]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page-writeback.c
writeback: implement backing_dev_info->tot_write_bandwidth
[mirror_ubuntu-zesty-kernel.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
b95f1b31 15#include <linux/export.h>
1da177e4
LT
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
ff01bb48 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
6e543d57 39#include <linux/mm_inline.h>
028c2dd1 40#include <trace/events/writeback.h>
1da177e4 41
6e543d57
LD
42#include "internal.h"
43
ffd1f609
WF
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE max(HZ/5, 1)
48
5b9b3574
WF
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
e98be2d5
WF
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
6c14ae1e
WF
60#define RATELIMIT_CALC_SHIFT 10
61
1da177e4
LT
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
1da177e4
LT
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
5b0830cb 71 * Start background writeback (via writeback threads) at this percentage
1da177e4 72 */
1b5e62b4 73int dirty_background_ratio = 10;
1da177e4 74
2da02997
DR
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79unsigned long dirty_background_bytes;
80
195cf453
BG
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85int vm_highmem_is_dirtyable;
86
1da177e4
LT
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
1b5e62b4 90int vm_dirty_ratio = 20;
1da177e4 91
2da02997
DR
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96unsigned long vm_dirty_bytes;
97
1da177e4 98/*
704503d8 99 * The interval between `kupdate'-style writebacks
1da177e4 100 */
22ef37ee 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 102
91913a29
AB
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
1da177e4 105/*
704503d8 106 * The longest time for which data is allowed to remain dirty
1da177e4 107 */
22ef37ee 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
109
110/*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113int block_dump;
114
115/*
ed5b43f1
BS
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
118 */
119int laptop_mode;
120
121EXPORT_SYMBOL(laptop_mode);
122
123/* End of sysctl-exported parameters */
124
c42843f2 125unsigned long global_dirty_limit;
1da177e4 126
04fbfdc1
PZ
127/*
128 * Scale the writeback cache size proportional to the relative writeout speeds.
129 *
130 * We do this by keeping a floating proportion between BDIs, based on page
131 * writeback completions [end_page_writeback()]. Those devices that write out
132 * pages fastest will get the larger share, while the slower will get a smaller
133 * share.
134 *
135 * We use page writeout completions because we are interested in getting rid of
136 * dirty pages. Having them written out is the primary goal.
137 *
138 * We introduce a concept of time, a period over which we measure these events,
139 * because demand can/will vary over time. The length of this period itself is
140 * measured in page writeback completions.
141 *
142 */
eb608e3a
JK
143static struct fprop_global writeout_completions;
144
145static void writeout_period(unsigned long t);
146/* Timer for aging of writeout_completions */
147static struct timer_list writeout_period_timer =
148 TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
149static unsigned long writeout_period_time = 0;
150
151/*
152 * Length of period for aging writeout fractions of bdis. This is an
153 * arbitrarily chosen number. The longer the period, the slower fractions will
154 * reflect changes in current writeout rate.
155 */
156#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 157
a756cf59
JW
158/*
159 * In a memory zone, there is a certain amount of pages we consider
160 * available for the page cache, which is essentially the number of
161 * free and reclaimable pages, minus some zone reserves to protect
162 * lowmem and the ability to uphold the zone's watermarks without
163 * requiring writeback.
164 *
165 * This number of dirtyable pages is the base value of which the
166 * user-configurable dirty ratio is the effictive number of pages that
167 * are allowed to be actually dirtied. Per individual zone, or
168 * globally by using the sum of dirtyable pages over all zones.
169 *
170 * Because the user is allowed to specify the dirty limit globally as
171 * absolute number of bytes, calculating the per-zone dirty limit can
172 * require translating the configured limit into a percentage of
173 * global dirtyable memory first.
174 */
175
a804552b
JW
176/**
177 * zone_dirtyable_memory - number of dirtyable pages in a zone
178 * @zone: the zone
179 *
180 * Returns the zone's number of pages potentially available for dirty
181 * page cache. This is the base value for the per-zone dirty limits.
182 */
183static unsigned long zone_dirtyable_memory(struct zone *zone)
184{
185 unsigned long nr_pages;
186
187 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
188 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
189
a1c3bfb2
JW
190 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
191 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
a804552b
JW
192
193 return nr_pages;
194}
195
1edf2234
JW
196static unsigned long highmem_dirtyable_memory(unsigned long total)
197{
198#ifdef CONFIG_HIGHMEM
199 int node;
200 unsigned long x = 0;
201
202 for_each_node_state(node, N_HIGH_MEMORY) {
a804552b 203 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
1edf2234 204
a804552b 205 x += zone_dirtyable_memory(z);
1edf2234 206 }
c8b74c2f
SR
207 /*
208 * Unreclaimable memory (kernel memory or anonymous memory
209 * without swap) can bring down the dirtyable pages below
210 * the zone's dirty balance reserve and the above calculation
211 * will underflow. However we still want to add in nodes
212 * which are below threshold (negative values) to get a more
213 * accurate calculation but make sure that the total never
214 * underflows.
215 */
216 if ((long)x < 0)
217 x = 0;
218
1edf2234
JW
219 /*
220 * Make sure that the number of highmem pages is never larger
221 * than the number of the total dirtyable memory. This can only
222 * occur in very strange VM situations but we want to make sure
223 * that this does not occur.
224 */
225 return min(x, total);
226#else
227 return 0;
228#endif
229}
230
231/**
ccafa287 232 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 233 *
ccafa287
JW
234 * Returns the global number of pages potentially available for dirty
235 * page cache. This is the base value for the global dirty limits.
1edf2234 236 */
18cf8cf8 237static unsigned long global_dirtyable_memory(void)
1edf2234
JW
238{
239 unsigned long x;
240
a804552b 241 x = global_page_state(NR_FREE_PAGES);
c8b74c2f 242 x -= min(x, dirty_balance_reserve);
1edf2234 243
a1c3bfb2
JW
244 x += global_page_state(NR_INACTIVE_FILE);
245 x += global_page_state(NR_ACTIVE_FILE);
a804552b 246
1edf2234
JW
247 if (!vm_highmem_is_dirtyable)
248 x -= highmem_dirtyable_memory(x);
249
250 return x + 1; /* Ensure that we never return 0 */
251}
252
ccafa287
JW
253/*
254 * global_dirty_limits - background-writeback and dirty-throttling thresholds
255 *
256 * Calculate the dirty thresholds based on sysctl parameters
257 * - vm.dirty_background_ratio or vm.dirty_background_bytes
258 * - vm.dirty_ratio or vm.dirty_bytes
259 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
260 * real-time tasks.
261 */
262void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
263{
9ef0a0ff 264 const unsigned long available_memory = global_dirtyable_memory();
ccafa287
JW
265 unsigned long background;
266 unsigned long dirty;
ccafa287
JW
267 struct task_struct *tsk;
268
ccafa287
JW
269 if (vm_dirty_bytes)
270 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
271 else
272 dirty = (vm_dirty_ratio * available_memory) / 100;
273
274 if (dirty_background_bytes)
275 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
276 else
277 background = (dirty_background_ratio * available_memory) / 100;
278
279 if (background >= dirty)
280 background = dirty / 2;
281 tsk = current;
282 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
283 background += background / 4;
284 dirty += dirty / 4;
285 }
286 *pbackground = background;
287 *pdirty = dirty;
288 trace_global_dirty_state(background, dirty);
289}
290
a756cf59
JW
291/**
292 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
293 * @zone: the zone
294 *
295 * Returns the maximum number of dirty pages allowed in a zone, based
296 * on the zone's dirtyable memory.
297 */
298static unsigned long zone_dirty_limit(struct zone *zone)
299{
300 unsigned long zone_memory = zone_dirtyable_memory(zone);
301 struct task_struct *tsk = current;
302 unsigned long dirty;
303
304 if (vm_dirty_bytes)
305 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
306 zone_memory / global_dirtyable_memory();
307 else
308 dirty = vm_dirty_ratio * zone_memory / 100;
309
310 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
311 dirty += dirty / 4;
312
313 return dirty;
314}
315
316/**
317 * zone_dirty_ok - tells whether a zone is within its dirty limits
318 * @zone: the zone to check
319 *
320 * Returns %true when the dirty pages in @zone are within the zone's
321 * dirty limit, %false if the limit is exceeded.
322 */
323bool zone_dirty_ok(struct zone *zone)
324{
325 unsigned long limit = zone_dirty_limit(zone);
326
327 return zone_page_state(zone, NR_FILE_DIRTY) +
328 zone_page_state(zone, NR_UNSTABLE_NFS) +
329 zone_page_state(zone, NR_WRITEBACK) <= limit;
330}
331
2da02997 332int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 333 void __user *buffer, size_t *lenp,
2da02997
DR
334 loff_t *ppos)
335{
336 int ret;
337
8d65af78 338 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
339 if (ret == 0 && write)
340 dirty_background_bytes = 0;
341 return ret;
342}
343
344int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 345 void __user *buffer, size_t *lenp,
2da02997
DR
346 loff_t *ppos)
347{
348 int ret;
349
8d65af78 350 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
351 if (ret == 0 && write)
352 dirty_background_ratio = 0;
353 return ret;
354}
355
04fbfdc1 356int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 357 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
358 loff_t *ppos)
359{
360 int old_ratio = vm_dirty_ratio;
2da02997
DR
361 int ret;
362
8d65af78 363 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 364 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 365 writeback_set_ratelimit();
2da02997
DR
366 vm_dirty_bytes = 0;
367 }
368 return ret;
369}
370
2da02997 371int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 372 void __user *buffer, size_t *lenp,
2da02997
DR
373 loff_t *ppos)
374{
fc3501d4 375 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
376 int ret;
377
8d65af78 378 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 379 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 380 writeback_set_ratelimit();
2da02997 381 vm_dirty_ratio = 0;
04fbfdc1
PZ
382 }
383 return ret;
384}
385
eb608e3a
JK
386static unsigned long wp_next_time(unsigned long cur_time)
387{
388 cur_time += VM_COMPLETIONS_PERIOD_LEN;
389 /* 0 has a special meaning... */
390 if (!cur_time)
391 return 1;
392 return cur_time;
393}
394
04fbfdc1
PZ
395/*
396 * Increment the BDI's writeout completion count and the global writeout
397 * completion count. Called from test_clear_page_writeback().
398 */
93f78d88 399static inline void __wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 400{
93f78d88 401 __inc_wb_stat(wb, WB_WRITTEN);
a88a341a 402 __fprop_inc_percpu_max(&writeout_completions, &wb->completions,
93f78d88 403 wb->bdi->max_prop_frac);
eb608e3a
JK
404 /* First event after period switching was turned off? */
405 if (!unlikely(writeout_period_time)) {
406 /*
407 * We can race with other __bdi_writeout_inc calls here but
408 * it does not cause any harm since the resulting time when
409 * timer will fire and what is in writeout_period_time will be
410 * roughly the same.
411 */
412 writeout_period_time = wp_next_time(jiffies);
413 mod_timer(&writeout_period_timer, writeout_period_time);
414 }
04fbfdc1
PZ
415}
416
93f78d88 417void wb_writeout_inc(struct bdi_writeback *wb)
dd5656e5
MS
418{
419 unsigned long flags;
420
421 local_irq_save(flags);
93f78d88 422 __wb_writeout_inc(wb);
dd5656e5
MS
423 local_irq_restore(flags);
424}
93f78d88 425EXPORT_SYMBOL_GPL(wb_writeout_inc);
dd5656e5 426
04fbfdc1
PZ
427/*
428 * Obtain an accurate fraction of the BDI's portion.
429 */
a88a341a
TH
430static void wb_writeout_fraction(struct bdi_writeback *wb,
431 long *numerator, long *denominator)
04fbfdc1 432{
a88a341a 433 fprop_fraction_percpu(&writeout_completions, &wb->completions,
04fbfdc1 434 numerator, denominator);
04fbfdc1
PZ
435}
436
eb608e3a
JK
437/*
438 * On idle system, we can be called long after we scheduled because we use
439 * deferred timers so count with missed periods.
440 */
441static void writeout_period(unsigned long t)
442{
443 int miss_periods = (jiffies - writeout_period_time) /
444 VM_COMPLETIONS_PERIOD_LEN;
445
446 if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
447 writeout_period_time = wp_next_time(writeout_period_time +
448 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
449 mod_timer(&writeout_period_timer, writeout_period_time);
450 } else {
451 /*
452 * Aging has zeroed all fractions. Stop wasting CPU on period
453 * updates.
454 */
455 writeout_period_time = 0;
456 }
457}
458
189d3c4a 459/*
d08c429b
JW
460 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
461 * registered backing devices, which, for obvious reasons, can not
462 * exceed 100%.
189d3c4a 463 */
189d3c4a
PZ
464static unsigned int bdi_min_ratio;
465
466int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
467{
468 int ret = 0;
189d3c4a 469
cfc4ba53 470 spin_lock_bh(&bdi_lock);
a42dde04 471 if (min_ratio > bdi->max_ratio) {
189d3c4a 472 ret = -EINVAL;
a42dde04
PZ
473 } else {
474 min_ratio -= bdi->min_ratio;
475 if (bdi_min_ratio + min_ratio < 100) {
476 bdi_min_ratio += min_ratio;
477 bdi->min_ratio += min_ratio;
478 } else {
479 ret = -EINVAL;
480 }
481 }
cfc4ba53 482 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
483
484 return ret;
485}
486
487int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
488{
a42dde04
PZ
489 int ret = 0;
490
491 if (max_ratio > 100)
492 return -EINVAL;
493
cfc4ba53 494 spin_lock_bh(&bdi_lock);
a42dde04
PZ
495 if (bdi->min_ratio > max_ratio) {
496 ret = -EINVAL;
497 } else {
498 bdi->max_ratio = max_ratio;
eb608e3a 499 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 500 }
cfc4ba53 501 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
502
503 return ret;
504}
a42dde04 505EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 506
6c14ae1e
WF
507static unsigned long dirty_freerun_ceiling(unsigned long thresh,
508 unsigned long bg_thresh)
509{
510 return (thresh + bg_thresh) / 2;
511}
512
ffd1f609
WF
513static unsigned long hard_dirty_limit(unsigned long thresh)
514{
515 return max(thresh, global_dirty_limit);
516}
517
6f718656 518/**
a88a341a
TH
519 * wb_dirty_limit - @wb's share of dirty throttling threshold
520 * @wb: bdi_writeback to query
6f718656 521 * @dirty: global dirty limit in pages
1babe183 522 *
a88a341a 523 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
6f718656 524 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
aed21ad2
WF
525 *
526 * Note that balance_dirty_pages() will only seriously take it as a hard limit
527 * when sleeping max_pause per page is not enough to keep the dirty pages under
528 * control. For example, when the device is completely stalled due to some error
529 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
530 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 531 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 532 *
6f718656 533 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
534 * - starving fast devices
535 * - piling up dirty pages (that will take long time to sync) on slow devices
536 *
a88a341a 537 * The wb's share of dirty limit will be adapting to its throughput and
1babe183
WF
538 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
539 */
a88a341a 540unsigned long wb_dirty_limit(struct bdi_writeback *wb, unsigned long dirty)
16c4042f 541{
a88a341a
TH
542 struct backing_dev_info *bdi = wb->bdi;
543 u64 wb_dirty;
16c4042f 544 long numerator, denominator;
04fbfdc1 545
16c4042f
WF
546 /*
547 * Calculate this BDI's share of the dirty ratio.
548 */
a88a341a 549 wb_writeout_fraction(wb, &numerator, &denominator);
04fbfdc1 550
a88a341a
TH
551 wb_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
552 wb_dirty *= numerator;
553 do_div(wb_dirty, denominator);
04fbfdc1 554
a88a341a
TH
555 wb_dirty += (dirty * bdi->min_ratio) / 100;
556 if (wb_dirty > (dirty * bdi->max_ratio) / 100)
557 wb_dirty = dirty * bdi->max_ratio / 100;
16c4042f 558
a88a341a 559 return wb_dirty;
1da177e4
LT
560}
561
5a537485
MP
562/*
563 * setpoint - dirty 3
564 * f(dirty) := 1.0 + (----------------)
565 * limit - setpoint
566 *
567 * it's a 3rd order polynomial that subjects to
568 *
569 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
570 * (2) f(setpoint) = 1.0 => the balance point
571 * (3) f(limit) = 0 => the hard limit
572 * (4) df/dx <= 0 => negative feedback control
573 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
574 * => fast response on large errors; small oscillation near setpoint
575 */
d5c9fde3 576static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
577 unsigned long dirty,
578 unsigned long limit)
579{
580 long long pos_ratio;
581 long x;
582
d5c9fde3 583 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
5a537485
MP
584 limit - setpoint + 1);
585 pos_ratio = x;
586 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
587 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
588 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
589
590 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
591}
592
6c14ae1e
WF
593/*
594 * Dirty position control.
595 *
596 * (o) global/bdi setpoints
597 *
de1fff37 598 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
599 * When the number of dirty pages is higher/lower than the setpoint, the
600 * dirty position control ratio (and hence task dirty ratelimit) will be
601 * decreased/increased to bring the dirty pages back to the setpoint.
602 *
603 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
604 *
605 * if (dirty < setpoint) scale up pos_ratio
606 * if (dirty > setpoint) scale down pos_ratio
607 *
de1fff37
TH
608 * if (wb_dirty < wb_setpoint) scale up pos_ratio
609 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
610 *
611 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
612 *
613 * (o) global control line
614 *
615 * ^ pos_ratio
616 * |
617 * | |<===== global dirty control scope ======>|
618 * 2.0 .............*
619 * | .*
620 * | . *
621 * | . *
622 * | . *
623 * | . *
624 * | . *
625 * 1.0 ................................*
626 * | . . *
627 * | . . *
628 * | . . *
629 * | . . *
630 * | . . *
631 * 0 +------------.------------------.----------------------*------------->
632 * freerun^ setpoint^ limit^ dirty pages
633 *
de1fff37 634 * (o) wb control line
6c14ae1e
WF
635 *
636 * ^ pos_ratio
637 * |
638 * | *
639 * | *
640 * | *
641 * | *
642 * | * |<=========== span ============>|
643 * 1.0 .......................*
644 * | . *
645 * | . *
646 * | . *
647 * | . *
648 * | . *
649 * | . *
650 * | . *
651 * | . *
652 * | . *
653 * | . *
654 * | . *
655 * 1/4 ...............................................* * * * * * * * * * * *
656 * | . .
657 * | . .
658 * | . .
659 * 0 +----------------------.-------------------------------.------------->
de1fff37 660 * wb_setpoint^ x_intercept^
6c14ae1e 661 *
de1fff37 662 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
663 * be smoothly throttled down to normal if it starts high in situations like
664 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
665 * card's wb_dirty may rush to many times higher than wb_setpoint.
666 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 667 */
a88a341a
TH
668static unsigned long wb_position_ratio(struct bdi_writeback *wb,
669 unsigned long thresh,
670 unsigned long bg_thresh,
671 unsigned long dirty,
de1fff37
TH
672 unsigned long wb_thresh,
673 unsigned long wb_dirty)
6c14ae1e 674{
a88a341a 675 unsigned long write_bw = wb->avg_write_bandwidth;
6c14ae1e
WF
676 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
677 unsigned long limit = hard_dirty_limit(thresh);
678 unsigned long x_intercept;
679 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 680 unsigned long wb_setpoint;
6c14ae1e
WF
681 unsigned long span;
682 long long pos_ratio; /* for scaling up/down the rate limit */
683 long x;
684
685 if (unlikely(dirty >= limit))
686 return 0;
687
688 /*
689 * global setpoint
690 *
5a537485
MP
691 * See comment for pos_ratio_polynom().
692 */
693 setpoint = (freerun + limit) / 2;
694 pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);
695
696 /*
697 * The strictlimit feature is a tool preventing mistrusted filesystems
698 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
699 * such filesystems balance_dirty_pages always checks wb counters
700 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
701 * This is especially important for fuse which sets bdi->max_ratio to
702 * 1% by default. Without strictlimit feature, fuse writeback may
703 * consume arbitrary amount of RAM because it is accounted in
704 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 705 *
a88a341a 706 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 707 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
708 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
709 * limits are set by default to 10% and 20% (background and throttle).
de1fff37
TH
710 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
711 * wb_dirty_limit(wb, bg_thresh) is about ~4K pages. wb_setpoint is
712 * about ~6K pages (as the average of background and throttle wb
5a537485 713 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 714 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 715 *
5a537485 716 * Note, that we cannot use global counters in these calculations
de1fff37 717 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
718 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
719 * in the example above).
6c14ae1e 720 */
a88a341a 721 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37
TH
722 long long wb_pos_ratio;
723 unsigned long wb_bg_thresh;
5a537485 724
de1fff37 725 if (wb_dirty < 8)
5a537485
MP
726 return min_t(long long, pos_ratio * 2,
727 2 << RATELIMIT_CALC_SHIFT);
728
de1fff37 729 if (wb_dirty >= wb_thresh)
5a537485
MP
730 return 0;
731
de1fff37
TH
732 wb_bg_thresh = div_u64((u64)wb_thresh * bg_thresh, thresh);
733 wb_setpoint = dirty_freerun_ceiling(wb_thresh, wb_bg_thresh);
5a537485 734
de1fff37 735 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
5a537485
MP
736 return 0;
737
de1fff37
TH
738 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, wb_dirty,
739 wb_thresh);
5a537485
MP
740
741 /*
de1fff37
TH
742 * Typically, for strictlimit case, wb_setpoint << setpoint
743 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 744 * state ("dirty") is not limiting factor and we have to
de1fff37 745 * make decision based on wb counters. But there is an
5a537485
MP
746 * important case when global pos_ratio should get precedence:
747 * global limits are exceeded (e.g. due to activities on other
de1fff37 748 * wb's) while given strictlimit wb is below limit.
5a537485 749 *
de1fff37 750 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 751 * but it would look too non-natural for the case of all
de1fff37 752 * activity in the system coming from a single strictlimit wb
5a537485
MP
753 * with bdi->max_ratio == 100%.
754 *
755 * Note that min() below somewhat changes the dynamics of the
756 * control system. Normally, pos_ratio value can be well over 3
de1fff37 757 * (when globally we are at freerun and wb is well below wb
5a537485
MP
758 * setpoint). Now the maximum pos_ratio in the same situation
759 * is 2. We might want to tweak this if we observe the control
760 * system is too slow to adapt.
761 */
de1fff37 762 return min(pos_ratio, wb_pos_ratio);
5a537485 763 }
6c14ae1e
WF
764
765 /*
766 * We have computed basic pos_ratio above based on global situation. If
de1fff37 767 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
768 * pos_ratio further down/up. That is done by the following mechanism.
769 */
770
771 /*
de1fff37 772 * wb setpoint
6c14ae1e 773 *
de1fff37 774 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 775 *
de1fff37 776 * x_intercept - wb_dirty
6c14ae1e 777 * := --------------------------
de1fff37 778 * x_intercept - wb_setpoint
6c14ae1e 779 *
de1fff37 780 * The main wb control line is a linear function that subjects to
6c14ae1e 781 *
de1fff37
TH
782 * (1) f(wb_setpoint) = 1.0
783 * (2) k = - 1 / (8 * write_bw) (in single wb case)
784 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 785 *
de1fff37 786 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 787 * regularly within range
de1fff37 788 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
789 * for various filesystems, where (2) can yield in a reasonable 12.5%
790 * fluctuation range for pos_ratio.
791 *
de1fff37 792 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 793 * own size, so move the slope over accordingly and choose a slope that
de1fff37 794 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 795 */
de1fff37
TH
796 if (unlikely(wb_thresh > thresh))
797 wb_thresh = thresh;
aed21ad2 798 /*
de1fff37 799 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
800 * device is slow, but that it has remained inactive for long time.
801 * Honour such devices a reasonable good (hopefully IO efficient)
802 * threshold, so that the occasional writes won't be blocked and active
803 * writes can rampup the threshold quickly.
804 */
de1fff37 805 wb_thresh = max(wb_thresh, (limit - dirty) / 8);
6c14ae1e 806 /*
de1fff37
TH
807 * scale global setpoint to wb's:
808 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 809 */
de1fff37
TH
810 x = div_u64((u64)wb_thresh << 16, thresh + 1);
811 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 812 /*
de1fff37
TH
813 * Use span=(8*write_bw) in single wb case as indicated by
814 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 815 *
de1fff37
TH
816 * wb_thresh thresh - wb_thresh
817 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
818 * thresh thresh
6c14ae1e 819 */
de1fff37
TH
820 span = (thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
821 x_intercept = wb_setpoint + span;
6c14ae1e 822
de1fff37
TH
823 if (wb_dirty < x_intercept - span / 4) {
824 pos_ratio = div64_u64(pos_ratio * (x_intercept - wb_dirty),
825 x_intercept - wb_setpoint + 1);
6c14ae1e
WF
826 } else
827 pos_ratio /= 4;
828
8927f66c 829 /*
de1fff37 830 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
831 * It may push the desired control point of global dirty pages higher
832 * than setpoint.
833 */
de1fff37
TH
834 x_intercept = wb_thresh / 2;
835 if (wb_dirty < x_intercept) {
836 if (wb_dirty > x_intercept / 8)
837 pos_ratio = div_u64(pos_ratio * x_intercept, wb_dirty);
50657fc4 838 else
8927f66c
WF
839 pos_ratio *= 8;
840 }
841
6c14ae1e
WF
842 return pos_ratio;
843}
844
a88a341a
TH
845static void wb_update_write_bandwidth(struct bdi_writeback *wb,
846 unsigned long elapsed,
847 unsigned long written)
e98be2d5
WF
848{
849 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
850 unsigned long avg = wb->avg_write_bandwidth;
851 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
852 u64 bw;
853
854 /*
855 * bw = written * HZ / elapsed
856 *
857 * bw * elapsed + write_bandwidth * (period - elapsed)
858 * write_bandwidth = ---------------------------------------------------
859 * period
c72efb65
TH
860 *
861 * @written may have decreased due to account_page_redirty().
862 * Avoid underflowing @bw calculation.
e98be2d5 863 */
a88a341a 864 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
865 bw *= HZ;
866 if (unlikely(elapsed > period)) {
867 do_div(bw, elapsed);
868 avg = bw;
869 goto out;
870 }
a88a341a 871 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
872 bw >>= ilog2(period);
873
874 /*
875 * one more level of smoothing, for filtering out sudden spikes
876 */
877 if (avg > old && old >= (unsigned long)bw)
878 avg -= (avg - old) >> 3;
879
880 if (avg < old && old <= (unsigned long)bw)
881 avg += (old - avg) >> 3;
882
883out:
766a9d6e
TH
884 if (wb_has_dirty_io(wb))
885 atomic_long_add(avg - wb->avg_write_bandwidth,
886 &wb->bdi->tot_write_bandwidth);
a88a341a
TH
887 wb->write_bandwidth = bw;
888 wb->avg_write_bandwidth = avg;
e98be2d5
WF
889}
890
c42843f2
WF
891/*
892 * The global dirtyable memory and dirty threshold could be suddenly knocked
893 * down by a large amount (eg. on the startup of KVM in a swapless system).
894 * This may throw the system into deep dirty exceeded state and throttle
895 * heavy/light dirtiers alike. To retain good responsiveness, maintain
896 * global_dirty_limit for tracking slowly down to the knocked down dirty
897 * threshold.
898 */
899static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
900{
901 unsigned long limit = global_dirty_limit;
902
903 /*
904 * Follow up in one step.
905 */
906 if (limit < thresh) {
907 limit = thresh;
908 goto update;
909 }
910
911 /*
912 * Follow down slowly. Use the higher one as the target, because thresh
913 * may drop below dirty. This is exactly the reason to introduce
914 * global_dirty_limit which is guaranteed to lie above the dirty pages.
915 */
916 thresh = max(thresh, dirty);
917 if (limit > thresh) {
918 limit -= (limit - thresh) >> 5;
919 goto update;
920 }
921 return;
922update:
923 global_dirty_limit = limit;
924}
925
926static void global_update_bandwidth(unsigned long thresh,
927 unsigned long dirty,
928 unsigned long now)
929{
930 static DEFINE_SPINLOCK(dirty_lock);
7d70e154 931 static unsigned long update_time = INITIAL_JIFFIES;
c42843f2
WF
932
933 /*
934 * check locklessly first to optimize away locking for the most time
935 */
936 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
937 return;
938
939 spin_lock(&dirty_lock);
940 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
941 update_dirty_limit(thresh, dirty);
942 update_time = now;
943 }
944 spin_unlock(&dirty_lock);
945}
946
be3ffa27 947/*
de1fff37 948 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 949 *
de1fff37 950 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
951 * Obviously it should be around (write_bw / N) when there are N dd tasks.
952 */
a88a341a
TH
953static void wb_update_dirty_ratelimit(struct bdi_writeback *wb,
954 unsigned long thresh,
955 unsigned long bg_thresh,
956 unsigned long dirty,
de1fff37
TH
957 unsigned long wb_thresh,
958 unsigned long wb_dirty,
a88a341a
TH
959 unsigned long dirtied,
960 unsigned long elapsed)
be3ffa27 961{
7381131c
WF
962 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
963 unsigned long limit = hard_dirty_limit(thresh);
964 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
965 unsigned long write_bw = wb->avg_write_bandwidth;
966 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
967 unsigned long dirty_rate;
968 unsigned long task_ratelimit;
969 unsigned long balanced_dirty_ratelimit;
970 unsigned long pos_ratio;
7381131c
WF
971 unsigned long step;
972 unsigned long x;
be3ffa27
WF
973
974 /*
975 * The dirty rate will match the writeout rate in long term, except
976 * when dirty pages are truncated by userspace or re-dirtied by FS.
977 */
a88a341a 978 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 979
a88a341a 980 pos_ratio = wb_position_ratio(wb, thresh, bg_thresh, dirty,
de1fff37 981 wb_thresh, wb_dirty);
be3ffa27
WF
982 /*
983 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
984 */
985 task_ratelimit = (u64)dirty_ratelimit *
986 pos_ratio >> RATELIMIT_CALC_SHIFT;
987 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
988
989 /*
990 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 991 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
992 * dirty_rate will be measured to be (N * task_ratelimit). So the below
993 * formula will yield the balanced rate limit (write_bw / N).
994 *
995 * Note that the expanded form is not a pure rate feedback:
996 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
997 * but also takes pos_ratio into account:
998 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
999 *
1000 * (1) is not realistic because pos_ratio also takes part in balancing
1001 * the dirty rate. Consider the state
1002 * pos_ratio = 0.5 (3)
1003 * rate = 2 * (write_bw / N) (4)
1004 * If (1) is used, it will stuck in that state! Because each dd will
1005 * be throttled at
1006 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1007 * yielding
1008 * dirty_rate = N * task_ratelimit = write_bw (6)
1009 * put (6) into (1) we get
1010 * rate_(i+1) = rate_(i) (7)
1011 *
1012 * So we end up using (2) to always keep
1013 * rate_(i+1) ~= (write_bw / N) (8)
1014 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1015 * pos_ratio is able to drive itself to 1.0, which is not only where
1016 * the dirty count meet the setpoint, but also where the slope of
1017 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1018 */
1019 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1020 dirty_rate | 1);
bdaac490
WF
1021 /*
1022 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1023 */
1024 if (unlikely(balanced_dirty_ratelimit > write_bw))
1025 balanced_dirty_ratelimit = write_bw;
be3ffa27 1026
7381131c
WF
1027 /*
1028 * We could safely do this and return immediately:
1029 *
de1fff37 1030 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1031 *
1032 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1033 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1034 * limit the step size.
1035 *
1036 * The below code essentially only uses the relative value of
1037 *
1038 * task_ratelimit - dirty_ratelimit
1039 * = (pos_ratio - 1) * dirty_ratelimit
1040 *
1041 * which reflects the direction and size of dirty position error.
1042 */
1043
1044 /*
1045 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1046 * task_ratelimit is on the same side of dirty_ratelimit, too.
1047 * For example, when
1048 * - dirty_ratelimit > balanced_dirty_ratelimit
1049 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1050 * lowering dirty_ratelimit will help meet both the position and rate
1051 * control targets. Otherwise, don't update dirty_ratelimit if it will
1052 * only help meet the rate target. After all, what the users ultimately
1053 * feel and care are stable dirty rate and small position error.
1054 *
1055 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1056 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1057 * keeps jumping around randomly and can even leap far away at times
1058 * due to the small 200ms estimation period of dirty_rate (we want to
1059 * keep that period small to reduce time lags).
1060 */
1061 step = 0;
5a537485
MP
1062
1063 /*
de1fff37 1064 * For strictlimit case, calculations above were based on wb counters
a88a341a 1065 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1066 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1067 * Hence, to calculate "step" properly, we have to use wb_dirty as
1068 * "dirty" and wb_setpoint as "setpoint".
5a537485 1069 *
de1fff37
TH
1070 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1071 * it's possible that wb_thresh is close to zero due to inactivity
a88a341a 1072 * of backing device (see the implementation of wb_dirty_limit()).
5a537485 1073 */
a88a341a 1074 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37
TH
1075 dirty = wb_dirty;
1076 if (wb_dirty < 8)
1077 setpoint = wb_dirty + 1;
5a537485 1078 else
de1fff37 1079 setpoint = (wb_thresh +
a88a341a 1080 wb_dirty_limit(wb, bg_thresh)) / 2;
5a537485
MP
1081 }
1082
7381131c 1083 if (dirty < setpoint) {
a88a341a 1084 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1085 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1086 if (dirty_ratelimit < x)
1087 step = x - dirty_ratelimit;
1088 } else {
a88a341a 1089 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1090 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1091 if (dirty_ratelimit > x)
1092 step = dirty_ratelimit - x;
1093 }
1094
1095 /*
1096 * Don't pursue 100% rate matching. It's impossible since the balanced
1097 * rate itself is constantly fluctuating. So decrease the track speed
1098 * when it gets close to the target. Helps eliminate pointless tremors.
1099 */
1100 step >>= dirty_ratelimit / (2 * step + 1);
1101 /*
1102 * Limit the tracking speed to avoid overshooting.
1103 */
1104 step = (step + 7) / 8;
1105
1106 if (dirty_ratelimit < balanced_dirty_ratelimit)
1107 dirty_ratelimit += step;
1108 else
1109 dirty_ratelimit -= step;
1110
a88a341a
TH
1111 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1112 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1113
a88a341a 1114 trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
be3ffa27
WF
1115}
1116
a88a341a
TH
1117void __wb_update_bandwidth(struct bdi_writeback *wb,
1118 unsigned long thresh,
1119 unsigned long bg_thresh,
1120 unsigned long dirty,
de1fff37
TH
1121 unsigned long wb_thresh,
1122 unsigned long wb_dirty,
a88a341a 1123 unsigned long start_time)
e98be2d5
WF
1124{
1125 unsigned long now = jiffies;
a88a341a 1126 unsigned long elapsed = now - wb->bw_time_stamp;
be3ffa27 1127 unsigned long dirtied;
e98be2d5
WF
1128 unsigned long written;
1129
1130 /*
1131 * rate-limit, only update once every 200ms.
1132 */
1133 if (elapsed < BANDWIDTH_INTERVAL)
1134 return;
1135
a88a341a
TH
1136 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1137 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5
WF
1138
1139 /*
1140 * Skip quiet periods when disk bandwidth is under-utilized.
1141 * (at least 1s idle time between two flusher runs)
1142 */
a88a341a 1143 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
e98be2d5
WF
1144 goto snapshot;
1145
be3ffa27 1146 if (thresh) {
c42843f2 1147 global_update_bandwidth(thresh, dirty, now);
a88a341a 1148 wb_update_dirty_ratelimit(wb, thresh, bg_thresh, dirty,
de1fff37 1149 wb_thresh, wb_dirty,
a88a341a 1150 dirtied, elapsed);
be3ffa27 1151 }
a88a341a 1152 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5
WF
1153
1154snapshot:
a88a341a
TH
1155 wb->dirtied_stamp = dirtied;
1156 wb->written_stamp = written;
1157 wb->bw_time_stamp = now;
e98be2d5
WF
1158}
1159
a88a341a
TH
1160static void wb_update_bandwidth(struct bdi_writeback *wb,
1161 unsigned long thresh,
1162 unsigned long bg_thresh,
1163 unsigned long dirty,
de1fff37
TH
1164 unsigned long wb_thresh,
1165 unsigned long wb_dirty,
a88a341a 1166 unsigned long start_time)
e98be2d5 1167{
a88a341a 1168 if (time_is_after_eq_jiffies(wb->bw_time_stamp + BANDWIDTH_INTERVAL))
e98be2d5 1169 return;
a88a341a
TH
1170 spin_lock(&wb->list_lock);
1171 __wb_update_bandwidth(wb, thresh, bg_thresh, dirty,
de1fff37 1172 wb_thresh, wb_dirty, start_time);
a88a341a 1173 spin_unlock(&wb->list_lock);
e98be2d5
WF
1174}
1175
9d823e8f 1176/*
d0e1d66b 1177 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1178 * will look to see if it needs to start dirty throttling.
1179 *
1180 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1181 * global_page_state() too often. So scale it near-sqrt to the safety margin
1182 * (the number of pages we may dirty without exceeding the dirty limits).
1183 */
1184static unsigned long dirty_poll_interval(unsigned long dirty,
1185 unsigned long thresh)
1186{
1187 if (thresh > dirty)
1188 return 1UL << (ilog2(thresh - dirty) >> 1);
1189
1190 return 1;
1191}
1192
a88a341a 1193static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1194 unsigned long wb_dirty)
c8462cc9 1195{
a88a341a 1196 unsigned long bw = wb->avg_write_bandwidth;
e3b6c655 1197 unsigned long t;
c8462cc9 1198
7ccb9ad5
WF
1199 /*
1200 * Limit pause time for small memory systems. If sleeping for too long
1201 * time, a small pool of dirty/writeback pages may go empty and disk go
1202 * idle.
1203 *
1204 * 8 serves as the safety ratio.
1205 */
de1fff37 1206 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1207 t++;
1208
e3b6c655 1209 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1210}
1211
a88a341a
TH
1212static long wb_min_pause(struct bdi_writeback *wb,
1213 long max_pause,
1214 unsigned long task_ratelimit,
1215 unsigned long dirty_ratelimit,
1216 int *nr_dirtied_pause)
c8462cc9 1217{
a88a341a
TH
1218 long hi = ilog2(wb->avg_write_bandwidth);
1219 long lo = ilog2(wb->dirty_ratelimit);
7ccb9ad5
WF
1220 long t; /* target pause */
1221 long pause; /* estimated next pause */
1222 int pages; /* target nr_dirtied_pause */
c8462cc9 1223
7ccb9ad5
WF
1224 /* target for 10ms pause on 1-dd case */
1225 t = max(1, HZ / 100);
c8462cc9
WF
1226
1227 /*
1228 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1229 * overheads.
1230 *
7ccb9ad5 1231 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1232 */
1233 if (hi > lo)
7ccb9ad5 1234 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1235
1236 /*
7ccb9ad5
WF
1237 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1238 * on the much more stable dirty_ratelimit. However the next pause time
1239 * will be computed based on task_ratelimit and the two rate limits may
1240 * depart considerably at some time. Especially if task_ratelimit goes
1241 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1242 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1243 * result task_ratelimit won't be executed faithfully, which could
1244 * eventually bring down dirty_ratelimit.
c8462cc9 1245 *
7ccb9ad5
WF
1246 * We apply two rules to fix it up:
1247 * 1) try to estimate the next pause time and if necessary, use a lower
1248 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1249 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1250 * 2) limit the target pause time to max_pause/2, so that the normal
1251 * small fluctuations of task_ratelimit won't trigger rule (1) and
1252 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1253 */
7ccb9ad5
WF
1254 t = min(t, 1 + max_pause / 2);
1255 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1256
1257 /*
5b9b3574
WF
1258 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1259 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1260 * When the 16 consecutive reads are often interrupted by some dirty
1261 * throttling pause during the async writes, cfq will go into idles
1262 * (deadline is fine). So push nr_dirtied_pause as high as possible
1263 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1264 */
5b9b3574
WF
1265 if (pages < DIRTY_POLL_THRESH) {
1266 t = max_pause;
1267 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1268 if (pages > DIRTY_POLL_THRESH) {
1269 pages = DIRTY_POLL_THRESH;
1270 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1271 }
1272 }
1273
7ccb9ad5
WF
1274 pause = HZ * pages / (task_ratelimit + 1);
1275 if (pause > max_pause) {
1276 t = max_pause;
1277 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1278 }
c8462cc9 1279
7ccb9ad5 1280 *nr_dirtied_pause = pages;
c8462cc9 1281 /*
7ccb9ad5 1282 * The minimal pause time will normally be half the target pause time.
c8462cc9 1283 */
5b9b3574 1284 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1285}
1286
a88a341a
TH
1287static inline void wb_dirty_limits(struct bdi_writeback *wb,
1288 unsigned long dirty_thresh,
1289 unsigned long background_thresh,
de1fff37
TH
1290 unsigned long *wb_dirty,
1291 unsigned long *wb_thresh,
1292 unsigned long *wb_bg_thresh)
5a537485 1293{
93f78d88 1294 unsigned long wb_reclaimable;
5a537485
MP
1295
1296 /*
de1fff37 1297 * wb_thresh is not treated as some limiting factor as
5a537485 1298 * dirty_thresh, due to reasons
de1fff37 1299 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1300 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1301 * go into state (wb_dirty >> wb_thresh) either because
1302 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1303 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1304 * dirtiers for 100 seconds until wb_dirty drops under
1305 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1306 * wb_position_ratio() will let the dirtier task progress
de1fff37 1307 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1308 */
de1fff37 1309 *wb_thresh = wb_dirty_limit(wb, dirty_thresh);
5a537485 1310
de1fff37
TH
1311 if (wb_bg_thresh)
1312 *wb_bg_thresh = dirty_thresh ? div_u64((u64)*wb_thresh *
1313 background_thresh,
1314 dirty_thresh) : 0;
5a537485
MP
1315
1316 /*
1317 * In order to avoid the stacked BDI deadlock we need
1318 * to ensure we accurately count the 'dirty' pages when
1319 * the threshold is low.
1320 *
1321 * Otherwise it would be possible to get thresh+n pages
1322 * reported dirty, even though there are thresh-m pages
1323 * actually dirty; with m+n sitting in the percpu
1324 * deltas.
1325 */
de1fff37 1326 if (*wb_thresh < 2 * wb_stat_error(wb)) {
93f78d88 1327 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
de1fff37 1328 *wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1329 } else {
93f78d88 1330 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
de1fff37 1331 *wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1332 }
1333}
1334
1da177e4
LT
1335/*
1336 * balance_dirty_pages() must be called by processes which are generating dirty
1337 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1338 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1339 * If we're over `background_thresh' then the writeback threads are woken to
1340 * perform some writeout.
1da177e4 1341 */
3a2e9a5a 1342static void balance_dirty_pages(struct address_space *mapping,
dfb8ae56 1343 struct bdi_writeback *wb,
143dfe86 1344 unsigned long pages_dirtied)
1da177e4 1345{
143dfe86 1346 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
7762741e 1347 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
364aeb28
DR
1348 unsigned long background_thresh;
1349 unsigned long dirty_thresh;
83712358 1350 long period;
7ccb9ad5
WF
1351 long pause;
1352 long max_pause;
1353 long min_pause;
1354 int nr_dirtied_pause;
e50e3720 1355 bool dirty_exceeded = false;
143dfe86 1356 unsigned long task_ratelimit;
7ccb9ad5 1357 unsigned long dirty_ratelimit;
143dfe86 1358 unsigned long pos_ratio;
dfb8ae56 1359 struct backing_dev_info *bdi = wb->bdi;
5a537485 1360 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1361 unsigned long start_time = jiffies;
1da177e4
LT
1362
1363 for (;;) {
83712358 1364 unsigned long now = jiffies;
de1fff37 1365 unsigned long uninitialized_var(wb_thresh);
5a537485 1366 unsigned long thresh;
de1fff37 1367 unsigned long uninitialized_var(wb_dirty);
5a537485
MP
1368 unsigned long dirty;
1369 unsigned long bg_thresh;
83712358 1370
143dfe86
WF
1371 /*
1372 * Unstable writes are a feature of certain networked
1373 * filesystems (i.e. NFS) in which data may have been
1374 * written to the server's write cache, but has not yet
1375 * been flushed to permanent storage.
1376 */
5fce25a9
PZ
1377 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1378 global_page_state(NR_UNSTABLE_NFS);
7762741e 1379 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 1380
16c4042f
WF
1381 global_dirty_limits(&background_thresh, &dirty_thresh);
1382
5a537485 1383 if (unlikely(strictlimit)) {
a88a341a 1384 wb_dirty_limits(wb, dirty_thresh, background_thresh,
de1fff37 1385 &wb_dirty, &wb_thresh, &bg_thresh);
5a537485 1386
de1fff37
TH
1387 dirty = wb_dirty;
1388 thresh = wb_thresh;
5a537485
MP
1389 } else {
1390 dirty = nr_dirty;
1391 thresh = dirty_thresh;
1392 bg_thresh = background_thresh;
1393 }
1394
16c4042f
WF
1395 /*
1396 * Throttle it only when the background writeback cannot
1397 * catch-up. This avoids (excessively) small writeouts
de1fff37 1398 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1399 *
de1fff37
TH
1400 * In strictlimit case make decision based on the wb counters
1401 * and limits. Small writeouts when the wb limits are ramping
5a537485 1402 * up are the price we consciously pay for strictlimit-ing.
16c4042f 1403 */
5a537485 1404 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
83712358
WF
1405 current->dirty_paused_when = now;
1406 current->nr_dirtied = 0;
7ccb9ad5 1407 current->nr_dirtied_pause =
5a537485 1408 dirty_poll_interval(dirty, thresh);
16c4042f 1409 break;
83712358 1410 }
16c4042f 1411
143dfe86
WF
1412 if (unlikely(!writeback_in_progress(bdi)))
1413 bdi_start_background_writeback(bdi);
1414
5a537485 1415 if (!strictlimit)
a88a341a 1416 wb_dirty_limits(wb, dirty_thresh, background_thresh,
de1fff37 1417 &wb_dirty, &wb_thresh, NULL);
5fce25a9 1418
de1fff37 1419 dirty_exceeded = (wb_dirty > wb_thresh) &&
5a537485 1420 ((nr_dirty > dirty_thresh) || strictlimit);
a88a341a
TH
1421 if (dirty_exceeded && !wb->dirty_exceeded)
1422 wb->dirty_exceeded = 1;
1da177e4 1423
a88a341a 1424 wb_update_bandwidth(wb, dirty_thresh, background_thresh,
de1fff37 1425 nr_dirty, wb_thresh, wb_dirty, start_time);
e98be2d5 1426
a88a341a
TH
1427 dirty_ratelimit = wb->dirty_ratelimit;
1428 pos_ratio = wb_position_ratio(wb, dirty_thresh,
1429 background_thresh, nr_dirty,
de1fff37 1430 wb_thresh, wb_dirty);
3a73dbbc
WF
1431 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1432 RATELIMIT_CALC_SHIFT;
de1fff37 1433 max_pause = wb_max_pause(wb, wb_dirty);
a88a341a
TH
1434 min_pause = wb_min_pause(wb, max_pause,
1435 task_ratelimit, dirty_ratelimit,
1436 &nr_dirtied_pause);
7ccb9ad5 1437
3a73dbbc 1438 if (unlikely(task_ratelimit == 0)) {
83712358 1439 period = max_pause;
c8462cc9 1440 pause = max_pause;
143dfe86 1441 goto pause;
04fbfdc1 1442 }
83712358
WF
1443 period = HZ * pages_dirtied / task_ratelimit;
1444 pause = period;
1445 if (current->dirty_paused_when)
1446 pause -= now - current->dirty_paused_when;
1447 /*
1448 * For less than 1s think time (ext3/4 may block the dirtier
1449 * for up to 800ms from time to time on 1-HDD; so does xfs,
1450 * however at much less frequency), try to compensate it in
1451 * future periods by updating the virtual time; otherwise just
1452 * do a reset, as it may be a light dirtier.
1453 */
7ccb9ad5 1454 if (pause < min_pause) {
ece13ac3
WF
1455 trace_balance_dirty_pages(bdi,
1456 dirty_thresh,
1457 background_thresh,
1458 nr_dirty,
de1fff37
TH
1459 wb_thresh,
1460 wb_dirty,
ece13ac3
WF
1461 dirty_ratelimit,
1462 task_ratelimit,
1463 pages_dirtied,
83712358 1464 period,
7ccb9ad5 1465 min(pause, 0L),
ece13ac3 1466 start_time);
83712358
WF
1467 if (pause < -HZ) {
1468 current->dirty_paused_when = now;
1469 current->nr_dirtied = 0;
1470 } else if (period) {
1471 current->dirty_paused_when += period;
1472 current->nr_dirtied = 0;
7ccb9ad5
WF
1473 } else if (current->nr_dirtied_pause <= pages_dirtied)
1474 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1475 break;
04fbfdc1 1476 }
7ccb9ad5
WF
1477 if (unlikely(pause > max_pause)) {
1478 /* for occasional dropped task_ratelimit */
1479 now += min(pause - max_pause, max_pause);
1480 pause = max_pause;
1481 }
143dfe86
WF
1482
1483pause:
ece13ac3
WF
1484 trace_balance_dirty_pages(bdi,
1485 dirty_thresh,
1486 background_thresh,
1487 nr_dirty,
de1fff37
TH
1488 wb_thresh,
1489 wb_dirty,
ece13ac3
WF
1490 dirty_ratelimit,
1491 task_ratelimit,
1492 pages_dirtied,
83712358 1493 period,
ece13ac3
WF
1494 pause,
1495 start_time);
499d05ec 1496 __set_current_state(TASK_KILLABLE);
d25105e8 1497 io_schedule_timeout(pause);
87c6a9b2 1498
83712358
WF
1499 current->dirty_paused_when = now + pause;
1500 current->nr_dirtied = 0;
7ccb9ad5 1501 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1502
ffd1f609 1503 /*
1df64719
WF
1504 * This is typically equal to (nr_dirty < dirty_thresh) and can
1505 * also keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1506 */
1df64719 1507 if (task_ratelimit)
ffd1f609 1508 break;
499d05ec 1509
c5c6343c
WF
1510 /*
1511 * In the case of an unresponding NFS server and the NFS dirty
de1fff37 1512 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1513 * to go through, so that tasks on them still remain responsive.
1514 *
1515 * In theory 1 page is enough to keep the comsumer-producer
1516 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1517 * more page. However wb_dirty has accounting errors. So use
93f78d88 1518 * the larger and more IO friendly wb_stat_error.
c5c6343c 1519 */
de1fff37 1520 if (wb_dirty <= wb_stat_error(wb))
c5c6343c
WF
1521 break;
1522
499d05ec
JK
1523 if (fatal_signal_pending(current))
1524 break;
1da177e4
LT
1525 }
1526
a88a341a
TH
1527 if (!dirty_exceeded && wb->dirty_exceeded)
1528 wb->dirty_exceeded = 0;
1da177e4
LT
1529
1530 if (writeback_in_progress(bdi))
5b0830cb 1531 return;
1da177e4
LT
1532
1533 /*
1534 * In laptop mode, we wait until hitting the higher threshold before
1535 * starting background writeout, and then write out all the way down
1536 * to the lower threshold. So slow writers cause minimal disk activity.
1537 *
1538 * In normal mode, we start background writeout at the lower
1539 * background_thresh, to keep the amount of dirty memory low.
1540 */
143dfe86
WF
1541 if (laptop_mode)
1542 return;
1543
1544 if (nr_reclaimable > background_thresh)
c5444198 1545 bdi_start_background_writeback(bdi);
1da177e4
LT
1546}
1547
9d823e8f 1548static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1549
54848d73
WF
1550/*
1551 * Normal tasks are throttled by
1552 * loop {
1553 * dirty tsk->nr_dirtied_pause pages;
1554 * take a snap in balance_dirty_pages();
1555 * }
1556 * However there is a worst case. If every task exit immediately when dirtied
1557 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1558 * called to throttle the page dirties. The solution is to save the not yet
1559 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1560 * randomly into the running tasks. This works well for the above worst case,
1561 * as the new task will pick up and accumulate the old task's leaked dirty
1562 * count and eventually get throttled.
1563 */
1564DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1565
1da177e4 1566/**
d0e1d66b 1567 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1568 * @mapping: address_space which was dirtied
1da177e4
LT
1569 *
1570 * Processes which are dirtying memory should call in here once for each page
1571 * which was newly dirtied. The function will periodically check the system's
1572 * dirty state and will initiate writeback if needed.
1573 *
1574 * On really big machines, get_writeback_state is expensive, so try to avoid
1575 * calling it too often (ratelimiting). But once we're over the dirty memory
1576 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1577 * from overshooting the limit by (ratelimit_pages) each.
1578 */
d0e1d66b 1579void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1580{
dfb8ae56
TH
1581 struct inode *inode = mapping->host;
1582 struct backing_dev_info *bdi = inode_to_bdi(inode);
1583 struct bdi_writeback *wb = NULL;
9d823e8f
WF
1584 int ratelimit;
1585 int *p;
1da177e4 1586
36715cef
WF
1587 if (!bdi_cap_account_dirty(bdi))
1588 return;
1589
dfb8ae56
TH
1590 if (inode_cgwb_enabled(inode))
1591 wb = wb_get_create_current(bdi, GFP_KERNEL);
1592 if (!wb)
1593 wb = &bdi->wb;
1594
9d823e8f 1595 ratelimit = current->nr_dirtied_pause;
a88a341a 1596 if (wb->dirty_exceeded)
9d823e8f
WF
1597 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1598
9d823e8f 1599 preempt_disable();
1da177e4 1600 /*
9d823e8f
WF
1601 * This prevents one CPU to accumulate too many dirtied pages without
1602 * calling into balance_dirty_pages(), which can happen when there are
1603 * 1000+ tasks, all of them start dirtying pages at exactly the same
1604 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1605 */
7c8e0181 1606 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1607 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1608 *p = 0;
d3bc1fef
WF
1609 else if (unlikely(*p >= ratelimit_pages)) {
1610 *p = 0;
1611 ratelimit = 0;
1da177e4 1612 }
54848d73
WF
1613 /*
1614 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1615 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1616 * the dirty throttling and livelock other long-run dirtiers.
1617 */
7c8e0181 1618 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1619 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1620 unsigned long nr_pages_dirtied;
54848d73
WF
1621 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1622 *p -= nr_pages_dirtied;
1623 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1624 }
fa5a734e 1625 preempt_enable();
9d823e8f
WF
1626
1627 if (unlikely(current->nr_dirtied >= ratelimit))
dfb8ae56
TH
1628 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1629
1630 wb_put(wb);
1da177e4 1631}
d0e1d66b 1632EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1633
232ea4d6 1634void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 1635{
364aeb28
DR
1636 unsigned long background_thresh;
1637 unsigned long dirty_thresh;
1da177e4
LT
1638
1639 for ( ; ; ) {
16c4042f 1640 global_dirty_limits(&background_thresh, &dirty_thresh);
47a13333 1641 dirty_thresh = hard_dirty_limit(dirty_thresh);
1da177e4
LT
1642
1643 /*
1644 * Boost the allowable dirty threshold a bit for page
1645 * allocators so they don't get DoS'ed by heavy writers
1646 */
1647 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1648
c24f21bd
CL
1649 if (global_page_state(NR_UNSTABLE_NFS) +
1650 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1651 break;
8aa7e847 1652 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
1653
1654 /*
1655 * The caller might hold locks which can prevent IO completion
1656 * or progress in the filesystem. So we cannot just sit here
1657 * waiting for IO to complete.
1658 */
1659 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1660 break;
1da177e4
LT
1661 }
1662}
1663
1da177e4
LT
1664/*
1665 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1666 */
cccad5b9 1667int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
8d65af78 1668 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1669{
8d65af78 1670 proc_dointvec(table, write, buffer, length, ppos);
1da177e4
LT
1671 return 0;
1672}
1673
c2c4986e 1674#ifdef CONFIG_BLOCK
31373d09 1675void laptop_mode_timer_fn(unsigned long data)
1da177e4 1676{
31373d09
MG
1677 struct request_queue *q = (struct request_queue *)data;
1678 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1679 global_page_state(NR_UNSTABLE_NFS);
1da177e4 1680
31373d09
MG
1681 /*
1682 * We want to write everything out, not just down to the dirty
1683 * threshold
1684 */
31373d09 1685 if (bdi_has_dirty_io(&q->backing_dev_info))
0e175a18
CW
1686 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1687 WB_REASON_LAPTOP_TIMER);
1da177e4
LT
1688}
1689
1690/*
1691 * We've spun up the disk and we're in laptop mode: schedule writeback
1692 * of all dirty data a few seconds from now. If the flush is already scheduled
1693 * then push it back - the user is still using the disk.
1694 */
31373d09 1695void laptop_io_completion(struct backing_dev_info *info)
1da177e4 1696{
31373d09 1697 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
1698}
1699
1700/*
1701 * We're in laptop mode and we've just synced. The sync's writes will have
1702 * caused another writeback to be scheduled by laptop_io_completion.
1703 * Nothing needs to be written back anymore, so we unschedule the writeback.
1704 */
1705void laptop_sync_completion(void)
1706{
31373d09
MG
1707 struct backing_dev_info *bdi;
1708
1709 rcu_read_lock();
1710
1711 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1712 del_timer(&bdi->laptop_mode_wb_timer);
1713
1714 rcu_read_unlock();
1da177e4 1715}
c2c4986e 1716#endif
1da177e4
LT
1717
1718/*
1719 * If ratelimit_pages is too high then we can get into dirty-data overload
1720 * if a large number of processes all perform writes at the same time.
1721 * If it is too low then SMP machines will call the (expensive)
1722 * get_writeback_state too often.
1723 *
1724 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1725 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 1726 * thresholds.
1da177e4
LT
1727 */
1728
2d1d43f6 1729void writeback_set_ratelimit(void)
1da177e4 1730{
9d823e8f
WF
1731 unsigned long background_thresh;
1732 unsigned long dirty_thresh;
1733 global_dirty_limits(&background_thresh, &dirty_thresh);
68809c71 1734 global_dirty_limit = dirty_thresh;
9d823e8f 1735 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
1736 if (ratelimit_pages < 16)
1737 ratelimit_pages = 16;
1da177e4
LT
1738}
1739
0db0628d 1740static int
2f60d628
SB
1741ratelimit_handler(struct notifier_block *self, unsigned long action,
1742 void *hcpu)
1da177e4 1743{
2f60d628
SB
1744
1745 switch (action & ~CPU_TASKS_FROZEN) {
1746 case CPU_ONLINE:
1747 case CPU_DEAD:
1748 writeback_set_ratelimit();
1749 return NOTIFY_OK;
1750 default:
1751 return NOTIFY_DONE;
1752 }
1da177e4
LT
1753}
1754
0db0628d 1755static struct notifier_block ratelimit_nb = {
1da177e4
LT
1756 .notifier_call = ratelimit_handler,
1757 .next = NULL,
1758};
1759
1760/*
dc6e29da
LT
1761 * Called early on to tune the page writeback dirty limits.
1762 *
1763 * We used to scale dirty pages according to how total memory
1764 * related to pages that could be allocated for buffers (by
1765 * comparing nr_free_buffer_pages() to vm_total_pages.
1766 *
1767 * However, that was when we used "dirty_ratio" to scale with
1768 * all memory, and we don't do that any more. "dirty_ratio"
1769 * is now applied to total non-HIGHPAGE memory (by subtracting
1770 * totalhigh_pages from vm_total_pages), and as such we can't
1771 * get into the old insane situation any more where we had
1772 * large amounts of dirty pages compared to a small amount of
1773 * non-HIGHMEM memory.
1774 *
1775 * But we might still want to scale the dirty_ratio by how
1776 * much memory the box has..
1da177e4
LT
1777 */
1778void __init page_writeback_init(void)
1779{
2d1d43f6 1780 writeback_set_ratelimit();
1da177e4 1781 register_cpu_notifier(&ratelimit_nb);
04fbfdc1 1782
20ae0079 1783 fprop_global_init(&writeout_completions, GFP_KERNEL);
1da177e4
LT
1784}
1785
f446daae
JK
1786/**
1787 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1788 * @mapping: address space structure to write
1789 * @start: starting page index
1790 * @end: ending page index (inclusive)
1791 *
1792 * This function scans the page range from @start to @end (inclusive) and tags
1793 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1794 * that write_cache_pages (or whoever calls this function) will then use
1795 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1796 * used to avoid livelocking of writeback by a process steadily creating new
1797 * dirty pages in the file (thus it is important for this function to be quick
1798 * so that it can tag pages faster than a dirtying process can create them).
1799 */
1800/*
1801 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1802 */
f446daae
JK
1803void tag_pages_for_writeback(struct address_space *mapping,
1804 pgoff_t start, pgoff_t end)
1805{
3c111a07 1806#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
1807 unsigned long tagged;
1808
1809 do {
1810 spin_lock_irq(&mapping->tree_lock);
1811 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1812 &start, end, WRITEBACK_TAG_BATCH,
1813 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1814 spin_unlock_irq(&mapping->tree_lock);
1815 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1816 cond_resched();
d5ed3a4a
JK
1817 /* We check 'start' to handle wrapping when end == ~0UL */
1818 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
1819}
1820EXPORT_SYMBOL(tag_pages_for_writeback);
1821
811d736f 1822/**
0ea97180 1823 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
1824 * @mapping: address space structure to write
1825 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
1826 * @writepage: function called for each page
1827 * @data: data passed to writepage function
811d736f 1828 *
0ea97180 1829 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
1830 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1831 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1832 * and msync() need to guarantee that all the data which was dirty at the time
1833 * the call was made get new I/O started against them. If wbc->sync_mode is
1834 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1835 * existing IO to complete.
f446daae
JK
1836 *
1837 * To avoid livelocks (when other process dirties new pages), we first tag
1838 * pages which should be written back with TOWRITE tag and only then start
1839 * writing them. For data-integrity sync we have to be careful so that we do
1840 * not miss some pages (e.g., because some other process has cleared TOWRITE
1841 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1842 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 1843 */
0ea97180
MS
1844int write_cache_pages(struct address_space *mapping,
1845 struct writeback_control *wbc, writepage_t writepage,
1846 void *data)
811d736f 1847{
811d736f
DH
1848 int ret = 0;
1849 int done = 0;
811d736f
DH
1850 struct pagevec pvec;
1851 int nr_pages;
31a12666 1852 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
1853 pgoff_t index;
1854 pgoff_t end; /* Inclusive */
bd19e012 1855 pgoff_t done_index;
31a12666 1856 int cycled;
811d736f 1857 int range_whole = 0;
f446daae 1858 int tag;
811d736f 1859
811d736f
DH
1860 pagevec_init(&pvec, 0);
1861 if (wbc->range_cyclic) {
31a12666
NP
1862 writeback_index = mapping->writeback_index; /* prev offset */
1863 index = writeback_index;
1864 if (index == 0)
1865 cycled = 1;
1866 else
1867 cycled = 0;
811d736f
DH
1868 end = -1;
1869 } else {
1870 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1871 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1872 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1873 range_whole = 1;
31a12666 1874 cycled = 1; /* ignore range_cyclic tests */
811d736f 1875 }
6e6938b6 1876 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
1877 tag = PAGECACHE_TAG_TOWRITE;
1878 else
1879 tag = PAGECACHE_TAG_DIRTY;
811d736f 1880retry:
6e6938b6 1881 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 1882 tag_pages_for_writeback(mapping, index, end);
bd19e012 1883 done_index = index;
5a3d5c98
NP
1884 while (!done && (index <= end)) {
1885 int i;
1886
f446daae 1887 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
1888 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1889 if (nr_pages == 0)
1890 break;
811d736f 1891
811d736f
DH
1892 for (i = 0; i < nr_pages; i++) {
1893 struct page *page = pvec.pages[i];
1894
1895 /*
d5482cdf
NP
1896 * At this point, the page may be truncated or
1897 * invalidated (changing page->mapping to NULL), or
1898 * even swizzled back from swapper_space to tmpfs file
1899 * mapping. However, page->index will not change
1900 * because we have a reference on the page.
811d736f 1901 */
d5482cdf
NP
1902 if (page->index > end) {
1903 /*
1904 * can't be range_cyclic (1st pass) because
1905 * end == -1 in that case.
1906 */
1907 done = 1;
1908 break;
1909 }
1910
cf15b07c 1911 done_index = page->index;
d5482cdf 1912
811d736f
DH
1913 lock_page(page);
1914
5a3d5c98
NP
1915 /*
1916 * Page truncated or invalidated. We can freely skip it
1917 * then, even for data integrity operations: the page
1918 * has disappeared concurrently, so there could be no
1919 * real expectation of this data interity operation
1920 * even if there is now a new, dirty page at the same
1921 * pagecache address.
1922 */
811d736f 1923 if (unlikely(page->mapping != mapping)) {
5a3d5c98 1924continue_unlock:
811d736f
DH
1925 unlock_page(page);
1926 continue;
1927 }
1928
515f4a03
NP
1929 if (!PageDirty(page)) {
1930 /* someone wrote it for us */
1931 goto continue_unlock;
1932 }
1933
1934 if (PageWriteback(page)) {
1935 if (wbc->sync_mode != WB_SYNC_NONE)
1936 wait_on_page_writeback(page);
1937 else
1938 goto continue_unlock;
1939 }
811d736f 1940
515f4a03
NP
1941 BUG_ON(PageWriteback(page));
1942 if (!clear_page_dirty_for_io(page))
5a3d5c98 1943 goto continue_unlock;
811d736f 1944
de1414a6 1945 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
0ea97180 1946 ret = (*writepage)(page, wbc, data);
00266770
NP
1947 if (unlikely(ret)) {
1948 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1949 unlock_page(page);
1950 ret = 0;
1951 } else {
1952 /*
1953 * done_index is set past this page,
1954 * so media errors will not choke
1955 * background writeout for the entire
1956 * file. This has consequences for
1957 * range_cyclic semantics (ie. it may
1958 * not be suitable for data integrity
1959 * writeout).
1960 */
cf15b07c 1961 done_index = page->index + 1;
00266770
NP
1962 done = 1;
1963 break;
1964 }
0b564927 1965 }
00266770 1966
546a1924
DC
1967 /*
1968 * We stop writing back only if we are not doing
1969 * integrity sync. In case of integrity sync we have to
1970 * keep going until we have written all the pages
1971 * we tagged for writeback prior to entering this loop.
1972 */
1973 if (--wbc->nr_to_write <= 0 &&
1974 wbc->sync_mode == WB_SYNC_NONE) {
1975 done = 1;
1976 break;
05fe478d 1977 }
811d736f
DH
1978 }
1979 pagevec_release(&pvec);
1980 cond_resched();
1981 }
3a4c6800 1982 if (!cycled && !done) {
811d736f 1983 /*
31a12666 1984 * range_cyclic:
811d736f
DH
1985 * We hit the last page and there is more work to be done: wrap
1986 * back to the start of the file
1987 */
31a12666 1988 cycled = 1;
811d736f 1989 index = 0;
31a12666 1990 end = writeback_index - 1;
811d736f
DH
1991 goto retry;
1992 }
0b564927
DC
1993 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1994 mapping->writeback_index = done_index;
06d6cf69 1995
811d736f
DH
1996 return ret;
1997}
0ea97180
MS
1998EXPORT_SYMBOL(write_cache_pages);
1999
2000/*
2001 * Function used by generic_writepages to call the real writepage
2002 * function and set the mapping flags on error
2003 */
2004static int __writepage(struct page *page, struct writeback_control *wbc,
2005 void *data)
2006{
2007 struct address_space *mapping = data;
2008 int ret = mapping->a_ops->writepage(page, wbc);
2009 mapping_set_error(mapping, ret);
2010 return ret;
2011}
2012
2013/**
2014 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2015 * @mapping: address space structure to write
2016 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2017 *
2018 * This is a library function, which implements the writepages()
2019 * address_space_operation.
2020 */
2021int generic_writepages(struct address_space *mapping,
2022 struct writeback_control *wbc)
2023{
9b6096a6
SL
2024 struct blk_plug plug;
2025 int ret;
2026
0ea97180
MS
2027 /* deal with chardevs and other special file */
2028 if (!mapping->a_ops->writepage)
2029 return 0;
2030
9b6096a6
SL
2031 blk_start_plug(&plug);
2032 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2033 blk_finish_plug(&plug);
2034 return ret;
0ea97180 2035}
811d736f
DH
2036
2037EXPORT_SYMBOL(generic_writepages);
2038
1da177e4
LT
2039int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2040{
22905f77
AM
2041 int ret;
2042
1da177e4
LT
2043 if (wbc->nr_to_write <= 0)
2044 return 0;
2045 if (mapping->a_ops->writepages)
d08b3851 2046 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
2047 else
2048 ret = generic_writepages(mapping, wbc);
22905f77 2049 return ret;
1da177e4
LT
2050}
2051
2052/**
2053 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
2054 * @page: the page to write
2055 * @wait: if true, wait on writeout
1da177e4
LT
2056 *
2057 * The page must be locked by the caller and will be unlocked upon return.
2058 *
2059 * write_one_page() returns a negative error code if I/O failed.
2060 */
2061int write_one_page(struct page *page, int wait)
2062{
2063 struct address_space *mapping = page->mapping;
2064 int ret = 0;
2065 struct writeback_control wbc = {
2066 .sync_mode = WB_SYNC_ALL,
2067 .nr_to_write = 1,
2068 };
2069
2070 BUG_ON(!PageLocked(page));
2071
2072 if (wait)
2073 wait_on_page_writeback(page);
2074
2075 if (clear_page_dirty_for_io(page)) {
2076 page_cache_get(page);
2077 ret = mapping->a_ops->writepage(page, &wbc);
2078 if (ret == 0 && wait) {
2079 wait_on_page_writeback(page);
2080 if (PageError(page))
2081 ret = -EIO;
2082 }
2083 page_cache_release(page);
2084 } else {
2085 unlock_page(page);
2086 }
2087 return ret;
2088}
2089EXPORT_SYMBOL(write_one_page);
2090
76719325
KC
2091/*
2092 * For address_spaces which do not use buffers nor write back.
2093 */
2094int __set_page_dirty_no_writeback(struct page *page)
2095{
2096 if (!PageDirty(page))
c3f0da63 2097 return !TestSetPageDirty(page);
76719325
KC
2098 return 0;
2099}
2100
e3a7cca1
ES
2101/*
2102 * Helper function for set_page_dirty family.
c4843a75
GT
2103 *
2104 * Caller must hold mem_cgroup_begin_page_stat().
2105 *
e3a7cca1
ES
2106 * NOTE: This relies on being atomic wrt interrupts.
2107 */
c4843a75
GT
2108void account_page_dirtied(struct page *page, struct address_space *mapping,
2109 struct mem_cgroup *memcg)
e3a7cca1 2110{
52ebea74
TH
2111 struct inode *inode = mapping->host;
2112
9fb0a7da
TH
2113 trace_writeback_dirty_page(page, mapping);
2114
e3a7cca1 2115 if (mapping_cap_account_dirty(mapping)) {
52ebea74
TH
2116 struct bdi_writeback *wb;
2117
2118 inode_attach_wb(inode, page);
2119 wb = inode_to_wb(inode);
de1414a6 2120
c4843a75 2121 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
e3a7cca1 2122 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 2123 __inc_zone_page_state(page, NR_DIRTIED);
52ebea74
TH
2124 __inc_wb_stat(wb, WB_RECLAIMABLE);
2125 __inc_wb_stat(wb, WB_DIRTIED);
e3a7cca1 2126 task_io_account_write(PAGE_CACHE_SIZE);
d3bc1fef
WF
2127 current->nr_dirtied++;
2128 this_cpu_inc(bdp_ratelimits);
e3a7cca1
ES
2129 }
2130}
679ceace 2131EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 2132
b9ea2515
KK
2133/*
2134 * Helper function for deaccounting dirty page without writeback.
c4843a75
GT
2135 *
2136 * Caller must hold mem_cgroup_begin_page_stat().
b9ea2515 2137 */
c4843a75
GT
2138void account_page_cleaned(struct page *page, struct address_space *mapping,
2139 struct mem_cgroup *memcg)
b9ea2515
KK
2140{
2141 if (mapping_cap_account_dirty(mapping)) {
c4843a75 2142 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
b9ea2515 2143 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2144 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
b9ea2515
KK
2145 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2146 }
2147}
b9ea2515 2148
1da177e4
LT
2149/*
2150 * For address_spaces which do not use buffers. Just tag the page as dirty in
2151 * its radix tree.
2152 *
2153 * This is also used when a single buffer is being dirtied: we want to set the
2154 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2155 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2156 *
2d6d7f98
JW
2157 * The caller must ensure this doesn't race with truncation. Most will simply
2158 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2159 * the pte lock held, which also locks out truncation.
1da177e4
LT
2160 */
2161int __set_page_dirty_nobuffers(struct page *page)
2162{
c4843a75
GT
2163 struct mem_cgroup *memcg;
2164
2165 memcg = mem_cgroup_begin_page_stat(page);
1da177e4
LT
2166 if (!TestSetPageDirty(page)) {
2167 struct address_space *mapping = page_mapping(page);
a85d9df1 2168 unsigned long flags;
1da177e4 2169
c4843a75
GT
2170 if (!mapping) {
2171 mem_cgroup_end_page_stat(memcg);
8c08540f 2172 return 1;
c4843a75 2173 }
8c08540f 2174
a85d9df1 2175 spin_lock_irqsave(&mapping->tree_lock, flags);
2d6d7f98
JW
2176 BUG_ON(page_mapping(page) != mapping);
2177 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
c4843a75 2178 account_page_dirtied(page, mapping, memcg);
2d6d7f98
JW
2179 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2180 PAGECACHE_TAG_DIRTY);
a85d9df1 2181 spin_unlock_irqrestore(&mapping->tree_lock, flags);
c4843a75
GT
2182 mem_cgroup_end_page_stat(memcg);
2183
8c08540f
AM
2184 if (mapping->host) {
2185 /* !PageAnon && !swapper_space */
2186 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2187 }
4741c9fd 2188 return 1;
1da177e4 2189 }
c4843a75 2190 mem_cgroup_end_page_stat(memcg);
4741c9fd 2191 return 0;
1da177e4
LT
2192}
2193EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2194
2f800fbd
WF
2195/*
2196 * Call this whenever redirtying a page, to de-account the dirty counters
2197 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2198 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2199 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2200 * control.
2201 */
2202void account_page_redirty(struct page *page)
2203{
2204 struct address_space *mapping = page->mapping;
91018134 2205
2f800fbd 2206 if (mapping && mapping_cap_account_dirty(mapping)) {
91018134
TH
2207 struct bdi_writeback *wb = inode_to_wb(mapping->host);
2208
2f800fbd
WF
2209 current->nr_dirtied--;
2210 dec_zone_page_state(page, NR_DIRTIED);
91018134 2211 dec_wb_stat(wb, WB_DIRTIED);
2f800fbd
WF
2212 }
2213}
2214EXPORT_SYMBOL(account_page_redirty);
2215
1da177e4
LT
2216/*
2217 * When a writepage implementation decides that it doesn't want to write this
2218 * page for some reason, it should redirty the locked page via
2219 * redirty_page_for_writepage() and it should then unlock the page and return 0
2220 */
2221int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2222{
8d38633c
KK
2223 int ret;
2224
1da177e4 2225 wbc->pages_skipped++;
8d38633c 2226 ret = __set_page_dirty_nobuffers(page);
2f800fbd 2227 account_page_redirty(page);
8d38633c 2228 return ret;
1da177e4
LT
2229}
2230EXPORT_SYMBOL(redirty_page_for_writepage);
2231
2232/*
6746aff7
WF
2233 * Dirty a page.
2234 *
2235 * For pages with a mapping this should be done under the page lock
2236 * for the benefit of asynchronous memory errors who prefer a consistent
2237 * dirty state. This rule can be broken in some special cases,
2238 * but should be better not to.
2239 *
1da177e4
LT
2240 * If the mapping doesn't provide a set_page_dirty a_op, then
2241 * just fall through and assume that it wants buffer_heads.
2242 */
1cf6e7d8 2243int set_page_dirty(struct page *page)
1da177e4
LT
2244{
2245 struct address_space *mapping = page_mapping(page);
2246
2247 if (likely(mapping)) {
2248 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
2249 /*
2250 * readahead/lru_deactivate_page could remain
2251 * PG_readahead/PG_reclaim due to race with end_page_writeback
2252 * About readahead, if the page is written, the flags would be
2253 * reset. So no problem.
2254 * About lru_deactivate_page, if the page is redirty, the flag
2255 * will be reset. So no problem. but if the page is used by readahead
2256 * it will confuse readahead and make it restart the size rampup
2257 * process. But it's a trivial problem.
2258 */
a4bb3ecd
NH
2259 if (PageReclaim(page))
2260 ClearPageReclaim(page);
9361401e
DH
2261#ifdef CONFIG_BLOCK
2262 if (!spd)
2263 spd = __set_page_dirty_buffers;
2264#endif
2265 return (*spd)(page);
1da177e4 2266 }
4741c9fd
AM
2267 if (!PageDirty(page)) {
2268 if (!TestSetPageDirty(page))
2269 return 1;
2270 }
1da177e4
LT
2271 return 0;
2272}
2273EXPORT_SYMBOL(set_page_dirty);
2274
2275/*
2276 * set_page_dirty() is racy if the caller has no reference against
2277 * page->mapping->host, and if the page is unlocked. This is because another
2278 * CPU could truncate the page off the mapping and then free the mapping.
2279 *
2280 * Usually, the page _is_ locked, or the caller is a user-space process which
2281 * holds a reference on the inode by having an open file.
2282 *
2283 * In other cases, the page should be locked before running set_page_dirty().
2284 */
2285int set_page_dirty_lock(struct page *page)
2286{
2287 int ret;
2288
7eaceacc 2289 lock_page(page);
1da177e4
LT
2290 ret = set_page_dirty(page);
2291 unlock_page(page);
2292 return ret;
2293}
2294EXPORT_SYMBOL(set_page_dirty_lock);
2295
11f81bec
TH
2296/*
2297 * This cancels just the dirty bit on the kernel page itself, it does NOT
2298 * actually remove dirty bits on any mmap's that may be around. It also
2299 * leaves the page tagged dirty, so any sync activity will still find it on
2300 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2301 * look at the dirty bits in the VM.
2302 *
2303 * Doing this should *normally* only ever be done when a page is truncated,
2304 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2305 * this when it notices that somebody has cleaned out all the buffers on a
2306 * page without actually doing it through the VM. Can you say "ext3 is
2307 * horribly ugly"? Thought you could.
2308 */
2309void cancel_dirty_page(struct page *page)
2310{
c4843a75
GT
2311 struct address_space *mapping = page_mapping(page);
2312
2313 if (mapping_cap_account_dirty(mapping)) {
2314 struct mem_cgroup *memcg;
2315
2316 memcg = mem_cgroup_begin_page_stat(page);
2317
2318 if (TestClearPageDirty(page))
2319 account_page_cleaned(page, mapping, memcg);
2320
2321 mem_cgroup_end_page_stat(memcg);
2322 } else {
2323 ClearPageDirty(page);
2324 }
11f81bec
TH
2325}
2326EXPORT_SYMBOL(cancel_dirty_page);
2327
1da177e4
LT
2328/*
2329 * Clear a page's dirty flag, while caring for dirty memory accounting.
2330 * Returns true if the page was previously dirty.
2331 *
2332 * This is for preparing to put the page under writeout. We leave the page
2333 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2334 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2335 * implementation will run either set_page_writeback() or set_page_dirty(),
2336 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2337 * back into sync.
2338 *
2339 * This incoherency between the page's dirty flag and radix-tree tag is
2340 * unfortunate, but it only exists while the page is locked.
2341 */
2342int clear_page_dirty_for_io(struct page *page)
2343{
2344 struct address_space *mapping = page_mapping(page);
c4843a75
GT
2345 struct mem_cgroup *memcg;
2346 int ret = 0;
1da177e4 2347
79352894
NP
2348 BUG_ON(!PageLocked(page));
2349
7658cc28
LT
2350 if (mapping && mapping_cap_account_dirty(mapping)) {
2351 /*
2352 * Yes, Virginia, this is indeed insane.
2353 *
2354 * We use this sequence to make sure that
2355 * (a) we account for dirty stats properly
2356 * (b) we tell the low-level filesystem to
2357 * mark the whole page dirty if it was
2358 * dirty in a pagetable. Only to then
2359 * (c) clean the page again and return 1 to
2360 * cause the writeback.
2361 *
2362 * This way we avoid all nasty races with the
2363 * dirty bit in multiple places and clearing
2364 * them concurrently from different threads.
2365 *
2366 * Note! Normally the "set_page_dirty(page)"
2367 * has no effect on the actual dirty bit - since
2368 * that will already usually be set. But we
2369 * need the side effects, and it can help us
2370 * avoid races.
2371 *
2372 * We basically use the page "master dirty bit"
2373 * as a serialization point for all the different
2374 * threads doing their things.
7658cc28
LT
2375 */
2376 if (page_mkclean(page))
2377 set_page_dirty(page);
79352894
NP
2378 /*
2379 * We carefully synchronise fault handlers against
2380 * installing a dirty pte and marking the page dirty
2d6d7f98
JW
2381 * at this point. We do this by having them hold the
2382 * page lock while dirtying the page, and pages are
2383 * always locked coming in here, so we get the desired
2384 * exclusion.
79352894 2385 */
c4843a75 2386 memcg = mem_cgroup_begin_page_stat(page);
7658cc28 2387 if (TestClearPageDirty(page)) {
c4843a75 2388 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
8c08540f 2389 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2390 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
c4843a75 2391 ret = 1;
1da177e4 2392 }
c4843a75
GT
2393 mem_cgroup_end_page_stat(memcg);
2394 return ret;
1da177e4 2395 }
7658cc28 2396 return TestClearPageDirty(page);
1da177e4 2397}
58bb01a9 2398EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
2399
2400int test_clear_page_writeback(struct page *page)
2401{
2402 struct address_space *mapping = page_mapping(page);
d7365e78 2403 struct mem_cgroup *memcg;
d7365e78 2404 int ret;
1da177e4 2405
6de22619 2406 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2407 if (mapping) {
91018134
TH
2408 struct inode *inode = mapping->host;
2409 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2410 unsigned long flags;
2411
19fd6231 2412 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2413 ret = TestClearPageWriteback(page);
69cb51d1 2414 if (ret) {
1da177e4
LT
2415 radix_tree_tag_clear(&mapping->page_tree,
2416 page_index(page),
2417 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2418 if (bdi_cap_account_writeback(bdi)) {
91018134
TH
2419 struct bdi_writeback *wb = inode_to_wb(inode);
2420
2421 __dec_wb_stat(wb, WB_WRITEBACK);
2422 __wb_writeout_inc(wb);
04fbfdc1 2423 }
69cb51d1 2424 }
19fd6231 2425 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2426 } else {
2427 ret = TestClearPageWriteback(page);
2428 }
99b12e3d 2429 if (ret) {
d7365e78 2430 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
d688abf5 2431 dec_zone_page_state(page, NR_WRITEBACK);
99b12e3d
WF
2432 inc_zone_page_state(page, NR_WRITTEN);
2433 }
6de22619 2434 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2435 return ret;
2436}
2437
1c8349a1 2438int __test_set_page_writeback(struct page *page, bool keep_write)
1da177e4
LT
2439{
2440 struct address_space *mapping = page_mapping(page);
d7365e78 2441 struct mem_cgroup *memcg;
d7365e78 2442 int ret;
1da177e4 2443
6de22619 2444 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2445 if (mapping) {
91018134
TH
2446 struct inode *inode = mapping->host;
2447 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2448 unsigned long flags;
2449
19fd6231 2450 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2451 ret = TestSetPageWriteback(page);
69cb51d1 2452 if (!ret) {
1da177e4
LT
2453 radix_tree_tag_set(&mapping->page_tree,
2454 page_index(page),
2455 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2456 if (bdi_cap_account_writeback(bdi))
91018134 2457 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
69cb51d1 2458 }
1da177e4
LT
2459 if (!PageDirty(page))
2460 radix_tree_tag_clear(&mapping->page_tree,
2461 page_index(page),
2462 PAGECACHE_TAG_DIRTY);
1c8349a1
NJ
2463 if (!keep_write)
2464 radix_tree_tag_clear(&mapping->page_tree,
2465 page_index(page),
2466 PAGECACHE_TAG_TOWRITE);
19fd6231 2467 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2468 } else {
2469 ret = TestSetPageWriteback(page);
2470 }
3a3c02ec 2471 if (!ret) {
d7365e78 2472 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3a3c02ec
JW
2473 inc_zone_page_state(page, NR_WRITEBACK);
2474 }
6de22619 2475 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2476 return ret;
2477
2478}
1c8349a1 2479EXPORT_SYMBOL(__test_set_page_writeback);
1da177e4
LT
2480
2481/*
00128188 2482 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
2483 * passed tag.
2484 */
2485int mapping_tagged(struct address_space *mapping, int tag)
2486{
72c47832 2487 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
2488}
2489EXPORT_SYMBOL(mapping_tagged);
1d1d1a76
DW
2490
2491/**
2492 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2493 * @page: The page to wait on.
2494 *
2495 * This function determines if the given page is related to a backing device
2496 * that requires page contents to be held stable during writeback. If so, then
2497 * it will wait for any pending writeback to complete.
2498 */
2499void wait_for_stable_page(struct page *page)
2500{
de1414a6
CH
2501 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2502 wait_on_page_writeback(page);
1d1d1a76
DW
2503}
2504EXPORT_SYMBOL_GPL(wait_for_stable_page);