]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/percpu.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
88999a89
TH
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
2f39e637
TH
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
88999a89 16 * When a chunk is filled up, another chunk is allocated.
fbf59bc9
TH
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
2f39e637
TH
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
fbf59bc9 29 *
2f39e637
TH
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
fbf59bc9
TH
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
4785879e 34 * guaranteed to be equal to or larger than the maximum contiguous
fbf59bc9
TH
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
37 *
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9
TH
45 *
46 * To use this allocator, arch code should do the followings.
47 *
fbf59bc9 48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
fbf59bc9 51 *
8d408b4b
TH
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
54 */
55
870d4b12
JP
56#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57
fbf59bc9
TH
58#include <linux/bitmap.h>
59#include <linux/bootmem.h>
fd1e8a1f 60#include <linux/err.h>
fbf59bc9 61#include <linux/list.h>
a530b795 62#include <linux/log2.h>
fbf59bc9
TH
63#include <linux/mm.h>
64#include <linux/module.h>
65#include <linux/mutex.h>
66#include <linux/percpu.h>
67#include <linux/pfn.h>
fbf59bc9 68#include <linux/slab.h>
ccea34b5 69#include <linux/spinlock.h>
fbf59bc9 70#include <linux/vmalloc.h>
a56dbddf 71#include <linux/workqueue.h>
f528f0b8 72#include <linux/kmemleak.h>
fbf59bc9
TH
73
74#include <asm/cacheflush.h>
e0100983 75#include <asm/sections.h>
fbf59bc9 76#include <asm/tlbflush.h>
3b034b0d 77#include <asm/io.h>
fbf59bc9 78
fbf59bc9
TH
79#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
80#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
9c824b6a
TH
81#define PCPU_ATOMIC_MAP_MARGIN_LOW 32
82#define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
1a4d7607
TH
83#define PCPU_EMPTY_POP_PAGES_LOW 2
84#define PCPU_EMPTY_POP_PAGES_HIGH 4
fbf59bc9 85
bbddff05 86#ifdef CONFIG_SMP
e0100983
TH
87/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
88#ifndef __addr_to_pcpu_ptr
89#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
90 (void __percpu *)((unsigned long)(addr) - \
91 (unsigned long)pcpu_base_addr + \
92 (unsigned long)__per_cpu_start)
e0100983
TH
93#endif
94#ifndef __pcpu_ptr_to_addr
95#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
96 (void __force *)((unsigned long)(ptr) + \
97 (unsigned long)pcpu_base_addr - \
98 (unsigned long)__per_cpu_start)
e0100983 99#endif
bbddff05
TH
100#else /* CONFIG_SMP */
101/* on UP, it's always identity mapped */
102#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
103#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
104#endif /* CONFIG_SMP */
e0100983 105
fbf59bc9
TH
106struct pcpu_chunk {
107 struct list_head list; /* linked to pcpu_slot lists */
fbf59bc9
TH
108 int free_size; /* free bytes in the chunk */
109 int contig_hint; /* max contiguous size hint */
bba174f5 110 void *base_addr; /* base address of this chunk */
9c824b6a 111
723ad1d9 112 int map_used; /* # of map entries used before the sentry */
fbf59bc9
TH
113 int map_alloc; /* # of map entries allocated */
114 int *map; /* allocation map */
4f996e23 115 struct list_head map_extend_list;/* on pcpu_map_extend_chunks */
9c824b6a 116
88999a89 117 void *data; /* chunk data */
3d331ad7 118 int first_free; /* no free below this */
8d408b4b 119 bool immutable; /* no [de]population allowed */
b539b87f 120 int nr_populated; /* # of populated pages */
ce3141a2 121 unsigned long populated[]; /* populated bitmap */
fbf59bc9
TH
122};
123
40150d37
TH
124static int pcpu_unit_pages __read_mostly;
125static int pcpu_unit_size __read_mostly;
2f39e637 126static int pcpu_nr_units __read_mostly;
6563297c 127static int pcpu_atom_size __read_mostly;
40150d37
TH
128static int pcpu_nr_slots __read_mostly;
129static size_t pcpu_chunk_struct_size __read_mostly;
fbf59bc9 130
a855b84c
TH
131/* cpus with the lowest and highest unit addresses */
132static unsigned int pcpu_low_unit_cpu __read_mostly;
133static unsigned int pcpu_high_unit_cpu __read_mostly;
2f39e637 134
fbf59bc9 135/* the address of the first chunk which starts with the kernel static area */
40150d37 136void *pcpu_base_addr __read_mostly;
fbf59bc9
TH
137EXPORT_SYMBOL_GPL(pcpu_base_addr);
138
fb435d52
TH
139static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
140const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
2f39e637 141
6563297c
TH
142/* group information, used for vm allocation */
143static int pcpu_nr_groups __read_mostly;
144static const unsigned long *pcpu_group_offsets __read_mostly;
145static const size_t *pcpu_group_sizes __read_mostly;
146
ae9e6bc9
TH
147/*
148 * The first chunk which always exists. Note that unlike other
149 * chunks, this one can be allocated and mapped in several different
150 * ways and thus often doesn't live in the vmalloc area.
151 */
152static struct pcpu_chunk *pcpu_first_chunk;
153
154/*
155 * Optional reserved chunk. This chunk reserves part of the first
156 * chunk and serves it for reserved allocations. The amount of
157 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
158 * area doesn't exist, the following variables contain NULL and 0
159 * respectively.
160 */
edcb4639 161static struct pcpu_chunk *pcpu_reserved_chunk;
edcb4639
TH
162static int pcpu_reserved_chunk_limit;
163
b38d08f3 164static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
6710e594 165static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
fbf59bc9 166
40150d37 167static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
fbf59bc9 168
4f996e23
TH
169/* chunks which need their map areas extended, protected by pcpu_lock */
170static LIST_HEAD(pcpu_map_extend_chunks);
171
b539b87f
TH
172/*
173 * The number of empty populated pages, protected by pcpu_lock. The
174 * reserved chunk doesn't contribute to the count.
175 */
176static int pcpu_nr_empty_pop_pages;
177
1a4d7607
TH
178/*
179 * Balance work is used to populate or destroy chunks asynchronously. We
180 * try to keep the number of populated free pages between
181 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
182 * empty chunk.
183 */
fe6bd8c3
TH
184static void pcpu_balance_workfn(struct work_struct *work);
185static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
1a4d7607
TH
186static bool pcpu_async_enabled __read_mostly;
187static bool pcpu_atomic_alloc_failed;
188
189static void pcpu_schedule_balance_work(void)
190{
191 if (pcpu_async_enabled)
192 schedule_work(&pcpu_balance_work);
193}
a56dbddf 194
020ec653
TH
195static bool pcpu_addr_in_first_chunk(void *addr)
196{
197 void *first_start = pcpu_first_chunk->base_addr;
198
199 return addr >= first_start && addr < first_start + pcpu_unit_size;
200}
201
202static bool pcpu_addr_in_reserved_chunk(void *addr)
203{
204 void *first_start = pcpu_first_chunk->base_addr;
205
206 return addr >= first_start &&
207 addr < first_start + pcpu_reserved_chunk_limit;
208}
209
d9b55eeb 210static int __pcpu_size_to_slot(int size)
fbf59bc9 211{
cae3aeb8 212 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
213 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
214}
215
d9b55eeb
TH
216static int pcpu_size_to_slot(int size)
217{
218 if (size == pcpu_unit_size)
219 return pcpu_nr_slots - 1;
220 return __pcpu_size_to_slot(size);
221}
222
fbf59bc9
TH
223static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
224{
225 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
226 return 0;
227
228 return pcpu_size_to_slot(chunk->free_size);
229}
230
88999a89
TH
231/* set the pointer to a chunk in a page struct */
232static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
233{
234 page->index = (unsigned long)pcpu;
235}
236
237/* obtain pointer to a chunk from a page struct */
238static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
239{
240 return (struct pcpu_chunk *)page->index;
241}
242
243static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 244{
2f39e637 245 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
246}
247
9983b6f0
TH
248static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
249 unsigned int cpu, int page_idx)
fbf59bc9 250{
bba174f5 251 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
fb435d52 252 (page_idx << PAGE_SHIFT);
fbf59bc9
TH
253}
254
88999a89
TH
255static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
256 int *rs, int *re, int end)
ce3141a2
TH
257{
258 *rs = find_next_zero_bit(chunk->populated, end, *rs);
259 *re = find_next_bit(chunk->populated, end, *rs + 1);
260}
261
88999a89
TH
262static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
263 int *rs, int *re, int end)
ce3141a2
TH
264{
265 *rs = find_next_bit(chunk->populated, end, *rs);
266 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
267}
268
269/*
270 * (Un)populated page region iterators. Iterate over (un)populated
b595076a 271 * page regions between @start and @end in @chunk. @rs and @re should
ce3141a2
TH
272 * be integer variables and will be set to start and end page index of
273 * the current region.
274 */
275#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
276 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
277 (rs) < (re); \
278 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
279
280#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
281 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
282 (rs) < (re); \
283 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
284
fbf59bc9 285/**
90459ce0 286 * pcpu_mem_zalloc - allocate memory
1880d93b 287 * @size: bytes to allocate
fbf59bc9 288 *
1880d93b 289 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
90459ce0 290 * kzalloc() is used; otherwise, vzalloc() is used. The returned
1880d93b 291 * memory is always zeroed.
fbf59bc9 292 *
ccea34b5
TH
293 * CONTEXT:
294 * Does GFP_KERNEL allocation.
295 *
fbf59bc9 296 * RETURNS:
1880d93b 297 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 298 */
90459ce0 299static void *pcpu_mem_zalloc(size_t size)
fbf59bc9 300{
099a19d9
TH
301 if (WARN_ON_ONCE(!slab_is_available()))
302 return NULL;
303
1880d93b
TH
304 if (size <= PAGE_SIZE)
305 return kzalloc(size, GFP_KERNEL);
7af4c093
JJ
306 else
307 return vzalloc(size);
1880d93b 308}
fbf59bc9 309
1880d93b
TH
310/**
311 * pcpu_mem_free - free memory
312 * @ptr: memory to free
1880d93b 313 *
90459ce0 314 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b 315 */
1d5cfdb0 316static void pcpu_mem_free(void *ptr)
1880d93b 317{
1d5cfdb0 318 kvfree(ptr);
fbf59bc9
TH
319}
320
b539b87f
TH
321/**
322 * pcpu_count_occupied_pages - count the number of pages an area occupies
323 * @chunk: chunk of interest
324 * @i: index of the area in question
325 *
326 * Count the number of pages chunk's @i'th area occupies. When the area's
327 * start and/or end address isn't aligned to page boundary, the straddled
328 * page is included in the count iff the rest of the page is free.
329 */
330static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
331{
332 int off = chunk->map[i] & ~1;
333 int end = chunk->map[i + 1] & ~1;
334
335 if (!PAGE_ALIGNED(off) && i > 0) {
336 int prev = chunk->map[i - 1];
337
338 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
339 off = round_down(off, PAGE_SIZE);
340 }
341
342 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
343 int next = chunk->map[i + 1];
344 int nend = chunk->map[i + 2] & ~1;
345
346 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
347 end = round_up(end, PAGE_SIZE);
348 }
349
350 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
351}
352
fbf59bc9
TH
353/**
354 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
355 * @chunk: chunk of interest
356 * @oslot: the previous slot it was on
357 *
358 * This function is called after an allocation or free changed @chunk.
359 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
360 * moved to the slot. Note that the reserved chunk is never put on
361 * chunk slots.
ccea34b5
TH
362 *
363 * CONTEXT:
364 * pcpu_lock.
fbf59bc9
TH
365 */
366static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
367{
368 int nslot = pcpu_chunk_slot(chunk);
369
edcb4639 370 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
371 if (oslot < nslot)
372 list_move(&chunk->list, &pcpu_slot[nslot]);
373 else
374 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
375 }
376}
377
9f7dcf22 378/**
833af842
TH
379 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
380 * @chunk: chunk of interest
9c824b6a 381 * @is_atomic: the allocation context
9f7dcf22 382 *
9c824b6a
TH
383 * Determine whether area map of @chunk needs to be extended. If
384 * @is_atomic, only the amount necessary for a new allocation is
385 * considered; however, async extension is scheduled if the left amount is
386 * low. If !@is_atomic, it aims for more empty space. Combined, this
387 * ensures that the map is likely to have enough available space to
388 * accomodate atomic allocations which can't extend maps directly.
9f7dcf22 389 *
ccea34b5 390 * CONTEXT:
833af842 391 * pcpu_lock.
ccea34b5 392 *
9f7dcf22 393 * RETURNS:
833af842
TH
394 * New target map allocation length if extension is necessary, 0
395 * otherwise.
9f7dcf22 396 */
9c824b6a 397static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
9f7dcf22 398{
9c824b6a
TH
399 int margin, new_alloc;
400
4f996e23
TH
401 lockdep_assert_held(&pcpu_lock);
402
9c824b6a
TH
403 if (is_atomic) {
404 margin = 3;
9f7dcf22 405
9c824b6a 406 if (chunk->map_alloc <
4f996e23
TH
407 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) {
408 if (list_empty(&chunk->map_extend_list)) {
409 list_add_tail(&chunk->map_extend_list,
410 &pcpu_map_extend_chunks);
411 pcpu_schedule_balance_work();
412 }
413 }
9c824b6a
TH
414 } else {
415 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
416 }
417
418 if (chunk->map_alloc >= chunk->map_used + margin)
9f7dcf22
TH
419 return 0;
420
421 new_alloc = PCPU_DFL_MAP_ALLOC;
9c824b6a 422 while (new_alloc < chunk->map_used + margin)
9f7dcf22
TH
423 new_alloc *= 2;
424
833af842
TH
425 return new_alloc;
426}
427
428/**
429 * pcpu_extend_area_map - extend area map of a chunk
430 * @chunk: chunk of interest
431 * @new_alloc: new target allocation length of the area map
432 *
433 * Extend area map of @chunk to have @new_alloc entries.
434 *
435 * CONTEXT:
436 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
437 *
438 * RETURNS:
439 * 0 on success, -errno on failure.
440 */
441static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
442{
443 int *old = NULL, *new = NULL;
444 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
445 unsigned long flags;
446
6710e594
TH
447 lockdep_assert_held(&pcpu_alloc_mutex);
448
90459ce0 449 new = pcpu_mem_zalloc(new_size);
833af842 450 if (!new)
9f7dcf22 451 return -ENOMEM;
ccea34b5 452
833af842
TH
453 /* acquire pcpu_lock and switch to new area map */
454 spin_lock_irqsave(&pcpu_lock, flags);
455
456 if (new_alloc <= chunk->map_alloc)
457 goto out_unlock;
9f7dcf22 458
833af842 459 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
a002d148
HS
460 old = chunk->map;
461
462 memcpy(new, old, old_size);
9f7dcf22 463
9f7dcf22
TH
464 chunk->map_alloc = new_alloc;
465 chunk->map = new;
833af842
TH
466 new = NULL;
467
468out_unlock:
469 spin_unlock_irqrestore(&pcpu_lock, flags);
470
471 /*
472 * pcpu_mem_free() might end up calling vfree() which uses
473 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
474 */
1d5cfdb0
TH
475 pcpu_mem_free(old);
476 pcpu_mem_free(new);
833af842 477
9f7dcf22
TH
478 return 0;
479}
480
a16037c8
TH
481/**
482 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
483 * @chunk: chunk the candidate area belongs to
484 * @off: the offset to the start of the candidate area
485 * @this_size: the size of the candidate area
486 * @size: the size of the target allocation
487 * @align: the alignment of the target allocation
488 * @pop_only: only allocate from already populated region
489 *
490 * We're trying to allocate @size bytes aligned at @align. @chunk's area
491 * at @off sized @this_size is a candidate. This function determines
492 * whether the target allocation fits in the candidate area and returns the
493 * number of bytes to pad after @off. If the target area doesn't fit, -1
494 * is returned.
495 *
496 * If @pop_only is %true, this function only considers the already
497 * populated part of the candidate area.
498 */
499static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
500 int size, int align, bool pop_only)
501{
502 int cand_off = off;
503
504 while (true) {
505 int head = ALIGN(cand_off, align) - off;
506 int page_start, page_end, rs, re;
507
508 if (this_size < head + size)
509 return -1;
510
511 if (!pop_only)
512 return head;
513
514 /*
515 * If the first unpopulated page is beyond the end of the
516 * allocation, the whole allocation is populated;
517 * otherwise, retry from the end of the unpopulated area.
518 */
519 page_start = PFN_DOWN(head + off);
520 page_end = PFN_UP(head + off + size);
521
522 rs = page_start;
523 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
524 if (rs >= page_end)
525 return head;
526 cand_off = re * PAGE_SIZE;
527 }
528}
529
fbf59bc9
TH
530/**
531 * pcpu_alloc_area - allocate area from a pcpu_chunk
532 * @chunk: chunk of interest
cae3aeb8 533 * @size: wanted size in bytes
fbf59bc9 534 * @align: wanted align
a16037c8 535 * @pop_only: allocate only from the populated area
b539b87f 536 * @occ_pages_p: out param for the number of pages the area occupies
fbf59bc9
TH
537 *
538 * Try to allocate @size bytes area aligned at @align from @chunk.
539 * Note that this function only allocates the offset. It doesn't
540 * populate or map the area.
541 *
9f7dcf22
TH
542 * @chunk->map must have at least two free slots.
543 *
ccea34b5
TH
544 * CONTEXT:
545 * pcpu_lock.
546 *
fbf59bc9 547 * RETURNS:
9f7dcf22
TH
548 * Allocated offset in @chunk on success, -1 if no matching area is
549 * found.
fbf59bc9 550 */
a16037c8 551static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
b539b87f 552 bool pop_only, int *occ_pages_p)
fbf59bc9
TH
553{
554 int oslot = pcpu_chunk_slot(chunk);
555 int max_contig = 0;
556 int i, off;
3d331ad7 557 bool seen_free = false;
723ad1d9 558 int *p;
fbf59bc9 559
3d331ad7 560 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
fbf59bc9 561 int head, tail;
723ad1d9
AV
562 int this_size;
563
564 off = *p;
565 if (off & 1)
566 continue;
fbf59bc9 567
723ad1d9 568 this_size = (p[1] & ~1) - off;
a16037c8
TH
569
570 head = pcpu_fit_in_area(chunk, off, this_size, size, align,
571 pop_only);
572 if (head < 0) {
3d331ad7
AV
573 if (!seen_free) {
574 chunk->first_free = i;
575 seen_free = true;
576 }
723ad1d9 577 max_contig = max(this_size, max_contig);
fbf59bc9
TH
578 continue;
579 }
580
581 /*
582 * If head is small or the previous block is free,
583 * merge'em. Note that 'small' is defined as smaller
584 * than sizeof(int), which is very small but isn't too
585 * uncommon for percpu allocations.
586 */
723ad1d9 587 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
21ddfd38 588 *p = off += head;
723ad1d9 589 if (p[-1] & 1)
fbf59bc9 590 chunk->free_size -= head;
21ddfd38
JZ
591 else
592 max_contig = max(*p - p[-1], max_contig);
723ad1d9 593 this_size -= head;
fbf59bc9
TH
594 head = 0;
595 }
596
597 /* if tail is small, just keep it around */
723ad1d9
AV
598 tail = this_size - head - size;
599 if (tail < sizeof(int)) {
fbf59bc9 600 tail = 0;
723ad1d9
AV
601 size = this_size - head;
602 }
fbf59bc9
TH
603
604 /* split if warranted */
605 if (head || tail) {
706c16f2
AV
606 int nr_extra = !!head + !!tail;
607
608 /* insert new subblocks */
723ad1d9 609 memmove(p + nr_extra + 1, p + 1,
706c16f2
AV
610 sizeof(chunk->map[0]) * (chunk->map_used - i));
611 chunk->map_used += nr_extra;
612
fbf59bc9 613 if (head) {
3d331ad7
AV
614 if (!seen_free) {
615 chunk->first_free = i;
616 seen_free = true;
617 }
723ad1d9
AV
618 *++p = off += head;
619 ++i;
706c16f2
AV
620 max_contig = max(head, max_contig);
621 }
622 if (tail) {
723ad1d9 623 p[1] = off + size;
706c16f2 624 max_contig = max(tail, max_contig);
fbf59bc9 625 }
fbf59bc9
TH
626 }
627
3d331ad7
AV
628 if (!seen_free)
629 chunk->first_free = i + 1;
630
fbf59bc9 631 /* update hint and mark allocated */
723ad1d9 632 if (i + 1 == chunk->map_used)
fbf59bc9
TH
633 chunk->contig_hint = max_contig; /* fully scanned */
634 else
635 chunk->contig_hint = max(chunk->contig_hint,
636 max_contig);
637
723ad1d9
AV
638 chunk->free_size -= size;
639 *p |= 1;
fbf59bc9 640
b539b87f 641 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
fbf59bc9
TH
642 pcpu_chunk_relocate(chunk, oslot);
643 return off;
644 }
645
646 chunk->contig_hint = max_contig; /* fully scanned */
647 pcpu_chunk_relocate(chunk, oslot);
648
9f7dcf22
TH
649 /* tell the upper layer that this chunk has no matching area */
650 return -1;
fbf59bc9
TH
651}
652
653/**
654 * pcpu_free_area - free area to a pcpu_chunk
655 * @chunk: chunk of interest
656 * @freeme: offset of area to free
b539b87f 657 * @occ_pages_p: out param for the number of pages the area occupies
fbf59bc9
TH
658 *
659 * Free area starting from @freeme to @chunk. Note that this function
660 * only modifies the allocation map. It doesn't depopulate or unmap
661 * the area.
ccea34b5
TH
662 *
663 * CONTEXT:
664 * pcpu_lock.
fbf59bc9 665 */
b539b87f
TH
666static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
667 int *occ_pages_p)
fbf59bc9
TH
668{
669 int oslot = pcpu_chunk_slot(chunk);
723ad1d9
AV
670 int off = 0;
671 unsigned i, j;
672 int to_free = 0;
673 int *p;
674
675 freeme |= 1; /* we are searching for <given offset, in use> pair */
676
677 i = 0;
678 j = chunk->map_used;
679 while (i != j) {
680 unsigned k = (i + j) / 2;
681 off = chunk->map[k];
682 if (off < freeme)
683 i = k + 1;
684 else if (off > freeme)
685 j = k;
686 else
687 i = j = k;
688 }
fbf59bc9 689 BUG_ON(off != freeme);
fbf59bc9 690
3d331ad7
AV
691 if (i < chunk->first_free)
692 chunk->first_free = i;
693
723ad1d9
AV
694 p = chunk->map + i;
695 *p = off &= ~1;
696 chunk->free_size += (p[1] & ~1) - off;
fbf59bc9 697
b539b87f
TH
698 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
699
723ad1d9
AV
700 /* merge with next? */
701 if (!(p[1] & 1))
702 to_free++;
fbf59bc9 703 /* merge with previous? */
723ad1d9
AV
704 if (i > 0 && !(p[-1] & 1)) {
705 to_free++;
fbf59bc9 706 i--;
723ad1d9 707 p--;
fbf59bc9 708 }
723ad1d9
AV
709 if (to_free) {
710 chunk->map_used -= to_free;
711 memmove(p + 1, p + 1 + to_free,
712 (chunk->map_used - i) * sizeof(chunk->map[0]));
fbf59bc9
TH
713 }
714
723ad1d9 715 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
fbf59bc9
TH
716 pcpu_chunk_relocate(chunk, oslot);
717}
718
6081089f
TH
719static struct pcpu_chunk *pcpu_alloc_chunk(void)
720{
721 struct pcpu_chunk *chunk;
722
90459ce0 723 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
6081089f
TH
724 if (!chunk)
725 return NULL;
726
90459ce0
BL
727 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
728 sizeof(chunk->map[0]));
6081089f 729 if (!chunk->map) {
1d5cfdb0 730 pcpu_mem_free(chunk);
6081089f
TH
731 return NULL;
732 }
733
734 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
723ad1d9
AV
735 chunk->map[0] = 0;
736 chunk->map[1] = pcpu_unit_size | 1;
737 chunk->map_used = 1;
6081089f
TH
738
739 INIT_LIST_HEAD(&chunk->list);
4f996e23 740 INIT_LIST_HEAD(&chunk->map_extend_list);
6081089f
TH
741 chunk->free_size = pcpu_unit_size;
742 chunk->contig_hint = pcpu_unit_size;
743
744 return chunk;
745}
746
747static void pcpu_free_chunk(struct pcpu_chunk *chunk)
748{
749 if (!chunk)
750 return;
1d5cfdb0
TH
751 pcpu_mem_free(chunk->map);
752 pcpu_mem_free(chunk);
6081089f
TH
753}
754
b539b87f
TH
755/**
756 * pcpu_chunk_populated - post-population bookkeeping
757 * @chunk: pcpu_chunk which got populated
758 * @page_start: the start page
759 * @page_end: the end page
760 *
761 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
762 * the bookkeeping information accordingly. Must be called after each
763 * successful population.
764 */
765static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
766 int page_start, int page_end)
767{
768 int nr = page_end - page_start;
769
770 lockdep_assert_held(&pcpu_lock);
771
772 bitmap_set(chunk->populated, page_start, nr);
773 chunk->nr_populated += nr;
774 pcpu_nr_empty_pop_pages += nr;
775}
776
777/**
778 * pcpu_chunk_depopulated - post-depopulation bookkeeping
779 * @chunk: pcpu_chunk which got depopulated
780 * @page_start: the start page
781 * @page_end: the end page
782 *
783 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
784 * Update the bookkeeping information accordingly. Must be called after
785 * each successful depopulation.
786 */
787static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
788 int page_start, int page_end)
789{
790 int nr = page_end - page_start;
791
792 lockdep_assert_held(&pcpu_lock);
793
794 bitmap_clear(chunk->populated, page_start, nr);
795 chunk->nr_populated -= nr;
796 pcpu_nr_empty_pop_pages -= nr;
797}
798
9f645532
TH
799/*
800 * Chunk management implementation.
801 *
802 * To allow different implementations, chunk alloc/free and
803 * [de]population are implemented in a separate file which is pulled
804 * into this file and compiled together. The following functions
805 * should be implemented.
806 *
807 * pcpu_populate_chunk - populate the specified range of a chunk
808 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
809 * pcpu_create_chunk - create a new chunk
810 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
811 * pcpu_addr_to_page - translate address to physical address
812 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 813 */
9f645532
TH
814static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
815static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
816static struct pcpu_chunk *pcpu_create_chunk(void);
817static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
818static struct page *pcpu_addr_to_page(void *addr);
819static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 820
b0c9778b
TH
821#ifdef CONFIG_NEED_PER_CPU_KM
822#include "percpu-km.c"
823#else
9f645532 824#include "percpu-vm.c"
b0c9778b 825#endif
fbf59bc9 826
88999a89
TH
827/**
828 * pcpu_chunk_addr_search - determine chunk containing specified address
829 * @addr: address for which the chunk needs to be determined.
830 *
831 * RETURNS:
832 * The address of the found chunk.
833 */
834static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
835{
836 /* is it in the first chunk? */
837 if (pcpu_addr_in_first_chunk(addr)) {
838 /* is it in the reserved area? */
839 if (pcpu_addr_in_reserved_chunk(addr))
840 return pcpu_reserved_chunk;
841 return pcpu_first_chunk;
842 }
843
844 /*
845 * The address is relative to unit0 which might be unused and
846 * thus unmapped. Offset the address to the unit space of the
847 * current processor before looking it up in the vmalloc
848 * space. Note that any possible cpu id can be used here, so
849 * there's no need to worry about preemption or cpu hotplug.
850 */
851 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 852 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
853}
854
fbf59bc9 855/**
edcb4639 856 * pcpu_alloc - the percpu allocator
cae3aeb8 857 * @size: size of area to allocate in bytes
fbf59bc9 858 * @align: alignment of area (max PAGE_SIZE)
edcb4639 859 * @reserved: allocate from the reserved chunk if available
5835d96e 860 * @gfp: allocation flags
fbf59bc9 861 *
5835d96e
TH
862 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
863 * contain %GFP_KERNEL, the allocation is atomic.
fbf59bc9
TH
864 *
865 * RETURNS:
866 * Percpu pointer to the allocated area on success, NULL on failure.
867 */
5835d96e
TH
868static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
869 gfp_t gfp)
fbf59bc9 870{
f2badb0c 871 static int warn_limit = 10;
fbf59bc9 872 struct pcpu_chunk *chunk;
f2badb0c 873 const char *err;
6ae833c7 874 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
b539b87f 875 int occ_pages = 0;
b38d08f3 876 int slot, off, new_alloc, cpu, ret;
403a91b1 877 unsigned long flags;
f528f0b8 878 void __percpu *ptr;
fbf59bc9 879
723ad1d9
AV
880 /*
881 * We want the lowest bit of offset available for in-use/free
2f69fa82 882 * indicator, so force >= 16bit alignment and make size even.
723ad1d9
AV
883 */
884 if (unlikely(align < 2))
885 align = 2;
886
fb009e3a 887 size = ALIGN(size, 2);
2f69fa82 888
3ca45a46 889 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
890 !is_power_of_2(align))) {
756a025f
JP
891 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
892 size, align);
fbf59bc9
TH
893 return NULL;
894 }
895
6710e594
TH
896 if (!is_atomic)
897 mutex_lock(&pcpu_alloc_mutex);
898
403a91b1 899 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 900
edcb4639
TH
901 /* serve reserved allocations from the reserved chunk if available */
902 if (reserved && pcpu_reserved_chunk) {
903 chunk = pcpu_reserved_chunk;
833af842
TH
904
905 if (size > chunk->contig_hint) {
906 err = "alloc from reserved chunk failed";
ccea34b5 907 goto fail_unlock;
f2badb0c 908 }
833af842 909
9c824b6a 910 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
833af842 911 spin_unlock_irqrestore(&pcpu_lock, flags);
5835d96e
TH
912 if (is_atomic ||
913 pcpu_extend_area_map(chunk, new_alloc) < 0) {
833af842 914 err = "failed to extend area map of reserved chunk";
b38d08f3 915 goto fail;
833af842
TH
916 }
917 spin_lock_irqsave(&pcpu_lock, flags);
918 }
919
b539b87f
TH
920 off = pcpu_alloc_area(chunk, size, align, is_atomic,
921 &occ_pages);
edcb4639
TH
922 if (off >= 0)
923 goto area_found;
833af842 924
f2badb0c 925 err = "alloc from reserved chunk failed";
ccea34b5 926 goto fail_unlock;
edcb4639
TH
927 }
928
ccea34b5 929restart:
edcb4639 930 /* search through normal chunks */
fbf59bc9
TH
931 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
932 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
933 if (size > chunk->contig_hint)
934 continue;
ccea34b5 935
9c824b6a 936 new_alloc = pcpu_need_to_extend(chunk, is_atomic);
833af842 937 if (new_alloc) {
5835d96e
TH
938 if (is_atomic)
939 continue;
833af842
TH
940 spin_unlock_irqrestore(&pcpu_lock, flags);
941 if (pcpu_extend_area_map(chunk,
942 new_alloc) < 0) {
943 err = "failed to extend area map";
b38d08f3 944 goto fail;
833af842
TH
945 }
946 spin_lock_irqsave(&pcpu_lock, flags);
947 /*
948 * pcpu_lock has been dropped, need to
949 * restart cpu_slot list walking.
950 */
951 goto restart;
ccea34b5
TH
952 }
953
b539b87f
TH
954 off = pcpu_alloc_area(chunk, size, align, is_atomic,
955 &occ_pages);
fbf59bc9
TH
956 if (off >= 0)
957 goto area_found;
fbf59bc9
TH
958 }
959 }
960
403a91b1 961 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 962
b38d08f3
TH
963 /*
964 * No space left. Create a new chunk. We don't want multiple
965 * tasks to create chunks simultaneously. Serialize and create iff
966 * there's still no empty chunk after grabbing the mutex.
967 */
5835d96e
TH
968 if (is_atomic)
969 goto fail;
970
b38d08f3
TH
971 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
972 chunk = pcpu_create_chunk();
973 if (!chunk) {
974 err = "failed to allocate new chunk";
975 goto fail;
976 }
977
978 spin_lock_irqsave(&pcpu_lock, flags);
979 pcpu_chunk_relocate(chunk, -1);
980 } else {
981 spin_lock_irqsave(&pcpu_lock, flags);
f2badb0c 982 }
ccea34b5 983
ccea34b5 984 goto restart;
fbf59bc9
TH
985
986area_found:
403a91b1 987 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 988
dca49645 989 /* populate if not all pages are already there */
5835d96e 990 if (!is_atomic) {
e04d3208 991 int page_start, page_end, rs, re;
dca49645 992
e04d3208
TH
993 page_start = PFN_DOWN(off);
994 page_end = PFN_UP(off + size);
b38d08f3 995
e04d3208
TH
996 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
997 WARN_ON(chunk->immutable);
998
999 ret = pcpu_populate_chunk(chunk, rs, re);
1000
1001 spin_lock_irqsave(&pcpu_lock, flags);
1002 if (ret) {
b539b87f 1003 pcpu_free_area(chunk, off, &occ_pages);
e04d3208
TH
1004 err = "failed to populate";
1005 goto fail_unlock;
1006 }
b539b87f 1007 pcpu_chunk_populated(chunk, rs, re);
e04d3208 1008 spin_unlock_irqrestore(&pcpu_lock, flags);
dca49645 1009 }
fbf59bc9 1010
e04d3208
TH
1011 mutex_unlock(&pcpu_alloc_mutex);
1012 }
ccea34b5 1013
73dbbfe1
TE
1014 if (chunk != pcpu_reserved_chunk) {
1015 spin_lock_irqsave(&pcpu_lock, flags);
b539b87f 1016 pcpu_nr_empty_pop_pages -= occ_pages;
73dbbfe1
TE
1017 spin_unlock_irqrestore(&pcpu_lock, flags);
1018 }
b539b87f 1019
1a4d7607
TH
1020 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1021 pcpu_schedule_balance_work();
1022
dca49645
TH
1023 /* clear the areas and return address relative to base address */
1024 for_each_possible_cpu(cpu)
1025 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1026
f528f0b8 1027 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
8a8c35fa 1028 kmemleak_alloc_percpu(ptr, size, gfp);
f528f0b8 1029 return ptr;
ccea34b5
TH
1030
1031fail_unlock:
403a91b1 1032 spin_unlock_irqrestore(&pcpu_lock, flags);
b38d08f3 1033fail:
5835d96e 1034 if (!is_atomic && warn_limit) {
870d4b12 1035 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
598d8091 1036 size, align, is_atomic, err);
f2badb0c
TH
1037 dump_stack();
1038 if (!--warn_limit)
870d4b12 1039 pr_info("limit reached, disable warning\n");
f2badb0c 1040 }
1a4d7607
TH
1041 if (is_atomic) {
1042 /* see the flag handling in pcpu_blance_workfn() */
1043 pcpu_atomic_alloc_failed = true;
1044 pcpu_schedule_balance_work();
6710e594
TH
1045 } else {
1046 mutex_unlock(&pcpu_alloc_mutex);
1a4d7607 1047 }
ccea34b5 1048 return NULL;
fbf59bc9 1049}
edcb4639
TH
1050
1051/**
5835d96e 1052 * __alloc_percpu_gfp - allocate dynamic percpu area
edcb4639
TH
1053 * @size: size of area to allocate in bytes
1054 * @align: alignment of area (max PAGE_SIZE)
5835d96e 1055 * @gfp: allocation flags
edcb4639 1056 *
5835d96e
TH
1057 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1058 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1059 * be called from any context but is a lot more likely to fail.
ccea34b5 1060 *
edcb4639
TH
1061 * RETURNS:
1062 * Percpu pointer to the allocated area on success, NULL on failure.
1063 */
5835d96e
TH
1064void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1065{
1066 return pcpu_alloc(size, align, false, gfp);
1067}
1068EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1069
1070/**
1071 * __alloc_percpu - allocate dynamic percpu area
1072 * @size: size of area to allocate in bytes
1073 * @align: alignment of area (max PAGE_SIZE)
1074 *
1075 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1076 */
43cf38eb 1077void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639 1078{
5835d96e 1079 return pcpu_alloc(size, align, false, GFP_KERNEL);
edcb4639 1080}
fbf59bc9
TH
1081EXPORT_SYMBOL_GPL(__alloc_percpu);
1082
edcb4639
TH
1083/**
1084 * __alloc_reserved_percpu - allocate reserved percpu area
1085 * @size: size of area to allocate in bytes
1086 * @align: alignment of area (max PAGE_SIZE)
1087 *
9329ba97
TH
1088 * Allocate zero-filled percpu area of @size bytes aligned at @align
1089 * from reserved percpu area if arch has set it up; otherwise,
1090 * allocation is served from the same dynamic area. Might sleep.
1091 * Might trigger writeouts.
edcb4639 1092 *
ccea34b5
TH
1093 * CONTEXT:
1094 * Does GFP_KERNEL allocation.
1095 *
edcb4639
TH
1096 * RETURNS:
1097 * Percpu pointer to the allocated area on success, NULL on failure.
1098 */
43cf38eb 1099void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639 1100{
5835d96e 1101 return pcpu_alloc(size, align, true, GFP_KERNEL);
edcb4639
TH
1102}
1103
a56dbddf 1104/**
1a4d7607 1105 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
a56dbddf
TH
1106 * @work: unused
1107 *
1108 * Reclaim all fully free chunks except for the first one.
1109 */
fe6bd8c3 1110static void pcpu_balance_workfn(struct work_struct *work)
fbf59bc9 1111{
fe6bd8c3
TH
1112 LIST_HEAD(to_free);
1113 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
a56dbddf 1114 struct pcpu_chunk *chunk, *next;
1a4d7607 1115 int slot, nr_to_pop, ret;
a56dbddf 1116
1a4d7607
TH
1117 /*
1118 * There's no reason to keep around multiple unused chunks and VM
1119 * areas can be scarce. Destroy all free chunks except for one.
1120 */
ccea34b5
TH
1121 mutex_lock(&pcpu_alloc_mutex);
1122 spin_lock_irq(&pcpu_lock);
a56dbddf 1123
fe6bd8c3 1124 list_for_each_entry_safe(chunk, next, free_head, list) {
a56dbddf
TH
1125 WARN_ON(chunk->immutable);
1126
1127 /* spare the first one */
fe6bd8c3 1128 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
a56dbddf
TH
1129 continue;
1130
4f996e23 1131 list_del_init(&chunk->map_extend_list);
fe6bd8c3 1132 list_move(&chunk->list, &to_free);
a56dbddf
TH
1133 }
1134
ccea34b5 1135 spin_unlock_irq(&pcpu_lock);
a56dbddf 1136
fe6bd8c3 1137 list_for_each_entry_safe(chunk, next, &to_free, list) {
a93ace48 1138 int rs, re;
dca49645 1139
a93ace48
TH
1140 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1141 pcpu_depopulate_chunk(chunk, rs, re);
b539b87f
TH
1142 spin_lock_irq(&pcpu_lock);
1143 pcpu_chunk_depopulated(chunk, rs, re);
1144 spin_unlock_irq(&pcpu_lock);
a93ace48 1145 }
6081089f 1146 pcpu_destroy_chunk(chunk);
a56dbddf 1147 }
971f3918 1148
4f996e23
TH
1149 /* service chunks which requested async area map extension */
1150 do {
1151 int new_alloc = 0;
1152
1153 spin_lock_irq(&pcpu_lock);
1154
1155 chunk = list_first_entry_or_null(&pcpu_map_extend_chunks,
1156 struct pcpu_chunk, map_extend_list);
1157 if (chunk) {
1158 list_del_init(&chunk->map_extend_list);
1159 new_alloc = pcpu_need_to_extend(chunk, false);
1160 }
1161
1162 spin_unlock_irq(&pcpu_lock);
1163
1164 if (new_alloc)
1165 pcpu_extend_area_map(chunk, new_alloc);
1166 } while (chunk);
1167
1a4d7607
TH
1168 /*
1169 * Ensure there are certain number of free populated pages for
1170 * atomic allocs. Fill up from the most packed so that atomic
1171 * allocs don't increase fragmentation. If atomic allocation
1172 * failed previously, always populate the maximum amount. This
1173 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1174 * failing indefinitely; however, large atomic allocs are not
1175 * something we support properly and can be highly unreliable and
1176 * inefficient.
1177 */
1178retry_pop:
1179 if (pcpu_atomic_alloc_failed) {
1180 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1181 /* best effort anyway, don't worry about synchronization */
1182 pcpu_atomic_alloc_failed = false;
1183 } else {
1184 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1185 pcpu_nr_empty_pop_pages,
1186 0, PCPU_EMPTY_POP_PAGES_HIGH);
1187 }
1188
1189 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1190 int nr_unpop = 0, rs, re;
1191
1192 if (!nr_to_pop)
1193 break;
1194
1195 spin_lock_irq(&pcpu_lock);
1196 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1197 nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1198 if (nr_unpop)
1199 break;
1200 }
1201 spin_unlock_irq(&pcpu_lock);
1202
1203 if (!nr_unpop)
1204 continue;
1205
1206 /* @chunk can't go away while pcpu_alloc_mutex is held */
1207 pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1208 int nr = min(re - rs, nr_to_pop);
1209
1210 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1211 if (!ret) {
1212 nr_to_pop -= nr;
1213 spin_lock_irq(&pcpu_lock);
1214 pcpu_chunk_populated(chunk, rs, rs + nr);
1215 spin_unlock_irq(&pcpu_lock);
1216 } else {
1217 nr_to_pop = 0;
1218 }
1219
1220 if (!nr_to_pop)
1221 break;
1222 }
1223 }
1224
1225 if (nr_to_pop) {
1226 /* ran out of chunks to populate, create a new one and retry */
1227 chunk = pcpu_create_chunk();
1228 if (chunk) {
1229 spin_lock_irq(&pcpu_lock);
1230 pcpu_chunk_relocate(chunk, -1);
1231 spin_unlock_irq(&pcpu_lock);
1232 goto retry_pop;
1233 }
1234 }
1235
971f3918 1236 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
1237}
1238
1239/**
1240 * free_percpu - free percpu area
1241 * @ptr: pointer to area to free
1242 *
ccea34b5
TH
1243 * Free percpu area @ptr.
1244 *
1245 * CONTEXT:
1246 * Can be called from atomic context.
fbf59bc9 1247 */
43cf38eb 1248void free_percpu(void __percpu *ptr)
fbf59bc9 1249{
129182e5 1250 void *addr;
fbf59bc9 1251 struct pcpu_chunk *chunk;
ccea34b5 1252 unsigned long flags;
b539b87f 1253 int off, occ_pages;
fbf59bc9
TH
1254
1255 if (!ptr)
1256 return;
1257
f528f0b8
CM
1258 kmemleak_free_percpu(ptr);
1259
129182e5
AM
1260 addr = __pcpu_ptr_to_addr(ptr);
1261
ccea34b5 1262 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1263
1264 chunk = pcpu_chunk_addr_search(addr);
bba174f5 1265 off = addr - chunk->base_addr;
fbf59bc9 1266
b539b87f
TH
1267 pcpu_free_area(chunk, off, &occ_pages);
1268
1269 if (chunk != pcpu_reserved_chunk)
1270 pcpu_nr_empty_pop_pages += occ_pages;
fbf59bc9 1271
a56dbddf 1272 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
1273 if (chunk->free_size == pcpu_unit_size) {
1274 struct pcpu_chunk *pos;
1275
a56dbddf 1276 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1277 if (pos != chunk) {
1a4d7607 1278 pcpu_schedule_balance_work();
fbf59bc9
TH
1279 break;
1280 }
1281 }
1282
ccea34b5 1283 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1284}
1285EXPORT_SYMBOL_GPL(free_percpu);
1286
10fad5e4
TH
1287/**
1288 * is_kernel_percpu_address - test whether address is from static percpu area
1289 * @addr: address to test
1290 *
1291 * Test whether @addr belongs to in-kernel static percpu area. Module
1292 * static percpu areas are not considered. For those, use
1293 * is_module_percpu_address().
1294 *
1295 * RETURNS:
1296 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1297 */
1298bool is_kernel_percpu_address(unsigned long addr)
1299{
bbddff05 1300#ifdef CONFIG_SMP
10fad5e4
TH
1301 const size_t static_size = __per_cpu_end - __per_cpu_start;
1302 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1303 unsigned int cpu;
1304
1305 for_each_possible_cpu(cpu) {
1306 void *start = per_cpu_ptr(base, cpu);
1307
1308 if ((void *)addr >= start && (void *)addr < start + static_size)
1309 return true;
1310 }
bbddff05
TH
1311#endif
1312 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
1313 return false;
1314}
1315
3b034b0d
VG
1316/**
1317 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1318 * @addr: the address to be converted to physical address
1319 *
1320 * Given @addr which is dereferenceable address obtained via one of
1321 * percpu access macros, this function translates it into its physical
1322 * address. The caller is responsible for ensuring @addr stays valid
1323 * until this function finishes.
1324 *
67589c71
DY
1325 * percpu allocator has special setup for the first chunk, which currently
1326 * supports either embedding in linear address space or vmalloc mapping,
1327 * and, from the second one, the backing allocator (currently either vm or
1328 * km) provides translation.
1329 *
bffc4375 1330 * The addr can be translated simply without checking if it falls into the
67589c71
DY
1331 * first chunk. But the current code reflects better how percpu allocator
1332 * actually works, and the verification can discover both bugs in percpu
1333 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1334 * code.
1335 *
3b034b0d
VG
1336 * RETURNS:
1337 * The physical address for @addr.
1338 */
1339phys_addr_t per_cpu_ptr_to_phys(void *addr)
1340{
9983b6f0
TH
1341 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1342 bool in_first_chunk = false;
a855b84c 1343 unsigned long first_low, first_high;
9983b6f0
TH
1344 unsigned int cpu;
1345
1346 /*
a855b84c 1347 * The following test on unit_low/high isn't strictly
9983b6f0
TH
1348 * necessary but will speed up lookups of addresses which
1349 * aren't in the first chunk.
1350 */
a855b84c
TH
1351 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1352 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1353 pcpu_unit_pages);
1354 if ((unsigned long)addr >= first_low &&
1355 (unsigned long)addr < first_high) {
9983b6f0
TH
1356 for_each_possible_cpu(cpu) {
1357 void *start = per_cpu_ptr(base, cpu);
1358
1359 if (addr >= start && addr < start + pcpu_unit_size) {
1360 in_first_chunk = true;
1361 break;
1362 }
1363 }
1364 }
1365
1366 if (in_first_chunk) {
eac522ef 1367 if (!is_vmalloc_addr(addr))
020ec653
TH
1368 return __pa(addr);
1369 else
9f57bd4d
ES
1370 return page_to_phys(vmalloc_to_page(addr)) +
1371 offset_in_page(addr);
020ec653 1372 } else
9f57bd4d
ES
1373 return page_to_phys(pcpu_addr_to_page(addr)) +
1374 offset_in_page(addr);
3b034b0d
VG
1375}
1376
fbf59bc9 1377/**
fd1e8a1f
TH
1378 * pcpu_alloc_alloc_info - allocate percpu allocation info
1379 * @nr_groups: the number of groups
1380 * @nr_units: the number of units
1381 *
1382 * Allocate ai which is large enough for @nr_groups groups containing
1383 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1384 * cpu_map array which is long enough for @nr_units and filled with
1385 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1386 * pointer of other groups.
1387 *
1388 * RETURNS:
1389 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1390 * failure.
1391 */
1392struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1393 int nr_units)
1394{
1395 struct pcpu_alloc_info *ai;
1396 size_t base_size, ai_size;
1397 void *ptr;
1398 int unit;
1399
1400 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1401 __alignof__(ai->groups[0].cpu_map[0]));
1402 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1403
999c17e3 1404 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
fd1e8a1f
TH
1405 if (!ptr)
1406 return NULL;
1407 ai = ptr;
1408 ptr += base_size;
1409
1410 ai->groups[0].cpu_map = ptr;
1411
1412 for (unit = 0; unit < nr_units; unit++)
1413 ai->groups[0].cpu_map[unit] = NR_CPUS;
1414
1415 ai->nr_groups = nr_groups;
1416 ai->__ai_size = PFN_ALIGN(ai_size);
1417
1418 return ai;
1419}
1420
1421/**
1422 * pcpu_free_alloc_info - free percpu allocation info
1423 * @ai: pcpu_alloc_info to free
1424 *
1425 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1426 */
1427void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1428{
999c17e3 1429 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
1430}
1431
fd1e8a1f
TH
1432/**
1433 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1434 * @lvl: loglevel
1435 * @ai: allocation info to dump
1436 *
1437 * Print out information about @ai using loglevel @lvl.
1438 */
1439static void pcpu_dump_alloc_info(const char *lvl,
1440 const struct pcpu_alloc_info *ai)
033e48fb 1441{
fd1e8a1f 1442 int group_width = 1, cpu_width = 1, width;
033e48fb 1443 char empty_str[] = "--------";
fd1e8a1f
TH
1444 int alloc = 0, alloc_end = 0;
1445 int group, v;
1446 int upa, apl; /* units per alloc, allocs per line */
1447
1448 v = ai->nr_groups;
1449 while (v /= 10)
1450 group_width++;
033e48fb 1451
fd1e8a1f 1452 v = num_possible_cpus();
033e48fb 1453 while (v /= 10)
fd1e8a1f
TH
1454 cpu_width++;
1455 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1456
fd1e8a1f
TH
1457 upa = ai->alloc_size / ai->unit_size;
1458 width = upa * (cpu_width + 1) + group_width + 3;
1459 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1460
fd1e8a1f
TH
1461 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1462 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1463 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1464
fd1e8a1f
TH
1465 for (group = 0; group < ai->nr_groups; group++) {
1466 const struct pcpu_group_info *gi = &ai->groups[group];
1467 int unit = 0, unit_end = 0;
1468
1469 BUG_ON(gi->nr_units % upa);
1470 for (alloc_end += gi->nr_units / upa;
1471 alloc < alloc_end; alloc++) {
1472 if (!(alloc % apl)) {
1170532b 1473 pr_cont("\n");
fd1e8a1f
TH
1474 printk("%spcpu-alloc: ", lvl);
1475 }
1170532b 1476 pr_cont("[%0*d] ", group_width, group);
fd1e8a1f
TH
1477
1478 for (unit_end += upa; unit < unit_end; unit++)
1479 if (gi->cpu_map[unit] != NR_CPUS)
1170532b
JP
1480 pr_cont("%0*d ",
1481 cpu_width, gi->cpu_map[unit]);
fd1e8a1f 1482 else
1170532b 1483 pr_cont("%s ", empty_str);
033e48fb 1484 }
033e48fb 1485 }
1170532b 1486 pr_cont("\n");
033e48fb 1487}
033e48fb 1488
fbf59bc9 1489/**
8d408b4b 1490 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1491 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1492 * @base_addr: mapped address
8d408b4b
TH
1493 *
1494 * Initialize the first percpu chunk which contains the kernel static
1495 * perpcu area. This function is to be called from arch percpu area
38a6be52 1496 * setup path.
8d408b4b 1497 *
fd1e8a1f
TH
1498 * @ai contains all information necessary to initialize the first
1499 * chunk and prime the dynamic percpu allocator.
1500 *
1501 * @ai->static_size is the size of static percpu area.
1502 *
1503 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1504 * reserve after the static area in the first chunk. This reserves
1505 * the first chunk such that it's available only through reserved
1506 * percpu allocation. This is primarily used to serve module percpu
1507 * static areas on architectures where the addressing model has
1508 * limited offset range for symbol relocations to guarantee module
1509 * percpu symbols fall inside the relocatable range.
1510 *
fd1e8a1f
TH
1511 * @ai->dyn_size determines the number of bytes available for dynamic
1512 * allocation in the first chunk. The area between @ai->static_size +
1513 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1514 *
fd1e8a1f
TH
1515 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1516 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1517 * @ai->dyn_size.
8d408b4b 1518 *
fd1e8a1f
TH
1519 * @ai->atom_size is the allocation atom size and used as alignment
1520 * for vm areas.
8d408b4b 1521 *
fd1e8a1f
TH
1522 * @ai->alloc_size is the allocation size and always multiple of
1523 * @ai->atom_size. This is larger than @ai->atom_size if
1524 * @ai->unit_size is larger than @ai->atom_size.
1525 *
1526 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1527 * percpu areas. Units which should be colocated are put into the
1528 * same group. Dynamic VM areas will be allocated according to these
1529 * groupings. If @ai->nr_groups is zero, a single group containing
1530 * all units is assumed.
8d408b4b 1531 *
38a6be52
TH
1532 * The caller should have mapped the first chunk at @base_addr and
1533 * copied static data to each unit.
fbf59bc9 1534 *
edcb4639
TH
1535 * If the first chunk ends up with both reserved and dynamic areas, it
1536 * is served by two chunks - one to serve the core static and reserved
1537 * areas and the other for the dynamic area. They share the same vm
1538 * and page map but uses different area allocation map to stay away
1539 * from each other. The latter chunk is circulated in the chunk slots
1540 * and available for dynamic allocation like any other chunks.
1541 *
fbf59bc9 1542 * RETURNS:
fb435d52 1543 * 0 on success, -errno on failure.
fbf59bc9 1544 */
fb435d52
TH
1545int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1546 void *base_addr)
fbf59bc9 1547{
099a19d9
TH
1548 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1549 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
fd1e8a1f
TH
1550 size_t dyn_size = ai->dyn_size;
1551 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
edcb4639 1552 struct pcpu_chunk *schunk, *dchunk = NULL;
6563297c
TH
1553 unsigned long *group_offsets;
1554 size_t *group_sizes;
fb435d52 1555 unsigned long *unit_off;
fbf59bc9 1556 unsigned int cpu;
fd1e8a1f
TH
1557 int *unit_map;
1558 int group, unit, i;
fbf59bc9 1559
635b75fc
TH
1560#define PCPU_SETUP_BUG_ON(cond) do { \
1561 if (unlikely(cond)) { \
870d4b12
JP
1562 pr_emerg("failed to initialize, %s\n", #cond); \
1563 pr_emerg("cpu_possible_mask=%*pb\n", \
807de073 1564 cpumask_pr_args(cpu_possible_mask)); \
635b75fc
TH
1565 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1566 BUG(); \
1567 } \
1568} while (0)
1569
2f39e637 1570 /* sanity checks */
635b75fc 1571 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 1572#ifdef CONFIG_SMP
635b75fc 1573 PCPU_SETUP_BUG_ON(!ai->static_size);
f09f1243 1574 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
bbddff05 1575#endif
635b75fc 1576 PCPU_SETUP_BUG_ON(!base_addr);
f09f1243 1577 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
635b75fc 1578 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
f09f1243 1579 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
635b75fc 1580 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
099a19d9 1581 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
9f645532 1582 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 1583
6563297c 1584 /* process group information and build config tables accordingly */
999c17e3
SS
1585 group_offsets = memblock_virt_alloc(ai->nr_groups *
1586 sizeof(group_offsets[0]), 0);
1587 group_sizes = memblock_virt_alloc(ai->nr_groups *
1588 sizeof(group_sizes[0]), 0);
1589 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1590 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2f39e637 1591
fd1e8a1f 1592 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 1593 unit_map[cpu] = UINT_MAX;
a855b84c
TH
1594
1595 pcpu_low_unit_cpu = NR_CPUS;
1596 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 1597
fd1e8a1f
TH
1598 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1599 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 1600
6563297c
TH
1601 group_offsets[group] = gi->base_offset;
1602 group_sizes[group] = gi->nr_units * ai->unit_size;
1603
fd1e8a1f
TH
1604 for (i = 0; i < gi->nr_units; i++) {
1605 cpu = gi->cpu_map[i];
1606 if (cpu == NR_CPUS)
1607 continue;
8d408b4b 1608
9f295664 1609 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
635b75fc
TH
1610 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1611 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 1612
fd1e8a1f 1613 unit_map[cpu] = unit + i;
fb435d52
TH
1614 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1615
a855b84c
TH
1616 /* determine low/high unit_cpu */
1617 if (pcpu_low_unit_cpu == NR_CPUS ||
1618 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1619 pcpu_low_unit_cpu = cpu;
1620 if (pcpu_high_unit_cpu == NR_CPUS ||
1621 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1622 pcpu_high_unit_cpu = cpu;
fd1e8a1f 1623 }
2f39e637 1624 }
fd1e8a1f
TH
1625 pcpu_nr_units = unit;
1626
1627 for_each_possible_cpu(cpu)
635b75fc
TH
1628 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1629
1630 /* we're done parsing the input, undefine BUG macro and dump config */
1631#undef PCPU_SETUP_BUG_ON
bcbea798 1632 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 1633
6563297c
TH
1634 pcpu_nr_groups = ai->nr_groups;
1635 pcpu_group_offsets = group_offsets;
1636 pcpu_group_sizes = group_sizes;
fd1e8a1f 1637 pcpu_unit_map = unit_map;
fb435d52 1638 pcpu_unit_offsets = unit_off;
2f39e637
TH
1639
1640 /* determine basic parameters */
fd1e8a1f 1641 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 1642 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 1643 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
1644 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1645 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 1646
d9b55eeb
TH
1647 /*
1648 * Allocate chunk slots. The additional last slot is for
1649 * empty chunks.
1650 */
1651 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
999c17e3
SS
1652 pcpu_slot = memblock_virt_alloc(
1653 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
fbf59bc9
TH
1654 for (i = 0; i < pcpu_nr_slots; i++)
1655 INIT_LIST_HEAD(&pcpu_slot[i]);
1656
edcb4639
TH
1657 /*
1658 * Initialize static chunk. If reserved_size is zero, the
1659 * static chunk covers static area + dynamic allocation area
1660 * in the first chunk. If reserved_size is not zero, it
1661 * covers static area + reserved area (mostly used for module
1662 * static percpu allocation).
1663 */
999c17e3 1664 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
2441d15c 1665 INIT_LIST_HEAD(&schunk->list);
4f996e23 1666 INIT_LIST_HEAD(&schunk->map_extend_list);
bba174f5 1667 schunk->base_addr = base_addr;
61ace7fa
TH
1668 schunk->map = smap;
1669 schunk->map_alloc = ARRAY_SIZE(smap);
38a6be52 1670 schunk->immutable = true;
ce3141a2 1671 bitmap_fill(schunk->populated, pcpu_unit_pages);
b539b87f 1672 schunk->nr_populated = pcpu_unit_pages;
edcb4639 1673
fd1e8a1f
TH
1674 if (ai->reserved_size) {
1675 schunk->free_size = ai->reserved_size;
ae9e6bc9 1676 pcpu_reserved_chunk = schunk;
fd1e8a1f 1677 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
edcb4639
TH
1678 } else {
1679 schunk->free_size = dyn_size;
1680 dyn_size = 0; /* dynamic area covered */
1681 }
2441d15c 1682 schunk->contig_hint = schunk->free_size;
fbf59bc9 1683
723ad1d9
AV
1684 schunk->map[0] = 1;
1685 schunk->map[1] = ai->static_size;
1686 schunk->map_used = 1;
61ace7fa 1687 if (schunk->free_size)
292c24a0
BH
1688 schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size;
1689 schunk->map[schunk->map_used] |= 1;
61ace7fa 1690
edcb4639
TH
1691 /* init dynamic chunk if necessary */
1692 if (dyn_size) {
999c17e3 1693 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
edcb4639 1694 INIT_LIST_HEAD(&dchunk->list);
4f996e23 1695 INIT_LIST_HEAD(&dchunk->map_extend_list);
bba174f5 1696 dchunk->base_addr = base_addr;
edcb4639
TH
1697 dchunk->map = dmap;
1698 dchunk->map_alloc = ARRAY_SIZE(dmap);
38a6be52 1699 dchunk->immutable = true;
ce3141a2 1700 bitmap_fill(dchunk->populated, pcpu_unit_pages);
b539b87f 1701 dchunk->nr_populated = pcpu_unit_pages;
edcb4639
TH
1702
1703 dchunk->contig_hint = dchunk->free_size = dyn_size;
723ad1d9
AV
1704 dchunk->map[0] = 1;
1705 dchunk->map[1] = pcpu_reserved_chunk_limit;
1706 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1707 dchunk->map_used = 2;
edcb4639
TH
1708 }
1709
2441d15c 1710 /* link the first chunk in */
ae9e6bc9 1711 pcpu_first_chunk = dchunk ?: schunk;
b539b87f
TH
1712 pcpu_nr_empty_pop_pages +=
1713 pcpu_count_occupied_pages(pcpu_first_chunk, 1);
ae9e6bc9 1714 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9
TH
1715
1716 /* we're done */
bba174f5 1717 pcpu_base_addr = base_addr;
fb435d52 1718 return 0;
fbf59bc9 1719}
66c3a757 1720
bbddff05
TH
1721#ifdef CONFIG_SMP
1722
17f3609c 1723const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
1724 [PCPU_FC_AUTO] = "auto",
1725 [PCPU_FC_EMBED] = "embed",
1726 [PCPU_FC_PAGE] = "page",
f58dc01b 1727};
66c3a757 1728
f58dc01b 1729enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 1730
f58dc01b
TH
1731static int __init percpu_alloc_setup(char *str)
1732{
5479c78a
CG
1733 if (!str)
1734 return -EINVAL;
1735
f58dc01b
TH
1736 if (0)
1737 /* nada */;
1738#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1739 else if (!strcmp(str, "embed"))
1740 pcpu_chosen_fc = PCPU_FC_EMBED;
1741#endif
1742#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1743 else if (!strcmp(str, "page"))
1744 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
1745#endif
1746 else
870d4b12 1747 pr_warn("unknown allocator %s specified\n", str);
66c3a757 1748
f58dc01b 1749 return 0;
66c3a757 1750}
f58dc01b 1751early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 1752
3c9a024f
TH
1753/*
1754 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1755 * Build it if needed by the arch config or the generic setup is going
1756 * to be used.
1757 */
08fc4580
TH
1758#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1759 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
1760#define BUILD_EMBED_FIRST_CHUNK
1761#endif
1762
1763/* build pcpu_page_first_chunk() iff needed by the arch config */
1764#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1765#define BUILD_PAGE_FIRST_CHUNK
1766#endif
1767
1768/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1769#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1770/**
1771 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1772 * @reserved_size: the size of reserved percpu area in bytes
1773 * @dyn_size: minimum free size for dynamic allocation in bytes
1774 * @atom_size: allocation atom size
1775 * @cpu_distance_fn: callback to determine distance between cpus, optional
1776 *
1777 * This function determines grouping of units, their mappings to cpus
1778 * and other parameters considering needed percpu size, allocation
1779 * atom size and distances between CPUs.
1780 *
bffc4375 1781 * Groups are always multiples of atom size and CPUs which are of
3c9a024f
TH
1782 * LOCAL_DISTANCE both ways are grouped together and share space for
1783 * units in the same group. The returned configuration is guaranteed
1784 * to have CPUs on different nodes on different groups and >=75% usage
1785 * of allocated virtual address space.
1786 *
1787 * RETURNS:
1788 * On success, pointer to the new allocation_info is returned. On
1789 * failure, ERR_PTR value is returned.
1790 */
1791static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1792 size_t reserved_size, size_t dyn_size,
1793 size_t atom_size,
1794 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1795{
1796 static int group_map[NR_CPUS] __initdata;
1797 static int group_cnt[NR_CPUS] __initdata;
1798 const size_t static_size = __per_cpu_end - __per_cpu_start;
1799 int nr_groups = 1, nr_units = 0;
1800 size_t size_sum, min_unit_size, alloc_size;
1801 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1802 int last_allocs, group, unit;
1803 unsigned int cpu, tcpu;
1804 struct pcpu_alloc_info *ai;
1805 unsigned int *cpu_map;
1806
1807 /* this function may be called multiple times */
1808 memset(group_map, 0, sizeof(group_map));
1809 memset(group_cnt, 0, sizeof(group_cnt));
1810
1811 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1812 size_sum = PFN_ALIGN(static_size + reserved_size +
1813 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1814 dyn_size = size_sum - static_size - reserved_size;
1815
1816 /*
1817 * Determine min_unit_size, alloc_size and max_upa such that
1818 * alloc_size is multiple of atom_size and is the smallest
25985edc 1819 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
1820 * or larger than min_unit_size.
1821 */
1822 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1823
1824 alloc_size = roundup(min_unit_size, atom_size);
1825 upa = alloc_size / min_unit_size;
f09f1243 1826 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
1827 upa--;
1828 max_upa = upa;
1829
1830 /* group cpus according to their proximity */
1831 for_each_possible_cpu(cpu) {
1832 group = 0;
1833 next_group:
1834 for_each_possible_cpu(tcpu) {
1835 if (cpu == tcpu)
1836 break;
1837 if (group_map[tcpu] == group && cpu_distance_fn &&
1838 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1839 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1840 group++;
1841 nr_groups = max(nr_groups, group + 1);
1842 goto next_group;
1843 }
1844 }
1845 group_map[cpu] = group;
1846 group_cnt[group]++;
1847 }
1848
1849 /*
1850 * Expand unit size until address space usage goes over 75%
1851 * and then as much as possible without using more address
1852 * space.
1853 */
1854 last_allocs = INT_MAX;
1855 for (upa = max_upa; upa; upa--) {
1856 int allocs = 0, wasted = 0;
1857
f09f1243 1858 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
1859 continue;
1860
1861 for (group = 0; group < nr_groups; group++) {
1862 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1863 allocs += this_allocs;
1864 wasted += this_allocs * upa - group_cnt[group];
1865 }
1866
1867 /*
1868 * Don't accept if wastage is over 1/3. The
1869 * greater-than comparison ensures upa==1 always
1870 * passes the following check.
1871 */
1872 if (wasted > num_possible_cpus() / 3)
1873 continue;
1874
1875 /* and then don't consume more memory */
1876 if (allocs > last_allocs)
1877 break;
1878 last_allocs = allocs;
1879 best_upa = upa;
1880 }
1881 upa = best_upa;
1882
1883 /* allocate and fill alloc_info */
1884 for (group = 0; group < nr_groups; group++)
1885 nr_units += roundup(group_cnt[group], upa);
1886
1887 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1888 if (!ai)
1889 return ERR_PTR(-ENOMEM);
1890 cpu_map = ai->groups[0].cpu_map;
1891
1892 for (group = 0; group < nr_groups; group++) {
1893 ai->groups[group].cpu_map = cpu_map;
1894 cpu_map += roundup(group_cnt[group], upa);
1895 }
1896
1897 ai->static_size = static_size;
1898 ai->reserved_size = reserved_size;
1899 ai->dyn_size = dyn_size;
1900 ai->unit_size = alloc_size / upa;
1901 ai->atom_size = atom_size;
1902 ai->alloc_size = alloc_size;
1903
1904 for (group = 0, unit = 0; group_cnt[group]; group++) {
1905 struct pcpu_group_info *gi = &ai->groups[group];
1906
1907 /*
1908 * Initialize base_offset as if all groups are located
1909 * back-to-back. The caller should update this to
1910 * reflect actual allocation.
1911 */
1912 gi->base_offset = unit * ai->unit_size;
1913
1914 for_each_possible_cpu(cpu)
1915 if (group_map[cpu] == group)
1916 gi->cpu_map[gi->nr_units++] = cpu;
1917 gi->nr_units = roundup(gi->nr_units, upa);
1918 unit += gi->nr_units;
1919 }
1920 BUG_ON(unit != nr_units);
1921
1922 return ai;
1923}
1924#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1925
1926#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
1927/**
1928 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 1929 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 1930 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
1931 * @atom_size: allocation atom size
1932 * @cpu_distance_fn: callback to determine distance between cpus, optional
1933 * @alloc_fn: function to allocate percpu page
25985edc 1934 * @free_fn: function to free percpu page
66c3a757
TH
1935 *
1936 * This is a helper to ease setting up embedded first percpu chunk and
1937 * can be called where pcpu_setup_first_chunk() is expected.
1938 *
1939 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
1940 * by calling @alloc_fn and used as-is without being mapped into
1941 * vmalloc area. Allocations are always whole multiples of @atom_size
1942 * aligned to @atom_size.
1943 *
1944 * This enables the first chunk to piggy back on the linear physical
1945 * mapping which often uses larger page size. Please note that this
1946 * can result in very sparse cpu->unit mapping on NUMA machines thus
1947 * requiring large vmalloc address space. Don't use this allocator if
1948 * vmalloc space is not orders of magnitude larger than distances
1949 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 1950 *
4ba6ce25 1951 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
1952 *
1953 * If the needed size is smaller than the minimum or specified unit
c8826dd5 1954 * size, the leftover is returned using @free_fn.
66c3a757
TH
1955 *
1956 * RETURNS:
fb435d52 1957 * 0 on success, -errno on failure.
66c3a757 1958 */
4ba6ce25 1959int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
1960 size_t atom_size,
1961 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1962 pcpu_fc_alloc_fn_t alloc_fn,
1963 pcpu_fc_free_fn_t free_fn)
66c3a757 1964{
c8826dd5
TH
1965 void *base = (void *)ULONG_MAX;
1966 void **areas = NULL;
fd1e8a1f 1967 struct pcpu_alloc_info *ai;
93c76b6b 1968 size_t size_sum, areas_size;
1969 unsigned long max_distance;
9b739662 1970 int group, i, highest_group, rc;
66c3a757 1971
c8826dd5
TH
1972 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1973 cpu_distance_fn);
fd1e8a1f
TH
1974 if (IS_ERR(ai))
1975 return PTR_ERR(ai);
66c3a757 1976
fd1e8a1f 1977 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 1978 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 1979
999c17e3 1980 areas = memblock_virt_alloc_nopanic(areas_size, 0);
c8826dd5 1981 if (!areas) {
fb435d52 1982 rc = -ENOMEM;
c8826dd5 1983 goto out_free;
fa8a7094 1984 }
66c3a757 1985
9b739662 1986 /* allocate, copy and determine base address & max_distance */
1987 highest_group = 0;
c8826dd5
TH
1988 for (group = 0; group < ai->nr_groups; group++) {
1989 struct pcpu_group_info *gi = &ai->groups[group];
1990 unsigned int cpu = NR_CPUS;
1991 void *ptr;
1992
1993 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1994 cpu = gi->cpu_map[i];
1995 BUG_ON(cpu == NR_CPUS);
1996
1997 /* allocate space for the whole group */
1998 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1999 if (!ptr) {
2000 rc = -ENOMEM;
2001 goto out_free_areas;
2002 }
f528f0b8
CM
2003 /* kmemleak tracks the percpu allocations separately */
2004 kmemleak_free(ptr);
c8826dd5 2005 areas[group] = ptr;
fd1e8a1f 2006
c8826dd5 2007 base = min(ptr, base);
9b739662 2008 if (ptr > areas[highest_group])
2009 highest_group = group;
2010 }
2011 max_distance = areas[highest_group] - base;
2012 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2013
2014 /* warn if maximum distance is further than 75% of vmalloc space */
2015 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2016 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2017 max_distance, VMALLOC_TOTAL);
2018#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2019 /* and fail if we have fallback */
2020 rc = -EINVAL;
2021 goto out_free_areas;
2022#endif
42b64281
TH
2023 }
2024
2025 /*
2026 * Copy data and free unused parts. This should happen after all
2027 * allocations are complete; otherwise, we may end up with
2028 * overlapping groups.
2029 */
2030 for (group = 0; group < ai->nr_groups; group++) {
2031 struct pcpu_group_info *gi = &ai->groups[group];
2032 void *ptr = areas[group];
c8826dd5
TH
2033
2034 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2035 if (gi->cpu_map[i] == NR_CPUS) {
2036 /* unused unit, free whole */
2037 free_fn(ptr, ai->unit_size);
2038 continue;
2039 }
2040 /* copy and return the unused part */
2041 memcpy(ptr, __per_cpu_load, ai->static_size);
2042 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2043 }
fa8a7094 2044 }
66c3a757 2045
c8826dd5 2046 /* base address is now known, determine group base offsets */
6ea529a2 2047 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 2048 ai->groups[group].base_offset = areas[group] - base;
6ea529a2 2049 }
c8826dd5 2050
870d4b12 2051 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
2052 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2053 ai->dyn_size, ai->unit_size);
d4b95f80 2054
fb435d52 2055 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
2056 goto out_free;
2057
2058out_free_areas:
2059 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
2060 if (areas[group])
2061 free_fn(areas[group],
2062 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 2063out_free:
fd1e8a1f 2064 pcpu_free_alloc_info(ai);
c8826dd5 2065 if (areas)
999c17e3 2066 memblock_free_early(__pa(areas), areas_size);
fb435d52 2067 return rc;
d4b95f80 2068}
3c9a024f 2069#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 2070
3c9a024f 2071#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 2072/**
00ae4064 2073 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
2074 * @reserved_size: the size of reserved percpu area in bytes
2075 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 2076 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
2077 * @populate_pte_fn: function to populate pte
2078 *
00ae4064
TH
2079 * This is a helper to ease setting up page-remapped first percpu
2080 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
2081 *
2082 * This is the basic allocator. Static percpu area is allocated
2083 * page-by-page into vmalloc area.
2084 *
2085 * RETURNS:
fb435d52 2086 * 0 on success, -errno on failure.
d4b95f80 2087 */
fb435d52
TH
2088int __init pcpu_page_first_chunk(size_t reserved_size,
2089 pcpu_fc_alloc_fn_t alloc_fn,
2090 pcpu_fc_free_fn_t free_fn,
2091 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 2092{
8f05a6a6 2093 static struct vm_struct vm;
fd1e8a1f 2094 struct pcpu_alloc_info *ai;
00ae4064 2095 char psize_str[16];
ce3141a2 2096 int unit_pages;
d4b95f80 2097 size_t pages_size;
ce3141a2 2098 struct page **pages;
fb435d52 2099 int unit, i, j, rc;
8f606604 2100 int upa;
2101 int nr_g0_units;
d4b95f80 2102
00ae4064
TH
2103 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2104
4ba6ce25 2105 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
2106 if (IS_ERR(ai))
2107 return PTR_ERR(ai);
2108 BUG_ON(ai->nr_groups != 1);
8f606604 2109 upa = ai->alloc_size/ai->unit_size;
2110 nr_g0_units = roundup(num_possible_cpus(), upa);
2111 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2112 pcpu_free_alloc_info(ai);
2113 return -EINVAL;
2114 }
fd1e8a1f
TH
2115
2116 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
2117
2118 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
2119 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2120 sizeof(pages[0]));
999c17e3 2121 pages = memblock_virt_alloc(pages_size, 0);
d4b95f80 2122
8f05a6a6 2123 /* allocate pages */
d4b95f80 2124 j = 0;
8f606604 2125 for (unit = 0; unit < num_possible_cpus(); unit++) {
2126 unsigned int cpu = ai->groups[0].cpu_map[unit];
ce3141a2 2127 for (i = 0; i < unit_pages; i++) {
d4b95f80
TH
2128 void *ptr;
2129
3cbc8565 2130 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 2131 if (!ptr) {
870d4b12 2132 pr_warn("failed to allocate %s page for cpu%u\n",
8f606604 2133 psize_str, cpu);
d4b95f80
TH
2134 goto enomem;
2135 }
f528f0b8
CM
2136 /* kmemleak tracks the percpu allocations separately */
2137 kmemleak_free(ptr);
ce3141a2 2138 pages[j++] = virt_to_page(ptr);
d4b95f80 2139 }
8f606604 2140 }
d4b95f80 2141
8f05a6a6
TH
2142 /* allocate vm area, map the pages and copy static data */
2143 vm.flags = VM_ALLOC;
fd1e8a1f 2144 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
2145 vm_area_register_early(&vm, PAGE_SIZE);
2146
fd1e8a1f 2147 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 2148 unsigned long unit_addr =
fd1e8a1f 2149 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 2150
ce3141a2 2151 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
2152 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2153
2154 /* pte already populated, the following shouldn't fail */
fb435d52
TH
2155 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2156 unit_pages);
2157 if (rc < 0)
2158 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 2159
8f05a6a6
TH
2160 /*
2161 * FIXME: Archs with virtual cache should flush local
2162 * cache for the linear mapping here - something
2163 * equivalent to flush_cache_vmap() on the local cpu.
2164 * flush_cache_vmap() can't be used as most supporting
2165 * data structures are not set up yet.
2166 */
2167
2168 /* copy static data */
fd1e8a1f 2169 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
2170 }
2171
2172 /* we're ready, commit */
870d4b12 2173 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
2174 unit_pages, psize_str, vm.addr, ai->static_size,
2175 ai->reserved_size, ai->dyn_size);
d4b95f80 2176
fb435d52 2177 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
2178 goto out_free_ar;
2179
2180enomem:
2181 while (--j >= 0)
ce3141a2 2182 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 2183 rc = -ENOMEM;
d4b95f80 2184out_free_ar:
999c17e3 2185 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 2186 pcpu_free_alloc_info(ai);
fb435d52 2187 return rc;
d4b95f80 2188}
3c9a024f 2189#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 2190
bbddff05 2191#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 2192/*
bbddff05 2193 * Generic SMP percpu area setup.
e74e3962
TH
2194 *
2195 * The embedding helper is used because its behavior closely resembles
2196 * the original non-dynamic generic percpu area setup. This is
2197 * important because many archs have addressing restrictions and might
2198 * fail if the percpu area is located far away from the previous
2199 * location. As an added bonus, in non-NUMA cases, embedding is
2200 * generally a good idea TLB-wise because percpu area can piggy back
2201 * on the physical linear memory mapping which uses large page
2202 * mappings on applicable archs.
2203 */
e74e3962
TH
2204unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2205EXPORT_SYMBOL(__per_cpu_offset);
2206
c8826dd5
TH
2207static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2208 size_t align)
2209{
999c17e3
SS
2210 return memblock_virt_alloc_from_nopanic(
2211 size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 2212}
66c3a757 2213
c8826dd5
TH
2214static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2215{
999c17e3 2216 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
2217}
2218
e74e3962
TH
2219void __init setup_per_cpu_areas(void)
2220{
e74e3962
TH
2221 unsigned long delta;
2222 unsigned int cpu;
fb435d52 2223 int rc;
e74e3962
TH
2224
2225 /*
2226 * Always reserve area for module percpu variables. That's
2227 * what the legacy allocator did.
2228 */
fb435d52 2229 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
2230 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2231 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 2232 if (rc < 0)
bbddff05 2233 panic("Failed to initialize percpu areas.");
e74e3962
TH
2234
2235 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2236 for_each_possible_cpu(cpu)
fb435d52 2237 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 2238}
bbddff05
TH
2239#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2240
2241#else /* CONFIG_SMP */
2242
2243/*
2244 * UP percpu area setup.
2245 *
2246 * UP always uses km-based percpu allocator with identity mapping.
2247 * Static percpu variables are indistinguishable from the usual static
2248 * variables and don't require any special preparation.
2249 */
2250void __init setup_per_cpu_areas(void)
2251{
2252 const size_t unit_size =
2253 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2254 PERCPU_DYNAMIC_RESERVE));
2255 struct pcpu_alloc_info *ai;
2256 void *fc;
2257
2258 ai = pcpu_alloc_alloc_info(1, 1);
999c17e3
SS
2259 fc = memblock_virt_alloc_from_nopanic(unit_size,
2260 PAGE_SIZE,
2261 __pa(MAX_DMA_ADDRESS));
bbddff05
TH
2262 if (!ai || !fc)
2263 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
2264 /* kmemleak tracks the percpu allocations separately */
2265 kmemleak_free(fc);
bbddff05
TH
2266
2267 ai->dyn_size = unit_size;
2268 ai->unit_size = unit_size;
2269 ai->atom_size = unit_size;
2270 ai->alloc_size = unit_size;
2271 ai->groups[0].nr_units = 1;
2272 ai->groups[0].cpu_map[0] = 0;
2273
2274 if (pcpu_setup_first_chunk(ai, fc) < 0)
2275 panic("Failed to initialize percpu areas.");
2276}
2277
2278#endif /* CONFIG_SMP */
099a19d9
TH
2279
2280/*
2281 * First and reserved chunks are initialized with temporary allocation
2282 * map in initdata so that they can be used before slab is online.
2283 * This function is called after slab is brought up and replaces those
2284 * with properly allocated maps.
2285 */
2286void __init percpu_init_late(void)
2287{
2288 struct pcpu_chunk *target_chunks[] =
2289 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2290 struct pcpu_chunk *chunk;
2291 unsigned long flags;
2292 int i;
2293
2294 for (i = 0; (chunk = target_chunks[i]); i++) {
2295 int *map;
2296 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2297
2298 BUILD_BUG_ON(size > PAGE_SIZE);
2299
90459ce0 2300 map = pcpu_mem_zalloc(size);
099a19d9
TH
2301 BUG_ON(!map);
2302
2303 spin_lock_irqsave(&pcpu_lock, flags);
2304 memcpy(map, chunk->map, size);
2305 chunk->map = map;
2306 spin_unlock_irqrestore(&pcpu_lock, flags);
2307 }
2308}
1a4d7607
TH
2309
2310/*
2311 * Percpu allocator is initialized early during boot when neither slab or
2312 * workqueue is available. Plug async management until everything is up
2313 * and running.
2314 */
2315static int __init percpu_enable_async(void)
2316{
2317 pcpu_async_enabled = true;
2318 return 0;
2319}
2320subsys_initcall(percpu_enable_async);