]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/migrate.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / mm / migrate.c
CommitLineData
b20a3503 1/*
14e0f9bc 2 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
b95f1b31 16#include <linux/export.h>
b20a3503 17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503 23#include <linux/pagevec.h>
e9995ef9 24#include <linux/ksm.h>
b20a3503
CL
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
04e62a29 29#include <linux/writeback.h>
742755a1
CL
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
86c3a764 32#include <linux/security.h>
42cb14b1 33#include <linux/backing-dev.h>
bda807d4 34#include <linux/compaction.h>
4f5ca265 35#include <linux/syscalls.h>
290408d4 36#include <linux/hugetlb.h>
8e6ac7fa 37#include <linux/hugetlb_cgroup.h>
5a0e3ad6 38#include <linux/gfp.h>
bf6bddf1 39#include <linux/balloon_compaction.h>
f714f4f2 40#include <linux/mmu_notifier.h>
33c3fc71 41#include <linux/page_idle.h>
d435edca 42#include <linux/page_owner.h>
b20a3503 43
0d1836c3
MN
44#include <asm/tlbflush.h>
45
7b2a2d4a
MG
46#define CREATE_TRACE_POINTS
47#include <trace/events/migrate.h>
48
b20a3503
CL
49#include "internal.h"
50
b20a3503 51/*
742755a1 52 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
53 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
54 * undesirable, use migrate_prep_local()
b20a3503
CL
55 */
56int migrate_prep(void)
57{
b20a3503
CL
58 /*
59 * Clear the LRU lists so pages can be isolated.
60 * Note that pages may be moved off the LRU after we have
61 * drained them. Those pages will fail to migrate like other
62 * pages that may be busy.
63 */
64 lru_add_drain_all();
65
66 return 0;
67}
68
748446bb
MG
69/* Do the necessary work of migrate_prep but not if it involves other CPUs */
70int migrate_prep_local(void)
71{
72 lru_add_drain();
73
74 return 0;
75}
76
bda807d4
MK
77bool isolate_movable_page(struct page *page, isolate_mode_t mode)
78{
79 struct address_space *mapping;
80
81 /*
82 * Avoid burning cycles with pages that are yet under __free_pages(),
83 * or just got freed under us.
84 *
85 * In case we 'win' a race for a movable page being freed under us and
86 * raise its refcount preventing __free_pages() from doing its job
87 * the put_page() at the end of this block will take care of
88 * release this page, thus avoiding a nasty leakage.
89 */
90 if (unlikely(!get_page_unless_zero(page)))
91 goto out;
92
93 /*
94 * Check PageMovable before holding a PG_lock because page's owner
95 * assumes anybody doesn't touch PG_lock of newly allocated page
96 * so unconditionally grapping the lock ruins page's owner side.
97 */
98 if (unlikely(!__PageMovable(page)))
99 goto out_putpage;
100 /*
101 * As movable pages are not isolated from LRU lists, concurrent
102 * compaction threads can race against page migration functions
103 * as well as race against the releasing a page.
104 *
105 * In order to avoid having an already isolated movable page
106 * being (wrongly) re-isolated while it is under migration,
107 * or to avoid attempting to isolate pages being released,
108 * lets be sure we have the page lock
109 * before proceeding with the movable page isolation steps.
110 */
111 if (unlikely(!trylock_page(page)))
112 goto out_putpage;
113
114 if (!PageMovable(page) || PageIsolated(page))
115 goto out_no_isolated;
116
117 mapping = page_mapping(page);
118 VM_BUG_ON_PAGE(!mapping, page);
119
120 if (!mapping->a_ops->isolate_page(page, mode))
121 goto out_no_isolated;
122
123 /* Driver shouldn't use PG_isolated bit of page->flags */
124 WARN_ON_ONCE(PageIsolated(page));
125 __SetPageIsolated(page);
126 unlock_page(page);
127
128 return true;
129
130out_no_isolated:
131 unlock_page(page);
132out_putpage:
133 put_page(page);
134out:
135 return false;
136}
137
138/* It should be called on page which is PG_movable */
139void putback_movable_page(struct page *page)
140{
141 struct address_space *mapping;
142
143 VM_BUG_ON_PAGE(!PageLocked(page), page);
144 VM_BUG_ON_PAGE(!PageMovable(page), page);
145 VM_BUG_ON_PAGE(!PageIsolated(page), page);
146
147 mapping = page_mapping(page);
148 mapping->a_ops->putback_page(page);
149 __ClearPageIsolated(page);
150}
151
5733c7d1
RA
152/*
153 * Put previously isolated pages back onto the appropriate lists
154 * from where they were once taken off for compaction/migration.
155 *
59c82b70
JK
156 * This function shall be used whenever the isolated pageset has been
157 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
158 * and isolate_huge_page().
5733c7d1
RA
159 */
160void putback_movable_pages(struct list_head *l)
161{
162 struct page *page;
163 struct page *page2;
164
b20a3503 165 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
166 if (unlikely(PageHuge(page))) {
167 putback_active_hugepage(page);
168 continue;
169 }
e24f0b8f 170 list_del(&page->lru);
bda807d4
MK
171 /*
172 * We isolated non-lru movable page so here we can use
173 * __PageMovable because LRU page's mapping cannot have
174 * PAGE_MAPPING_MOVABLE.
175 */
b1123ea6 176 if (unlikely(__PageMovable(page))) {
bda807d4
MK
177 VM_BUG_ON_PAGE(!PageIsolated(page), page);
178 lock_page(page);
179 if (PageMovable(page))
180 putback_movable_page(page);
181 else
182 __ClearPageIsolated(page);
183 unlock_page(page);
184 put_page(page);
185 } else {
6afcf8ef
ML
186 dec_node_page_state(page, NR_ISOLATED_ANON +
187 page_is_file_cache(page));
525c73eb 188 putback_lru_page(page);
bda807d4 189 }
b20a3503 190 }
b20a3503
CL
191}
192
0697212a
CL
193/*
194 * Restore a potential migration pte to a working pte entry
195 */
e9995ef9
HD
196static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
197 unsigned long addr, void *old)
0697212a
CL
198{
199 struct mm_struct *mm = vma->vm_mm;
200 swp_entry_t entry;
0697212a
CL
201 pmd_t *pmd;
202 pte_t *ptep, pte;
203 spinlock_t *ptl;
204
290408d4
NH
205 if (unlikely(PageHuge(new))) {
206 ptep = huge_pte_offset(mm, addr);
207 if (!ptep)
208 goto out;
cb900f41 209 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
290408d4 210 } else {
6219049a
BL
211 pmd = mm_find_pmd(mm, addr);
212 if (!pmd)
290408d4 213 goto out;
0697212a 214
290408d4 215 ptep = pte_offset_map(pmd, addr);
0697212a 216
486cf46f
HD
217 /*
218 * Peek to check is_swap_pte() before taking ptlock? No, we
219 * can race mremap's move_ptes(), which skips anon_vma lock.
220 */
290408d4
NH
221
222 ptl = pte_lockptr(mm, pmd);
223 }
0697212a 224
0697212a
CL
225 spin_lock(ptl);
226 pte = *ptep;
227 if (!is_swap_pte(pte))
e9995ef9 228 goto unlock;
0697212a
CL
229
230 entry = pte_to_swp_entry(pte);
231
e9995ef9
HD
232 if (!is_migration_entry(entry) ||
233 migration_entry_to_page(entry) != old)
234 goto unlock;
0697212a 235
0697212a 236 get_page(new);
6d2329f8 237 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
c3d16e16
CG
238 if (pte_swp_soft_dirty(*ptep))
239 pte = pte_mksoft_dirty(pte);
d3cb8bf6
MG
240
241 /* Recheck VMA as permissions can change since migration started */
0697212a 242 if (is_write_migration_entry(entry))
d3cb8bf6
MG
243 pte = maybe_mkwrite(pte, vma);
244
3ef8fd7f 245#ifdef CONFIG_HUGETLB_PAGE
be7517d6 246 if (PageHuge(new)) {
290408d4 247 pte = pte_mkhuge(pte);
be7517d6
TL
248 pte = arch_make_huge_pte(pte, vma, new, 0);
249 }
3ef8fd7f 250#endif
c2cc499c 251 flush_dcache_page(new);
0697212a 252 set_pte_at(mm, addr, ptep, pte);
04e62a29 253
290408d4
NH
254 if (PageHuge(new)) {
255 if (PageAnon(new))
256 hugepage_add_anon_rmap(new, vma, addr);
257 else
53f9263b 258 page_dup_rmap(new, true);
290408d4 259 } else if (PageAnon(new))
d281ee61 260 page_add_anon_rmap(new, vma, addr, false);
04e62a29 261 else
dd78fedd 262 page_add_file_rmap(new, false);
04e62a29 263
e388466d 264 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
51afb12b
HD
265 mlock_vma_page(new);
266
04e62a29 267 /* No need to invalidate - it was non-present before */
4b3073e1 268 update_mmu_cache(vma, addr, ptep);
e9995ef9 269unlock:
0697212a 270 pte_unmap_unlock(ptep, ptl);
e9995ef9
HD
271out:
272 return SWAP_AGAIN;
0697212a
CL
273}
274
04e62a29
CL
275/*
276 * Get rid of all migration entries and replace them by
277 * references to the indicated page.
278 */
e388466d 279void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 280{
051ac83a
JK
281 struct rmap_walk_control rwc = {
282 .rmap_one = remove_migration_pte,
283 .arg = old,
284 };
285
e388466d
KS
286 if (locked)
287 rmap_walk_locked(new, &rwc);
288 else
289 rmap_walk(new, &rwc);
04e62a29
CL
290}
291
0697212a
CL
292/*
293 * Something used the pte of a page under migration. We need to
294 * get to the page and wait until migration is finished.
295 * When we return from this function the fault will be retried.
0697212a 296 */
e66f17ff 297void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 298 spinlock_t *ptl)
0697212a 299{
30dad309 300 pte_t pte;
0697212a
CL
301 swp_entry_t entry;
302 struct page *page;
303
30dad309 304 spin_lock(ptl);
0697212a
CL
305 pte = *ptep;
306 if (!is_swap_pte(pte))
307 goto out;
308
309 entry = pte_to_swp_entry(pte);
310 if (!is_migration_entry(entry))
311 goto out;
312
313 page = migration_entry_to_page(entry);
314
e286781d
NP
315 /*
316 * Once radix-tree replacement of page migration started, page_count
317 * *must* be zero. And, we don't want to call wait_on_page_locked()
318 * against a page without get_page().
319 * So, we use get_page_unless_zero(), here. Even failed, page fault
320 * will occur again.
321 */
322 if (!get_page_unless_zero(page))
323 goto out;
0697212a
CL
324 pte_unmap_unlock(ptep, ptl);
325 wait_on_page_locked(page);
326 put_page(page);
327 return;
328out:
329 pte_unmap_unlock(ptep, ptl);
330}
331
30dad309
NH
332void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
333 unsigned long address)
334{
335 spinlock_t *ptl = pte_lockptr(mm, pmd);
336 pte_t *ptep = pte_offset_map(pmd, address);
337 __migration_entry_wait(mm, ptep, ptl);
338}
339
cb900f41
KS
340void migration_entry_wait_huge(struct vm_area_struct *vma,
341 struct mm_struct *mm, pte_t *pte)
30dad309 342{
cb900f41 343 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
344 __migration_entry_wait(mm, pte, ptl);
345}
346
b969c4ab
MG
347#ifdef CONFIG_BLOCK
348/* Returns true if all buffers are successfully locked */
a6bc32b8
MG
349static bool buffer_migrate_lock_buffers(struct buffer_head *head,
350 enum migrate_mode mode)
b969c4ab
MG
351{
352 struct buffer_head *bh = head;
353
354 /* Simple case, sync compaction */
a6bc32b8 355 if (mode != MIGRATE_ASYNC) {
b969c4ab
MG
356 do {
357 get_bh(bh);
358 lock_buffer(bh);
359 bh = bh->b_this_page;
360
361 } while (bh != head);
362
363 return true;
364 }
365
366 /* async case, we cannot block on lock_buffer so use trylock_buffer */
367 do {
368 get_bh(bh);
369 if (!trylock_buffer(bh)) {
370 /*
371 * We failed to lock the buffer and cannot stall in
372 * async migration. Release the taken locks
373 */
374 struct buffer_head *failed_bh = bh;
375 put_bh(failed_bh);
376 bh = head;
377 while (bh != failed_bh) {
378 unlock_buffer(bh);
379 put_bh(bh);
380 bh = bh->b_this_page;
381 }
382 return false;
383 }
384
385 bh = bh->b_this_page;
386 } while (bh != head);
387 return true;
388}
389#else
390static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
a6bc32b8 391 enum migrate_mode mode)
b969c4ab
MG
392{
393 return true;
394}
395#endif /* CONFIG_BLOCK */
396
b20a3503 397/*
c3fcf8a5 398 * Replace the page in the mapping.
5b5c7120
CL
399 *
400 * The number of remaining references must be:
401 * 1 for anonymous pages without a mapping
402 * 2 for pages with a mapping
266cf658 403 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 404 */
36bc08cc 405int migrate_page_move_mapping(struct address_space *mapping,
b969c4ab 406 struct page *newpage, struct page *page,
8e321fef
BL
407 struct buffer_head *head, enum migrate_mode mode,
408 int extra_count)
b20a3503 409{
42cb14b1
HD
410 struct zone *oldzone, *newzone;
411 int dirty;
8e321fef 412 int expected_count = 1 + extra_count;
7cf9c2c7 413 void **pslot;
b20a3503 414
6c5240ae 415 if (!mapping) {
0e8c7d0f 416 /* Anonymous page without mapping */
8e321fef 417 if (page_count(page) != expected_count)
6c5240ae 418 return -EAGAIN;
cf4b769a
HD
419
420 /* No turning back from here */
cf4b769a
HD
421 newpage->index = page->index;
422 newpage->mapping = page->mapping;
423 if (PageSwapBacked(page))
fa9949da 424 __SetPageSwapBacked(newpage);
cf4b769a 425
78bd5209 426 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
427 }
428
42cb14b1
HD
429 oldzone = page_zone(page);
430 newzone = page_zone(newpage);
431
19fd6231 432 spin_lock_irq(&mapping->tree_lock);
b20a3503 433
7cf9c2c7
NP
434 pslot = radix_tree_lookup_slot(&mapping->page_tree,
435 page_index(page));
b20a3503 436
8e321fef 437 expected_count += 1 + page_has_private(page);
e286781d 438 if (page_count(page) != expected_count ||
29c1f677 439 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
19fd6231 440 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 441 return -EAGAIN;
b20a3503
CL
442 }
443
fe896d18 444 if (!page_ref_freeze(page, expected_count)) {
19fd6231 445 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
446 return -EAGAIN;
447 }
448
b969c4ab
MG
449 /*
450 * In the async migration case of moving a page with buffers, lock the
451 * buffers using trylock before the mapping is moved. If the mapping
452 * was moved, we later failed to lock the buffers and could not move
453 * the mapping back due to an elevated page count, we would have to
454 * block waiting on other references to be dropped.
455 */
a6bc32b8
MG
456 if (mode == MIGRATE_ASYNC && head &&
457 !buffer_migrate_lock_buffers(head, mode)) {
fe896d18 458 page_ref_unfreeze(page, expected_count);
b969c4ab
MG
459 spin_unlock_irq(&mapping->tree_lock);
460 return -EAGAIN;
461 }
462
b20a3503 463 /*
cf4b769a
HD
464 * Now we know that no one else is looking at the page:
465 * no turning back from here.
b20a3503 466 */
cf4b769a
HD
467 newpage->index = page->index;
468 newpage->mapping = page->mapping;
7cf9c2c7 469 get_page(newpage); /* add cache reference */
6326fec1
NP
470 if (PageSwapBacked(page)) {
471 __SetPageSwapBacked(newpage);
472 if (PageSwapCache(page)) {
473 SetPageSwapCache(newpage);
474 set_page_private(newpage, page_private(page));
475 }
476 } else {
477 VM_BUG_ON_PAGE(PageSwapCache(page), page);
b20a3503
CL
478 }
479
42cb14b1
HD
480 /* Move dirty while page refs frozen and newpage not yet exposed */
481 dirty = PageDirty(page);
482 if (dirty) {
483 ClearPageDirty(page);
484 SetPageDirty(newpage);
485 }
486
6d75f366 487 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
7cf9c2c7
NP
488
489 /*
937a94c9
JG
490 * Drop cache reference from old page by unfreezing
491 * to one less reference.
7cf9c2c7
NP
492 * We know this isn't the last reference.
493 */
fe896d18 494 page_ref_unfreeze(page, expected_count - 1);
7cf9c2c7 495
42cb14b1
HD
496 spin_unlock(&mapping->tree_lock);
497 /* Leave irq disabled to prevent preemption while updating stats */
498
0e8c7d0f
CL
499 /*
500 * If moved to a different zone then also account
501 * the page for that zone. Other VM counters will be
502 * taken care of when we establish references to the
503 * new page and drop references to the old page.
504 *
505 * Note that anonymous pages are accounted for
4b9d0fab 506 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0e8c7d0f
CL
507 * are mapped to swap space.
508 */
42cb14b1 509 if (newzone != oldzone) {
11fb9989
MG
510 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
511 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
42cb14b1 512 if (PageSwapBacked(page) && !PageSwapCache(page)) {
11fb9989
MG
513 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
514 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
42cb14b1
HD
515 }
516 if (dirty && mapping_cap_account_dirty(mapping)) {
11fb9989 517 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 518 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
11fb9989 519 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 520 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
42cb14b1 521 }
4b02108a 522 }
42cb14b1 523 local_irq_enable();
b20a3503 524
78bd5209 525 return MIGRATEPAGE_SUCCESS;
b20a3503 526}
1118dce7 527EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 528
290408d4
NH
529/*
530 * The expected number of remaining references is the same as that
531 * of migrate_page_move_mapping().
532 */
533int migrate_huge_page_move_mapping(struct address_space *mapping,
534 struct page *newpage, struct page *page)
535{
536 int expected_count;
537 void **pslot;
538
290408d4
NH
539 spin_lock_irq(&mapping->tree_lock);
540
541 pslot = radix_tree_lookup_slot(&mapping->page_tree,
542 page_index(page));
543
544 expected_count = 2 + page_has_private(page);
545 if (page_count(page) != expected_count ||
29c1f677 546 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
290408d4
NH
547 spin_unlock_irq(&mapping->tree_lock);
548 return -EAGAIN;
549 }
550
fe896d18 551 if (!page_ref_freeze(page, expected_count)) {
290408d4
NH
552 spin_unlock_irq(&mapping->tree_lock);
553 return -EAGAIN;
554 }
555
cf4b769a
HD
556 newpage->index = page->index;
557 newpage->mapping = page->mapping;
6a93ca8f 558
290408d4
NH
559 get_page(newpage);
560
6d75f366 561 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
290408d4 562
fe896d18 563 page_ref_unfreeze(page, expected_count - 1);
290408d4
NH
564
565 spin_unlock_irq(&mapping->tree_lock);
6a93ca8f 566
78bd5209 567 return MIGRATEPAGE_SUCCESS;
290408d4
NH
568}
569
30b0a105
DH
570/*
571 * Gigantic pages are so large that we do not guarantee that page++ pointer
572 * arithmetic will work across the entire page. We need something more
573 * specialized.
574 */
575static void __copy_gigantic_page(struct page *dst, struct page *src,
576 int nr_pages)
577{
578 int i;
579 struct page *dst_base = dst;
580 struct page *src_base = src;
581
582 for (i = 0; i < nr_pages; ) {
583 cond_resched();
584 copy_highpage(dst, src);
585
586 i++;
587 dst = mem_map_next(dst, dst_base, i);
588 src = mem_map_next(src, src_base, i);
589 }
590}
591
592static void copy_huge_page(struct page *dst, struct page *src)
593{
594 int i;
595 int nr_pages;
596
597 if (PageHuge(src)) {
598 /* hugetlbfs page */
599 struct hstate *h = page_hstate(src);
600 nr_pages = pages_per_huge_page(h);
601
602 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
603 __copy_gigantic_page(dst, src, nr_pages);
604 return;
605 }
606 } else {
607 /* thp page */
608 BUG_ON(!PageTransHuge(src));
609 nr_pages = hpage_nr_pages(src);
610 }
611
612 for (i = 0; i < nr_pages; i++) {
613 cond_resched();
614 copy_highpage(dst + i, src + i);
615 }
616}
617
b20a3503
CL
618/*
619 * Copy the page to its new location
620 */
290408d4 621void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503 622{
7851a45c
RR
623 int cpupid;
624
b32967ff 625 if (PageHuge(page) || PageTransHuge(page))
290408d4
NH
626 copy_huge_page(newpage, page);
627 else
628 copy_highpage(newpage, page);
b20a3503
CL
629
630 if (PageError(page))
631 SetPageError(newpage);
632 if (PageReferenced(page))
633 SetPageReferenced(newpage);
634 if (PageUptodate(page))
635 SetPageUptodate(newpage);
894bc310 636 if (TestClearPageActive(page)) {
309381fe 637 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 638 SetPageActive(newpage);
418b27ef
LS
639 } else if (TestClearPageUnevictable(page))
640 SetPageUnevictable(newpage);
b20a3503
CL
641 if (PageChecked(page))
642 SetPageChecked(newpage);
643 if (PageMappedToDisk(page))
644 SetPageMappedToDisk(newpage);
645
42cb14b1
HD
646 /* Move dirty on pages not done by migrate_page_move_mapping() */
647 if (PageDirty(page))
648 SetPageDirty(newpage);
b20a3503 649
33c3fc71
VD
650 if (page_is_young(page))
651 set_page_young(newpage);
652 if (page_is_idle(page))
653 set_page_idle(newpage);
654
7851a45c
RR
655 /*
656 * Copy NUMA information to the new page, to prevent over-eager
657 * future migrations of this same page.
658 */
659 cpupid = page_cpupid_xchg_last(page, -1);
660 page_cpupid_xchg_last(newpage, cpupid);
661
e9995ef9 662 ksm_migrate_page(newpage, page);
c8d6553b
HD
663 /*
664 * Please do not reorder this without considering how mm/ksm.c's
665 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
666 */
b3b3a99c
NH
667 if (PageSwapCache(page))
668 ClearPageSwapCache(page);
b20a3503
CL
669 ClearPagePrivate(page);
670 set_page_private(page, 0);
b20a3503
CL
671
672 /*
673 * If any waiters have accumulated on the new page then
674 * wake them up.
675 */
676 if (PageWriteback(newpage))
677 end_page_writeback(newpage);
d435edca
VB
678
679 copy_page_owner(page, newpage);
74485cf2
JW
680
681 mem_cgroup_migrate(page, newpage);
b20a3503 682}
1118dce7 683EXPORT_SYMBOL(migrate_page_copy);
b20a3503 684
1d8b85cc
CL
685/************************************************************
686 * Migration functions
687 ***********************************************************/
688
b20a3503 689/*
bda807d4 690 * Common logic to directly migrate a single LRU page suitable for
266cf658 691 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
692 *
693 * Pages are locked upon entry and exit.
694 */
2d1db3b1 695int migrate_page(struct address_space *mapping,
a6bc32b8
MG
696 struct page *newpage, struct page *page,
697 enum migrate_mode mode)
b20a3503
CL
698{
699 int rc;
700
701 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
702
8e321fef 703 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
b20a3503 704
78bd5209 705 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
706 return rc;
707
708 migrate_page_copy(newpage, page);
78bd5209 709 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
710}
711EXPORT_SYMBOL(migrate_page);
712
9361401e 713#ifdef CONFIG_BLOCK
1d8b85cc
CL
714/*
715 * Migration function for pages with buffers. This function can only be used
716 * if the underlying filesystem guarantees that no other references to "page"
717 * exist.
718 */
2d1db3b1 719int buffer_migrate_page(struct address_space *mapping,
a6bc32b8 720 struct page *newpage, struct page *page, enum migrate_mode mode)
1d8b85cc 721{
1d8b85cc
CL
722 struct buffer_head *bh, *head;
723 int rc;
724
1d8b85cc 725 if (!page_has_buffers(page))
a6bc32b8 726 return migrate_page(mapping, newpage, page, mode);
1d8b85cc
CL
727
728 head = page_buffers(page);
729
8e321fef 730 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
1d8b85cc 731
78bd5209 732 if (rc != MIGRATEPAGE_SUCCESS)
1d8b85cc
CL
733 return rc;
734
b969c4ab
MG
735 /*
736 * In the async case, migrate_page_move_mapping locked the buffers
737 * with an IRQ-safe spinlock held. In the sync case, the buffers
738 * need to be locked now
739 */
a6bc32b8
MG
740 if (mode != MIGRATE_ASYNC)
741 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
1d8b85cc
CL
742
743 ClearPagePrivate(page);
744 set_page_private(newpage, page_private(page));
745 set_page_private(page, 0);
746 put_page(page);
747 get_page(newpage);
748
749 bh = head;
750 do {
751 set_bh_page(bh, newpage, bh_offset(bh));
752 bh = bh->b_this_page;
753
754 } while (bh != head);
755
756 SetPagePrivate(newpage);
757
758 migrate_page_copy(newpage, page);
759
760 bh = head;
761 do {
762 unlock_buffer(bh);
763 put_bh(bh);
764 bh = bh->b_this_page;
765
766 } while (bh != head);
767
78bd5209 768 return MIGRATEPAGE_SUCCESS;
1d8b85cc
CL
769}
770EXPORT_SYMBOL(buffer_migrate_page);
9361401e 771#endif
1d8b85cc 772
04e62a29
CL
773/*
774 * Writeback a page to clean the dirty state
775 */
776static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 777{
04e62a29
CL
778 struct writeback_control wbc = {
779 .sync_mode = WB_SYNC_NONE,
780 .nr_to_write = 1,
781 .range_start = 0,
782 .range_end = LLONG_MAX,
04e62a29
CL
783 .for_reclaim = 1
784 };
785 int rc;
786
787 if (!mapping->a_ops->writepage)
788 /* No write method for the address space */
789 return -EINVAL;
790
791 if (!clear_page_dirty_for_io(page))
792 /* Someone else already triggered a write */
793 return -EAGAIN;
794
8351a6e4 795 /*
04e62a29
CL
796 * A dirty page may imply that the underlying filesystem has
797 * the page on some queue. So the page must be clean for
798 * migration. Writeout may mean we loose the lock and the
799 * page state is no longer what we checked for earlier.
800 * At this point we know that the migration attempt cannot
801 * be successful.
8351a6e4 802 */
e388466d 803 remove_migration_ptes(page, page, false);
8351a6e4 804
04e62a29 805 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 806
04e62a29
CL
807 if (rc != AOP_WRITEPAGE_ACTIVATE)
808 /* unlocked. Relock */
809 lock_page(page);
810
bda8550d 811 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
812}
813
814/*
815 * Default handling if a filesystem does not provide a migration function.
816 */
817static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 818 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 819{
b969c4ab 820 if (PageDirty(page)) {
a6bc32b8
MG
821 /* Only writeback pages in full synchronous migration */
822 if (mode != MIGRATE_SYNC)
b969c4ab 823 return -EBUSY;
04e62a29 824 return writeout(mapping, page);
b969c4ab 825 }
8351a6e4
CL
826
827 /*
828 * Buffers may be managed in a filesystem specific way.
829 * We must have no buffers or drop them.
830 */
266cf658 831 if (page_has_private(page) &&
8351a6e4
CL
832 !try_to_release_page(page, GFP_KERNEL))
833 return -EAGAIN;
834
a6bc32b8 835 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
836}
837
e24f0b8f
CL
838/*
839 * Move a page to a newly allocated page
840 * The page is locked and all ptes have been successfully removed.
841 *
842 * The new page will have replaced the old page if this function
843 * is successful.
894bc310
LS
844 *
845 * Return value:
846 * < 0 - error code
78bd5209 847 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 848 */
3fe2011f 849static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 850 enum migrate_mode mode)
e24f0b8f
CL
851{
852 struct address_space *mapping;
bda807d4
MK
853 int rc = -EAGAIN;
854 bool is_lru = !__PageMovable(page);
e24f0b8f 855
7db7671f
HD
856 VM_BUG_ON_PAGE(!PageLocked(page), page);
857 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 858
e24f0b8f 859 mapping = page_mapping(page);
bda807d4
MK
860
861 if (likely(is_lru)) {
862 if (!mapping)
863 rc = migrate_page(mapping, newpage, page, mode);
864 else if (mapping->a_ops->migratepage)
865 /*
866 * Most pages have a mapping and most filesystems
867 * provide a migratepage callback. Anonymous pages
868 * are part of swap space which also has its own
869 * migratepage callback. This is the most common path
870 * for page migration.
871 */
872 rc = mapping->a_ops->migratepage(mapping, newpage,
873 page, mode);
874 else
875 rc = fallback_migrate_page(mapping, newpage,
876 page, mode);
877 } else {
e24f0b8f 878 /*
bda807d4
MK
879 * In case of non-lru page, it could be released after
880 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 881 */
bda807d4
MK
882 VM_BUG_ON_PAGE(!PageIsolated(page), page);
883 if (!PageMovable(page)) {
884 rc = MIGRATEPAGE_SUCCESS;
885 __ClearPageIsolated(page);
886 goto out;
887 }
888
889 rc = mapping->a_ops->migratepage(mapping, newpage,
890 page, mode);
891 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
892 !PageIsolated(page));
893 }
e24f0b8f 894
5c3f9a67
HD
895 /*
896 * When successful, old pagecache page->mapping must be cleared before
897 * page is freed; but stats require that PageAnon be left as PageAnon.
898 */
899 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
900 if (__PageMovable(page)) {
901 VM_BUG_ON_PAGE(!PageIsolated(page), page);
902
903 /*
904 * We clear PG_movable under page_lock so any compactor
905 * cannot try to migrate this page.
906 */
907 __ClearPageIsolated(page);
908 }
909
910 /*
911 * Anonymous and movable page->mapping will be cleard by
912 * free_pages_prepare so don't reset it here for keeping
913 * the type to work PageAnon, for example.
914 */
915 if (!PageMappingFlags(page))
5c3f9a67 916 page->mapping = NULL;
3fe2011f 917 }
bda807d4 918out:
e24f0b8f
CL
919 return rc;
920}
921
0dabec93 922static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 923 int force, enum migrate_mode mode)
e24f0b8f 924{
0dabec93 925 int rc = -EAGAIN;
2ebba6b7 926 int page_was_mapped = 0;
3f6c8272 927 struct anon_vma *anon_vma = NULL;
bda807d4 928 bool is_lru = !__PageMovable(page);
95a402c3 929
529ae9aa 930 if (!trylock_page(page)) {
a6bc32b8 931 if (!force || mode == MIGRATE_ASYNC)
0dabec93 932 goto out;
3e7d3449
MG
933
934 /*
935 * It's not safe for direct compaction to call lock_page.
936 * For example, during page readahead pages are added locked
937 * to the LRU. Later, when the IO completes the pages are
938 * marked uptodate and unlocked. However, the queueing
939 * could be merging multiple pages for one bio (e.g.
940 * mpage_readpages). If an allocation happens for the
941 * second or third page, the process can end up locking
942 * the same page twice and deadlocking. Rather than
943 * trying to be clever about what pages can be locked,
944 * avoid the use of lock_page for direct compaction
945 * altogether.
946 */
947 if (current->flags & PF_MEMALLOC)
0dabec93 948 goto out;
3e7d3449 949
e24f0b8f
CL
950 lock_page(page);
951 }
952
953 if (PageWriteback(page)) {
11bc82d6 954 /*
fed5b64a 955 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
956 * necessary to wait for PageWriteback. In the async case,
957 * the retry loop is too short and in the sync-light case,
958 * the overhead of stalling is too much
11bc82d6 959 */
a6bc32b8 960 if (mode != MIGRATE_SYNC) {
11bc82d6 961 rc = -EBUSY;
0a31bc97 962 goto out_unlock;
11bc82d6
AA
963 }
964 if (!force)
0a31bc97 965 goto out_unlock;
e24f0b8f
CL
966 wait_on_page_writeback(page);
967 }
03f15c86 968
e24f0b8f 969 /*
dc386d4d
KH
970 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
971 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 972 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 973 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
974 * File Caches may use write_page() or lock_page() in migration, then,
975 * just care Anon page here.
03f15c86
HD
976 *
977 * Only page_get_anon_vma() understands the subtleties of
978 * getting a hold on an anon_vma from outside one of its mms.
979 * But if we cannot get anon_vma, then we won't need it anyway,
980 * because that implies that the anon page is no longer mapped
981 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 982 */
03f15c86 983 if (PageAnon(page) && !PageKsm(page))
746b18d4 984 anon_vma = page_get_anon_vma(page);
62e1c553 985
7db7671f
HD
986 /*
987 * Block others from accessing the new page when we get around to
988 * establishing additional references. We are usually the only one
989 * holding a reference to newpage at this point. We used to have a BUG
990 * here if trylock_page(newpage) fails, but would like to allow for
991 * cases where there might be a race with the previous use of newpage.
992 * This is much like races on refcount of oldpage: just don't BUG().
993 */
994 if (unlikely(!trylock_page(newpage)))
995 goto out_unlock;
996
bda807d4
MK
997 if (unlikely(!is_lru)) {
998 rc = move_to_new_page(newpage, page, mode);
999 goto out_unlock_both;
1000 }
1001
dc386d4d 1002 /*
62e1c553
SL
1003 * Corner case handling:
1004 * 1. When a new swap-cache page is read into, it is added to the LRU
1005 * and treated as swapcache but it has no rmap yet.
1006 * Calling try_to_unmap() against a page->mapping==NULL page will
1007 * trigger a BUG. So handle it here.
1008 * 2. An orphaned page (see truncate_complete_page) might have
1009 * fs-private metadata. The page can be picked up due to memory
1010 * offlining. Everywhere else except page reclaim, the page is
1011 * invisible to the vm, so the page can not be migrated. So try to
1012 * free the metadata, so the page can be freed.
e24f0b8f 1013 */
62e1c553 1014 if (!page->mapping) {
309381fe 1015 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1016 if (page_has_private(page)) {
62e1c553 1017 try_to_free_buffers(page);
7db7671f 1018 goto out_unlock_both;
62e1c553 1019 }
7db7671f
HD
1020 } else if (page_mapped(page)) {
1021 /* Establish migration ptes */
03f15c86
HD
1022 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1023 page);
2ebba6b7 1024 try_to_unmap(page,
da1b13cc 1025 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
1026 page_was_mapped = 1;
1027 }
dc386d4d 1028
e6a1530d 1029 if (!page_mapped(page))
5c3f9a67 1030 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1031
5c3f9a67
HD
1032 if (page_was_mapped)
1033 remove_migration_ptes(page,
e388466d 1034 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1035
7db7671f
HD
1036out_unlock_both:
1037 unlock_page(newpage);
1038out_unlock:
3f6c8272 1039 /* Drop an anon_vma reference if we took one */
76545066 1040 if (anon_vma)
9e60109f 1041 put_anon_vma(anon_vma);
e24f0b8f 1042 unlock_page(page);
0dabec93 1043out:
c6c919eb
MK
1044 /*
1045 * If migration is successful, decrease refcount of the newpage
1046 * which will not free the page because new page owner increased
1047 * refcounter. As well, if it is LRU page, add the page to LRU
1048 * list in here.
1049 */
1050 if (rc == MIGRATEPAGE_SUCCESS) {
b1123ea6 1051 if (unlikely(__PageMovable(newpage)))
c6c919eb
MK
1052 put_page(newpage);
1053 else
1054 putback_lru_page(newpage);
1055 }
1056
0dabec93
MK
1057 return rc;
1058}
95a402c3 1059
ef2a5153
GU
1060/*
1061 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1062 * around it.
1063 */
1064#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1065#define ICE_noinline noinline
1066#else
1067#define ICE_noinline
1068#endif
1069
0dabec93
MK
1070/*
1071 * Obtain the lock on page, remove all ptes and migrate the page
1072 * to the newly allocated page in newpage.
1073 */
ef2a5153
GU
1074static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1075 free_page_t put_new_page,
1076 unsigned long private, struct page *page,
add05cec
NH
1077 int force, enum migrate_mode mode,
1078 enum migrate_reason reason)
0dabec93 1079{
2def7424 1080 int rc = MIGRATEPAGE_SUCCESS;
0dabec93 1081 int *result = NULL;
2def7424 1082 struct page *newpage;
0dabec93 1083
2def7424 1084 newpage = get_new_page(page, private, &result);
0dabec93
MK
1085 if (!newpage)
1086 return -ENOMEM;
1087
1088 if (page_count(page) == 1) {
1089 /* page was freed from under us. So we are done. */
c6c919eb
MK
1090 ClearPageActive(page);
1091 ClearPageUnevictable(page);
bda807d4
MK
1092 if (unlikely(__PageMovable(page))) {
1093 lock_page(page);
1094 if (!PageMovable(page))
1095 __ClearPageIsolated(page);
1096 unlock_page(page);
1097 }
c6c919eb
MK
1098 if (put_new_page)
1099 put_new_page(newpage, private);
1100 else
1101 put_page(newpage);
0dabec93
MK
1102 goto out;
1103 }
1104
4d2fa965
KS
1105 if (unlikely(PageTransHuge(page))) {
1106 lock_page(page);
1107 rc = split_huge_page(page);
1108 unlock_page(page);
1109 if (rc)
0dabec93 1110 goto out;
4d2fa965 1111 }
0dabec93 1112
9c620e2b 1113 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1114 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1115 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1116
0dabec93 1117out:
e24f0b8f 1118 if (rc != -EAGAIN) {
0dabec93
MK
1119 /*
1120 * A page that has been migrated has all references
1121 * removed and will be freed. A page that has not been
1122 * migrated will have kepts its references and be
1123 * restored.
1124 */
1125 list_del(&page->lru);
6afcf8ef
ML
1126
1127 /*
1128 * Compaction can migrate also non-LRU pages which are
1129 * not accounted to NR_ISOLATED_*. They can be recognized
1130 * as __PageMovable
1131 */
1132 if (likely(!__PageMovable(page)))
1133 dec_node_page_state(page, NR_ISOLATED_ANON +
1134 page_is_file_cache(page));
c6c919eb
MK
1135 }
1136
1137 /*
1138 * If migration is successful, releases reference grabbed during
1139 * isolation. Otherwise, restore the page to right list unless
1140 * we want to retry.
1141 */
1142 if (rc == MIGRATEPAGE_SUCCESS) {
1143 put_page(page);
1144 if (reason == MR_MEMORY_FAILURE) {
d7e69488 1145 /*
c6c919eb
MK
1146 * Set PG_HWPoison on just freed page
1147 * intentionally. Although it's rather weird,
1148 * it's how HWPoison flag works at the moment.
d7e69488 1149 */
da1b13cc
WL
1150 if (!test_set_page_hwpoison(page))
1151 num_poisoned_pages_inc();
c6c919eb
MK
1152 }
1153 } else {
bda807d4
MK
1154 if (rc != -EAGAIN) {
1155 if (likely(!__PageMovable(page))) {
1156 putback_lru_page(page);
1157 goto put_new;
1158 }
1159
1160 lock_page(page);
1161 if (PageMovable(page))
1162 putback_movable_page(page);
1163 else
1164 __ClearPageIsolated(page);
1165 unlock_page(page);
1166 put_page(page);
1167 }
1168put_new:
c6c919eb
MK
1169 if (put_new_page)
1170 put_new_page(newpage, private);
1171 else
1172 put_page(newpage);
e24f0b8f 1173 }
68711a74 1174
742755a1
CL
1175 if (result) {
1176 if (rc)
1177 *result = rc;
1178 else
1179 *result = page_to_nid(newpage);
1180 }
e24f0b8f
CL
1181 return rc;
1182}
1183
290408d4
NH
1184/*
1185 * Counterpart of unmap_and_move_page() for hugepage migration.
1186 *
1187 * This function doesn't wait the completion of hugepage I/O
1188 * because there is no race between I/O and migration for hugepage.
1189 * Note that currently hugepage I/O occurs only in direct I/O
1190 * where no lock is held and PG_writeback is irrelevant,
1191 * and writeback status of all subpages are counted in the reference
1192 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1193 * under direct I/O, the reference of the head page is 512 and a bit more.)
1194 * This means that when we try to migrate hugepage whose subpages are
1195 * doing direct I/O, some references remain after try_to_unmap() and
1196 * hugepage migration fails without data corruption.
1197 *
1198 * There is also no race when direct I/O is issued on the page under migration,
1199 * because then pte is replaced with migration swap entry and direct I/O code
1200 * will wait in the page fault for migration to complete.
1201 */
1202static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1203 free_page_t put_new_page, unsigned long private,
1204 struct page *hpage, int force,
7cd12b4a 1205 enum migrate_mode mode, int reason)
290408d4 1206{
2def7424 1207 int rc = -EAGAIN;
290408d4 1208 int *result = NULL;
2ebba6b7 1209 int page_was_mapped = 0;
32665f2b 1210 struct page *new_hpage;
290408d4
NH
1211 struct anon_vma *anon_vma = NULL;
1212
83467efb
NH
1213 /*
1214 * Movability of hugepages depends on architectures and hugepage size.
1215 * This check is necessary because some callers of hugepage migration
1216 * like soft offline and memory hotremove don't walk through page
1217 * tables or check whether the hugepage is pmd-based or not before
1218 * kicking migration.
1219 */
100873d7 1220 if (!hugepage_migration_supported(page_hstate(hpage))) {
32665f2b 1221 putback_active_hugepage(hpage);
83467efb 1222 return -ENOSYS;
32665f2b 1223 }
83467efb 1224
32665f2b 1225 new_hpage = get_new_page(hpage, private, &result);
290408d4
NH
1226 if (!new_hpage)
1227 return -ENOMEM;
1228
290408d4 1229 if (!trylock_page(hpage)) {
a6bc32b8 1230 if (!force || mode != MIGRATE_SYNC)
290408d4
NH
1231 goto out;
1232 lock_page(hpage);
1233 }
1234
746b18d4
PZ
1235 if (PageAnon(hpage))
1236 anon_vma = page_get_anon_vma(hpage);
290408d4 1237
7db7671f
HD
1238 if (unlikely(!trylock_page(new_hpage)))
1239 goto put_anon;
1240
2ebba6b7
HD
1241 if (page_mapped(hpage)) {
1242 try_to_unmap(hpage,
1243 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1244 page_was_mapped = 1;
1245 }
290408d4
NH
1246
1247 if (!page_mapped(hpage))
5c3f9a67 1248 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1249
5c3f9a67
HD
1250 if (page_was_mapped)
1251 remove_migration_ptes(hpage,
e388466d 1252 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
290408d4 1253
7db7671f
HD
1254 unlock_page(new_hpage);
1255
1256put_anon:
fd4a4663 1257 if (anon_vma)
9e60109f 1258 put_anon_vma(anon_vma);
8e6ac7fa 1259
2def7424 1260 if (rc == MIGRATEPAGE_SUCCESS) {
8e6ac7fa 1261 hugetlb_cgroup_migrate(hpage, new_hpage);
2def7424 1262 put_new_page = NULL;
7cd12b4a 1263 set_page_owner_migrate_reason(new_hpage, reason);
2def7424 1264 }
8e6ac7fa 1265
290408d4 1266 unlock_page(hpage);
09761333 1267out:
b8ec1cee
NH
1268 if (rc != -EAGAIN)
1269 putback_active_hugepage(hpage);
68711a74
DR
1270
1271 /*
1272 * If migration was not successful and there's a freeing callback, use
1273 * it. Otherwise, put_page() will drop the reference grabbed during
1274 * isolation.
1275 */
2def7424 1276 if (put_new_page)
68711a74
DR
1277 put_new_page(new_hpage, private);
1278 else
3aaa76e1 1279 putback_active_hugepage(new_hpage);
68711a74 1280
290408d4
NH
1281 if (result) {
1282 if (rc)
1283 *result = rc;
1284 else
1285 *result = page_to_nid(new_hpage);
1286 }
1287 return rc;
1288}
1289
b20a3503 1290/*
c73e5c9c
SB
1291 * migrate_pages - migrate the pages specified in a list, to the free pages
1292 * supplied as the target for the page migration
b20a3503 1293 *
c73e5c9c
SB
1294 * @from: The list of pages to be migrated.
1295 * @get_new_page: The function used to allocate free pages to be used
1296 * as the target of the page migration.
68711a74
DR
1297 * @put_new_page: The function used to free target pages if migration
1298 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1299 * @private: Private data to be passed on to get_new_page()
1300 * @mode: The migration mode that specifies the constraints for
1301 * page migration, if any.
1302 * @reason: The reason for page migration.
b20a3503 1303 *
c73e5c9c
SB
1304 * The function returns after 10 attempts or if no pages are movable any more
1305 * because the list has become empty or no retryable pages exist any more.
14e0f9bc 1306 * The caller should call putback_movable_pages() to return pages to the LRU
28bd6578 1307 * or free list only if ret != 0.
b20a3503 1308 *
c73e5c9c 1309 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1310 */
9c620e2b 1311int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1312 free_page_t put_new_page, unsigned long private,
1313 enum migrate_mode mode, int reason)
b20a3503 1314{
e24f0b8f 1315 int retry = 1;
b20a3503 1316 int nr_failed = 0;
5647bc29 1317 int nr_succeeded = 0;
b20a3503
CL
1318 int pass = 0;
1319 struct page *page;
1320 struct page *page2;
1321 int swapwrite = current->flags & PF_SWAPWRITE;
1322 int rc;
1323
1324 if (!swapwrite)
1325 current->flags |= PF_SWAPWRITE;
1326
e24f0b8f
CL
1327 for(pass = 0; pass < 10 && retry; pass++) {
1328 retry = 0;
b20a3503 1329
e24f0b8f 1330 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 1331 cond_resched();
2d1db3b1 1332
31caf665
NH
1333 if (PageHuge(page))
1334 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1335 put_new_page, private, page,
7cd12b4a 1336 pass > 2, mode, reason);
31caf665 1337 else
68711a74 1338 rc = unmap_and_move(get_new_page, put_new_page,
add05cec
NH
1339 private, page, pass > 2, mode,
1340 reason);
2d1db3b1 1341
e24f0b8f 1342 switch(rc) {
95a402c3 1343 case -ENOMEM:
dfef2ef4 1344 nr_failed++;
95a402c3 1345 goto out;
e24f0b8f 1346 case -EAGAIN:
2d1db3b1 1347 retry++;
e24f0b8f 1348 break;
78bd5209 1349 case MIGRATEPAGE_SUCCESS:
5647bc29 1350 nr_succeeded++;
e24f0b8f
CL
1351 break;
1352 default:
354a3363
NH
1353 /*
1354 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1355 * unlike -EAGAIN case, the failed page is
1356 * removed from migration page list and not
1357 * retried in the next outer loop.
1358 */
2d1db3b1 1359 nr_failed++;
e24f0b8f 1360 break;
2d1db3b1 1361 }
b20a3503
CL
1362 }
1363 }
f2f81fb2
VB
1364 nr_failed += retry;
1365 rc = nr_failed;
95a402c3 1366out:
5647bc29
MG
1367 if (nr_succeeded)
1368 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1369 if (nr_failed)
1370 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1371 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1372
b20a3503
CL
1373 if (!swapwrite)
1374 current->flags &= ~PF_SWAPWRITE;
1375
78bd5209 1376 return rc;
b20a3503 1377}
95a402c3 1378
742755a1
CL
1379#ifdef CONFIG_NUMA
1380/*
1381 * Move a list of individual pages
1382 */
1383struct page_to_node {
1384 unsigned long addr;
1385 struct page *page;
1386 int node;
1387 int status;
1388};
1389
1390static struct page *new_page_node(struct page *p, unsigned long private,
1391 int **result)
1392{
1393 struct page_to_node *pm = (struct page_to_node *)private;
1394
1395 while (pm->node != MAX_NUMNODES && pm->page != p)
1396 pm++;
1397
1398 if (pm->node == MAX_NUMNODES)
1399 return NULL;
1400
1401 *result = &pm->status;
1402
e632a938
NH
1403 if (PageHuge(p))
1404 return alloc_huge_page_node(page_hstate(compound_head(p)),
1405 pm->node);
1406 else
96db800f 1407 return __alloc_pages_node(pm->node,
e97ca8e5 1408 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
742755a1
CL
1409}
1410
1411/*
1412 * Move a set of pages as indicated in the pm array. The addr
1413 * field must be set to the virtual address of the page to be moved
1414 * and the node number must contain a valid target node.
5e9a0f02 1415 * The pm array ends with node = MAX_NUMNODES.
742755a1 1416 */
5e9a0f02
BG
1417static int do_move_page_to_node_array(struct mm_struct *mm,
1418 struct page_to_node *pm,
1419 int migrate_all)
742755a1
CL
1420{
1421 int err;
1422 struct page_to_node *pp;
1423 LIST_HEAD(pagelist);
1424
1425 down_read(&mm->mmap_sem);
1426
1427 /*
1428 * Build a list of pages to migrate
1429 */
742755a1
CL
1430 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1431 struct vm_area_struct *vma;
1432 struct page *page;
1433
742755a1
CL
1434 err = -EFAULT;
1435 vma = find_vma(mm, pp->addr);
70384dc6 1436 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
742755a1
CL
1437 goto set_status;
1438
d899844e
KS
1439 /* FOLL_DUMP to ignore special (like zero) pages */
1440 page = follow_page(vma, pp->addr,
1441 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
89f5b7da
LT
1442
1443 err = PTR_ERR(page);
1444 if (IS_ERR(page))
1445 goto set_status;
1446
742755a1
CL
1447 err = -ENOENT;
1448 if (!page)
1449 goto set_status;
1450
742755a1
CL
1451 pp->page = page;
1452 err = page_to_nid(page);
1453
1454 if (err == pp->node)
1455 /*
1456 * Node already in the right place
1457 */
1458 goto put_and_set;
1459
1460 err = -EACCES;
1461 if (page_mapcount(page) > 1 &&
1462 !migrate_all)
1463 goto put_and_set;
1464
e632a938 1465 if (PageHuge(page)) {
e66f17ff
NH
1466 if (PageHead(page))
1467 isolate_huge_page(page, &pagelist);
e632a938
NH
1468 goto put_and_set;
1469 }
1470
62695a84 1471 err = isolate_lru_page(page);
6d9c285a 1472 if (!err) {
62695a84 1473 list_add_tail(&page->lru, &pagelist);
599d0c95 1474 inc_node_page_state(page, NR_ISOLATED_ANON +
6d9c285a
KM
1475 page_is_file_cache(page));
1476 }
742755a1
CL
1477put_and_set:
1478 /*
1479 * Either remove the duplicate refcount from
1480 * isolate_lru_page() or drop the page ref if it was
1481 * not isolated.
1482 */
1483 put_page(page);
1484set_status:
1485 pp->status = err;
1486 }
1487
e78bbfa8 1488 err = 0;
cf608ac1 1489 if (!list_empty(&pagelist)) {
68711a74 1490 err = migrate_pages(&pagelist, new_page_node, NULL,
9c620e2b 1491 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
cf608ac1 1492 if (err)
e632a938 1493 putback_movable_pages(&pagelist);
cf608ac1 1494 }
742755a1
CL
1495
1496 up_read(&mm->mmap_sem);
1497 return err;
1498}
1499
5e9a0f02
BG
1500/*
1501 * Migrate an array of page address onto an array of nodes and fill
1502 * the corresponding array of status.
1503 */
3268c63e 1504static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1505 unsigned long nr_pages,
1506 const void __user * __user *pages,
1507 const int __user *nodes,
1508 int __user *status, int flags)
1509{
3140a227 1510 struct page_to_node *pm;
3140a227
BG
1511 unsigned long chunk_nr_pages;
1512 unsigned long chunk_start;
1513 int err;
5e9a0f02 1514
3140a227
BG
1515 err = -ENOMEM;
1516 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1517 if (!pm)
5e9a0f02 1518 goto out;
35282a2d
BG
1519
1520 migrate_prep();
1521
5e9a0f02 1522 /*
3140a227
BG
1523 * Store a chunk of page_to_node array in a page,
1524 * but keep the last one as a marker
5e9a0f02 1525 */
3140a227 1526 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
5e9a0f02 1527
3140a227
BG
1528 for (chunk_start = 0;
1529 chunk_start < nr_pages;
1530 chunk_start += chunk_nr_pages) {
1531 int j;
5e9a0f02 1532
3140a227
BG
1533 if (chunk_start + chunk_nr_pages > nr_pages)
1534 chunk_nr_pages = nr_pages - chunk_start;
1535
1536 /* fill the chunk pm with addrs and nodes from user-space */
1537 for (j = 0; j < chunk_nr_pages; j++) {
1538 const void __user *p;
5e9a0f02
BG
1539 int node;
1540
3140a227
BG
1541 err = -EFAULT;
1542 if (get_user(p, pages + j + chunk_start))
1543 goto out_pm;
1544 pm[j].addr = (unsigned long) p;
1545
1546 if (get_user(node, nodes + j + chunk_start))
5e9a0f02
BG
1547 goto out_pm;
1548
1549 err = -ENODEV;
6f5a55f1
LT
1550 if (node < 0 || node >= MAX_NUMNODES)
1551 goto out_pm;
1552
389162c2 1553 if (!node_state(node, N_MEMORY))
5e9a0f02
BG
1554 goto out_pm;
1555
1556 err = -EACCES;
1557 if (!node_isset(node, task_nodes))
1558 goto out_pm;
1559
3140a227
BG
1560 pm[j].node = node;
1561 }
1562
1563 /* End marker for this chunk */
1564 pm[chunk_nr_pages].node = MAX_NUMNODES;
1565
1566 /* Migrate this chunk */
1567 err = do_move_page_to_node_array(mm, pm,
1568 flags & MPOL_MF_MOVE_ALL);
1569 if (err < 0)
1570 goto out_pm;
5e9a0f02 1571
5e9a0f02 1572 /* Return status information */
3140a227
BG
1573 for (j = 0; j < chunk_nr_pages; j++)
1574 if (put_user(pm[j].status, status + j + chunk_start)) {
5e9a0f02 1575 err = -EFAULT;
3140a227
BG
1576 goto out_pm;
1577 }
1578 }
1579 err = 0;
5e9a0f02
BG
1580
1581out_pm:
3140a227 1582 free_page((unsigned long)pm);
5e9a0f02
BG
1583out:
1584 return err;
1585}
1586
742755a1 1587/*
2f007e74 1588 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1589 */
80bba129
BG
1590static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1591 const void __user **pages, int *status)
742755a1 1592{
2f007e74 1593 unsigned long i;
2f007e74 1594
742755a1
CL
1595 down_read(&mm->mmap_sem);
1596
2f007e74 1597 for (i = 0; i < nr_pages; i++) {
80bba129 1598 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1599 struct vm_area_struct *vma;
1600 struct page *page;
c095adbc 1601 int err = -EFAULT;
2f007e74
BG
1602
1603 vma = find_vma(mm, addr);
70384dc6 1604 if (!vma || addr < vma->vm_start)
742755a1
CL
1605 goto set_status;
1606
d899844e
KS
1607 /* FOLL_DUMP to ignore special (like zero) pages */
1608 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1609
1610 err = PTR_ERR(page);
1611 if (IS_ERR(page))
1612 goto set_status;
1613
d899844e 1614 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1615set_status:
80bba129
BG
1616 *status = err;
1617
1618 pages++;
1619 status++;
1620 }
1621
1622 up_read(&mm->mmap_sem);
1623}
1624
1625/*
1626 * Determine the nodes of a user array of pages and store it in
1627 * a user array of status.
1628 */
1629static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1630 const void __user * __user *pages,
1631 int __user *status)
1632{
1633#define DO_PAGES_STAT_CHUNK_NR 16
1634 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1635 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1636
87b8d1ad
PA
1637 while (nr_pages) {
1638 unsigned long chunk_nr;
80bba129 1639
87b8d1ad
PA
1640 chunk_nr = nr_pages;
1641 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1642 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1643
1644 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1645 break;
80bba129
BG
1646
1647 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1648
87b8d1ad
PA
1649 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1650 break;
742755a1 1651
87b8d1ad
PA
1652 pages += chunk_nr;
1653 status += chunk_nr;
1654 nr_pages -= chunk_nr;
1655 }
1656 return nr_pages ? -EFAULT : 0;
742755a1
CL
1657}
1658
1659/*
1660 * Move a list of pages in the address space of the currently executing
1661 * process.
1662 */
938bb9f5
HC
1663SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1664 const void __user * __user *, pages,
1665 const int __user *, nodes,
1666 int __user *, status, int, flags)
742755a1 1667{
c69e8d9c 1668 const struct cred *cred = current_cred(), *tcred;
742755a1 1669 struct task_struct *task;
742755a1 1670 struct mm_struct *mm;
5e9a0f02 1671 int err;
3268c63e 1672 nodemask_t task_nodes;
742755a1
CL
1673
1674 /* Check flags */
1675 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1676 return -EINVAL;
1677
1678 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1679 return -EPERM;
1680
1681 /* Find the mm_struct */
a879bf58 1682 rcu_read_lock();
228ebcbe 1683 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1684 if (!task) {
a879bf58 1685 rcu_read_unlock();
742755a1
CL
1686 return -ESRCH;
1687 }
3268c63e 1688 get_task_struct(task);
742755a1
CL
1689
1690 /*
1691 * Check if this process has the right to modify the specified
1692 * process. The right exists if the process has administrative
1693 * capabilities, superuser privileges or the same
1694 * userid as the target process.
1695 */
c69e8d9c 1696 tcred = __task_cred(task);
b38a86eb
EB
1697 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1698 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
742755a1 1699 !capable(CAP_SYS_NICE)) {
c69e8d9c 1700 rcu_read_unlock();
742755a1 1701 err = -EPERM;
5e9a0f02 1702 goto out;
742755a1 1703 }
c69e8d9c 1704 rcu_read_unlock();
742755a1 1705
86c3a764
DQ
1706 err = security_task_movememory(task);
1707 if (err)
5e9a0f02 1708 goto out;
86c3a764 1709
3268c63e
CL
1710 task_nodes = cpuset_mems_allowed(task);
1711 mm = get_task_mm(task);
1712 put_task_struct(task);
1713
6e8b09ea
SL
1714 if (!mm)
1715 return -EINVAL;
1716
1717 if (nodes)
1718 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1719 nodes, status, flags);
1720 else
1721 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1722
742755a1
CL
1723 mmput(mm);
1724 return err;
3268c63e
CL
1725
1726out:
1727 put_task_struct(task);
1728 return err;
742755a1 1729}
742755a1 1730
7039e1db
PZ
1731#ifdef CONFIG_NUMA_BALANCING
1732/*
1733 * Returns true if this is a safe migration target node for misplaced NUMA
1734 * pages. Currently it only checks the watermarks which crude
1735 */
1736static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1737 unsigned long nr_migrate_pages)
7039e1db
PZ
1738{
1739 int z;
599d0c95
MG
1740
1741 if (!pgdat_reclaimable(pgdat))
1742 return false;
1743
7039e1db
PZ
1744 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1745 struct zone *zone = pgdat->node_zones + z;
1746
1747 if (!populated_zone(zone))
1748 continue;
1749
7039e1db
PZ
1750 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1751 if (!zone_watermark_ok(zone, 0,
1752 high_wmark_pages(zone) +
1753 nr_migrate_pages,
1754 0, 0))
1755 continue;
1756 return true;
1757 }
1758 return false;
1759}
1760
1761static struct page *alloc_misplaced_dst_page(struct page *page,
1762 unsigned long data,
1763 int **result)
1764{
1765 int nid = (int) data;
1766 struct page *newpage;
1767
96db800f 1768 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
1769 (GFP_HIGHUSER_MOVABLE |
1770 __GFP_THISNODE | __GFP_NOMEMALLOC |
1771 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 1772 ~__GFP_RECLAIM, 0);
bac0382c 1773
7039e1db
PZ
1774 return newpage;
1775}
1776
a8f60772
MG
1777/*
1778 * page migration rate limiting control.
1779 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1780 * window of time. Default here says do not migrate more than 1280M per second.
1781 */
1782static unsigned int migrate_interval_millisecs __read_mostly = 100;
1783static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1784
b32967ff 1785/* Returns true if the node is migrate rate-limited after the update */
1c30e017
MG
1786static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1787 unsigned long nr_pages)
7039e1db 1788{
a8f60772
MG
1789 /*
1790 * Rate-limit the amount of data that is being migrated to a node.
1791 * Optimal placement is no good if the memory bus is saturated and
1792 * all the time is being spent migrating!
1793 */
a8f60772 1794 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1c5e9c27 1795 spin_lock(&pgdat->numabalancing_migrate_lock);
a8f60772
MG
1796 pgdat->numabalancing_migrate_nr_pages = 0;
1797 pgdat->numabalancing_migrate_next_window = jiffies +
1798 msecs_to_jiffies(migrate_interval_millisecs);
1c5e9c27 1799 spin_unlock(&pgdat->numabalancing_migrate_lock);
a8f60772 1800 }
af1839d7
MG
1801 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1802 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1803 nr_pages);
1c5e9c27 1804 return true;
af1839d7 1805 }
1c5e9c27
MG
1806
1807 /*
1808 * This is an unlocked non-atomic update so errors are possible.
1809 * The consequences are failing to migrate when we potentiall should
1810 * have which is not severe enough to warrant locking. If it is ever
1811 * a problem, it can be converted to a per-cpu counter.
1812 */
1813 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1814 return false;
b32967ff
MG
1815}
1816
1c30e017 1817static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 1818{
340ef390 1819 int page_lru;
a8f60772 1820
309381fe 1821 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 1822
7039e1db 1823 /* Avoid migrating to a node that is nearly full */
340ef390
HD
1824 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1825 return 0;
7039e1db 1826
340ef390
HD
1827 if (isolate_lru_page(page))
1828 return 0;
7039e1db 1829
340ef390
HD
1830 /*
1831 * migrate_misplaced_transhuge_page() skips page migration's usual
1832 * check on page_count(), so we must do it here, now that the page
1833 * has been isolated: a GUP pin, or any other pin, prevents migration.
1834 * The expected page count is 3: 1 for page's mapcount and 1 for the
1835 * caller's pin and 1 for the reference taken by isolate_lru_page().
1836 */
1837 if (PageTransHuge(page) && page_count(page) != 3) {
1838 putback_lru_page(page);
1839 return 0;
7039e1db
PZ
1840 }
1841
340ef390 1842 page_lru = page_is_file_cache(page);
599d0c95 1843 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
340ef390
HD
1844 hpage_nr_pages(page));
1845
149c33e1 1846 /*
340ef390
HD
1847 * Isolating the page has taken another reference, so the
1848 * caller's reference can be safely dropped without the page
1849 * disappearing underneath us during migration.
149c33e1
MG
1850 */
1851 put_page(page);
340ef390 1852 return 1;
b32967ff
MG
1853}
1854
de466bd6
MG
1855bool pmd_trans_migrating(pmd_t pmd)
1856{
1857 struct page *page = pmd_page(pmd);
1858 return PageLocked(page);
1859}
1860
b32967ff
MG
1861/*
1862 * Attempt to migrate a misplaced page to the specified destination
1863 * node. Caller is expected to have an elevated reference count on
1864 * the page that will be dropped by this function before returning.
1865 */
1bc115d8
MG
1866int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1867 int node)
b32967ff
MG
1868{
1869 pg_data_t *pgdat = NODE_DATA(node);
340ef390 1870 int isolated;
b32967ff
MG
1871 int nr_remaining;
1872 LIST_HEAD(migratepages);
1873
1874 /*
1bc115d8
MG
1875 * Don't migrate file pages that are mapped in multiple processes
1876 * with execute permissions as they are probably shared libraries.
b32967ff 1877 */
1bc115d8
MG
1878 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1879 (vma->vm_flags & VM_EXEC))
b32967ff 1880 goto out;
b32967ff
MG
1881
1882 /*
1883 * Rate-limit the amount of data that is being migrated to a node.
1884 * Optimal placement is no good if the memory bus is saturated and
1885 * all the time is being spent migrating!
1886 */
340ef390 1887 if (numamigrate_update_ratelimit(pgdat, 1))
b32967ff 1888 goto out;
b32967ff
MG
1889
1890 isolated = numamigrate_isolate_page(pgdat, page);
1891 if (!isolated)
1892 goto out;
1893
1894 list_add(&page->lru, &migratepages);
9c620e2b 1895 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
1896 NULL, node, MIGRATE_ASYNC,
1897 MR_NUMA_MISPLACED);
b32967ff 1898 if (nr_remaining) {
59c82b70
JK
1899 if (!list_empty(&migratepages)) {
1900 list_del(&page->lru);
599d0c95 1901 dec_node_page_state(page, NR_ISOLATED_ANON +
59c82b70
JK
1902 page_is_file_cache(page));
1903 putback_lru_page(page);
1904 }
b32967ff
MG
1905 isolated = 0;
1906 } else
1907 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 1908 BUG_ON(!list_empty(&migratepages));
7039e1db 1909 return isolated;
340ef390
HD
1910
1911out:
1912 put_page(page);
1913 return 0;
7039e1db 1914}
220018d3 1915#endif /* CONFIG_NUMA_BALANCING */
b32967ff 1916
220018d3 1917#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
1918/*
1919 * Migrates a THP to a given target node. page must be locked and is unlocked
1920 * before returning.
1921 */
b32967ff
MG
1922int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1923 struct vm_area_struct *vma,
1924 pmd_t *pmd, pmd_t entry,
1925 unsigned long address,
1926 struct page *page, int node)
1927{
c4088ebd 1928 spinlock_t *ptl;
b32967ff
MG
1929 pg_data_t *pgdat = NODE_DATA(node);
1930 int isolated = 0;
1931 struct page *new_page = NULL;
b32967ff 1932 int page_lru = page_is_file_cache(page);
f714f4f2
MG
1933 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1934 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2b4847e7 1935 pmd_t orig_entry;
b32967ff 1936
b32967ff
MG
1937 /*
1938 * Rate-limit the amount of data that is being migrated to a node.
1939 * Optimal placement is no good if the memory bus is saturated and
1940 * all the time is being spent migrating!
1941 */
d28d4335 1942 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
b32967ff
MG
1943 goto out_dropref;
1944
1945 new_page = alloc_pages_node(node,
25160354 1946 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
e97ca8e5 1947 HPAGE_PMD_ORDER);
340ef390
HD
1948 if (!new_page)
1949 goto out_fail;
9a982250 1950 prep_transhuge_page(new_page);
340ef390 1951
b32967ff 1952 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 1953 if (!isolated) {
b32967ff 1954 put_page(new_page);
340ef390 1955 goto out_fail;
b32967ff 1956 }
458aa76d
AK
1957 /*
1958 * We are not sure a pending tlb flush here is for a huge page
1959 * mapping or not. Hence use the tlb range variant
1960 */
b0943d61
MG
1961 if (mm_tlb_flush_pending(mm))
1962 flush_tlb_range(vma, mmun_start, mmun_end);
1963
b32967ff 1964 /* Prepare a page as a migration target */
48c935ad 1965 __SetPageLocked(new_page);
fa9949da 1966 __SetPageSwapBacked(new_page);
b32967ff
MG
1967
1968 /* anon mapping, we can simply copy page->mapping to the new page: */
1969 new_page->mapping = page->mapping;
1970 new_page->index = page->index;
1971 migrate_page_copy(new_page, page);
1972 WARN_ON(PageLRU(new_page));
1973
1974 /* Recheck the target PMD */
f714f4f2 1975 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 1976 ptl = pmd_lock(mm, pmd);
2b4847e7
MG
1977 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1978fail_putback:
c4088ebd 1979 spin_unlock(ptl);
f714f4f2 1980 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b32967ff
MG
1981
1982 /* Reverse changes made by migrate_page_copy() */
1983 if (TestClearPageActive(new_page))
1984 SetPageActive(page);
1985 if (TestClearPageUnevictable(new_page))
1986 SetPageUnevictable(page);
b32967ff
MG
1987
1988 unlock_page(new_page);
1989 put_page(new_page); /* Free it */
1990
a54a407f
MG
1991 /* Retake the callers reference and putback on LRU */
1992 get_page(page);
b32967ff 1993 putback_lru_page(page);
599d0c95 1994 mod_node_page_state(page_pgdat(page),
a54a407f 1995 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
1996
1997 goto out_unlock;
b32967ff
MG
1998 }
1999
2b4847e7 2000 orig_entry = *pmd;
10102459 2001 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2b4847e7 2002 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 2003
2b4847e7
MG
2004 /*
2005 * Clear the old entry under pagetable lock and establish the new PTE.
2006 * Any parallel GUP will either observe the old page blocking on the
2007 * page lock, block on the page table lock or observe the new page.
2008 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2009 * guarantee the copy is visible before the pagetable update.
2010 */
f714f4f2 2011 flush_cache_range(vma, mmun_start, mmun_end);
d281ee61 2012 page_add_anon_rmap(new_page, vma, mmun_start, true);
8809aa2d 2013 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
f714f4f2 2014 set_pmd_at(mm, mmun_start, pmd, entry);
ce4a9cc5 2015 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7
MG
2016
2017 if (page_count(page) != 2) {
f714f4f2 2018 set_pmd_at(mm, mmun_start, pmd, orig_entry);
458aa76d 2019 flush_pmd_tlb_range(vma, mmun_start, mmun_end);
34ee645e 2020 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2b4847e7 2021 update_mmu_cache_pmd(vma, address, &entry);
d281ee61 2022 page_remove_rmap(new_page, true);
2b4847e7
MG
2023 goto fail_putback;
2024 }
2025
51afb12b 2026 mlock_migrate_page(new_page, page);
d281ee61 2027 page_remove_rmap(page, true);
7cd12b4a 2028 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 2029
c4088ebd 2030 spin_unlock(ptl);
f714f4f2 2031 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b32967ff 2032
11de9927
MG
2033 /* Take an "isolate" reference and put new page on the LRU. */
2034 get_page(new_page);
2035 putback_lru_page(new_page);
2036
b32967ff
MG
2037 unlock_page(new_page);
2038 unlock_page(page);
2039 put_page(page); /* Drop the rmap reference */
2040 put_page(page); /* Drop the LRU isolation reference */
2041
2042 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2043 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2044
599d0c95 2045 mod_node_page_state(page_pgdat(page),
b32967ff
MG
2046 NR_ISOLATED_ANON + page_lru,
2047 -HPAGE_PMD_NR);
2048 return isolated;
2049
340ef390
HD
2050out_fail:
2051 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
b32967ff 2052out_dropref:
2b4847e7
MG
2053 ptl = pmd_lock(mm, pmd);
2054 if (pmd_same(*pmd, entry)) {
4d942466 2055 entry = pmd_modify(entry, vma->vm_page_prot);
f714f4f2 2056 set_pmd_at(mm, mmun_start, pmd, entry);
2b4847e7
MG
2057 update_mmu_cache_pmd(vma, address, &entry);
2058 }
2059 spin_unlock(ptl);
a54a407f 2060
eb4489f6 2061out_unlock:
340ef390 2062 unlock_page(page);
b32967ff 2063 put_page(page);
b32967ff
MG
2064 return 0;
2065}
7039e1db
PZ
2066#endif /* CONFIG_NUMA_BALANCING */
2067
2068#endif /* CONFIG_NUMA */