]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
[PATCH] reduce MAX_NR_ZONES: move HIGHMEM counters into highmem.c/.h
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
1da177e4
LT
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
bdc8cb98 35#include <linux/memory_hotplug.h>
1da177e4
LT
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
4be38e35 38#include <linux/mempolicy.h>
6811378e 39#include <linux/stop_machine.h>
1da177e4
LT
40
41#include <asm/tlbflush.h>
ac924c60 42#include <asm/div64.h>
1da177e4
LT
43#include "internal.h"
44
45/*
46 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
47 * initializer cleaner
48 */
c3d8c141 49nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 50EXPORT_SYMBOL(node_online_map);
c3d8c141 51nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 52EXPORT_SYMBOL(node_possible_map);
6c231b7b 53unsigned long totalram_pages __read_mostly;
cb45b0e9 54unsigned long totalreserve_pages __read_mostly;
1da177e4 55long nr_swap_pages;
8ad4b1fb 56int percpu_pagelist_fraction;
1da177e4 57
d98c7a09 58static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 59
1da177e4
LT
60/*
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
67 *
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
1da177e4 70 */
a2f1b424 71int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
1da177e4
LT
72
73EXPORT_SYMBOL(totalram_pages);
1da177e4
LT
74
75/*
76 * Used by page_zone() to look up the address of the struct zone whose
77 * id is encoded in the upper bits of page->flags
78 */
c3d8c141 79struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
1da177e4
LT
80EXPORT_SYMBOL(zone_table);
81
a2f1b424 82static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
1da177e4
LT
83int min_free_kbytes = 1024;
84
86356ab1
YG
85unsigned long __meminitdata nr_kernel_pages;
86unsigned long __meminitdata nr_all_pages;
1da177e4 87
13e7444b 88#ifdef CONFIG_DEBUG_VM
c6a57e19 89static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 90{
bdc8cb98
DH
91 int ret = 0;
92 unsigned seq;
93 unsigned long pfn = page_to_pfn(page);
c6a57e19 94
bdc8cb98
DH
95 do {
96 seq = zone_span_seqbegin(zone);
97 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
98 ret = 1;
99 else if (pfn < zone->zone_start_pfn)
100 ret = 1;
101 } while (zone_span_seqretry(zone, seq));
102
103 return ret;
c6a57e19
DH
104}
105
106static int page_is_consistent(struct zone *zone, struct page *page)
107{
1da177e4
LT
108#ifdef CONFIG_HOLES_IN_ZONE
109 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 110 return 0;
1da177e4
LT
111#endif
112 if (zone != page_zone(page))
c6a57e19
DH
113 return 0;
114
115 return 1;
116}
117/*
118 * Temporary debugging check for pages not lying within a given zone.
119 */
120static int bad_range(struct zone *zone, struct page *page)
121{
122 if (page_outside_zone_boundaries(zone, page))
1da177e4 123 return 1;
c6a57e19
DH
124 if (!page_is_consistent(zone, page))
125 return 1;
126
1da177e4
LT
127 return 0;
128}
13e7444b
NP
129#else
130static inline int bad_range(struct zone *zone, struct page *page)
131{
132 return 0;
133}
134#endif
135
224abf92 136static void bad_page(struct page *page)
1da177e4 137{
224abf92 138 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
139 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
140 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
141 KERN_EMERG "Backtrace:\n",
224abf92
NP
142 current->comm, page, (int)(2*sizeof(unsigned long)),
143 (unsigned long)page->flags, page->mapping,
144 page_mapcount(page), page_count(page));
1da177e4 145 dump_stack();
334795ec
HD
146 page->flags &= ~(1 << PG_lru |
147 1 << PG_private |
1da177e4 148 1 << PG_locked |
1da177e4
LT
149 1 << PG_active |
150 1 << PG_dirty |
334795ec
HD
151 1 << PG_reclaim |
152 1 << PG_slab |
1da177e4 153 1 << PG_swapcache |
676165a8
NP
154 1 << PG_writeback |
155 1 << PG_buddy );
1da177e4
LT
156 set_page_count(page, 0);
157 reset_page_mapcount(page);
158 page->mapping = NULL;
9f158333 159 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
160}
161
1da177e4
LT
162/*
163 * Higher-order pages are called "compound pages". They are structured thusly:
164 *
165 * The first PAGE_SIZE page is called the "head page".
166 *
167 * The remaining PAGE_SIZE pages are called "tail pages".
168 *
169 * All pages have PG_compound set. All pages have their ->private pointing at
170 * the head page (even the head page has this).
171 *
41d78ba5
HD
172 * The first tail page's ->lru.next holds the address of the compound page's
173 * put_page() function. Its ->lru.prev holds the order of allocation.
174 * This usage means that zero-order pages may not be compound.
1da177e4 175 */
d98c7a09
HD
176
177static void free_compound_page(struct page *page)
178{
179 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
180}
181
1da177e4
LT
182static void prep_compound_page(struct page *page, unsigned long order)
183{
184 int i;
185 int nr_pages = 1 << order;
186
d98c7a09 187 page[1].lru.next = (void *)free_compound_page; /* set dtor */
41d78ba5 188 page[1].lru.prev = (void *)order;
1da177e4
LT
189 for (i = 0; i < nr_pages; i++) {
190 struct page *p = page + i;
191
5e9dace8 192 __SetPageCompound(p);
4c21e2f2 193 set_page_private(p, (unsigned long)page);
1da177e4
LT
194 }
195}
196
197static void destroy_compound_page(struct page *page, unsigned long order)
198{
199 int i;
200 int nr_pages = 1 << order;
201
41d78ba5 202 if (unlikely((unsigned long)page[1].lru.prev != order))
224abf92 203 bad_page(page);
1da177e4
LT
204
205 for (i = 0; i < nr_pages; i++) {
206 struct page *p = page + i;
207
224abf92
NP
208 if (unlikely(!PageCompound(p) |
209 (page_private(p) != (unsigned long)page)))
210 bad_page(page);
5e9dace8 211 __ClearPageCompound(p);
1da177e4
LT
212 }
213}
1da177e4 214
17cf4406
NP
215static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
216{
217 int i;
218
725d704e 219 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
6626c5d5
AM
220 /*
221 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
222 * and __GFP_HIGHMEM from hard or soft interrupt context.
223 */
725d704e 224 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
225 for (i = 0; i < (1 << order); i++)
226 clear_highpage(page + i);
227}
228
1da177e4
LT
229/*
230 * function for dealing with page's order in buddy system.
231 * zone->lock is already acquired when we use these.
232 * So, we don't need atomic page->flags operations here.
233 */
6aa3001b
AM
234static inline unsigned long page_order(struct page *page)
235{
4c21e2f2 236 return page_private(page);
1da177e4
LT
237}
238
6aa3001b
AM
239static inline void set_page_order(struct page *page, int order)
240{
4c21e2f2 241 set_page_private(page, order);
676165a8 242 __SetPageBuddy(page);
1da177e4
LT
243}
244
245static inline void rmv_page_order(struct page *page)
246{
676165a8 247 __ClearPageBuddy(page);
4c21e2f2 248 set_page_private(page, 0);
1da177e4
LT
249}
250
251/*
252 * Locate the struct page for both the matching buddy in our
253 * pair (buddy1) and the combined O(n+1) page they form (page).
254 *
255 * 1) Any buddy B1 will have an order O twin B2 which satisfies
256 * the following equation:
257 * B2 = B1 ^ (1 << O)
258 * For example, if the starting buddy (buddy2) is #8 its order
259 * 1 buddy is #10:
260 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
261 *
262 * 2) Any buddy B will have an order O+1 parent P which
263 * satisfies the following equation:
264 * P = B & ~(1 << O)
265 *
d6e05edc 266 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
267 */
268static inline struct page *
269__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
270{
271 unsigned long buddy_idx = page_idx ^ (1 << order);
272
273 return page + (buddy_idx - page_idx);
274}
275
276static inline unsigned long
277__find_combined_index(unsigned long page_idx, unsigned int order)
278{
279 return (page_idx & ~(1 << order));
280}
281
282/*
283 * This function checks whether a page is free && is the buddy
284 * we can do coalesce a page and its buddy if
13e7444b 285 * (a) the buddy is not in a hole &&
676165a8 286 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
287 * (c) a page and its buddy have the same order &&
288 * (d) a page and its buddy are in the same zone.
676165a8
NP
289 *
290 * For recording whether a page is in the buddy system, we use PG_buddy.
291 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 292 *
676165a8 293 * For recording page's order, we use page_private(page).
1da177e4 294 */
cb2b95e1
AW
295static inline int page_is_buddy(struct page *page, struct page *buddy,
296 int order)
1da177e4 297{
13e7444b 298#ifdef CONFIG_HOLES_IN_ZONE
cb2b95e1 299 if (!pfn_valid(page_to_pfn(buddy)))
13e7444b
NP
300 return 0;
301#endif
302
cb2b95e1
AW
303 if (page_zone_id(page) != page_zone_id(buddy))
304 return 0;
305
306 if (PageBuddy(buddy) && page_order(buddy) == order) {
307 BUG_ON(page_count(buddy) != 0);
6aa3001b 308 return 1;
676165a8 309 }
6aa3001b 310 return 0;
1da177e4
LT
311}
312
313/*
314 * Freeing function for a buddy system allocator.
315 *
316 * The concept of a buddy system is to maintain direct-mapped table
317 * (containing bit values) for memory blocks of various "orders".
318 * The bottom level table contains the map for the smallest allocatable
319 * units of memory (here, pages), and each level above it describes
320 * pairs of units from the levels below, hence, "buddies".
321 * At a high level, all that happens here is marking the table entry
322 * at the bottom level available, and propagating the changes upward
323 * as necessary, plus some accounting needed to play nicely with other
324 * parts of the VM system.
325 * At each level, we keep a list of pages, which are heads of continuous
676165a8 326 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 327 * order is recorded in page_private(page) field.
1da177e4
LT
328 * So when we are allocating or freeing one, we can derive the state of the
329 * other. That is, if we allocate a small block, and both were
330 * free, the remainder of the region must be split into blocks.
331 * If a block is freed, and its buddy is also free, then this
332 * triggers coalescing into a block of larger size.
333 *
334 * -- wli
335 */
336
48db57f8 337static inline void __free_one_page(struct page *page,
1da177e4
LT
338 struct zone *zone, unsigned int order)
339{
340 unsigned long page_idx;
341 int order_size = 1 << order;
342
224abf92 343 if (unlikely(PageCompound(page)))
1da177e4
LT
344 destroy_compound_page(page, order);
345
346 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
347
725d704e
NP
348 VM_BUG_ON(page_idx & (order_size - 1));
349 VM_BUG_ON(bad_range(zone, page));
1da177e4
LT
350
351 zone->free_pages += order_size;
352 while (order < MAX_ORDER-1) {
353 unsigned long combined_idx;
354 struct free_area *area;
355 struct page *buddy;
356
1da177e4 357 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 358 if (!page_is_buddy(page, buddy, order))
1da177e4 359 break; /* Move the buddy up one level. */
13e7444b 360
1da177e4
LT
361 list_del(&buddy->lru);
362 area = zone->free_area + order;
363 area->nr_free--;
364 rmv_page_order(buddy);
13e7444b 365 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
366 page = page + (combined_idx - page_idx);
367 page_idx = combined_idx;
368 order++;
369 }
370 set_page_order(page, order);
371 list_add(&page->lru, &zone->free_area[order].free_list);
372 zone->free_area[order].nr_free++;
373}
374
224abf92 375static inline int free_pages_check(struct page *page)
1da177e4 376{
92be2e33
NP
377 if (unlikely(page_mapcount(page) |
378 (page->mapping != NULL) |
379 (page_count(page) != 0) |
1da177e4
LT
380 (page->flags & (
381 1 << PG_lru |
382 1 << PG_private |
383 1 << PG_locked |
384 1 << PG_active |
385 1 << PG_reclaim |
386 1 << PG_slab |
387 1 << PG_swapcache |
b5810039 388 1 << PG_writeback |
676165a8
NP
389 1 << PG_reserved |
390 1 << PG_buddy ))))
224abf92 391 bad_page(page);
1da177e4 392 if (PageDirty(page))
242e5468 393 __ClearPageDirty(page);
689bcebf
HD
394 /*
395 * For now, we report if PG_reserved was found set, but do not
396 * clear it, and do not free the page. But we shall soon need
397 * to do more, for when the ZERO_PAGE count wraps negative.
398 */
399 return PageReserved(page);
1da177e4
LT
400}
401
402/*
403 * Frees a list of pages.
404 * Assumes all pages on list are in same zone, and of same order.
207f36ee 405 * count is the number of pages to free.
1da177e4
LT
406 *
407 * If the zone was previously in an "all pages pinned" state then look to
408 * see if this freeing clears that state.
409 *
410 * And clear the zone's pages_scanned counter, to hold off the "all pages are
411 * pinned" detection logic.
412 */
48db57f8
NP
413static void free_pages_bulk(struct zone *zone, int count,
414 struct list_head *list, int order)
1da177e4 415{
c54ad30c 416 spin_lock(&zone->lock);
1da177e4
LT
417 zone->all_unreclaimable = 0;
418 zone->pages_scanned = 0;
48db57f8
NP
419 while (count--) {
420 struct page *page;
421
725d704e 422 VM_BUG_ON(list_empty(list));
1da177e4 423 page = list_entry(list->prev, struct page, lru);
48db57f8 424 /* have to delete it as __free_one_page list manipulates */
1da177e4 425 list_del(&page->lru);
48db57f8 426 __free_one_page(page, zone, order);
1da177e4 427 }
c54ad30c 428 spin_unlock(&zone->lock);
1da177e4
LT
429}
430
48db57f8 431static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4
LT
432{
433 LIST_HEAD(list);
48db57f8
NP
434 list_add(&page->lru, &list);
435 free_pages_bulk(zone, 1, &list, order);
436}
437
438static void __free_pages_ok(struct page *page, unsigned int order)
439{
440 unsigned long flags;
1da177e4 441 int i;
689bcebf 442 int reserved = 0;
1da177e4
LT
443
444 arch_free_page(page, order);
de5097c2 445 if (!PageHighMem(page))
f9b8404c
IM
446 debug_check_no_locks_freed(page_address(page),
447 PAGE_SIZE<<order);
1da177e4 448
1da177e4 449 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 450 reserved += free_pages_check(page + i);
689bcebf
HD
451 if (reserved)
452 return;
453
48db57f8 454 kernel_map_pages(page, 1 << order, 0);
c54ad30c 455 local_irq_save(flags);
f8891e5e 456 __count_vm_events(PGFREE, 1 << order);
48db57f8 457 free_one_page(page_zone(page), page, order);
c54ad30c 458 local_irq_restore(flags);
1da177e4
LT
459}
460
a226f6c8
DH
461/*
462 * permit the bootmem allocator to evade page validation on high-order frees
463 */
464void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
465{
466 if (order == 0) {
467 __ClearPageReserved(page);
468 set_page_count(page, 0);
7835e98b 469 set_page_refcounted(page);
545b1ea9 470 __free_page(page);
a226f6c8 471 } else {
a226f6c8
DH
472 int loop;
473
545b1ea9 474 prefetchw(page);
a226f6c8
DH
475 for (loop = 0; loop < BITS_PER_LONG; loop++) {
476 struct page *p = &page[loop];
477
545b1ea9
NP
478 if (loop + 1 < BITS_PER_LONG)
479 prefetchw(p + 1);
a226f6c8
DH
480 __ClearPageReserved(p);
481 set_page_count(p, 0);
482 }
483
7835e98b 484 set_page_refcounted(page);
545b1ea9 485 __free_pages(page, order);
a226f6c8
DH
486 }
487}
488
1da177e4
LT
489
490/*
491 * The order of subdivision here is critical for the IO subsystem.
492 * Please do not alter this order without good reasons and regression
493 * testing. Specifically, as large blocks of memory are subdivided,
494 * the order in which smaller blocks are delivered depends on the order
495 * they're subdivided in this function. This is the primary factor
496 * influencing the order in which pages are delivered to the IO
497 * subsystem according to empirical testing, and this is also justified
498 * by considering the behavior of a buddy system containing a single
499 * large block of memory acted on by a series of small allocations.
500 * This behavior is a critical factor in sglist merging's success.
501 *
502 * -- wli
503 */
085cc7d5 504static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
505 int low, int high, struct free_area *area)
506{
507 unsigned long size = 1 << high;
508
509 while (high > low) {
510 area--;
511 high--;
512 size >>= 1;
725d704e 513 VM_BUG_ON(bad_range(zone, &page[size]));
1da177e4
LT
514 list_add(&page[size].lru, &area->free_list);
515 area->nr_free++;
516 set_page_order(&page[size], high);
517 }
1da177e4
LT
518}
519
1da177e4
LT
520/*
521 * This page is about to be returned from the page allocator
522 */
17cf4406 523static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 524{
92be2e33
NP
525 if (unlikely(page_mapcount(page) |
526 (page->mapping != NULL) |
527 (page_count(page) != 0) |
334795ec
HD
528 (page->flags & (
529 1 << PG_lru |
1da177e4
LT
530 1 << PG_private |
531 1 << PG_locked |
1da177e4
LT
532 1 << PG_active |
533 1 << PG_dirty |
534 1 << PG_reclaim |
334795ec 535 1 << PG_slab |
1da177e4 536 1 << PG_swapcache |
b5810039 537 1 << PG_writeback |
676165a8
NP
538 1 << PG_reserved |
539 1 << PG_buddy ))))
224abf92 540 bad_page(page);
1da177e4 541
689bcebf
HD
542 /*
543 * For now, we report if PG_reserved was found set, but do not
544 * clear it, and do not allocate the page: as a safety net.
545 */
546 if (PageReserved(page))
547 return 1;
548
1da177e4
LT
549 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
550 1 << PG_referenced | 1 << PG_arch_1 |
551 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 552 set_page_private(page, 0);
7835e98b 553 set_page_refcounted(page);
1da177e4 554 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
555
556 if (gfp_flags & __GFP_ZERO)
557 prep_zero_page(page, order, gfp_flags);
558
559 if (order && (gfp_flags & __GFP_COMP))
560 prep_compound_page(page, order);
561
689bcebf 562 return 0;
1da177e4
LT
563}
564
565/*
566 * Do the hard work of removing an element from the buddy allocator.
567 * Call me with the zone->lock already held.
568 */
569static struct page *__rmqueue(struct zone *zone, unsigned int order)
570{
571 struct free_area * area;
572 unsigned int current_order;
573 struct page *page;
574
575 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
576 area = zone->free_area + current_order;
577 if (list_empty(&area->free_list))
578 continue;
579
580 page = list_entry(area->free_list.next, struct page, lru);
581 list_del(&page->lru);
582 rmv_page_order(page);
583 area->nr_free--;
584 zone->free_pages -= 1UL << order;
085cc7d5
NP
585 expand(zone, page, order, current_order, area);
586 return page;
1da177e4
LT
587 }
588
589 return NULL;
590}
591
592/*
593 * Obtain a specified number of elements from the buddy allocator, all under
594 * a single hold of the lock, for efficiency. Add them to the supplied list.
595 * Returns the number of new pages which were placed at *list.
596 */
597static int rmqueue_bulk(struct zone *zone, unsigned int order,
598 unsigned long count, struct list_head *list)
599{
1da177e4 600 int i;
1da177e4 601
c54ad30c 602 spin_lock(&zone->lock);
1da177e4 603 for (i = 0; i < count; ++i) {
085cc7d5
NP
604 struct page *page = __rmqueue(zone, order);
605 if (unlikely(page == NULL))
1da177e4 606 break;
1da177e4
LT
607 list_add_tail(&page->lru, list);
608 }
c54ad30c 609 spin_unlock(&zone->lock);
085cc7d5 610 return i;
1da177e4
LT
611}
612
4ae7c039 613#ifdef CONFIG_NUMA
8fce4d8e
CL
614/*
615 * Called from the slab reaper to drain pagesets on a particular node that
616 * belong to the currently executing processor.
879336c3
CL
617 * Note that this function must be called with the thread pinned to
618 * a single processor.
8fce4d8e
CL
619 */
620void drain_node_pages(int nodeid)
4ae7c039 621{
8fce4d8e 622 int i, z;
4ae7c039
CL
623 unsigned long flags;
624
8fce4d8e
CL
625 for (z = 0; z < MAX_NR_ZONES; z++) {
626 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
4ae7c039
CL
627 struct per_cpu_pageset *pset;
628
23316bc8 629 pset = zone_pcp(zone, smp_processor_id());
4ae7c039
CL
630 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
631 struct per_cpu_pages *pcp;
632
633 pcp = &pset->pcp[i];
879336c3
CL
634 if (pcp->count) {
635 local_irq_save(flags);
636 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
637 pcp->count = 0;
638 local_irq_restore(flags);
639 }
4ae7c039
CL
640 }
641 }
4ae7c039
CL
642}
643#endif
644
1da177e4
LT
645#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
646static void __drain_pages(unsigned int cpu)
647{
c54ad30c 648 unsigned long flags;
1da177e4
LT
649 struct zone *zone;
650 int i;
651
652 for_each_zone(zone) {
653 struct per_cpu_pageset *pset;
654
e7c8d5c9 655 pset = zone_pcp(zone, cpu);
1da177e4
LT
656 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
657 struct per_cpu_pages *pcp;
658
659 pcp = &pset->pcp[i];
c54ad30c 660 local_irq_save(flags);
48db57f8
NP
661 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
662 pcp->count = 0;
c54ad30c 663 local_irq_restore(flags);
1da177e4
LT
664 }
665 }
666}
667#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
668
669#ifdef CONFIG_PM
670
671void mark_free_pages(struct zone *zone)
672{
673 unsigned long zone_pfn, flags;
674 int order;
675 struct list_head *curr;
676
677 if (!zone->spanned_pages)
678 return;
679
680 spin_lock_irqsave(&zone->lock, flags);
681 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
682 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
683
684 for (order = MAX_ORDER - 1; order >= 0; --order)
685 list_for_each(curr, &zone->free_area[order].free_list) {
686 unsigned long start_pfn, i;
687
688 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
689
690 for (i=0; i < (1<<order); i++)
691 SetPageNosaveFree(pfn_to_page(start_pfn+i));
692 }
693 spin_unlock_irqrestore(&zone->lock, flags);
694}
695
696/*
697 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
698 */
699void drain_local_pages(void)
700{
701 unsigned long flags;
702
703 local_irq_save(flags);
704 __drain_pages(smp_processor_id());
705 local_irq_restore(flags);
706}
707#endif /* CONFIG_PM */
708
1da177e4
LT
709/*
710 * Free a 0-order page
711 */
1da177e4
LT
712static void fastcall free_hot_cold_page(struct page *page, int cold)
713{
714 struct zone *zone = page_zone(page);
715 struct per_cpu_pages *pcp;
716 unsigned long flags;
717
718 arch_free_page(page, 0);
719
1da177e4
LT
720 if (PageAnon(page))
721 page->mapping = NULL;
224abf92 722 if (free_pages_check(page))
689bcebf
HD
723 return;
724
689bcebf
HD
725 kernel_map_pages(page, 1, 0);
726
e7c8d5c9 727 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 728 local_irq_save(flags);
f8891e5e 729 __count_vm_event(PGFREE);
1da177e4
LT
730 list_add(&page->lru, &pcp->list);
731 pcp->count++;
48db57f8
NP
732 if (pcp->count >= pcp->high) {
733 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
734 pcp->count -= pcp->batch;
735 }
1da177e4
LT
736 local_irq_restore(flags);
737 put_cpu();
738}
739
740void fastcall free_hot_page(struct page *page)
741{
742 free_hot_cold_page(page, 0);
743}
744
745void fastcall free_cold_page(struct page *page)
746{
747 free_hot_cold_page(page, 1);
748}
749
8dfcc9ba
NP
750/*
751 * split_page takes a non-compound higher-order page, and splits it into
752 * n (1<<order) sub-pages: page[0..n]
753 * Each sub-page must be freed individually.
754 *
755 * Note: this is probably too low level an operation for use in drivers.
756 * Please consult with lkml before using this in your driver.
757 */
758void split_page(struct page *page, unsigned int order)
759{
760 int i;
761
725d704e
NP
762 VM_BUG_ON(PageCompound(page));
763 VM_BUG_ON(!page_count(page));
7835e98b
NP
764 for (i = 1; i < (1 << order); i++)
765 set_page_refcounted(page + i);
8dfcc9ba 766}
8dfcc9ba 767
1da177e4
LT
768/*
769 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
770 * we cheat by calling it from here, in the order > 0 path. Saves a branch
771 * or two.
772 */
a74609fa
NP
773static struct page *buffered_rmqueue(struct zonelist *zonelist,
774 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
775{
776 unsigned long flags;
689bcebf 777 struct page *page;
1da177e4 778 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 779 int cpu;
1da177e4 780
689bcebf 781again:
a74609fa 782 cpu = get_cpu();
48db57f8 783 if (likely(order == 0)) {
1da177e4
LT
784 struct per_cpu_pages *pcp;
785
a74609fa 786 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 787 local_irq_save(flags);
a74609fa 788 if (!pcp->count) {
1da177e4
LT
789 pcp->count += rmqueue_bulk(zone, 0,
790 pcp->batch, &pcp->list);
a74609fa
NP
791 if (unlikely(!pcp->count))
792 goto failed;
1da177e4 793 }
a74609fa
NP
794 page = list_entry(pcp->list.next, struct page, lru);
795 list_del(&page->lru);
796 pcp->count--;
7fb1d9fc 797 } else {
1da177e4
LT
798 spin_lock_irqsave(&zone->lock, flags);
799 page = __rmqueue(zone, order);
a74609fa
NP
800 spin_unlock(&zone->lock);
801 if (!page)
802 goto failed;
1da177e4
LT
803 }
804
f8891e5e 805 __count_zone_vm_events(PGALLOC, zone, 1 << order);
ca889e6c 806 zone_statistics(zonelist, zone);
a74609fa
NP
807 local_irq_restore(flags);
808 put_cpu();
1da177e4 809
725d704e 810 VM_BUG_ON(bad_range(zone, page));
17cf4406 811 if (prep_new_page(page, order, gfp_flags))
a74609fa 812 goto again;
1da177e4 813 return page;
a74609fa
NP
814
815failed:
816 local_irq_restore(flags);
817 put_cpu();
818 return NULL;
1da177e4
LT
819}
820
7fb1d9fc 821#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
822#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
823#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
824#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
825#define ALLOC_HARDER 0x10 /* try to alloc harder */
826#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
827#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 828
1da177e4
LT
829/*
830 * Return 1 if free pages are above 'mark'. This takes into account the order
831 * of the allocation.
832 */
833int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 834 int classzone_idx, int alloc_flags)
1da177e4
LT
835{
836 /* free_pages my go negative - that's OK */
837 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
838 int o;
839
7fb1d9fc 840 if (alloc_flags & ALLOC_HIGH)
1da177e4 841 min -= min / 2;
7fb1d9fc 842 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
843 min -= min / 4;
844
845 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
846 return 0;
847 for (o = 0; o < order; o++) {
848 /* At the next order, this order's pages become unavailable */
849 free_pages -= z->free_area[o].nr_free << o;
850
851 /* Require fewer higher order pages to be free */
852 min >>= 1;
853
854 if (free_pages <= min)
855 return 0;
856 }
857 return 1;
858}
859
7fb1d9fc
RS
860/*
861 * get_page_from_freeliest goes through the zonelist trying to allocate
862 * a page.
863 */
864static struct page *
865get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
866 struct zonelist *zonelist, int alloc_flags)
753ee728 867{
7fb1d9fc
RS
868 struct zone **z = zonelist->zones;
869 struct page *page = NULL;
870 int classzone_idx = zone_idx(*z);
871
872 /*
873 * Go through the zonelist once, looking for a zone with enough free.
874 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
875 */
876 do {
877 if ((alloc_flags & ALLOC_CPUSET) &&
878 !cpuset_zone_allowed(*z, gfp_mask))
879 continue;
880
881 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
882 unsigned long mark;
883 if (alloc_flags & ALLOC_WMARK_MIN)
884 mark = (*z)->pages_min;
885 else if (alloc_flags & ALLOC_WMARK_LOW)
886 mark = (*z)->pages_low;
887 else
888 mark = (*z)->pages_high;
889 if (!zone_watermark_ok(*z, order, mark,
7fb1d9fc 890 classzone_idx, alloc_flags))
9eeff239
CL
891 if (!zone_reclaim_mode ||
892 !zone_reclaim(*z, gfp_mask, order))
893 continue;
7fb1d9fc
RS
894 }
895
a74609fa 896 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
7fb1d9fc 897 if (page) {
7fb1d9fc
RS
898 break;
899 }
900 } while (*(++z) != NULL);
901 return page;
753ee728
MH
902}
903
1da177e4
LT
904/*
905 * This is the 'heart' of the zoned buddy allocator.
906 */
907struct page * fastcall
dd0fc66f 908__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
909 struct zonelist *zonelist)
910{
260b2367 911 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 912 struct zone **z;
1da177e4
LT
913 struct page *page;
914 struct reclaim_state reclaim_state;
915 struct task_struct *p = current;
1da177e4 916 int do_retry;
7fb1d9fc 917 int alloc_flags;
1da177e4
LT
918 int did_some_progress;
919
920 might_sleep_if(wait);
921
6b1de916 922restart:
7fb1d9fc 923 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 924
7fb1d9fc 925 if (unlikely(*z == NULL)) {
1da177e4
LT
926 /* Should this ever happen?? */
927 return NULL;
928 }
6b1de916 929
7fb1d9fc 930 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 931 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
932 if (page)
933 goto got_pg;
1da177e4 934
6b1de916 935 do {
43b0bc00 936 wakeup_kswapd(*z, order);
6b1de916 937 } while (*(++z));
1da177e4 938
9bf2229f 939 /*
7fb1d9fc
RS
940 * OK, we're below the kswapd watermark and have kicked background
941 * reclaim. Now things get more complex, so set up alloc_flags according
942 * to how we want to proceed.
943 *
944 * The caller may dip into page reserves a bit more if the caller
945 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
946 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
947 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 948 */
3148890b 949 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
950 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
951 alloc_flags |= ALLOC_HARDER;
952 if (gfp_mask & __GFP_HIGH)
953 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
954 if (wait)
955 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
956
957 /*
958 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 959 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
960 *
961 * This is the last chance, in general, before the goto nopage.
962 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 963 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 964 */
7fb1d9fc
RS
965 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
966 if (page)
967 goto got_pg;
1da177e4
LT
968
969 /* This allocation should allow future memory freeing. */
b84a35be
NP
970
971 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
972 && !in_interrupt()) {
973 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 974nofail_alloc:
b84a35be 975 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 976 page = get_page_from_freelist(gfp_mask, order,
47f3a867 977 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
978 if (page)
979 goto got_pg;
885036d3
KK
980 if (gfp_mask & __GFP_NOFAIL) {
981 blk_congestion_wait(WRITE, HZ/50);
982 goto nofail_alloc;
983 }
1da177e4
LT
984 }
985 goto nopage;
986 }
987
988 /* Atomic allocations - we can't balance anything */
989 if (!wait)
990 goto nopage;
991
992rebalance:
993 cond_resched();
994
995 /* We now go into synchronous reclaim */
3e0d98b9 996 cpuset_memory_pressure_bump();
1da177e4
LT
997 p->flags |= PF_MEMALLOC;
998 reclaim_state.reclaimed_slab = 0;
999 p->reclaim_state = &reclaim_state;
1000
7fb1d9fc 1001 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
1002
1003 p->reclaim_state = NULL;
1004 p->flags &= ~PF_MEMALLOC;
1005
1006 cond_resched();
1007
1008 if (likely(did_some_progress)) {
7fb1d9fc
RS
1009 page = get_page_from_freelist(gfp_mask, order,
1010 zonelist, alloc_flags);
1011 if (page)
1012 goto got_pg;
1da177e4
LT
1013 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1014 /*
1015 * Go through the zonelist yet one more time, keep
1016 * very high watermark here, this is only to catch
1017 * a parallel oom killing, we must fail if we're still
1018 * under heavy pressure.
1019 */
7fb1d9fc 1020 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1021 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1022 if (page)
1023 goto got_pg;
1da177e4 1024
9b0f8b04 1025 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1026 goto restart;
1027 }
1028
1029 /*
1030 * Don't let big-order allocations loop unless the caller explicitly
1031 * requests that. Wait for some write requests to complete then retry.
1032 *
1033 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1034 * <= 3, but that may not be true in other implementations.
1035 */
1036 do_retry = 0;
1037 if (!(gfp_mask & __GFP_NORETRY)) {
1038 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1039 do_retry = 1;
1040 if (gfp_mask & __GFP_NOFAIL)
1041 do_retry = 1;
1042 }
1043 if (do_retry) {
1044 blk_congestion_wait(WRITE, HZ/50);
1045 goto rebalance;
1046 }
1047
1048nopage:
1049 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1050 printk(KERN_WARNING "%s: page allocation failure."
1051 " order:%d, mode:0x%x\n",
1052 p->comm, order, gfp_mask);
1053 dump_stack();
578c2fd6 1054 show_mem();
1da177e4 1055 }
1da177e4 1056got_pg:
1da177e4
LT
1057 return page;
1058}
1059
1060EXPORT_SYMBOL(__alloc_pages);
1061
1062/*
1063 * Common helper functions.
1064 */
dd0fc66f 1065fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1066{
1067 struct page * page;
1068 page = alloc_pages(gfp_mask, order);
1069 if (!page)
1070 return 0;
1071 return (unsigned long) page_address(page);
1072}
1073
1074EXPORT_SYMBOL(__get_free_pages);
1075
dd0fc66f 1076fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1077{
1078 struct page * page;
1079
1080 /*
1081 * get_zeroed_page() returns a 32-bit address, which cannot represent
1082 * a highmem page
1083 */
725d704e 1084 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1085
1086 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1087 if (page)
1088 return (unsigned long) page_address(page);
1089 return 0;
1090}
1091
1092EXPORT_SYMBOL(get_zeroed_page);
1093
1094void __pagevec_free(struct pagevec *pvec)
1095{
1096 int i = pagevec_count(pvec);
1097
1098 while (--i >= 0)
1099 free_hot_cold_page(pvec->pages[i], pvec->cold);
1100}
1101
1102fastcall void __free_pages(struct page *page, unsigned int order)
1103{
b5810039 1104 if (put_page_testzero(page)) {
1da177e4
LT
1105 if (order == 0)
1106 free_hot_page(page);
1107 else
1108 __free_pages_ok(page, order);
1109 }
1110}
1111
1112EXPORT_SYMBOL(__free_pages);
1113
1114fastcall void free_pages(unsigned long addr, unsigned int order)
1115{
1116 if (addr != 0) {
725d704e 1117 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1118 __free_pages(virt_to_page((void *)addr), order);
1119 }
1120}
1121
1122EXPORT_SYMBOL(free_pages);
1123
1124/*
1125 * Total amount of free (allocatable) RAM:
1126 */
1127unsigned int nr_free_pages(void)
1128{
1129 unsigned int sum = 0;
1130 struct zone *zone;
1131
1132 for_each_zone(zone)
1133 sum += zone->free_pages;
1134
1135 return sum;
1136}
1137
1138EXPORT_SYMBOL(nr_free_pages);
1139
1140#ifdef CONFIG_NUMA
1141unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1142{
1143 unsigned int i, sum = 0;
1144
1145 for (i = 0; i < MAX_NR_ZONES; i++)
1146 sum += pgdat->node_zones[i].free_pages;
1147
1148 return sum;
1149}
1150#endif
1151
1152static unsigned int nr_free_zone_pages(int offset)
1153{
e310fd43
MB
1154 /* Just pick one node, since fallback list is circular */
1155 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1156 unsigned int sum = 0;
1157
e310fd43
MB
1158 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1159 struct zone **zonep = zonelist->zones;
1160 struct zone *zone;
1da177e4 1161
e310fd43
MB
1162 for (zone = *zonep++; zone; zone = *zonep++) {
1163 unsigned long size = zone->present_pages;
1164 unsigned long high = zone->pages_high;
1165 if (size > high)
1166 sum += size - high;
1da177e4
LT
1167 }
1168
1169 return sum;
1170}
1171
1172/*
1173 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1174 */
1175unsigned int nr_free_buffer_pages(void)
1176{
af4ca457 1177 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1178}
1179
1180/*
1181 * Amount of free RAM allocatable within all zones
1182 */
1183unsigned int nr_free_pagecache_pages(void)
1184{
af4ca457 1185 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4 1186}
1da177e4
LT
1187#ifdef CONFIG_NUMA
1188static void show_node(struct zone *zone)
1189{
1190 printk("Node %d ", zone->zone_pgdat->node_id);
1191}
1192#else
1193#define show_node(zone) do { } while (0)
1194#endif
1195
1da177e4
LT
1196void si_meminfo(struct sysinfo *val)
1197{
1198 val->totalram = totalram_pages;
1199 val->sharedram = 0;
1200 val->freeram = nr_free_pages();
1201 val->bufferram = nr_blockdev_pages();
1202#ifdef CONFIG_HIGHMEM
1203 val->totalhigh = totalhigh_pages;
1204 val->freehigh = nr_free_highpages();
1205#else
1206 val->totalhigh = 0;
1207 val->freehigh = 0;
1208#endif
1209 val->mem_unit = PAGE_SIZE;
1210}
1211
1212EXPORT_SYMBOL(si_meminfo);
1213
1214#ifdef CONFIG_NUMA
1215void si_meminfo_node(struct sysinfo *val, int nid)
1216{
1217 pg_data_t *pgdat = NODE_DATA(nid);
1218
1219 val->totalram = pgdat->node_present_pages;
1220 val->freeram = nr_free_pages_pgdat(pgdat);
1221 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1222 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1223 val->mem_unit = PAGE_SIZE;
1224}
1225#endif
1226
1227#define K(x) ((x) << (PAGE_SHIFT-10))
1228
1229/*
1230 * Show free area list (used inside shift_scroll-lock stuff)
1231 * We also calculate the percentage fragmentation. We do this by counting the
1232 * memory on each free list with the exception of the first item on the list.
1233 */
1234void show_free_areas(void)
1235{
1da177e4
LT
1236 int cpu, temperature;
1237 unsigned long active;
1238 unsigned long inactive;
1239 unsigned long free;
1240 struct zone *zone;
1241
1242 for_each_zone(zone) {
1243 show_node(zone);
1244 printk("%s per-cpu:", zone->name);
1245
f3fe6512 1246 if (!populated_zone(zone)) {
1da177e4
LT
1247 printk(" empty\n");
1248 continue;
1249 } else
1250 printk("\n");
1251
6b482c67 1252 for_each_online_cpu(cpu) {
1da177e4
LT
1253 struct per_cpu_pageset *pageset;
1254
e7c8d5c9 1255 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1256
1257 for (temperature = 0; temperature < 2; temperature++)
2d92c5c9 1258 printk("cpu %d %s: high %d, batch %d used:%d\n",
1da177e4
LT
1259 cpu,
1260 temperature ? "cold" : "hot",
1da177e4 1261 pageset->pcp[temperature].high,
4ae7c039
CL
1262 pageset->pcp[temperature].batch,
1263 pageset->pcp[temperature].count);
1da177e4
LT
1264 }
1265 }
1266
1da177e4
LT
1267 get_zone_counts(&active, &inactive, &free);
1268
1da177e4
LT
1269 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1270 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1271 active,
1272 inactive,
b1e7a8fd 1273 global_page_state(NR_FILE_DIRTY),
ce866b34 1274 global_page_state(NR_WRITEBACK),
fd39fc85 1275 global_page_state(NR_UNSTABLE_NFS),
1da177e4 1276 nr_free_pages(),
9a865ffa 1277 global_page_state(NR_SLAB),
65ba55f5 1278 global_page_state(NR_FILE_MAPPED),
df849a15 1279 global_page_state(NR_PAGETABLE));
1da177e4
LT
1280
1281 for_each_zone(zone) {
1282 int i;
1283
1284 show_node(zone);
1285 printk("%s"
1286 " free:%lukB"
1287 " min:%lukB"
1288 " low:%lukB"
1289 " high:%lukB"
1290 " active:%lukB"
1291 " inactive:%lukB"
1292 " present:%lukB"
1293 " pages_scanned:%lu"
1294 " all_unreclaimable? %s"
1295 "\n",
1296 zone->name,
1297 K(zone->free_pages),
1298 K(zone->pages_min),
1299 K(zone->pages_low),
1300 K(zone->pages_high),
1301 K(zone->nr_active),
1302 K(zone->nr_inactive),
1303 K(zone->present_pages),
1304 zone->pages_scanned,
1305 (zone->all_unreclaimable ? "yes" : "no")
1306 );
1307 printk("lowmem_reserve[]:");
1308 for (i = 0; i < MAX_NR_ZONES; i++)
1309 printk(" %lu", zone->lowmem_reserve[i]);
1310 printk("\n");
1311 }
1312
1313 for_each_zone(zone) {
8f9de51a 1314 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
1315
1316 show_node(zone);
1317 printk("%s: ", zone->name);
f3fe6512 1318 if (!populated_zone(zone)) {
1da177e4
LT
1319 printk("empty\n");
1320 continue;
1321 }
1322
1323 spin_lock_irqsave(&zone->lock, flags);
1324 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1325 nr[order] = zone->free_area[order].nr_free;
1326 total += nr[order] << order;
1da177e4
LT
1327 }
1328 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1329 for (order = 0; order < MAX_ORDER; order++)
1330 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1331 printk("= %lukB\n", K(total));
1332 }
1333
1334 show_swap_cache_info();
1335}
1336
1337/*
1338 * Builds allocation fallback zone lists.
1a93205b
CL
1339 *
1340 * Add all populated zones of a node to the zonelist.
1da177e4 1341 */
86356ab1 1342static int __meminit build_zonelists_node(pg_data_t *pgdat,
070f8032 1343 struct zonelist *zonelist, int nr_zones, int zone_type)
1da177e4 1344{
1a93205b
CL
1345 struct zone *zone;
1346
070f8032 1347 BUG_ON(zone_type > ZONE_HIGHMEM);
02a68a5e
CL
1348
1349 do {
070f8032 1350 zone = pgdat->node_zones + zone_type;
1a93205b 1351 if (populated_zone(zone)) {
1da177e4 1352#ifndef CONFIG_HIGHMEM
070f8032 1353 BUG_ON(zone_type > ZONE_NORMAL);
1da177e4 1354#endif
070f8032
CL
1355 zonelist->zones[nr_zones++] = zone;
1356 check_highest_zone(zone_type);
1da177e4 1357 }
070f8032 1358 zone_type--;
02a68a5e 1359
070f8032
CL
1360 } while (zone_type >= 0);
1361 return nr_zones;
1da177e4
LT
1362}
1363
260b2367
AV
1364static inline int highest_zone(int zone_bits)
1365{
1366 int res = ZONE_NORMAL;
1367 if (zone_bits & (__force int)__GFP_HIGHMEM)
1368 res = ZONE_HIGHMEM;
a2f1b424
AK
1369 if (zone_bits & (__force int)__GFP_DMA32)
1370 res = ZONE_DMA32;
260b2367
AV
1371 if (zone_bits & (__force int)__GFP_DMA)
1372 res = ZONE_DMA;
1373 return res;
1374}
1375
1da177e4
LT
1376#ifdef CONFIG_NUMA
1377#define MAX_NODE_LOAD (num_online_nodes())
86356ab1 1378static int __meminitdata node_load[MAX_NUMNODES];
1da177e4 1379/**
4dc3b16b 1380 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1381 * @node: node whose fallback list we're appending
1382 * @used_node_mask: nodemask_t of already used nodes
1383 *
1384 * We use a number of factors to determine which is the next node that should
1385 * appear on a given node's fallback list. The node should not have appeared
1386 * already in @node's fallback list, and it should be the next closest node
1387 * according to the distance array (which contains arbitrary distance values
1388 * from each node to each node in the system), and should also prefer nodes
1389 * with no CPUs, since presumably they'll have very little allocation pressure
1390 * on them otherwise.
1391 * It returns -1 if no node is found.
1392 */
86356ab1 1393static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 1394{
4cf808eb 1395 int n, val;
1da177e4
LT
1396 int min_val = INT_MAX;
1397 int best_node = -1;
1398
4cf808eb
LT
1399 /* Use the local node if we haven't already */
1400 if (!node_isset(node, *used_node_mask)) {
1401 node_set(node, *used_node_mask);
1402 return node;
1403 }
1da177e4 1404
4cf808eb
LT
1405 for_each_online_node(n) {
1406 cpumask_t tmp;
1da177e4
LT
1407
1408 /* Don't want a node to appear more than once */
1409 if (node_isset(n, *used_node_mask))
1410 continue;
1411
1da177e4
LT
1412 /* Use the distance array to find the distance */
1413 val = node_distance(node, n);
1414
4cf808eb
LT
1415 /* Penalize nodes under us ("prefer the next node") */
1416 val += (n < node);
1417
1da177e4
LT
1418 /* Give preference to headless and unused nodes */
1419 tmp = node_to_cpumask(n);
1420 if (!cpus_empty(tmp))
1421 val += PENALTY_FOR_NODE_WITH_CPUS;
1422
1423 /* Slight preference for less loaded node */
1424 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1425 val += node_load[n];
1426
1427 if (val < min_val) {
1428 min_val = val;
1429 best_node = n;
1430 }
1431 }
1432
1433 if (best_node >= 0)
1434 node_set(best_node, *used_node_mask);
1435
1436 return best_node;
1437}
1438
86356ab1 1439static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4
LT
1440{
1441 int i, j, k, node, local_node;
1442 int prev_node, load;
1443 struct zonelist *zonelist;
1444 nodemask_t used_mask;
1445
1446 /* initialize zonelists */
1447 for (i = 0; i < GFP_ZONETYPES; i++) {
1448 zonelist = pgdat->node_zonelists + i;
1449 zonelist->zones[0] = NULL;
1450 }
1451
1452 /* NUMA-aware ordering of nodes */
1453 local_node = pgdat->node_id;
1454 load = num_online_nodes();
1455 prev_node = local_node;
1456 nodes_clear(used_mask);
1457 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
1458 int distance = node_distance(local_node, node);
1459
1460 /*
1461 * If another node is sufficiently far away then it is better
1462 * to reclaim pages in a zone before going off node.
1463 */
1464 if (distance > RECLAIM_DISTANCE)
1465 zone_reclaim_mode = 1;
1466
1da177e4
LT
1467 /*
1468 * We don't want to pressure a particular node.
1469 * So adding penalty to the first node in same
1470 * distance group to make it round-robin.
1471 */
9eeff239
CL
1472
1473 if (distance != node_distance(local_node, prev_node))
1da177e4
LT
1474 node_load[node] += load;
1475 prev_node = node;
1476 load--;
1477 for (i = 0; i < GFP_ZONETYPES; i++) {
1478 zonelist = pgdat->node_zonelists + i;
1479 for (j = 0; zonelist->zones[j] != NULL; j++);
1480
260b2367 1481 k = highest_zone(i);
1da177e4
LT
1482
1483 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1484 zonelist->zones[j] = NULL;
1485 }
1486 }
1487}
1488
1489#else /* CONFIG_NUMA */
1490
86356ab1 1491static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4
LT
1492{
1493 int i, j, k, node, local_node;
1494
1495 local_node = pgdat->node_id;
1496 for (i = 0; i < GFP_ZONETYPES; i++) {
1497 struct zonelist *zonelist;
1498
1499 zonelist = pgdat->node_zonelists + i;
1500
1501 j = 0;
260b2367 1502 k = highest_zone(i);
1da177e4
LT
1503 j = build_zonelists_node(pgdat, zonelist, j, k);
1504 /*
1505 * Now we build the zonelist so that it contains the zones
1506 * of all the other nodes.
1507 * We don't want to pressure a particular node, so when
1508 * building the zones for node N, we make sure that the
1509 * zones coming right after the local ones are those from
1510 * node N+1 (modulo N)
1511 */
1512 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1513 if (!node_online(node))
1514 continue;
1515 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1516 }
1517 for (node = 0; node < local_node; node++) {
1518 if (!node_online(node))
1519 continue;
1520 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1521 }
1522
1523 zonelist->zones[j] = NULL;
1524 }
1525}
1526
1527#endif /* CONFIG_NUMA */
1528
6811378e
YG
1529/* return values int ....just for stop_machine_run() */
1530static int __meminit __build_all_zonelists(void *dummy)
1da177e4 1531{
6811378e
YG
1532 int nid;
1533 for_each_online_node(nid)
1534 build_zonelists(NODE_DATA(nid));
1535 return 0;
1536}
1537
1538void __meminit build_all_zonelists(void)
1539{
1540 if (system_state == SYSTEM_BOOTING) {
1541 __build_all_zonelists(0);
1542 cpuset_init_current_mems_allowed();
1543 } else {
1544 /* we have to stop all cpus to guaranntee there is no user
1545 of zonelist */
1546 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1547 /* cpuset refresh routine should be here */
1548 }
bd1e22b8
AM
1549 vm_total_pages = nr_free_pagecache_pages();
1550 printk("Built %i zonelists. Total pages: %ld\n",
1551 num_online_nodes(), vm_total_pages);
1da177e4
LT
1552}
1553
1554/*
1555 * Helper functions to size the waitqueue hash table.
1556 * Essentially these want to choose hash table sizes sufficiently
1557 * large so that collisions trying to wait on pages are rare.
1558 * But in fact, the number of active page waitqueues on typical
1559 * systems is ridiculously low, less than 200. So this is even
1560 * conservative, even though it seems large.
1561 *
1562 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1563 * waitqueues, i.e. the size of the waitq table given the number of pages.
1564 */
1565#define PAGES_PER_WAITQUEUE 256
1566
cca448fe 1567#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 1568static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
1569{
1570 unsigned long size = 1;
1571
1572 pages /= PAGES_PER_WAITQUEUE;
1573
1574 while (size < pages)
1575 size <<= 1;
1576
1577 /*
1578 * Once we have dozens or even hundreds of threads sleeping
1579 * on IO we've got bigger problems than wait queue collision.
1580 * Limit the size of the wait table to a reasonable size.
1581 */
1582 size = min(size, 4096UL);
1583
1584 return max(size, 4UL);
1585}
cca448fe
YG
1586#else
1587/*
1588 * A zone's size might be changed by hot-add, so it is not possible to determine
1589 * a suitable size for its wait_table. So we use the maximum size now.
1590 *
1591 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1592 *
1593 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1594 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1595 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1596 *
1597 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1598 * or more by the traditional way. (See above). It equals:
1599 *
1600 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1601 * ia64(16K page size) : = ( 8G + 4M)byte.
1602 * powerpc (64K page size) : = (32G +16M)byte.
1603 */
1604static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1605{
1606 return 4096UL;
1607}
1608#endif
1da177e4
LT
1609
1610/*
1611 * This is an integer logarithm so that shifts can be used later
1612 * to extract the more random high bits from the multiplicative
1613 * hash function before the remainder is taken.
1614 */
1615static inline unsigned long wait_table_bits(unsigned long size)
1616{
1617 return ffz(~size);
1618}
1619
1620#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1621
1622static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1623 unsigned long *zones_size, unsigned long *zholes_size)
1624{
1625 unsigned long realtotalpages, totalpages = 0;
1626 int i;
1627
1628 for (i = 0; i < MAX_NR_ZONES; i++)
1629 totalpages += zones_size[i];
1630 pgdat->node_spanned_pages = totalpages;
1631
1632 realtotalpages = totalpages;
1633 if (zholes_size)
1634 for (i = 0; i < MAX_NR_ZONES; i++)
1635 realtotalpages -= zholes_size[i];
1636 pgdat->node_present_pages = realtotalpages;
1637 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1638}
1639
1640
1641/*
1642 * Initially all pages are reserved - free ones are freed
1643 * up by free_all_bootmem() once the early boot process is
1644 * done. Non-atomic initialization, single-pass.
1645 */
c09b4240 1646void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1647 unsigned long start_pfn)
1648{
1da177e4 1649 struct page *page;
29751f69
AW
1650 unsigned long end_pfn = start_pfn + size;
1651 unsigned long pfn;
1da177e4 1652
cbe8dd4a 1653 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
d41dee36
AW
1654 if (!early_pfn_valid(pfn))
1655 continue;
1656 page = pfn_to_page(pfn);
1657 set_page_links(page, zone, nid, pfn);
7835e98b 1658 init_page_count(page);
1da177e4
LT
1659 reset_page_mapcount(page);
1660 SetPageReserved(page);
1661 INIT_LIST_HEAD(&page->lru);
1662#ifdef WANT_PAGE_VIRTUAL
1663 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1664 if (!is_highmem_idx(zone))
3212c6be 1665 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1666#endif
1da177e4
LT
1667 }
1668}
1669
1670void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1671 unsigned long size)
1672{
1673 int order;
1674 for (order = 0; order < MAX_ORDER ; order++) {
1675 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1676 zone->free_area[order].nr_free = 0;
1677 }
1678}
1679
d41dee36
AW
1680#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1681void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1682 unsigned long size)
1683{
1684 unsigned long snum = pfn_to_section_nr(pfn);
1685 unsigned long end = pfn_to_section_nr(pfn + size);
1686
1687 if (FLAGS_HAS_NODE)
1688 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1689 else
1690 for (; snum <= end; snum++)
1691 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1692}
1693
1da177e4
LT
1694#ifndef __HAVE_ARCH_MEMMAP_INIT
1695#define memmap_init(size, nid, zone, start_pfn) \
1696 memmap_init_zone((size), (nid), (zone), (start_pfn))
1697#endif
1698
6292d9aa 1699static int __cpuinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
1700{
1701 int batch;
1702
1703 /*
1704 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1705 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1706 *
1707 * OK, so we don't know how big the cache is. So guess.
1708 */
1709 batch = zone->present_pages / 1024;
ba56e91c
SR
1710 if (batch * PAGE_SIZE > 512 * 1024)
1711 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1712 batch /= 4; /* We effectively *= 4 below */
1713 if (batch < 1)
1714 batch = 1;
1715
1716 /*
0ceaacc9
NP
1717 * Clamp the batch to a 2^n - 1 value. Having a power
1718 * of 2 value was found to be more likely to have
1719 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 1720 *
0ceaacc9
NP
1721 * For example if 2 tasks are alternately allocating
1722 * batches of pages, one task can end up with a lot
1723 * of pages of one half of the possible page colors
1724 * and the other with pages of the other colors.
e7c8d5c9 1725 */
0ceaacc9 1726 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 1727
e7c8d5c9
CL
1728 return batch;
1729}
1730
2caaad41
CL
1731inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1732{
1733 struct per_cpu_pages *pcp;
1734
1c6fe946
MD
1735 memset(p, 0, sizeof(*p));
1736
2caaad41
CL
1737 pcp = &p->pcp[0]; /* hot */
1738 pcp->count = 0;
2caaad41
CL
1739 pcp->high = 6 * batch;
1740 pcp->batch = max(1UL, 1 * batch);
1741 INIT_LIST_HEAD(&pcp->list);
1742
1743 pcp = &p->pcp[1]; /* cold*/
1744 pcp->count = 0;
2caaad41 1745 pcp->high = 2 * batch;
e46a5e28 1746 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1747 INIT_LIST_HEAD(&pcp->list);
1748}
1749
8ad4b1fb
RS
1750/*
1751 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1752 * to the value high for the pageset p.
1753 */
1754
1755static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1756 unsigned long high)
1757{
1758 struct per_cpu_pages *pcp;
1759
1760 pcp = &p->pcp[0]; /* hot list */
1761 pcp->high = high;
1762 pcp->batch = max(1UL, high/4);
1763 if ((high/4) > (PAGE_SHIFT * 8))
1764 pcp->batch = PAGE_SHIFT * 8;
1765}
1766
1767
e7c8d5c9
CL
1768#ifdef CONFIG_NUMA
1769/*
2caaad41
CL
1770 * Boot pageset table. One per cpu which is going to be used for all
1771 * zones and all nodes. The parameters will be set in such a way
1772 * that an item put on a list will immediately be handed over to
1773 * the buddy list. This is safe since pageset manipulation is done
1774 * with interrupts disabled.
1775 *
1776 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1777 *
1778 * The boot_pagesets must be kept even after bootup is complete for
1779 * unused processors and/or zones. They do play a role for bootstrapping
1780 * hotplugged processors.
1781 *
1782 * zoneinfo_show() and maybe other functions do
1783 * not check if the processor is online before following the pageset pointer.
1784 * Other parts of the kernel may not check if the zone is available.
2caaad41 1785 */
88a2a4ac 1786static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
1787
1788/*
1789 * Dynamically allocate memory for the
e7c8d5c9
CL
1790 * per cpu pageset array in struct zone.
1791 */
6292d9aa 1792static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
1793{
1794 struct zone *zone, *dzone;
e7c8d5c9
CL
1795
1796 for_each_zone(zone) {
e7c8d5c9 1797
23316bc8 1798 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1799 GFP_KERNEL, cpu_to_node(cpu));
23316bc8 1800 if (!zone_pcp(zone, cpu))
e7c8d5c9 1801 goto bad;
e7c8d5c9 1802
23316bc8 1803 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
1804
1805 if (percpu_pagelist_fraction)
1806 setup_pagelist_highmark(zone_pcp(zone, cpu),
1807 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
1808 }
1809
1810 return 0;
1811bad:
1812 for_each_zone(dzone) {
1813 if (dzone == zone)
1814 break;
23316bc8
NP
1815 kfree(zone_pcp(dzone, cpu));
1816 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
1817 }
1818 return -ENOMEM;
1819}
1820
1821static inline void free_zone_pagesets(int cpu)
1822{
e7c8d5c9
CL
1823 struct zone *zone;
1824
1825 for_each_zone(zone) {
1826 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1827
f3ef9ead
DR
1828 /* Free per_cpu_pageset if it is slab allocated */
1829 if (pset != &boot_pageset[cpu])
1830 kfree(pset);
e7c8d5c9 1831 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 1832 }
e7c8d5c9
CL
1833}
1834
9c7b216d 1835static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
1836 unsigned long action,
1837 void *hcpu)
1838{
1839 int cpu = (long)hcpu;
1840 int ret = NOTIFY_OK;
1841
1842 switch (action) {
1843 case CPU_UP_PREPARE:
1844 if (process_zones(cpu))
1845 ret = NOTIFY_BAD;
1846 break;
b0d41693 1847 case CPU_UP_CANCELED:
e7c8d5c9
CL
1848 case CPU_DEAD:
1849 free_zone_pagesets(cpu);
1850 break;
e7c8d5c9
CL
1851 default:
1852 break;
1853 }
1854 return ret;
1855}
1856
74b85f37 1857static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
1858 { &pageset_cpuup_callback, NULL, 0 };
1859
78d9955b 1860void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
1861{
1862 int err;
1863
1864 /* Initialize per_cpu_pageset for cpu 0.
1865 * A cpuup callback will do this for every cpu
1866 * as it comes online
1867 */
1868 err = process_zones(smp_processor_id());
1869 BUG_ON(err);
1870 register_cpu_notifier(&pageset_notifier);
1871}
1872
1873#endif
1874
c09b4240 1875static __meminit
cca448fe 1876int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
1877{
1878 int i;
1879 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 1880 size_t alloc_size;
ed8ece2e
DH
1881
1882 /*
1883 * The per-page waitqueue mechanism uses hashed waitqueues
1884 * per zone.
1885 */
02b694de
YG
1886 zone->wait_table_hash_nr_entries =
1887 wait_table_hash_nr_entries(zone_size_pages);
1888 zone->wait_table_bits =
1889 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
1890 alloc_size = zone->wait_table_hash_nr_entries
1891 * sizeof(wait_queue_head_t);
1892
1893 if (system_state == SYSTEM_BOOTING) {
1894 zone->wait_table = (wait_queue_head_t *)
1895 alloc_bootmem_node(pgdat, alloc_size);
1896 } else {
1897 /*
1898 * This case means that a zone whose size was 0 gets new memory
1899 * via memory hot-add.
1900 * But it may be the case that a new node was hot-added. In
1901 * this case vmalloc() will not be able to use this new node's
1902 * memory - this wait_table must be initialized to use this new
1903 * node itself as well.
1904 * To use this new node's memory, further consideration will be
1905 * necessary.
1906 */
1907 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1908 }
1909 if (!zone->wait_table)
1910 return -ENOMEM;
ed8ece2e 1911
02b694de 1912 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 1913 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
1914
1915 return 0;
ed8ece2e
DH
1916}
1917
c09b4240 1918static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
1919{
1920 int cpu;
1921 unsigned long batch = zone_batchsize(zone);
1922
1923 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1924#ifdef CONFIG_NUMA
1925 /* Early boot. Slab allocator not functional yet */
23316bc8 1926 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
1927 setup_pageset(&boot_pageset[cpu],0);
1928#else
1929 setup_pageset(zone_pcp(zone,cpu), batch);
1930#endif
1931 }
f5335c0f
AB
1932 if (zone->present_pages)
1933 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1934 zone->name, zone->present_pages, batch);
ed8ece2e
DH
1935}
1936
718127cc
YG
1937__meminit int init_currently_empty_zone(struct zone *zone,
1938 unsigned long zone_start_pfn,
1939 unsigned long size)
ed8ece2e
DH
1940{
1941 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
1942 int ret;
1943 ret = zone_wait_table_init(zone, size);
1944 if (ret)
1945 return ret;
ed8ece2e
DH
1946 pgdat->nr_zones = zone_idx(zone) + 1;
1947
ed8ece2e
DH
1948 zone->zone_start_pfn = zone_start_pfn;
1949
1950 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1951
1952 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
718127cc
YG
1953
1954 return 0;
ed8ece2e
DH
1955}
1956
1da177e4
LT
1957/*
1958 * Set up the zone data structures:
1959 * - mark all pages reserved
1960 * - mark all memory queues empty
1961 * - clear the memory bitmaps
1962 */
86356ab1 1963static void __meminit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
1964 unsigned long *zones_size, unsigned long *zholes_size)
1965{
ed8ece2e
DH
1966 unsigned long j;
1967 int nid = pgdat->node_id;
1da177e4 1968 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 1969 int ret;
1da177e4 1970
208d54e5 1971 pgdat_resize_init(pgdat);
1da177e4
LT
1972 pgdat->nr_zones = 0;
1973 init_waitqueue_head(&pgdat->kswapd_wait);
1974 pgdat->kswapd_max_order = 0;
1975
1976 for (j = 0; j < MAX_NR_ZONES; j++) {
1977 struct zone *zone = pgdat->node_zones + j;
1978 unsigned long size, realsize;
1da177e4 1979
1da177e4
LT
1980 realsize = size = zones_size[j];
1981 if (zholes_size)
1982 realsize -= zholes_size[j];
1983
a2f1b424 1984 if (j < ZONE_HIGHMEM)
1da177e4
LT
1985 nr_kernel_pages += realsize;
1986 nr_all_pages += realsize;
1987
1988 zone->spanned_pages = size;
1989 zone->present_pages = realsize;
9614634f
CL
1990#ifdef CONFIG_NUMA
1991 zone->min_unmapped_ratio = (realsize*sysctl_min_unmapped_ratio)
1992 / 100;
1993#endif
1da177e4
LT
1994 zone->name = zone_names[j];
1995 spin_lock_init(&zone->lock);
1996 spin_lock_init(&zone->lru_lock);
bdc8cb98 1997 zone_seqlock_init(zone);
1da177e4
LT
1998 zone->zone_pgdat = pgdat;
1999 zone->free_pages = 0;
2000
2001 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2002
ed8ece2e 2003 zone_pcp_init(zone);
1da177e4
LT
2004 INIT_LIST_HEAD(&zone->active_list);
2005 INIT_LIST_HEAD(&zone->inactive_list);
2006 zone->nr_scan_active = 0;
2007 zone->nr_scan_inactive = 0;
2008 zone->nr_active = 0;
2009 zone->nr_inactive = 0;
2244b95a 2010 zap_zone_vm_stats(zone);
53e9a615 2011 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2012 if (!size)
2013 continue;
2014
d41dee36 2015 zonetable_add(zone, nid, j, zone_start_pfn, size);
718127cc
YG
2016 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2017 BUG_ON(ret);
1da177e4 2018 zone_start_pfn += size;
1da177e4
LT
2019 }
2020}
2021
2022static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2023{
1da177e4
LT
2024 /* Skip empty nodes */
2025 if (!pgdat->node_spanned_pages)
2026 return;
2027
d41dee36 2028#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2029 /* ia64 gets its own node_mem_map, before this, without bootmem */
2030 if (!pgdat->node_mem_map) {
e984bb43 2031 unsigned long size, start, end;
d41dee36
AW
2032 struct page *map;
2033
e984bb43
BP
2034 /*
2035 * The zone's endpoints aren't required to be MAX_ORDER
2036 * aligned but the node_mem_map endpoints must be in order
2037 * for the buddy allocator to function correctly.
2038 */
2039 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2040 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2041 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2042 size = (end - start) * sizeof(struct page);
6f167ec7
DH
2043 map = alloc_remap(pgdat->node_id, size);
2044 if (!map)
2045 map = alloc_bootmem_node(pgdat, size);
e984bb43 2046 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 2047 }
d41dee36 2048#ifdef CONFIG_FLATMEM
1da177e4
LT
2049 /*
2050 * With no DISCONTIG, the global mem_map is just set as node 0's
2051 */
2052 if (pgdat == NODE_DATA(0))
2053 mem_map = NODE_DATA(0)->node_mem_map;
2054#endif
d41dee36 2055#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2056}
2057
86356ab1 2058void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
1da177e4
LT
2059 unsigned long *zones_size, unsigned long node_start_pfn,
2060 unsigned long *zholes_size)
2061{
2062 pgdat->node_id = nid;
2063 pgdat->node_start_pfn = node_start_pfn;
2064 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2065
2066 alloc_node_mem_map(pgdat);
2067
2068 free_area_init_core(pgdat, zones_size, zholes_size);
2069}
2070
93b7504e 2071#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2072static bootmem_data_t contig_bootmem_data;
2073struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2074
2075EXPORT_SYMBOL(contig_page_data);
93b7504e 2076#endif
1da177e4
LT
2077
2078void __init free_area_init(unsigned long *zones_size)
2079{
93b7504e 2080 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2081 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2082}
1da177e4 2083
1da177e4
LT
2084#ifdef CONFIG_HOTPLUG_CPU
2085static int page_alloc_cpu_notify(struct notifier_block *self,
2086 unsigned long action, void *hcpu)
2087{
2088 int cpu = (unsigned long)hcpu;
1da177e4
LT
2089
2090 if (action == CPU_DEAD) {
1da177e4
LT
2091 local_irq_disable();
2092 __drain_pages(cpu);
f8891e5e 2093 vm_events_fold_cpu(cpu);
1da177e4 2094 local_irq_enable();
2244b95a 2095 refresh_cpu_vm_stats(cpu);
1da177e4
LT
2096 }
2097 return NOTIFY_OK;
2098}
2099#endif /* CONFIG_HOTPLUG_CPU */
2100
2101void __init page_alloc_init(void)
2102{
2103 hotcpu_notifier(page_alloc_cpu_notify, 0);
2104}
2105
cb45b0e9
HA
2106/*
2107 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2108 * or min_free_kbytes changes.
2109 */
2110static void calculate_totalreserve_pages(void)
2111{
2112 struct pglist_data *pgdat;
2113 unsigned long reserve_pages = 0;
2114 int i, j;
2115
2116 for_each_online_pgdat(pgdat) {
2117 for (i = 0; i < MAX_NR_ZONES; i++) {
2118 struct zone *zone = pgdat->node_zones + i;
2119 unsigned long max = 0;
2120
2121 /* Find valid and maximum lowmem_reserve in the zone */
2122 for (j = i; j < MAX_NR_ZONES; j++) {
2123 if (zone->lowmem_reserve[j] > max)
2124 max = zone->lowmem_reserve[j];
2125 }
2126
2127 /* we treat pages_high as reserved pages. */
2128 max += zone->pages_high;
2129
2130 if (max > zone->present_pages)
2131 max = zone->present_pages;
2132 reserve_pages += max;
2133 }
2134 }
2135 totalreserve_pages = reserve_pages;
2136}
2137
1da177e4
LT
2138/*
2139 * setup_per_zone_lowmem_reserve - called whenever
2140 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2141 * has a correct pages reserved value, so an adequate number of
2142 * pages are left in the zone after a successful __alloc_pages().
2143 */
2144static void setup_per_zone_lowmem_reserve(void)
2145{
2146 struct pglist_data *pgdat;
2147 int j, idx;
2148
ec936fc5 2149 for_each_online_pgdat(pgdat) {
1da177e4
LT
2150 for (j = 0; j < MAX_NR_ZONES; j++) {
2151 struct zone *zone = pgdat->node_zones + j;
2152 unsigned long present_pages = zone->present_pages;
2153
2154 zone->lowmem_reserve[j] = 0;
2155
2156 for (idx = j-1; idx >= 0; idx--) {
2157 struct zone *lower_zone;
2158
2159 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2160 sysctl_lowmem_reserve_ratio[idx] = 1;
2161
2162 lower_zone = pgdat->node_zones + idx;
2163 lower_zone->lowmem_reserve[j] = present_pages /
2164 sysctl_lowmem_reserve_ratio[idx];
2165 present_pages += lower_zone->present_pages;
2166 }
2167 }
2168 }
cb45b0e9
HA
2169
2170 /* update totalreserve_pages */
2171 calculate_totalreserve_pages();
1da177e4
LT
2172}
2173
2174/*
2175 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2176 * that the pages_{min,low,high} values for each zone are set correctly
2177 * with respect to min_free_kbytes.
2178 */
3947be19 2179void setup_per_zone_pages_min(void)
1da177e4
LT
2180{
2181 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2182 unsigned long lowmem_pages = 0;
2183 struct zone *zone;
2184 unsigned long flags;
2185
2186 /* Calculate total number of !ZONE_HIGHMEM pages */
2187 for_each_zone(zone) {
2188 if (!is_highmem(zone))
2189 lowmem_pages += zone->present_pages;
2190 }
2191
2192 for_each_zone(zone) {
ac924c60
AM
2193 u64 tmp;
2194
1da177e4 2195 spin_lock_irqsave(&zone->lru_lock, flags);
ac924c60
AM
2196 tmp = (u64)pages_min * zone->present_pages;
2197 do_div(tmp, lowmem_pages);
1da177e4
LT
2198 if (is_highmem(zone)) {
2199 /*
669ed175
NP
2200 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2201 * need highmem pages, so cap pages_min to a small
2202 * value here.
2203 *
2204 * The (pages_high-pages_low) and (pages_low-pages_min)
2205 * deltas controls asynch page reclaim, and so should
2206 * not be capped for highmem.
1da177e4
LT
2207 */
2208 int min_pages;
2209
2210 min_pages = zone->present_pages / 1024;
2211 if (min_pages < SWAP_CLUSTER_MAX)
2212 min_pages = SWAP_CLUSTER_MAX;
2213 if (min_pages > 128)
2214 min_pages = 128;
2215 zone->pages_min = min_pages;
2216 } else {
669ed175
NP
2217 /*
2218 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
2219 * proportionate to the zone's size.
2220 */
669ed175 2221 zone->pages_min = tmp;
1da177e4
LT
2222 }
2223
ac924c60
AM
2224 zone->pages_low = zone->pages_min + (tmp >> 2);
2225 zone->pages_high = zone->pages_min + (tmp >> 1);
1da177e4
LT
2226 spin_unlock_irqrestore(&zone->lru_lock, flags);
2227 }
cb45b0e9
HA
2228
2229 /* update totalreserve_pages */
2230 calculate_totalreserve_pages();
1da177e4
LT
2231}
2232
2233/*
2234 * Initialise min_free_kbytes.
2235 *
2236 * For small machines we want it small (128k min). For large machines
2237 * we want it large (64MB max). But it is not linear, because network
2238 * bandwidth does not increase linearly with machine size. We use
2239 *
2240 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2241 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2242 *
2243 * which yields
2244 *
2245 * 16MB: 512k
2246 * 32MB: 724k
2247 * 64MB: 1024k
2248 * 128MB: 1448k
2249 * 256MB: 2048k
2250 * 512MB: 2896k
2251 * 1024MB: 4096k
2252 * 2048MB: 5792k
2253 * 4096MB: 8192k
2254 * 8192MB: 11584k
2255 * 16384MB: 16384k
2256 */
2257static int __init init_per_zone_pages_min(void)
2258{
2259 unsigned long lowmem_kbytes;
2260
2261 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2262
2263 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2264 if (min_free_kbytes < 128)
2265 min_free_kbytes = 128;
2266 if (min_free_kbytes > 65536)
2267 min_free_kbytes = 65536;
2268 setup_per_zone_pages_min();
2269 setup_per_zone_lowmem_reserve();
2270 return 0;
2271}
2272module_init(init_per_zone_pages_min)
2273
2274/*
2275 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2276 * that we can call two helper functions whenever min_free_kbytes
2277 * changes.
2278 */
2279int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2280 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2281{
2282 proc_dointvec(table, write, file, buffer, length, ppos);
2283 setup_per_zone_pages_min();
2284 return 0;
2285}
2286
9614634f
CL
2287#ifdef CONFIG_NUMA
2288int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
2289 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2290{
2291 struct zone *zone;
2292 int rc;
2293
2294 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2295 if (rc)
2296 return rc;
2297
2298 for_each_zone(zone)
2299 zone->min_unmapped_ratio = (zone->present_pages *
2300 sysctl_min_unmapped_ratio) / 100;
2301 return 0;
2302}
2303#endif
2304
1da177e4
LT
2305/*
2306 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2307 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2308 * whenever sysctl_lowmem_reserve_ratio changes.
2309 *
2310 * The reserve ratio obviously has absolutely no relation with the
2311 * pages_min watermarks. The lowmem reserve ratio can only make sense
2312 * if in function of the boot time zone sizes.
2313 */
2314int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2315 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2316{
2317 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2318 setup_per_zone_lowmem_reserve();
2319 return 0;
2320}
2321
8ad4b1fb
RS
2322/*
2323 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2324 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2325 * can have before it gets flushed back to buddy allocator.
2326 */
2327
2328int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2329 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2330{
2331 struct zone *zone;
2332 unsigned int cpu;
2333 int ret;
2334
2335 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2336 if (!write || (ret == -EINVAL))
2337 return ret;
2338 for_each_zone(zone) {
2339 for_each_online_cpu(cpu) {
2340 unsigned long high;
2341 high = zone->present_pages / percpu_pagelist_fraction;
2342 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2343 }
2344 }
2345 return 0;
2346}
2347
f034b5d4 2348int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
2349
2350#ifdef CONFIG_NUMA
2351static int __init set_hashdist(char *str)
2352{
2353 if (!str)
2354 return 0;
2355 hashdist = simple_strtoul(str, &str, 0);
2356 return 1;
2357}
2358__setup("hashdist=", set_hashdist);
2359#endif
2360
2361/*
2362 * allocate a large system hash table from bootmem
2363 * - it is assumed that the hash table must contain an exact power-of-2
2364 * quantity of entries
2365 * - limit is the number of hash buckets, not the total allocation size
2366 */
2367void *__init alloc_large_system_hash(const char *tablename,
2368 unsigned long bucketsize,
2369 unsigned long numentries,
2370 int scale,
2371 int flags,
2372 unsigned int *_hash_shift,
2373 unsigned int *_hash_mask,
2374 unsigned long limit)
2375{
2376 unsigned long long max = limit;
2377 unsigned long log2qty, size;
2378 void *table = NULL;
2379
2380 /* allow the kernel cmdline to have a say */
2381 if (!numentries) {
2382 /* round applicable memory size up to nearest megabyte */
2383 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2384 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2385 numentries >>= 20 - PAGE_SHIFT;
2386 numentries <<= 20 - PAGE_SHIFT;
2387
2388 /* limit to 1 bucket per 2^scale bytes of low memory */
2389 if (scale > PAGE_SHIFT)
2390 numentries >>= (scale - PAGE_SHIFT);
2391 else
2392 numentries <<= (PAGE_SHIFT - scale);
2393 }
6e692ed3 2394 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
2395
2396 /* limit allocation size to 1/16 total memory by default */
2397 if (max == 0) {
2398 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2399 do_div(max, bucketsize);
2400 }
2401
2402 if (numentries > max)
2403 numentries = max;
2404
2405 log2qty = long_log2(numentries);
2406
2407 do {
2408 size = bucketsize << log2qty;
2409 if (flags & HASH_EARLY)
2410 table = alloc_bootmem(size);
2411 else if (hashdist)
2412 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2413 else {
2414 unsigned long order;
2415 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2416 ;
2417 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2418 }
2419 } while (!table && size > PAGE_SIZE && --log2qty);
2420
2421 if (!table)
2422 panic("Failed to allocate %s hash table\n", tablename);
2423
2424 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2425 tablename,
2426 (1U << log2qty),
2427 long_log2(size) - PAGE_SHIFT,
2428 size);
2429
2430 if (_hash_shift)
2431 *_hash_shift = log2qty;
2432 if (_hash_mask)
2433 *_hash_mask = (1 << log2qty) - 1;
2434
2435 return table;
2436}
a117e66e
KH
2437
2438#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
2439struct page *pfn_to_page(unsigned long pfn)
2440{
67de6482 2441 return __pfn_to_page(pfn);
a117e66e
KH
2442}
2443unsigned long page_to_pfn(struct page *page)
2444{
67de6482 2445 return __page_to_pfn(page);
a117e66e 2446}
a117e66e
KH
2447EXPORT_SYMBOL(pfn_to_page);
2448EXPORT_SYMBOL(page_to_pfn);
2449#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */