147#ifdef CONFIG_MEMORY_FAILURE
3148
6de2b1aa
NH
3149/* Should be called in hugetlb_lock */
3150static int is_hugepage_on_freelist(struct page *hpage)
3151{
3152 struct page *page;
3153 struct page *tmp;
3154 struct hstate *h = page_hstate(hpage);
3155 int nid = page_to_nid(hpage);
3156
3157 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3158 if (page == hpage)
3159 return 1;
3160 return 0;
3161}
3162
93f70f90
NH
3163/*
3164 * This function is called from memory failure code.
3165 * Assume the caller holds page lock of the head page.
3166 */
6de2b1aa 3167int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3168{
3169 struct hstate *h = page_hstate(hpage);
3170 int nid = page_to_nid(hpage);
6de2b1aa 3171 int ret = -EBUSY;
93f70f90
NH
3172
3173 spin_lock(&hugetlb_lock);
6de2b1aa
NH
3174 if (is_hugepage_on_freelist(hpage)) {
3175 list_del(&hpage->lru);
8c6c2ecb 3176 set_page_refcounted(hpage);
6de2b1aa
NH
3177 h->free_huge_pages--;
3178 h->free_huge_pages_node[nid]--;
3179 ret = 0;
3180 }
93f70f90 3181 spin_unlock(&hugetlb_lock);
6de2b1aa 3182 return ret;
93f70f90 3183}
6de2b1aa 3184#endif