]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/khugepaged.c
UBUNTU: SAUCE: mm: Only expand stack if guard area is hit
[mirror_ubuntu-zesty-kernel.git] / mm / khugepaged.c
CommitLineData
b46e756f
KS
1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3#include <linux/mm.h>
4#include <linux/sched.h>
5#include <linux/mmu_notifier.h>
6#include <linux/rmap.h>
7#include <linux/swap.h>
8#include <linux/mm_inline.h>
9#include <linux/kthread.h>
10#include <linux/khugepaged.h>
11#include <linux/freezer.h>
12#include <linux/mman.h>
13#include <linux/hashtable.h>
14#include <linux/userfaultfd_k.h>
15#include <linux/page_idle.h>
16#include <linux/swapops.h>
f3f0e1d2 17#include <linux/shmem_fs.h>
b46e756f
KS
18
19#include <asm/tlb.h>
20#include <asm/pgalloc.h>
21#include "internal.h"
22
23enum scan_result {
24 SCAN_FAIL,
25 SCAN_SUCCEED,
26 SCAN_PMD_NULL,
27 SCAN_EXCEED_NONE_PTE,
28 SCAN_PTE_NON_PRESENT,
29 SCAN_PAGE_RO,
0db501f7 30 SCAN_LACK_REFERENCED_PAGE,
b46e756f
KS
31 SCAN_PAGE_NULL,
32 SCAN_SCAN_ABORT,
33 SCAN_PAGE_COUNT,
34 SCAN_PAGE_LRU,
35 SCAN_PAGE_LOCK,
36 SCAN_PAGE_ANON,
37 SCAN_PAGE_COMPOUND,
38 SCAN_ANY_PROCESS,
39 SCAN_VMA_NULL,
40 SCAN_VMA_CHECK,
41 SCAN_ADDRESS_RANGE,
42 SCAN_SWAP_CACHE_PAGE,
43 SCAN_DEL_PAGE_LRU,
44 SCAN_ALLOC_HUGE_PAGE_FAIL,
45 SCAN_CGROUP_CHARGE_FAIL,
f3f0e1d2
KS
46 SCAN_EXCEED_SWAP_PTE,
47 SCAN_TRUNCATED,
b46e756f
KS
48};
49
50#define CREATE_TRACE_POINTS
51#include <trace/events/huge_memory.h>
52
53/* default scan 8*512 pte (or vmas) every 30 second */
54static unsigned int khugepaged_pages_to_scan __read_mostly;
55static unsigned int khugepaged_pages_collapsed;
56static unsigned int khugepaged_full_scans;
57static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
58/* during fragmentation poll the hugepage allocator once every minute */
59static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
60static unsigned long khugepaged_sleep_expire;
61static DEFINE_SPINLOCK(khugepaged_mm_lock);
62static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
63/*
64 * default collapse hugepages if there is at least one pte mapped like
65 * it would have happened if the vma was large enough during page
66 * fault.
67 */
68static unsigned int khugepaged_max_ptes_none __read_mostly;
69static unsigned int khugepaged_max_ptes_swap __read_mostly;
70
71#define MM_SLOTS_HASH_BITS 10
72static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
73
74static struct kmem_cache *mm_slot_cache __read_mostly;
75
76/**
77 * struct mm_slot - hash lookup from mm to mm_slot
78 * @hash: hash collision list
79 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80 * @mm: the mm that this information is valid for
81 */
82struct mm_slot {
83 struct hlist_node hash;
84 struct list_head mm_node;
85 struct mm_struct *mm;
86};
87
88/**
89 * struct khugepaged_scan - cursor for scanning
90 * @mm_head: the head of the mm list to scan
91 * @mm_slot: the current mm_slot we are scanning
92 * @address: the next address inside that to be scanned
93 *
94 * There is only the one khugepaged_scan instance of this cursor structure.
95 */
96struct khugepaged_scan {
97 struct list_head mm_head;
98 struct mm_slot *mm_slot;
99 unsigned long address;
100};
101
102static struct khugepaged_scan khugepaged_scan = {
103 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
104};
105
e1465d12 106#ifdef CONFIG_SYSFS
b46e756f
KS
107static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
108 struct kobj_attribute *attr,
109 char *buf)
110{
111 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
112}
113
114static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
115 struct kobj_attribute *attr,
116 const char *buf, size_t count)
117{
118 unsigned long msecs;
119 int err;
120
121 err = kstrtoul(buf, 10, &msecs);
122 if (err || msecs > UINT_MAX)
123 return -EINVAL;
124
125 khugepaged_scan_sleep_millisecs = msecs;
126 khugepaged_sleep_expire = 0;
127 wake_up_interruptible(&khugepaged_wait);
128
129 return count;
130}
131static struct kobj_attribute scan_sleep_millisecs_attr =
132 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
133 scan_sleep_millisecs_store);
134
135static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
136 struct kobj_attribute *attr,
137 char *buf)
138{
139 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
140}
141
142static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
143 struct kobj_attribute *attr,
144 const char *buf, size_t count)
145{
146 unsigned long msecs;
147 int err;
148
149 err = kstrtoul(buf, 10, &msecs);
150 if (err || msecs > UINT_MAX)
151 return -EINVAL;
152
153 khugepaged_alloc_sleep_millisecs = msecs;
154 khugepaged_sleep_expire = 0;
155 wake_up_interruptible(&khugepaged_wait);
156
157 return count;
158}
159static struct kobj_attribute alloc_sleep_millisecs_attr =
160 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
161 alloc_sleep_millisecs_store);
162
163static ssize_t pages_to_scan_show(struct kobject *kobj,
164 struct kobj_attribute *attr,
165 char *buf)
166{
167 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
168}
169static ssize_t pages_to_scan_store(struct kobject *kobj,
170 struct kobj_attribute *attr,
171 const char *buf, size_t count)
172{
173 int err;
174 unsigned long pages;
175
176 err = kstrtoul(buf, 10, &pages);
177 if (err || !pages || pages > UINT_MAX)
178 return -EINVAL;
179
180 khugepaged_pages_to_scan = pages;
181
182 return count;
183}
184static struct kobj_attribute pages_to_scan_attr =
185 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
186 pages_to_scan_store);
187
188static ssize_t pages_collapsed_show(struct kobject *kobj,
189 struct kobj_attribute *attr,
190 char *buf)
191{
192 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
193}
194static struct kobj_attribute pages_collapsed_attr =
195 __ATTR_RO(pages_collapsed);
196
197static ssize_t full_scans_show(struct kobject *kobj,
198 struct kobj_attribute *attr,
199 char *buf)
200{
201 return sprintf(buf, "%u\n", khugepaged_full_scans);
202}
203static struct kobj_attribute full_scans_attr =
204 __ATTR_RO(full_scans);
205
206static ssize_t khugepaged_defrag_show(struct kobject *kobj,
207 struct kobj_attribute *attr, char *buf)
208{
209 return single_hugepage_flag_show(kobj, attr, buf,
210 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
211}
212static ssize_t khugepaged_defrag_store(struct kobject *kobj,
213 struct kobj_attribute *attr,
214 const char *buf, size_t count)
215{
216 return single_hugepage_flag_store(kobj, attr, buf, count,
217 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
218}
219static struct kobj_attribute khugepaged_defrag_attr =
220 __ATTR(defrag, 0644, khugepaged_defrag_show,
221 khugepaged_defrag_store);
222
223/*
224 * max_ptes_none controls if khugepaged should collapse hugepages over
225 * any unmapped ptes in turn potentially increasing the memory
226 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
227 * reduce the available free memory in the system as it
228 * runs. Increasing max_ptes_none will instead potentially reduce the
229 * free memory in the system during the khugepaged scan.
230 */
231static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
232 struct kobj_attribute *attr,
233 char *buf)
234{
235 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
236}
237static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
238 struct kobj_attribute *attr,
239 const char *buf, size_t count)
240{
241 int err;
242 unsigned long max_ptes_none;
243
244 err = kstrtoul(buf, 10, &max_ptes_none);
245 if (err || max_ptes_none > HPAGE_PMD_NR-1)
246 return -EINVAL;
247
248 khugepaged_max_ptes_none = max_ptes_none;
249
250 return count;
251}
252static struct kobj_attribute khugepaged_max_ptes_none_attr =
253 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
254 khugepaged_max_ptes_none_store);
255
256static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
257 struct kobj_attribute *attr,
258 char *buf)
259{
260 return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
261}
262
263static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
264 struct kobj_attribute *attr,
265 const char *buf, size_t count)
266{
267 int err;
268 unsigned long max_ptes_swap;
269
270 err = kstrtoul(buf, 10, &max_ptes_swap);
271 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
272 return -EINVAL;
273
274 khugepaged_max_ptes_swap = max_ptes_swap;
275
276 return count;
277}
278
279static struct kobj_attribute khugepaged_max_ptes_swap_attr =
280 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
281 khugepaged_max_ptes_swap_store);
282
283static struct attribute *khugepaged_attr[] = {
284 &khugepaged_defrag_attr.attr,
285 &khugepaged_max_ptes_none_attr.attr,
286 &pages_to_scan_attr.attr,
287 &pages_collapsed_attr.attr,
288 &full_scans_attr.attr,
289 &scan_sleep_millisecs_attr.attr,
290 &alloc_sleep_millisecs_attr.attr,
291 &khugepaged_max_ptes_swap_attr.attr,
292 NULL,
293};
294
295struct attribute_group khugepaged_attr_group = {
296 .attrs = khugepaged_attr,
297 .name = "khugepaged",
298};
e1465d12 299#endif /* CONFIG_SYSFS */
b46e756f 300
f3f0e1d2 301#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
b46e756f
KS
302
303int hugepage_madvise(struct vm_area_struct *vma,
304 unsigned long *vm_flags, int advice)
305{
306 switch (advice) {
307 case MADV_HUGEPAGE:
308#ifdef CONFIG_S390
309 /*
310 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
311 * can't handle this properly after s390_enable_sie, so we simply
312 * ignore the madvise to prevent qemu from causing a SIGSEGV.
313 */
314 if (mm_has_pgste(vma->vm_mm))
315 return 0;
316#endif
317 *vm_flags &= ~VM_NOHUGEPAGE;
318 *vm_flags |= VM_HUGEPAGE;
319 /*
320 * If the vma become good for khugepaged to scan,
321 * register it here without waiting a page fault that
322 * may not happen any time soon.
323 */
324 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
325 khugepaged_enter_vma_merge(vma, *vm_flags))
326 return -ENOMEM;
327 break;
328 case MADV_NOHUGEPAGE:
329 *vm_flags &= ~VM_HUGEPAGE;
330 *vm_flags |= VM_NOHUGEPAGE;
331 /*
332 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
333 * this vma even if we leave the mm registered in khugepaged if
334 * it got registered before VM_NOHUGEPAGE was set.
335 */
336 break;
337 }
338
339 return 0;
340}
341
342int __init khugepaged_init(void)
343{
344 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
345 sizeof(struct mm_slot),
346 __alignof__(struct mm_slot), 0, NULL);
347 if (!mm_slot_cache)
348 return -ENOMEM;
349
350 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
351 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
352 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
353
354 return 0;
355}
356
357void __init khugepaged_destroy(void)
358{
359 kmem_cache_destroy(mm_slot_cache);
360}
361
362static inline struct mm_slot *alloc_mm_slot(void)
363{
364 if (!mm_slot_cache) /* initialization failed */
365 return NULL;
366 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
367}
368
369static inline void free_mm_slot(struct mm_slot *mm_slot)
370{
371 kmem_cache_free(mm_slot_cache, mm_slot);
372}
373
374static struct mm_slot *get_mm_slot(struct mm_struct *mm)
375{
376 struct mm_slot *mm_slot;
377
378 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
379 if (mm == mm_slot->mm)
380 return mm_slot;
381
382 return NULL;
383}
384
385static void insert_to_mm_slots_hash(struct mm_struct *mm,
386 struct mm_slot *mm_slot)
387{
388 mm_slot->mm = mm;
389 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
390}
391
392static inline int khugepaged_test_exit(struct mm_struct *mm)
393{
394 return atomic_read(&mm->mm_users) == 0;
395}
396
397int __khugepaged_enter(struct mm_struct *mm)
398{
399 struct mm_slot *mm_slot;
400 int wakeup;
401
402 mm_slot = alloc_mm_slot();
403 if (!mm_slot)
404 return -ENOMEM;
405
406 /* __khugepaged_exit() must not run from under us */
407 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
408 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
409 free_mm_slot(mm_slot);
410 return 0;
411 }
412
413 spin_lock(&khugepaged_mm_lock);
414 insert_to_mm_slots_hash(mm, mm_slot);
415 /*
416 * Insert just behind the scanning cursor, to let the area settle
417 * down a little.
418 */
419 wakeup = list_empty(&khugepaged_scan.mm_head);
420 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
421 spin_unlock(&khugepaged_mm_lock);
422
423 atomic_inc(&mm->mm_count);
424 if (wakeup)
425 wake_up_interruptible(&khugepaged_wait);
426
427 return 0;
428}
429
430int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
431 unsigned long vm_flags)
432{
433 unsigned long hstart, hend;
434 if (!vma->anon_vma)
435 /*
436 * Not yet faulted in so we will register later in the
437 * page fault if needed.
438 */
439 return 0;
440 if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
441 /* khugepaged not yet working on file or special mappings */
442 return 0;
443 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
444 hend = vma->vm_end & HPAGE_PMD_MASK;
445 if (hstart < hend)
446 return khugepaged_enter(vma, vm_flags);
447 return 0;
448}
449
450void __khugepaged_exit(struct mm_struct *mm)
451{
452 struct mm_slot *mm_slot;
453 int free = 0;
454
455 spin_lock(&khugepaged_mm_lock);
456 mm_slot = get_mm_slot(mm);
457 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
458 hash_del(&mm_slot->hash);
459 list_del(&mm_slot->mm_node);
460 free = 1;
461 }
462 spin_unlock(&khugepaged_mm_lock);
463
464 if (free) {
465 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
466 free_mm_slot(mm_slot);
467 mmdrop(mm);
468 } else if (mm_slot) {
469 /*
470 * This is required to serialize against
471 * khugepaged_test_exit() (which is guaranteed to run
472 * under mmap sem read mode). Stop here (after we
473 * return all pagetables will be destroyed) until
474 * khugepaged has finished working on the pagetables
475 * under the mmap_sem.
476 */
477 down_write(&mm->mmap_sem);
478 up_write(&mm->mmap_sem);
479 }
480}
481
482static void release_pte_page(struct page *page)
483{
484 /* 0 stands for page_is_file_cache(page) == false */
599d0c95 485 dec_node_page_state(page, NR_ISOLATED_ANON + 0);
b46e756f
KS
486 unlock_page(page);
487 putback_lru_page(page);
488}
489
490static void release_pte_pages(pte_t *pte, pte_t *_pte)
491{
492 while (--_pte >= pte) {
493 pte_t pteval = *_pte;
494 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
495 release_pte_page(pte_page(pteval));
496 }
497}
498
499static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
500 unsigned long address,
501 pte_t *pte)
502{
503 struct page *page = NULL;
504 pte_t *_pte;
0db501f7
EA
505 int none_or_zero = 0, result = 0, referenced = 0;
506 bool writable = false;
b46e756f
KS
507
508 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
509 _pte++, address += PAGE_SIZE) {
510 pte_t pteval = *_pte;
511 if (pte_none(pteval) || (pte_present(pteval) &&
512 is_zero_pfn(pte_pfn(pteval)))) {
513 if (!userfaultfd_armed(vma) &&
514 ++none_or_zero <= khugepaged_max_ptes_none) {
515 continue;
516 } else {
517 result = SCAN_EXCEED_NONE_PTE;
518 goto out;
519 }
520 }
521 if (!pte_present(pteval)) {
522 result = SCAN_PTE_NON_PRESENT;
523 goto out;
524 }
525 page = vm_normal_page(vma, address, pteval);
526 if (unlikely(!page)) {
527 result = SCAN_PAGE_NULL;
528 goto out;
529 }
530
531 VM_BUG_ON_PAGE(PageCompound(page), page);
532 VM_BUG_ON_PAGE(!PageAnon(page), page);
533 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
534
535 /*
536 * We can do it before isolate_lru_page because the
537 * page can't be freed from under us. NOTE: PG_lock
538 * is needed to serialize against split_huge_page
539 * when invoked from the VM.
540 */
541 if (!trylock_page(page)) {
542 result = SCAN_PAGE_LOCK;
543 goto out;
544 }
545
546 /*
547 * cannot use mapcount: can't collapse if there's a gup pin.
548 * The page must only be referenced by the scanned process
549 * and page swap cache.
550 */
551 if (page_count(page) != 1 + !!PageSwapCache(page)) {
552 unlock_page(page);
553 result = SCAN_PAGE_COUNT;
554 goto out;
555 }
556 if (pte_write(pteval)) {
557 writable = true;
558 } else {
559 if (PageSwapCache(page) &&
560 !reuse_swap_page(page, NULL)) {
561 unlock_page(page);
562 result = SCAN_SWAP_CACHE_PAGE;
563 goto out;
564 }
565 /*
566 * Page is not in the swap cache. It can be collapsed
567 * into a THP.
568 */
569 }
570
571 /*
572 * Isolate the page to avoid collapsing an hugepage
573 * currently in use by the VM.
574 */
575 if (isolate_lru_page(page)) {
576 unlock_page(page);
577 result = SCAN_DEL_PAGE_LRU;
578 goto out;
579 }
580 /* 0 stands for page_is_file_cache(page) == false */
599d0c95 581 inc_node_page_state(page, NR_ISOLATED_ANON + 0);
b46e756f
KS
582 VM_BUG_ON_PAGE(!PageLocked(page), page);
583 VM_BUG_ON_PAGE(PageLRU(page), page);
584
0db501f7 585 /* There should be enough young pte to collapse the page */
b46e756f
KS
586 if (pte_young(pteval) ||
587 page_is_young(page) || PageReferenced(page) ||
588 mmu_notifier_test_young(vma->vm_mm, address))
0db501f7 589 referenced++;
b46e756f
KS
590 }
591 if (likely(writable)) {
592 if (likely(referenced)) {
593 result = SCAN_SUCCEED;
594 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
595 referenced, writable, result);
596 return 1;
597 }
598 } else {
599 result = SCAN_PAGE_RO;
600 }
601
602out:
603 release_pte_pages(pte, _pte);
604 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
605 referenced, writable, result);
606 return 0;
607}
608
609static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
610 struct vm_area_struct *vma,
611 unsigned long address,
612 spinlock_t *ptl)
613{
614 pte_t *_pte;
615 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
616 pte_t pteval = *_pte;
617 struct page *src_page;
618
619 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
620 clear_user_highpage(page, address);
621 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
622 if (is_zero_pfn(pte_pfn(pteval))) {
623 /*
624 * ptl mostly unnecessary.
625 */
626 spin_lock(ptl);
627 /*
628 * paravirt calls inside pte_clear here are
629 * superfluous.
630 */
631 pte_clear(vma->vm_mm, address, _pte);
632 spin_unlock(ptl);
633 }
634 } else {
635 src_page = pte_page(pteval);
636 copy_user_highpage(page, src_page, address, vma);
637 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
638 release_pte_page(src_page);
639 /*
640 * ptl mostly unnecessary, but preempt has to
641 * be disabled to update the per-cpu stats
642 * inside page_remove_rmap().
643 */
644 spin_lock(ptl);
645 /*
646 * paravirt calls inside pte_clear here are
647 * superfluous.
648 */
649 pte_clear(vma->vm_mm, address, _pte);
650 page_remove_rmap(src_page, false);
651 spin_unlock(ptl);
652 free_page_and_swap_cache(src_page);
653 }
654
655 address += PAGE_SIZE;
656 page++;
657 }
658}
659
660static void khugepaged_alloc_sleep(void)
661{
662 DEFINE_WAIT(wait);
663
664 add_wait_queue(&khugepaged_wait, &wait);
665 freezable_schedule_timeout_interruptible(
666 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
667 remove_wait_queue(&khugepaged_wait, &wait);
668}
669
670static int khugepaged_node_load[MAX_NUMNODES];
671
672static bool khugepaged_scan_abort(int nid)
673{
674 int i;
675
676 /*
a5f5f91d 677 * If node_reclaim_mode is disabled, then no extra effort is made to
b46e756f
KS
678 * allocate memory locally.
679 */
a5f5f91d 680 if (!node_reclaim_mode)
b46e756f
KS
681 return false;
682
683 /* If there is a count for this node already, it must be acceptable */
684 if (khugepaged_node_load[nid])
685 return false;
686
687 for (i = 0; i < MAX_NUMNODES; i++) {
688 if (!khugepaged_node_load[i])
689 continue;
690 if (node_distance(nid, i) > RECLAIM_DISTANCE)
691 return true;
692 }
693 return false;
694}
695
696/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
697static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
698{
25160354 699 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
b46e756f
KS
700}
701
702#ifdef CONFIG_NUMA
703static int khugepaged_find_target_node(void)
704{
705 static int last_khugepaged_target_node = NUMA_NO_NODE;
706 int nid, target_node = 0, max_value = 0;
707
708 /* find first node with max normal pages hit */
709 for (nid = 0; nid < MAX_NUMNODES; nid++)
710 if (khugepaged_node_load[nid] > max_value) {
711 max_value = khugepaged_node_load[nid];
712 target_node = nid;
713 }
714
715 /* do some balance if several nodes have the same hit record */
716 if (target_node <= last_khugepaged_target_node)
717 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
718 nid++)
719 if (max_value == khugepaged_node_load[nid]) {
720 target_node = nid;
721 break;
722 }
723
724 last_khugepaged_target_node = target_node;
725 return target_node;
726}
727
728static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
729{
730 if (IS_ERR(*hpage)) {
731 if (!*wait)
732 return false;
733
734 *wait = false;
735 *hpage = NULL;
736 khugepaged_alloc_sleep();
737 } else if (*hpage) {
738 put_page(*hpage);
739 *hpage = NULL;
740 }
741
742 return true;
743}
744
745static struct page *
988ddb71 746khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
b46e756f
KS
747{
748 VM_BUG_ON_PAGE(*hpage, *hpage);
749
b46e756f
KS
750 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
751 if (unlikely(!*hpage)) {
752 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
753 *hpage = ERR_PTR(-ENOMEM);
754 return NULL;
755 }
756
757 prep_transhuge_page(*hpage);
758 count_vm_event(THP_COLLAPSE_ALLOC);
759 return *hpage;
760}
761#else
762static int khugepaged_find_target_node(void)
763{
764 return 0;
765}
766
767static inline struct page *alloc_khugepaged_hugepage(void)
768{
769 struct page *page;
770
771 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
772 HPAGE_PMD_ORDER);
773 if (page)
774 prep_transhuge_page(page);
775 return page;
776}
777
778static struct page *khugepaged_alloc_hugepage(bool *wait)
779{
780 struct page *hpage;
781
782 do {
783 hpage = alloc_khugepaged_hugepage();
784 if (!hpage) {
785 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
786 if (!*wait)
787 return NULL;
788
789 *wait = false;
790 khugepaged_alloc_sleep();
791 } else
792 count_vm_event(THP_COLLAPSE_ALLOC);
793 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
794
795 return hpage;
796}
797
798static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
799{
800 if (!*hpage)
801 *hpage = khugepaged_alloc_hugepage(wait);
802
803 if (unlikely(!*hpage))
804 return false;
805
806 return true;
807}
808
809static struct page *
988ddb71 810khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
b46e756f 811{
b46e756f
KS
812 VM_BUG_ON(!*hpage);
813
814 return *hpage;
815}
816#endif
817
818static bool hugepage_vma_check(struct vm_area_struct *vma)
819{
820 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
821 (vma->vm_flags & VM_NOHUGEPAGE))
822 return false;
f3f0e1d2 823 if (shmem_file(vma->vm_file)) {
e496cf3d
KS
824 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
825 return false;
f3f0e1d2
KS
826 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
827 HPAGE_PMD_NR);
828 }
b46e756f
KS
829 if (!vma->anon_vma || vma->vm_ops)
830 return false;
831 if (is_vma_temporary_stack(vma))
832 return false;
833 return !(vma->vm_flags & VM_NO_KHUGEPAGED);
834}
835
836/*
837 * If mmap_sem temporarily dropped, revalidate vma
838 * before taking mmap_sem.
839 * Return 0 if succeeds, otherwise return none-zero
840 * value (scan code).
841 */
842
c131f751
KS
843static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
844 struct vm_area_struct **vmap)
b46e756f
KS
845{
846 struct vm_area_struct *vma;
847 unsigned long hstart, hend;
848
849 if (unlikely(khugepaged_test_exit(mm)))
850 return SCAN_ANY_PROCESS;
851
c131f751 852 *vmap = vma = find_vma(mm, address);
b46e756f
KS
853 if (!vma)
854 return SCAN_VMA_NULL;
855
856 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
857 hend = vma->vm_end & HPAGE_PMD_MASK;
858 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
859 return SCAN_ADDRESS_RANGE;
860 if (!hugepage_vma_check(vma))
861 return SCAN_VMA_CHECK;
e9dbbeb2
MH
862
863 /* never try to collapse stack gap */
864 if (stack_guard_area(vma, hstart) || stack_guard_area(vma, hend))
865 return SCAN_ADDRESS_RANGE;
b46e756f
KS
866 return 0;
867}
868
869/*
870 * Bring missing pages in from swap, to complete THP collapse.
871 * Only done if khugepaged_scan_pmd believes it is worthwhile.
872 *
873 * Called and returns without pte mapped or spinlocks held,
874 * but with mmap_sem held to protect against vma changes.
875 */
876
877static bool __collapse_huge_page_swapin(struct mm_struct *mm,
878 struct vm_area_struct *vma,
0db501f7
EA
879 unsigned long address, pmd_t *pmd,
880 int referenced)
b46e756f 881{
b46e756f 882 int swapped_in = 0, ret = 0;
82b0f8c3 883 struct vm_fault vmf = {
b46e756f
KS
884 .vma = vma,
885 .address = address,
886 .flags = FAULT_FLAG_ALLOW_RETRY,
887 .pmd = pmd,
0721ec8b 888 .pgoff = linear_page_index(vma, address),
b46e756f
KS
889 };
890
982785c6
EA
891 /* we only decide to swapin, if there is enough young ptes */
892 if (referenced < HPAGE_PMD_NR/2) {
893 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
894 return false;
895 }
82b0f8c3
JK
896 vmf.pte = pte_offset_map(pmd, address);
897 for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
898 vmf.pte++, vmf.address += PAGE_SIZE) {
2994302b
JK
899 vmf.orig_pte = *vmf.pte;
900 if (!is_swap_pte(vmf.orig_pte))
b46e756f
KS
901 continue;
902 swapped_in++;
2994302b 903 ret = do_swap_page(&vmf);
0db501f7 904
b46e756f
KS
905 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
906 if (ret & VM_FAULT_RETRY) {
907 down_read(&mm->mmap_sem);
82b0f8c3 908 if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
47f863ea 909 /* vma is no longer available, don't continue to swapin */
0db501f7 910 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
b46e756f 911 return false;
47f863ea 912 }
b46e756f
KS
913 /* check if the pmd is still valid */
914 if (mm_find_pmd(mm, address) != pmd)
915 return false;
916 }
917 if (ret & VM_FAULT_ERROR) {
0db501f7 918 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
b46e756f
KS
919 return false;
920 }
921 /* pte is unmapped now, we need to map it */
82b0f8c3 922 vmf.pte = pte_offset_map(pmd, vmf.address);
b46e756f 923 }
82b0f8c3
JK
924 vmf.pte--;
925 pte_unmap(vmf.pte);
0db501f7 926 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
b46e756f
KS
927 return true;
928}
929
930static void collapse_huge_page(struct mm_struct *mm,
931 unsigned long address,
932 struct page **hpage,
0db501f7 933 int node, int referenced)
b46e756f
KS
934{
935 pmd_t *pmd, _pmd;
936 pte_t *pte;
937 pgtable_t pgtable;
938 struct page *new_page;
939 spinlock_t *pmd_ptl, *pte_ptl;
940 int isolated = 0, result = 0;
941 struct mem_cgroup *memcg;
c131f751 942 struct vm_area_struct *vma;
b46e756f
KS
943 unsigned long mmun_start; /* For mmu_notifiers */
944 unsigned long mmun_end; /* For mmu_notifiers */
945 gfp_t gfp;
946
947 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
948
949 /* Only allocate from the target node */
41b6167e 950 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
b46e756f 951
988ddb71
KS
952 /*
953 * Before allocating the hugepage, release the mmap_sem read lock.
954 * The allocation can take potentially a long time if it involves
955 * sync compaction, and we do not need to hold the mmap_sem during
956 * that. We will recheck the vma after taking it again in write mode.
957 */
958 up_read(&mm->mmap_sem);
959 new_page = khugepaged_alloc_page(hpage, gfp, node);
b46e756f
KS
960 if (!new_page) {
961 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
962 goto out_nolock;
963 }
964
965 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
966 result = SCAN_CGROUP_CHARGE_FAIL;
967 goto out_nolock;
968 }
969
970 down_read(&mm->mmap_sem);
c131f751 971 result = hugepage_vma_revalidate(mm, address, &vma);
b46e756f
KS
972 if (result) {
973 mem_cgroup_cancel_charge(new_page, memcg, true);
974 up_read(&mm->mmap_sem);
975 goto out_nolock;
976 }
977
978 pmd = mm_find_pmd(mm, address);
979 if (!pmd) {
980 result = SCAN_PMD_NULL;
981 mem_cgroup_cancel_charge(new_page, memcg, true);
982 up_read(&mm->mmap_sem);
983 goto out_nolock;
984 }
985
986 /*
987 * __collapse_huge_page_swapin always returns with mmap_sem locked.
47f863ea 988 * If it fails, we release mmap_sem and jump out_nolock.
b46e756f
KS
989 * Continuing to collapse causes inconsistency.
990 */
0db501f7 991 if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
b46e756f
KS
992 mem_cgroup_cancel_charge(new_page, memcg, true);
993 up_read(&mm->mmap_sem);
994 goto out_nolock;
995 }
996
997 up_read(&mm->mmap_sem);
998 /*
999 * Prevent all access to pagetables with the exception of
1000 * gup_fast later handled by the ptep_clear_flush and the VM
1001 * handled by the anon_vma lock + PG_lock.
1002 */
1003 down_write(&mm->mmap_sem);
c131f751 1004 result = hugepage_vma_revalidate(mm, address, &vma);
b46e756f
KS
1005 if (result)
1006 goto out;
1007 /* check if the pmd is still valid */
1008 if (mm_find_pmd(mm, address) != pmd)
1009 goto out;
1010
1011 anon_vma_lock_write(vma->anon_vma);
1012
1013 pte = pte_offset_map(pmd, address);
1014 pte_ptl = pte_lockptr(mm, pmd);
1015
1016 mmun_start = address;
1017 mmun_end = address + HPAGE_PMD_SIZE;
1018 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1019 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1020 /*
1021 * After this gup_fast can't run anymore. This also removes
1022 * any huge TLB entry from the CPU so we won't allow
1023 * huge and small TLB entries for the same virtual address
1024 * to avoid the risk of CPU bugs in that area.
1025 */
1026 _pmd = pmdp_collapse_flush(vma, address, pmd);
1027 spin_unlock(pmd_ptl);
1028 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1029
1030 spin_lock(pte_ptl);
1031 isolated = __collapse_huge_page_isolate(vma, address, pte);
1032 spin_unlock(pte_ptl);
1033
1034 if (unlikely(!isolated)) {
1035 pte_unmap(pte);
1036 spin_lock(pmd_ptl);
1037 BUG_ON(!pmd_none(*pmd));
1038 /*
1039 * We can only use set_pmd_at when establishing
1040 * hugepmds and never for establishing regular pmds that
1041 * points to regular pagetables. Use pmd_populate for that
1042 */
1043 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1044 spin_unlock(pmd_ptl);
1045 anon_vma_unlock_write(vma->anon_vma);
1046 result = SCAN_FAIL;
1047 goto out;
1048 }
1049
1050 /*
1051 * All pages are isolated and locked so anon_vma rmap
1052 * can't run anymore.
1053 */
1054 anon_vma_unlock_write(vma->anon_vma);
1055
1056 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1057 pte_unmap(pte);
1058 __SetPageUptodate(new_page);
1059 pgtable = pmd_pgtable(_pmd);
1060
1061 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1062 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1063
1064 /*
1065 * spin_lock() below is not the equivalent of smp_wmb(), so
1066 * this is needed to avoid the copy_huge_page writes to become
1067 * visible after the set_pmd_at() write.
1068 */
1069 smp_wmb();
1070
1071 spin_lock(pmd_ptl);
1072 BUG_ON(!pmd_none(*pmd));
1073 page_add_new_anon_rmap(new_page, vma, address, true);
1074 mem_cgroup_commit_charge(new_page, memcg, false, true);
1075 lru_cache_add_active_or_unevictable(new_page, vma);
1076 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1077 set_pmd_at(mm, address, pmd, _pmd);
1078 update_mmu_cache_pmd(vma, address, pmd);
1079 spin_unlock(pmd_ptl);
1080
1081 *hpage = NULL;
1082
1083 khugepaged_pages_collapsed++;
1084 result = SCAN_SUCCEED;
1085out_up_write:
1086 up_write(&mm->mmap_sem);
1087out_nolock:
1088 trace_mm_collapse_huge_page(mm, isolated, result);
1089 return;
1090out:
1091 mem_cgroup_cancel_charge(new_page, memcg, true);
1092 goto out_up_write;
1093}
1094
1095static int khugepaged_scan_pmd(struct mm_struct *mm,
1096 struct vm_area_struct *vma,
1097 unsigned long address,
1098 struct page **hpage)
1099{
1100 pmd_t *pmd;
1101 pte_t *pte, *_pte;
0db501f7 1102 int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
b46e756f
KS
1103 struct page *page = NULL;
1104 unsigned long _address;
1105 spinlock_t *ptl;
1106 int node = NUMA_NO_NODE, unmapped = 0;
0db501f7 1107 bool writable = false;
b46e756f
KS
1108
1109 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1110
1111 pmd = mm_find_pmd(mm, address);
1112 if (!pmd) {
1113 result = SCAN_PMD_NULL;
1114 goto out;
1115 }
1116
1117 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1118 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1119 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1120 _pte++, _address += PAGE_SIZE) {
1121 pte_t pteval = *_pte;
1122 if (is_swap_pte(pteval)) {
1123 if (++unmapped <= khugepaged_max_ptes_swap) {
1124 continue;
1125 } else {
1126 result = SCAN_EXCEED_SWAP_PTE;
1127 goto out_unmap;
1128 }
1129 }
1130 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1131 if (!userfaultfd_armed(vma) &&
1132 ++none_or_zero <= khugepaged_max_ptes_none) {
1133 continue;
1134 } else {
1135 result = SCAN_EXCEED_NONE_PTE;
1136 goto out_unmap;
1137 }
1138 }
1139 if (!pte_present(pteval)) {
1140 result = SCAN_PTE_NON_PRESENT;
1141 goto out_unmap;
1142 }
1143 if (pte_write(pteval))
1144 writable = true;
1145
1146 page = vm_normal_page(vma, _address, pteval);
1147 if (unlikely(!page)) {
1148 result = SCAN_PAGE_NULL;
1149 goto out_unmap;
1150 }
1151
1152 /* TODO: teach khugepaged to collapse THP mapped with pte */
1153 if (PageCompound(page)) {
1154 result = SCAN_PAGE_COMPOUND;
1155 goto out_unmap;
1156 }
1157
1158 /*
1159 * Record which node the original page is from and save this
1160 * information to khugepaged_node_load[].
1161 * Khupaged will allocate hugepage from the node has the max
1162 * hit record.
1163 */
1164 node = page_to_nid(page);
1165 if (khugepaged_scan_abort(node)) {
1166 result = SCAN_SCAN_ABORT;
1167 goto out_unmap;
1168 }
1169 khugepaged_node_load[node]++;
1170 if (!PageLRU(page)) {
1171 result = SCAN_PAGE_LRU;
1172 goto out_unmap;
1173 }
1174 if (PageLocked(page)) {
1175 result = SCAN_PAGE_LOCK;
1176 goto out_unmap;
1177 }
1178 if (!PageAnon(page)) {
1179 result = SCAN_PAGE_ANON;
1180 goto out_unmap;
1181 }
1182
1183 /*
1184 * cannot use mapcount: can't collapse if there's a gup pin.
1185 * The page must only be referenced by the scanned process
1186 * and page swap cache.
1187 */
1188 if (page_count(page) != 1 + !!PageSwapCache(page)) {
1189 result = SCAN_PAGE_COUNT;
1190 goto out_unmap;
1191 }
1192 if (pte_young(pteval) ||
1193 page_is_young(page) || PageReferenced(page) ||
1194 mmu_notifier_test_young(vma->vm_mm, address))
0db501f7 1195 referenced++;
b46e756f
KS
1196 }
1197 if (writable) {
1198 if (referenced) {
1199 result = SCAN_SUCCEED;
1200 ret = 1;
1201 } else {
0db501f7 1202 result = SCAN_LACK_REFERENCED_PAGE;
b46e756f
KS
1203 }
1204 } else {
1205 result = SCAN_PAGE_RO;
1206 }
1207out_unmap:
1208 pte_unmap_unlock(pte, ptl);
1209 if (ret) {
1210 node = khugepaged_find_target_node();
1211 /* collapse_huge_page will return with the mmap_sem released */
c131f751 1212 collapse_huge_page(mm, address, hpage, node, referenced);
b46e756f
KS
1213 }
1214out:
1215 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1216 none_or_zero, result, unmapped);
1217 return ret;
1218}
1219
1220static void collect_mm_slot(struct mm_slot *mm_slot)
1221{
1222 struct mm_struct *mm = mm_slot->mm;
1223
1224 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1225
1226 if (khugepaged_test_exit(mm)) {
1227 /* free mm_slot */
1228 hash_del(&mm_slot->hash);
1229 list_del(&mm_slot->mm_node);
1230
1231 /*
1232 * Not strictly needed because the mm exited already.
1233 *
1234 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1235 */
1236
1237 /* khugepaged_mm_lock actually not necessary for the below */
1238 free_mm_slot(mm_slot);
1239 mmdrop(mm);
1240 }
1241}
1242
e496cf3d 1243#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
f3f0e1d2
KS
1244static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1245{
1246 struct vm_area_struct *vma;
1247 unsigned long addr;
1248 pmd_t *pmd, _pmd;
1249
1250 i_mmap_lock_write(mapping);
1251 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1252 /* probably overkill */
1253 if (vma->anon_vma)
1254 continue;
1255 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1256 if (addr & ~HPAGE_PMD_MASK)
1257 continue;
1258 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1259 continue;
1260 pmd = mm_find_pmd(vma->vm_mm, addr);
1261 if (!pmd)
1262 continue;
1263 /*
1264 * We need exclusive mmap_sem to retract page table.
1265 * If trylock fails we would end up with pte-mapped THP after
1266 * re-fault. Not ideal, but it's more important to not disturb
1267 * the system too much.
1268 */
1269 if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1270 spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1271 /* assume page table is clear */
1272 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1273 spin_unlock(ptl);
1274 up_write(&vma->vm_mm->mmap_sem);
d670ffd8
AK
1275 atomic_long_dec(&vma->vm_mm->nr_ptes);
1276 pte_free(vma->vm_mm, pmd_pgtable(_pmd));
f3f0e1d2
KS
1277 }
1278 }
1279 i_mmap_unlock_write(mapping);
1280}
1281
1282/**
1283 * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1284 *
1285 * Basic scheme is simple, details are more complex:
1286 * - allocate and freeze a new huge page;
1287 * - scan over radix tree replacing old pages the new one
1288 * + swap in pages if necessary;
1289 * + fill in gaps;
1290 * + keep old pages around in case if rollback is required;
1291 * - if replacing succeed:
1292 * + copy data over;
1293 * + free old pages;
1294 * + unfreeze huge page;
1295 * - if replacing failed;
1296 * + put all pages back and unfreeze them;
1297 * + restore gaps in the radix-tree;
1298 * + free huge page;
1299 */
1300static void collapse_shmem(struct mm_struct *mm,
1301 struct address_space *mapping, pgoff_t start,
1302 struct page **hpage, int node)
1303{
1304 gfp_t gfp;
1305 struct page *page, *new_page, *tmp;
1306 struct mem_cgroup *memcg;
1307 pgoff_t index, end = start + HPAGE_PMD_NR;
1308 LIST_HEAD(pagelist);
1309 struct radix_tree_iter iter;
1310 void **slot;
1311 int nr_none = 0, result = SCAN_SUCCEED;
1312
1313 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1314
1315 /* Only allocate from the target node */
41b6167e 1316 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
f3f0e1d2
KS
1317
1318 new_page = khugepaged_alloc_page(hpage, gfp, node);
1319 if (!new_page) {
1320 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1321 goto out;
1322 }
1323
1324 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1325 result = SCAN_CGROUP_CHARGE_FAIL;
1326 goto out;
1327 }
1328
1329 new_page->index = start;
1330 new_page->mapping = mapping;
1331 __SetPageSwapBacked(new_page);
1332 __SetPageLocked(new_page);
1333 BUG_ON(!page_ref_freeze(new_page, 1));
1334
1335
1336 /*
1337 * At this point the new_page is 'frozen' (page_count() is zero), locked
1338 * and not up-to-date. It's safe to insert it into radix tree, because
1339 * nobody would be able to map it or use it in other way until we
1340 * unfreeze it.
1341 */
1342
1343 index = start;
1344 spin_lock_irq(&mapping->tree_lock);
1345 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1346 int n = min(iter.index, end) - index;
1347
1348 /*
1349 * Handle holes in the radix tree: charge it from shmem and
1350 * insert relevant subpage of new_page into the radix-tree.
1351 */
1352 if (n && !shmem_charge(mapping->host, n)) {
1353 result = SCAN_FAIL;
1354 break;
1355 }
1356 nr_none += n;
1357 for (; index < min(iter.index, end); index++) {
1358 radix_tree_insert(&mapping->page_tree, index,
1359 new_page + (index % HPAGE_PMD_NR));
1360 }
1361
1362 /* We are done. */
1363 if (index >= end)
1364 break;
1365
1366 page = radix_tree_deref_slot_protected(slot,
1367 &mapping->tree_lock);
1368 if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
1369 spin_unlock_irq(&mapping->tree_lock);
1370 /* swap in or instantiate fallocated page */
1371 if (shmem_getpage(mapping->host, index, &page,
1372 SGP_NOHUGE)) {
1373 result = SCAN_FAIL;
1374 goto tree_unlocked;
1375 }
1376 spin_lock_irq(&mapping->tree_lock);
1377 } else if (trylock_page(page)) {
1378 get_page(page);
1379 } else {
1380 result = SCAN_PAGE_LOCK;
1381 break;
1382 }
1383
1384 /*
1385 * The page must be locked, so we can drop the tree_lock
1386 * without racing with truncate.
1387 */
1388 VM_BUG_ON_PAGE(!PageLocked(page), page);
1389 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1390 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1391
1392 if (page_mapping(page) != mapping) {
1393 result = SCAN_TRUNCATED;
1394 goto out_unlock;
1395 }
1396 spin_unlock_irq(&mapping->tree_lock);
1397
1398 if (isolate_lru_page(page)) {
1399 result = SCAN_DEL_PAGE_LRU;
1400 goto out_isolate_failed;
1401 }
1402
1403 if (page_mapped(page))
1404 unmap_mapping_range(mapping, index << PAGE_SHIFT,
1405 PAGE_SIZE, 0);
1406
1407 spin_lock_irq(&mapping->tree_lock);
1408
91a45f71
JW
1409 slot = radix_tree_lookup_slot(&mapping->page_tree, index);
1410 VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot,
1411 &mapping->tree_lock), page);
f3f0e1d2
KS
1412 VM_BUG_ON_PAGE(page_mapped(page), page);
1413
1414 /*
1415 * The page is expected to have page_count() == 3:
1416 * - we hold a pin on it;
1417 * - one reference from radix tree;
1418 * - one from isolate_lru_page;
1419 */
1420 if (!page_ref_freeze(page, 3)) {
1421 result = SCAN_PAGE_COUNT;
1422 goto out_lru;
1423 }
1424
1425 /*
1426 * Add the page to the list to be able to undo the collapse if
1427 * something go wrong.
1428 */
1429 list_add_tail(&page->lru, &pagelist);
1430
1431 /* Finally, replace with the new page. */
6d75f366 1432 radix_tree_replace_slot(&mapping->page_tree, slot,
f3f0e1d2
KS
1433 new_page + (index % HPAGE_PMD_NR));
1434
148deab2 1435 slot = radix_tree_iter_resume(slot, &iter);
f3f0e1d2
KS
1436 index++;
1437 continue;
1438out_lru:
1439 spin_unlock_irq(&mapping->tree_lock);
1440 putback_lru_page(page);
1441out_isolate_failed:
1442 unlock_page(page);
1443 put_page(page);
1444 goto tree_unlocked;
1445out_unlock:
1446 unlock_page(page);
1447 put_page(page);
1448 break;
1449 }
1450
1451 /*
1452 * Handle hole in radix tree at the end of the range.
1453 * This code only triggers if there's nothing in radix tree
1454 * beyond 'end'.
1455 */
1456 if (result == SCAN_SUCCEED && index < end) {
1457 int n = end - index;
1458
1459 if (!shmem_charge(mapping->host, n)) {
1460 result = SCAN_FAIL;
1461 goto tree_locked;
1462 }
1463
1464 for (; index < end; index++) {
1465 radix_tree_insert(&mapping->page_tree, index,
1466 new_page + (index % HPAGE_PMD_NR));
1467 }
1468 nr_none += n;
1469 }
1470
1471tree_locked:
1472 spin_unlock_irq(&mapping->tree_lock);
1473tree_unlocked:
1474
1475 if (result == SCAN_SUCCEED) {
1476 unsigned long flags;
1477 struct zone *zone = page_zone(new_page);
1478
1479 /*
1480 * Replacing old pages with new one has succeed, now we need to
1481 * copy the content and free old pages.
1482 */
1483 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1484 copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1485 page);
1486 list_del(&page->lru);
1487 unlock_page(page);
1488 page_ref_unfreeze(page, 1);
1489 page->mapping = NULL;
1490 ClearPageActive(page);
1491 ClearPageUnevictable(page);
1492 put_page(page);
1493 }
1494
1495 local_irq_save(flags);
11fb9989 1496 __inc_node_page_state(new_page, NR_SHMEM_THPS);
f3f0e1d2 1497 if (nr_none) {
11fb9989
MG
1498 __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1499 __mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
f3f0e1d2
KS
1500 }
1501 local_irq_restore(flags);
1502
1503 /*
1504 * Remove pte page tables, so we can re-faulti
1505 * the page as huge.
1506 */
1507 retract_page_tables(mapping, start);
1508
1509 /* Everything is ready, let's unfreeze the new_page */
1510 set_page_dirty(new_page);
1511 SetPageUptodate(new_page);
1512 page_ref_unfreeze(new_page, HPAGE_PMD_NR);
1513 mem_cgroup_commit_charge(new_page, memcg, false, true);
1514 lru_cache_add_anon(new_page);
1515 unlock_page(new_page);
1516
1517 *hpage = NULL;
1518 } else {
1519 /* Something went wrong: rollback changes to the radix-tree */
1520 shmem_uncharge(mapping->host, nr_none);
1521 spin_lock_irq(&mapping->tree_lock);
1522 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
1523 start) {
1524 if (iter.index >= end)
1525 break;
1526 page = list_first_entry_or_null(&pagelist,
1527 struct page, lru);
1528 if (!page || iter.index < page->index) {
1529 if (!nr_none)
1530 break;
f3f0e1d2 1531 nr_none--;
59749e6c
JW
1532 /* Put holes back where they were */
1533 radix_tree_delete(&mapping->page_tree,
1534 iter.index);
f3f0e1d2
KS
1535 continue;
1536 }
1537
1538 VM_BUG_ON_PAGE(page->index != iter.index, page);
1539
1540 /* Unfreeze the page. */
1541 list_del(&page->lru);
1542 page_ref_unfreeze(page, 2);
6d75f366
JW
1543 radix_tree_replace_slot(&mapping->page_tree,
1544 slot, page);
148deab2 1545 slot = radix_tree_iter_resume(slot, &iter);
f3f0e1d2
KS
1546 spin_unlock_irq(&mapping->tree_lock);
1547 putback_lru_page(page);
1548 unlock_page(page);
1549 spin_lock_irq(&mapping->tree_lock);
1550 }
1551 VM_BUG_ON(nr_none);
1552 spin_unlock_irq(&mapping->tree_lock);
1553
1554 /* Unfreeze new_page, caller would take care about freeing it */
1555 page_ref_unfreeze(new_page, 1);
1556 mem_cgroup_cancel_charge(new_page, memcg, true);
1557 unlock_page(new_page);
1558 new_page->mapping = NULL;
1559 }
1560out:
1561 VM_BUG_ON(!list_empty(&pagelist));
1562 /* TODO: tracepoints */
1563}
1564
1565static void khugepaged_scan_shmem(struct mm_struct *mm,
1566 struct address_space *mapping,
1567 pgoff_t start, struct page **hpage)
1568{
1569 struct page *page = NULL;
1570 struct radix_tree_iter iter;
1571 void **slot;
1572 int present, swap;
1573 int node = NUMA_NO_NODE;
1574 int result = SCAN_SUCCEED;
1575
1576 present = 0;
1577 swap = 0;
1578 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1579 rcu_read_lock();
1580 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1581 if (iter.index >= start + HPAGE_PMD_NR)
1582 break;
1583
1584 page = radix_tree_deref_slot(slot);
1585 if (radix_tree_deref_retry(page)) {
1586 slot = radix_tree_iter_retry(&iter);
1587 continue;
1588 }
1589
1590 if (radix_tree_exception(page)) {
1591 if (++swap > khugepaged_max_ptes_swap) {
1592 result = SCAN_EXCEED_SWAP_PTE;
1593 break;
1594 }
1595 continue;
1596 }
1597
1598 if (PageTransCompound(page)) {
1599 result = SCAN_PAGE_COMPOUND;
1600 break;
1601 }
1602
1603 node = page_to_nid(page);
1604 if (khugepaged_scan_abort(node)) {
1605 result = SCAN_SCAN_ABORT;
1606 break;
1607 }
1608 khugepaged_node_load[node]++;
1609
1610 if (!PageLRU(page)) {
1611 result = SCAN_PAGE_LRU;
1612 break;
1613 }
1614
1615 if (page_count(page) != 1 + page_mapcount(page)) {
1616 result = SCAN_PAGE_COUNT;
1617 break;
1618 }
1619
1620 /*
1621 * We probably should check if the page is referenced here, but
1622 * nobody would transfer pte_young() to PageReferenced() for us.
1623 * And rmap walk here is just too costly...
1624 */
1625
1626 present++;
1627
1628 if (need_resched()) {
148deab2 1629 slot = radix_tree_iter_resume(slot, &iter);
f3f0e1d2 1630 cond_resched_rcu();
f3f0e1d2
KS
1631 }
1632 }
1633 rcu_read_unlock();
1634
1635 if (result == SCAN_SUCCEED) {
1636 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1637 result = SCAN_EXCEED_NONE_PTE;
1638 } else {
1639 node = khugepaged_find_target_node();
1640 collapse_shmem(mm, mapping, start, hpage, node);
1641 }
1642 }
1643
1644 /* TODO: tracepoints */
1645}
1646#else
1647static void khugepaged_scan_shmem(struct mm_struct *mm,
1648 struct address_space *mapping,
1649 pgoff_t start, struct page **hpage)
1650{
1651 BUILD_BUG();
1652}
1653#endif
1654
b46e756f
KS
1655static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1656 struct page **hpage)
1657 __releases(&khugepaged_mm_lock)
1658 __acquires(&khugepaged_mm_lock)
1659{
1660 struct mm_slot *mm_slot;
1661 struct mm_struct *mm;
1662 struct vm_area_struct *vma;
1663 int progress = 0;
1664
1665 VM_BUG_ON(!pages);
1666 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1667
1668 if (khugepaged_scan.mm_slot)
1669 mm_slot = khugepaged_scan.mm_slot;
1670 else {
1671 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1672 struct mm_slot, mm_node);
1673 khugepaged_scan.address = 0;
1674 khugepaged_scan.mm_slot = mm_slot;
1675 }
1676 spin_unlock(&khugepaged_mm_lock);
1677
1678 mm = mm_slot->mm;
1679 down_read(&mm->mmap_sem);
1680 if (unlikely(khugepaged_test_exit(mm)))
1681 vma = NULL;
1682 else
1683 vma = find_vma(mm, khugepaged_scan.address);
1684
1685 progress++;
1686 for (; vma; vma = vma->vm_next) {
1687 unsigned long hstart, hend;
1688
1689 cond_resched();
1690 if (unlikely(khugepaged_test_exit(mm))) {
1691 progress++;
1692 break;
1693 }
1694 if (!hugepage_vma_check(vma)) {
1695skip:
1696 progress++;
1697 continue;
1698 }
1699 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1700 hend = vma->vm_end & HPAGE_PMD_MASK;
1701 if (hstart >= hend)
1702 goto skip;
1703 if (khugepaged_scan.address > hend)
1704 goto skip;
1705 if (khugepaged_scan.address < hstart)
1706 khugepaged_scan.address = hstart;
1707 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1708
1709 while (khugepaged_scan.address < hend) {
1710 int ret;
1711 cond_resched();
1712 if (unlikely(khugepaged_test_exit(mm)))
1713 goto breakouterloop;
1714
1715 VM_BUG_ON(khugepaged_scan.address < hstart ||
1716 khugepaged_scan.address + HPAGE_PMD_SIZE >
1717 hend);
f3f0e1d2 1718 if (shmem_file(vma->vm_file)) {
e496cf3d 1719 struct file *file;
f3f0e1d2
KS
1720 pgoff_t pgoff = linear_page_index(vma,
1721 khugepaged_scan.address);
e496cf3d
KS
1722 if (!shmem_huge_enabled(vma))
1723 goto skip;
1724 file = get_file(vma->vm_file);
f3f0e1d2
KS
1725 up_read(&mm->mmap_sem);
1726 ret = 1;
1727 khugepaged_scan_shmem(mm, file->f_mapping,
1728 pgoff, hpage);
1729 fput(file);
1730 } else {
1731 ret = khugepaged_scan_pmd(mm, vma,
1732 khugepaged_scan.address,
1733 hpage);
1734 }
b46e756f
KS
1735 /* move to next address */
1736 khugepaged_scan.address += HPAGE_PMD_SIZE;
1737 progress += HPAGE_PMD_NR;
1738 if (ret)
1739 /* we released mmap_sem so break loop */
1740 goto breakouterloop_mmap_sem;
1741 if (progress >= pages)
1742 goto breakouterloop;
1743 }
1744 }
1745breakouterloop:
1746 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1747breakouterloop_mmap_sem:
1748
1749 spin_lock(&khugepaged_mm_lock);
1750 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1751 /*
1752 * Release the current mm_slot if this mm is about to die, or
1753 * if we scanned all vmas of this mm.
1754 */
1755 if (khugepaged_test_exit(mm) || !vma) {
1756 /*
1757 * Make sure that if mm_users is reaching zero while
1758 * khugepaged runs here, khugepaged_exit will find
1759 * mm_slot not pointing to the exiting mm.
1760 */
1761 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1762 khugepaged_scan.mm_slot = list_entry(
1763 mm_slot->mm_node.next,
1764 struct mm_slot, mm_node);
1765 khugepaged_scan.address = 0;
1766 } else {
1767 khugepaged_scan.mm_slot = NULL;
1768 khugepaged_full_scans++;
1769 }
1770
1771 collect_mm_slot(mm_slot);
1772 }
1773
1774 return progress;
1775}
1776
1777static int khugepaged_has_work(void)
1778{
1779 return !list_empty(&khugepaged_scan.mm_head) &&
1780 khugepaged_enabled();
1781}
1782
1783static int khugepaged_wait_event(void)
1784{
1785 return !list_empty(&khugepaged_scan.mm_head) ||
1786 kthread_should_stop();
1787}
1788
1789static void khugepaged_do_scan(void)
1790{
1791 struct page *hpage = NULL;
1792 unsigned int progress = 0, pass_through_head = 0;
1793 unsigned int pages = khugepaged_pages_to_scan;
1794 bool wait = true;
1795
1796 barrier(); /* write khugepaged_pages_to_scan to local stack */
1797
1798 while (progress < pages) {
1799 if (!khugepaged_prealloc_page(&hpage, &wait))
1800 break;
1801
1802 cond_resched();
1803
1804 if (unlikely(kthread_should_stop() || try_to_freeze()))
1805 break;
1806
1807 spin_lock(&khugepaged_mm_lock);
1808 if (!khugepaged_scan.mm_slot)
1809 pass_through_head++;
1810 if (khugepaged_has_work() &&
1811 pass_through_head < 2)
1812 progress += khugepaged_scan_mm_slot(pages - progress,
1813 &hpage);
1814 else
1815 progress = pages;
1816 spin_unlock(&khugepaged_mm_lock);
1817 }
1818
1819 if (!IS_ERR_OR_NULL(hpage))
1820 put_page(hpage);
1821}
1822
1823static bool khugepaged_should_wakeup(void)
1824{
1825 return kthread_should_stop() ||
1826 time_after_eq(jiffies, khugepaged_sleep_expire);
1827}
1828
1829static void khugepaged_wait_work(void)
1830{
1831 if (khugepaged_has_work()) {
1832 const unsigned long scan_sleep_jiffies =
1833 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1834
1835 if (!scan_sleep_jiffies)
1836 return;
1837
1838 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1839 wait_event_freezable_timeout(khugepaged_wait,
1840 khugepaged_should_wakeup(),
1841 scan_sleep_jiffies);
1842 return;
1843 }
1844
1845 if (khugepaged_enabled())
1846 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1847}
1848
1849static int khugepaged(void *none)
1850{
1851 struct mm_slot *mm_slot;
1852
1853 set_freezable();
1854 set_user_nice(current, MAX_NICE);
1855
1856 while (!kthread_should_stop()) {
1857 khugepaged_do_scan();
1858 khugepaged_wait_work();
1859 }
1860
1861 spin_lock(&khugepaged_mm_lock);
1862 mm_slot = khugepaged_scan.mm_slot;
1863 khugepaged_scan.mm_slot = NULL;
1864 if (mm_slot)
1865 collect_mm_slot(mm_slot);
1866 spin_unlock(&khugepaged_mm_lock);
1867 return 0;
1868}
1869
1870static void set_recommended_min_free_kbytes(void)
1871{
1872 struct zone *zone;
1873 int nr_zones = 0;
1874 unsigned long recommended_min;
1875
1876 for_each_populated_zone(zone)
1877 nr_zones++;
1878
1879 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1880 recommended_min = pageblock_nr_pages * nr_zones * 2;
1881
1882 /*
1883 * Make sure that on average at least two pageblocks are almost free
1884 * of another type, one for a migratetype to fall back to and a
1885 * second to avoid subsequent fallbacks of other types There are 3
1886 * MIGRATE_TYPES we care about.
1887 */
1888 recommended_min += pageblock_nr_pages * nr_zones *
1889 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1890
1891 /* don't ever allow to reserve more than 5% of the lowmem */
1892 recommended_min = min(recommended_min,
1893 (unsigned long) nr_free_buffer_pages() / 20);
1894 recommended_min <<= (PAGE_SHIFT-10);
1895
1896 if (recommended_min > min_free_kbytes) {
1897 if (user_min_free_kbytes >= 0)
1898 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1899 min_free_kbytes, recommended_min);
1900
1901 min_free_kbytes = recommended_min;
1902 }
1903 setup_per_zone_wmarks();
1904}
1905
1906int start_stop_khugepaged(void)
1907{
1908 static struct task_struct *khugepaged_thread __read_mostly;
1909 static DEFINE_MUTEX(khugepaged_mutex);
1910 int err = 0;
1911
1912 mutex_lock(&khugepaged_mutex);
1913 if (khugepaged_enabled()) {
1914 if (!khugepaged_thread)
1915 khugepaged_thread = kthread_run(khugepaged, NULL,
1916 "khugepaged");
1917 if (IS_ERR(khugepaged_thread)) {
1918 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1919 err = PTR_ERR(khugepaged_thread);
1920 khugepaged_thread = NULL;
1921 goto fail;
1922 }
1923
1924 if (!list_empty(&khugepaged_scan.mm_head))
1925 wake_up_interruptible(&khugepaged_wait);
1926
1927 set_recommended_min_free_kbytes();
1928 } else if (khugepaged_thread) {
1929 kthread_stop(khugepaged_thread);
1930 khugepaged_thread = NULL;
1931 }
1932fail:
1933 mutex_unlock(&khugepaged_mutex);
1934 return err;
1935}