]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/shmem.c
UBUNTU: Start new release
[mirror_ubuntu-zesty-kernel.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
b95f1b31 32#include <linux/export.h>
853ac43a 33#include <linux/swap.h>
e2e40f2c 34#include <linux/uio.h>
f3f0e1d2 35#include <linux/khugepaged.h>
853ac43a
MM
36
37static struct vfsmount *shm_mnt;
38
39#ifdef CONFIG_SHMEM
1da177e4
LT
40/*
41 * This virtual memory filesystem is heavily based on the ramfs. It
42 * extends ramfs by the ability to use swap and honor resource limits
43 * which makes it a completely usable filesystem.
44 */
45
39f0247d 46#include <linux/xattr.h>
a5694255 47#include <linux/exportfs.h>
1c7c474c 48#include <linux/posix_acl.h>
feda821e 49#include <linux/posix_acl_xattr.h>
1da177e4 50#include <linux/mman.h>
1da177e4
LT
51#include <linux/string.h>
52#include <linux/slab.h>
53#include <linux/backing-dev.h>
54#include <linux/shmem_fs.h>
1da177e4 55#include <linux/writeback.h>
1da177e4 56#include <linux/blkdev.h>
bda97eab 57#include <linux/pagevec.h>
41ffe5d5 58#include <linux/percpu_counter.h>
83e4fa9c 59#include <linux/falloc.h>
708e3508 60#include <linux/splice.h>
1da177e4
LT
61#include <linux/security.h>
62#include <linux/swapops.h>
63#include <linux/mempolicy.h>
64#include <linux/namei.h>
b00dc3ad 65#include <linux/ctype.h>
304dbdb7 66#include <linux/migrate.h>
c1f60a5a 67#include <linux/highmem.h>
680d794b 68#include <linux/seq_file.h>
92562927 69#include <linux/magic.h>
9183df25 70#include <linux/syscalls.h>
40e041a2 71#include <linux/fcntl.h>
9183df25 72#include <uapi/linux/memfd.h>
304dbdb7 73
7c0f6ba6 74#include <linux/uaccess.h>
1da177e4
LT
75#include <asm/pgtable.h>
76
dd56b046
MG
77#include "internal.h"
78
09cbfeaf
KS
79#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
80#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 81
1da177e4
LT
82/* Pretend that each entry is of this size in directory's i_size */
83#define BOGO_DIRENT_SIZE 20
84
69f07ec9
HD
85/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86#define SHORT_SYMLINK_LEN 128
87
1aac1400 88/*
f00cdc6d
HD
89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90 * inode->i_private (with i_mutex making sure that it has only one user at
91 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
92 */
93struct shmem_falloc {
8e205f77 94 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
95 pgoff_t start; /* start of range currently being fallocated */
96 pgoff_t next; /* the next page offset to be fallocated */
97 pgoff_t nr_falloced; /* how many new pages have been fallocated */
98 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
99};
100
b76db735 101#ifdef CONFIG_TMPFS
680d794b
AM
102static unsigned long shmem_default_max_blocks(void)
103{
104 return totalram_pages / 2;
105}
106
107static unsigned long shmem_default_max_inodes(void)
108{
109 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110}
b76db735 111#endif
680d794b 112
bde05d1c
HD
113static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 struct shmem_inode_info *info, pgoff_t index);
68da9f05 116static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29
ALC
117 struct page **pagep, enum sgp_type sgp,
118 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
68da9f05 119
f3f0e1d2 120int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 121 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
122{
123 return shmem_getpage_gfp(inode, index, pagep, sgp,
9e18eb29 124 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
68da9f05 125}
1da177e4 126
1da177e4
LT
127static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
128{
129 return sb->s_fs_info;
130}
131
132/*
133 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134 * for shared memory and for shared anonymous (/dev/zero) mappings
135 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136 * consistent with the pre-accounting of private mappings ...
137 */
138static inline int shmem_acct_size(unsigned long flags, loff_t size)
139{
0b0a0806 140 return (flags & VM_NORESERVE) ?
191c5424 141 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
142}
143
144static inline void shmem_unacct_size(unsigned long flags, loff_t size)
145{
0b0a0806 146 if (!(flags & VM_NORESERVE))
1da177e4
LT
147 vm_unacct_memory(VM_ACCT(size));
148}
149
77142517
KK
150static inline int shmem_reacct_size(unsigned long flags,
151 loff_t oldsize, loff_t newsize)
152{
153 if (!(flags & VM_NORESERVE)) {
154 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155 return security_vm_enough_memory_mm(current->mm,
156 VM_ACCT(newsize) - VM_ACCT(oldsize));
157 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
159 }
160 return 0;
161}
162
1da177e4
LT
163/*
164 * ... whereas tmpfs objects are accounted incrementally as
75edd345 165 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168 */
800d8c63 169static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 170{
800d8c63
KS
171 if (!(flags & VM_NORESERVE))
172 return 0;
173
174 return security_vm_enough_memory_mm(current->mm,
175 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
176}
177
178static inline void shmem_unacct_blocks(unsigned long flags, long pages)
179{
0b0a0806 180 if (flags & VM_NORESERVE)
09cbfeaf 181 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
182}
183
759b9775 184static const struct super_operations shmem_ops;
f5e54d6e 185static const struct address_space_operations shmem_aops;
15ad7cdc 186static const struct file_operations shmem_file_operations;
92e1d5be
AV
187static const struct inode_operations shmem_inode_operations;
188static const struct inode_operations shmem_dir_inode_operations;
189static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 190static const struct vm_operations_struct shmem_vm_ops;
779750d2 191static struct file_system_type shmem_fs_type;
1da177e4 192
1da177e4 193static LIST_HEAD(shmem_swaplist);
cb5f7b9a 194static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 195
5b04c689
PE
196static int shmem_reserve_inode(struct super_block *sb)
197{
198 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
199 if (sbinfo->max_inodes) {
200 spin_lock(&sbinfo->stat_lock);
201 if (!sbinfo->free_inodes) {
202 spin_unlock(&sbinfo->stat_lock);
203 return -ENOSPC;
204 }
205 sbinfo->free_inodes--;
206 spin_unlock(&sbinfo->stat_lock);
207 }
208 return 0;
209}
210
211static void shmem_free_inode(struct super_block *sb)
212{
213 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
214 if (sbinfo->max_inodes) {
215 spin_lock(&sbinfo->stat_lock);
216 sbinfo->free_inodes++;
217 spin_unlock(&sbinfo->stat_lock);
218 }
219}
220
46711810 221/**
41ffe5d5 222 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
223 * @inode: inode to recalc
224 *
225 * We have to calculate the free blocks since the mm can drop
226 * undirtied hole pages behind our back.
227 *
228 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
229 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
230 *
231 * It has to be called with the spinlock held.
232 */
233static void shmem_recalc_inode(struct inode *inode)
234{
235 struct shmem_inode_info *info = SHMEM_I(inode);
236 long freed;
237
238 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
239 if (freed > 0) {
54af6042
HD
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241 if (sbinfo->max_blocks)
242 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 243 info->alloced -= freed;
54af6042 244 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 245 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
246 }
247}
248
800d8c63
KS
249bool shmem_charge(struct inode *inode, long pages)
250{
251 struct shmem_inode_info *info = SHMEM_I(inode);
252 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4595ef88 253 unsigned long flags;
800d8c63
KS
254
255 if (shmem_acct_block(info->flags, pages))
256 return false;
4595ef88 257 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
258 info->alloced += pages;
259 inode->i_blocks += pages * BLOCKS_PER_PAGE;
260 shmem_recalc_inode(inode);
4595ef88 261 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
262 inode->i_mapping->nrpages += pages;
263
264 if (!sbinfo->max_blocks)
265 return true;
266 if (percpu_counter_compare(&sbinfo->used_blocks,
267 sbinfo->max_blocks - pages) > 0) {
268 inode->i_mapping->nrpages -= pages;
4595ef88 269 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
270 info->alloced -= pages;
271 shmem_recalc_inode(inode);
4595ef88 272 spin_unlock_irqrestore(&info->lock, flags);
71664665 273 shmem_unacct_blocks(info->flags, pages);
800d8c63
KS
274 return false;
275 }
276 percpu_counter_add(&sbinfo->used_blocks, pages);
277 return true;
278}
279
280void shmem_uncharge(struct inode *inode, long pages)
281{
282 struct shmem_inode_info *info = SHMEM_I(inode);
283 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4595ef88 284 unsigned long flags;
800d8c63 285
4595ef88 286 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
287 info->alloced -= pages;
288 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
289 shmem_recalc_inode(inode);
4595ef88 290 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
291
292 if (sbinfo->max_blocks)
293 percpu_counter_sub(&sbinfo->used_blocks, pages);
71664665 294 shmem_unacct_blocks(info->flags, pages);
800d8c63
KS
295}
296
7a5d0fbb
HD
297/*
298 * Replace item expected in radix tree by a new item, while holding tree lock.
299 */
300static int shmem_radix_tree_replace(struct address_space *mapping,
301 pgoff_t index, void *expected, void *replacement)
302{
f7942430 303 struct radix_tree_node *node;
7a5d0fbb 304 void **pslot;
6dbaf22c 305 void *item;
7a5d0fbb
HD
306
307 VM_BUG_ON(!expected);
6dbaf22c 308 VM_BUG_ON(!replacement);
f7942430
JW
309 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
310 if (!item)
6dbaf22c 311 return -ENOENT;
7a5d0fbb
HD
312 if (item != expected)
313 return -ENOENT;
4d693d08
JW
314 __radix_tree_replace(&mapping->page_tree, node, pslot,
315 replacement, NULL, NULL);
7a5d0fbb
HD
316 return 0;
317}
318
d1899228
HD
319/*
320 * Sometimes, before we decide whether to proceed or to fail, we must check
321 * that an entry was not already brought back from swap by a racing thread.
322 *
323 * Checking page is not enough: by the time a SwapCache page is locked, it
324 * might be reused, and again be SwapCache, using the same swap as before.
325 */
326static bool shmem_confirm_swap(struct address_space *mapping,
327 pgoff_t index, swp_entry_t swap)
328{
329 void *item;
330
331 rcu_read_lock();
332 item = radix_tree_lookup(&mapping->page_tree, index);
333 rcu_read_unlock();
334 return item == swp_to_radix_entry(swap);
335}
336
5a6e75f8
KS
337/*
338 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
339 *
340 * SHMEM_HUGE_NEVER:
341 * disables huge pages for the mount;
342 * SHMEM_HUGE_ALWAYS:
343 * enables huge pages for the mount;
344 * SHMEM_HUGE_WITHIN_SIZE:
345 * only allocate huge pages if the page will be fully within i_size,
346 * also respect fadvise()/madvise() hints;
347 * SHMEM_HUGE_ADVISE:
348 * only allocate huge pages if requested with fadvise()/madvise();
349 */
350
351#define SHMEM_HUGE_NEVER 0
352#define SHMEM_HUGE_ALWAYS 1
353#define SHMEM_HUGE_WITHIN_SIZE 2
354#define SHMEM_HUGE_ADVISE 3
355
356/*
357 * Special values.
358 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
359 *
360 * SHMEM_HUGE_DENY:
361 * disables huge on shm_mnt and all mounts, for emergency use;
362 * SHMEM_HUGE_FORCE:
363 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
364 *
365 */
366#define SHMEM_HUGE_DENY (-1)
367#define SHMEM_HUGE_FORCE (-2)
368
e496cf3d 369#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
370/* ifdef here to avoid bloating shmem.o when not necessary */
371
372int shmem_huge __read_mostly;
373
f1f5929c 374#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
375static int shmem_parse_huge(const char *str)
376{
377 if (!strcmp(str, "never"))
378 return SHMEM_HUGE_NEVER;
379 if (!strcmp(str, "always"))
380 return SHMEM_HUGE_ALWAYS;
381 if (!strcmp(str, "within_size"))
382 return SHMEM_HUGE_WITHIN_SIZE;
383 if (!strcmp(str, "advise"))
384 return SHMEM_HUGE_ADVISE;
385 if (!strcmp(str, "deny"))
386 return SHMEM_HUGE_DENY;
387 if (!strcmp(str, "force"))
388 return SHMEM_HUGE_FORCE;
389 return -EINVAL;
390}
391
392static const char *shmem_format_huge(int huge)
393{
394 switch (huge) {
395 case SHMEM_HUGE_NEVER:
396 return "never";
397 case SHMEM_HUGE_ALWAYS:
398 return "always";
399 case SHMEM_HUGE_WITHIN_SIZE:
400 return "within_size";
401 case SHMEM_HUGE_ADVISE:
402 return "advise";
403 case SHMEM_HUGE_DENY:
404 return "deny";
405 case SHMEM_HUGE_FORCE:
406 return "force";
407 default:
408 VM_BUG_ON(1);
409 return "bad_val";
410 }
411}
f1f5929c 412#endif
5a6e75f8 413
779750d2
KS
414static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
415 struct shrink_control *sc, unsigned long nr_to_split)
416{
417 LIST_HEAD(list), *pos, *next;
253fd0f0 418 LIST_HEAD(to_remove);
779750d2
KS
419 struct inode *inode;
420 struct shmem_inode_info *info;
421 struct page *page;
422 unsigned long batch = sc ? sc->nr_to_scan : 128;
423 int removed = 0, split = 0;
424
425 if (list_empty(&sbinfo->shrinklist))
426 return SHRINK_STOP;
427
428 spin_lock(&sbinfo->shrinklist_lock);
429 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
430 info = list_entry(pos, struct shmem_inode_info, shrinklist);
431
432 /* pin the inode */
433 inode = igrab(&info->vfs_inode);
434
435 /* inode is about to be evicted */
436 if (!inode) {
437 list_del_init(&info->shrinklist);
438 removed++;
439 goto next;
440 }
441
442 /* Check if there's anything to gain */
443 if (round_up(inode->i_size, PAGE_SIZE) ==
444 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 445 list_move(&info->shrinklist, &to_remove);
779750d2 446 removed++;
779750d2
KS
447 goto next;
448 }
449
450 list_move(&info->shrinklist, &list);
451next:
452 if (!--batch)
453 break;
454 }
455 spin_unlock(&sbinfo->shrinklist_lock);
456
253fd0f0
KS
457 list_for_each_safe(pos, next, &to_remove) {
458 info = list_entry(pos, struct shmem_inode_info, shrinklist);
459 inode = &info->vfs_inode;
460 list_del_init(&info->shrinklist);
461 iput(inode);
462 }
463
779750d2
KS
464 list_for_each_safe(pos, next, &list) {
465 int ret;
466
467 info = list_entry(pos, struct shmem_inode_info, shrinklist);
468 inode = &info->vfs_inode;
469
470 if (nr_to_split && split >= nr_to_split) {
471 iput(inode);
472 continue;
473 }
474
475 page = find_lock_page(inode->i_mapping,
476 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
477 if (!page)
478 goto drop;
479
480 if (!PageTransHuge(page)) {
481 unlock_page(page);
482 put_page(page);
483 goto drop;
484 }
485
486 ret = split_huge_page(page);
487 unlock_page(page);
488 put_page(page);
489
490 if (ret) {
491 /* split failed: leave it on the list */
492 iput(inode);
493 continue;
494 }
495
496 split++;
497drop:
498 list_del_init(&info->shrinklist);
499 removed++;
500 iput(inode);
501 }
502
503 spin_lock(&sbinfo->shrinklist_lock);
504 list_splice_tail(&list, &sbinfo->shrinklist);
505 sbinfo->shrinklist_len -= removed;
506 spin_unlock(&sbinfo->shrinklist_lock);
507
508 return split;
509}
510
511static long shmem_unused_huge_scan(struct super_block *sb,
512 struct shrink_control *sc)
513{
514 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
515
516 if (!READ_ONCE(sbinfo->shrinklist_len))
517 return SHRINK_STOP;
518
519 return shmem_unused_huge_shrink(sbinfo, sc, 0);
520}
521
522static long shmem_unused_huge_count(struct super_block *sb,
523 struct shrink_control *sc)
524{
525 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
526 return READ_ONCE(sbinfo->shrinklist_len);
527}
e496cf3d 528#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8
KS
529
530#define shmem_huge SHMEM_HUGE_DENY
531
779750d2
KS
532static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
533 struct shrink_control *sc, unsigned long nr_to_split)
534{
535 return 0;
536}
e496cf3d 537#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 538
46f65ec1
HD
539/*
540 * Like add_to_page_cache_locked, but error if expected item has gone.
541 */
542static int shmem_add_to_page_cache(struct page *page,
543 struct address_space *mapping,
fed400a1 544 pgoff_t index, void *expected)
46f65ec1 545{
800d8c63 546 int error, nr = hpage_nr_pages(page);
46f65ec1 547
800d8c63
KS
548 VM_BUG_ON_PAGE(PageTail(page), page);
549 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
550 VM_BUG_ON_PAGE(!PageLocked(page), page);
551 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 552 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 553
800d8c63 554 page_ref_add(page, nr);
b065b432
HD
555 page->mapping = mapping;
556 page->index = index;
557
558 spin_lock_irq(&mapping->tree_lock);
800d8c63
KS
559 if (PageTransHuge(page)) {
560 void __rcu **results;
561 pgoff_t idx;
562 int i;
563
564 error = 0;
565 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
566 &results, &idx, index, 1) &&
567 idx < index + HPAGE_PMD_NR) {
568 error = -EEXIST;
569 }
570
571 if (!error) {
572 for (i = 0; i < HPAGE_PMD_NR; i++) {
573 error = radix_tree_insert(&mapping->page_tree,
574 index + i, page + i);
575 VM_BUG_ON(error);
576 }
577 count_vm_event(THP_FILE_ALLOC);
578 }
579 } else if (!expected) {
b065b432 580 error = radix_tree_insert(&mapping->page_tree, index, page);
800d8c63 581 } else {
b065b432
HD
582 error = shmem_radix_tree_replace(mapping, index, expected,
583 page);
800d8c63
KS
584 }
585
46f65ec1 586 if (!error) {
800d8c63
KS
587 mapping->nrpages += nr;
588 if (PageTransHuge(page))
11fb9989
MG
589 __inc_node_page_state(page, NR_SHMEM_THPS);
590 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
591 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
b065b432
HD
592 spin_unlock_irq(&mapping->tree_lock);
593 } else {
594 page->mapping = NULL;
595 spin_unlock_irq(&mapping->tree_lock);
800d8c63 596 page_ref_sub(page, nr);
46f65ec1 597 }
46f65ec1
HD
598 return error;
599}
600
6922c0c7
HD
601/*
602 * Like delete_from_page_cache, but substitutes swap for page.
603 */
604static void shmem_delete_from_page_cache(struct page *page, void *radswap)
605{
606 struct address_space *mapping = page->mapping;
607 int error;
608
800d8c63
KS
609 VM_BUG_ON_PAGE(PageCompound(page), page);
610
6922c0c7
HD
611 spin_lock_irq(&mapping->tree_lock);
612 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
613 page->mapping = NULL;
614 mapping->nrpages--;
11fb9989
MG
615 __dec_node_page_state(page, NR_FILE_PAGES);
616 __dec_node_page_state(page, NR_SHMEM);
6922c0c7 617 spin_unlock_irq(&mapping->tree_lock);
09cbfeaf 618 put_page(page);
6922c0c7
HD
619 BUG_ON(error);
620}
621
7a5d0fbb
HD
622/*
623 * Remove swap entry from radix tree, free the swap and its page cache.
624 */
625static int shmem_free_swap(struct address_space *mapping,
626 pgoff_t index, void *radswap)
627{
6dbaf22c 628 void *old;
7a5d0fbb
HD
629
630 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 631 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 632 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
633 if (old != radswap)
634 return -ENOENT;
635 free_swap_and_cache(radix_to_swp_entry(radswap));
636 return 0;
7a5d0fbb
HD
637}
638
6a15a370
VB
639/*
640 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 641 * given offsets are swapped out.
6a15a370
VB
642 *
643 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
644 * as long as the inode doesn't go away and racy results are not a problem.
645 */
48131e03
VB
646unsigned long shmem_partial_swap_usage(struct address_space *mapping,
647 pgoff_t start, pgoff_t end)
6a15a370 648{
6a15a370
VB
649 struct radix_tree_iter iter;
650 void **slot;
651 struct page *page;
48131e03 652 unsigned long swapped = 0;
6a15a370
VB
653
654 rcu_read_lock();
655
6a15a370
VB
656 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
657 if (iter.index >= end)
658 break;
659
660 page = radix_tree_deref_slot(slot);
661
2cf938aa
MW
662 if (radix_tree_deref_retry(page)) {
663 slot = radix_tree_iter_retry(&iter);
664 continue;
665 }
6a15a370
VB
666
667 if (radix_tree_exceptional_entry(page))
668 swapped++;
669
670 if (need_resched()) {
148deab2 671 slot = radix_tree_iter_resume(slot, &iter);
6a15a370 672 cond_resched_rcu();
6a15a370
VB
673 }
674 }
675
676 rcu_read_unlock();
677
678 return swapped << PAGE_SHIFT;
679}
680
48131e03
VB
681/*
682 * Determine (in bytes) how many of the shmem object's pages mapped by the
683 * given vma is swapped out.
684 *
685 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
686 * as long as the inode doesn't go away and racy results are not a problem.
687 */
688unsigned long shmem_swap_usage(struct vm_area_struct *vma)
689{
690 struct inode *inode = file_inode(vma->vm_file);
691 struct shmem_inode_info *info = SHMEM_I(inode);
692 struct address_space *mapping = inode->i_mapping;
693 unsigned long swapped;
694
695 /* Be careful as we don't hold info->lock */
696 swapped = READ_ONCE(info->swapped);
697
698 /*
699 * The easier cases are when the shmem object has nothing in swap, or
700 * the vma maps it whole. Then we can simply use the stats that we
701 * already track.
702 */
703 if (!swapped)
704 return 0;
705
706 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
707 return swapped << PAGE_SHIFT;
708
709 /* Here comes the more involved part */
710 return shmem_partial_swap_usage(mapping,
711 linear_page_index(vma, vma->vm_start),
712 linear_page_index(vma, vma->vm_end));
713}
714
24513264
HD
715/*
716 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
717 */
718void shmem_unlock_mapping(struct address_space *mapping)
719{
720 struct pagevec pvec;
721 pgoff_t indices[PAGEVEC_SIZE];
722 pgoff_t index = 0;
723
724 pagevec_init(&pvec, 0);
725 /*
726 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
727 */
728 while (!mapping_unevictable(mapping)) {
729 /*
730 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
731 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
732 */
0cd6144a
JW
733 pvec.nr = find_get_entries(mapping, index,
734 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
735 if (!pvec.nr)
736 break;
737 index = indices[pvec.nr - 1] + 1;
0cd6144a 738 pagevec_remove_exceptionals(&pvec);
24513264
HD
739 check_move_unevictable_pages(pvec.pages, pvec.nr);
740 pagevec_release(&pvec);
741 cond_resched();
742 }
7a5d0fbb
HD
743}
744
745/*
746 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 747 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 748 */
1635f6a7
HD
749static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
750 bool unfalloc)
1da177e4 751{
285b2c4f 752 struct address_space *mapping = inode->i_mapping;
1da177e4 753 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
754 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
755 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
756 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
757 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 758 struct pagevec pvec;
7a5d0fbb
HD
759 pgoff_t indices[PAGEVEC_SIZE];
760 long nr_swaps_freed = 0;
285b2c4f 761 pgoff_t index;
bda97eab
HD
762 int i;
763
83e4fa9c
HD
764 if (lend == -1)
765 end = -1; /* unsigned, so actually very big */
bda97eab
HD
766
767 pagevec_init(&pvec, 0);
768 index = start;
83e4fa9c 769 while (index < end) {
0cd6144a
JW
770 pvec.nr = find_get_entries(mapping, index,
771 min(end - index, (pgoff_t)PAGEVEC_SIZE),
772 pvec.pages, indices);
7a5d0fbb
HD
773 if (!pvec.nr)
774 break;
bda97eab
HD
775 for (i = 0; i < pagevec_count(&pvec); i++) {
776 struct page *page = pvec.pages[i];
777
7a5d0fbb 778 index = indices[i];
83e4fa9c 779 if (index >= end)
bda97eab
HD
780 break;
781
7a5d0fbb 782 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
783 if (unfalloc)
784 continue;
7a5d0fbb
HD
785 nr_swaps_freed += !shmem_free_swap(mapping,
786 index, page);
bda97eab 787 continue;
7a5d0fbb
HD
788 }
789
800d8c63
KS
790 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
791
7a5d0fbb 792 if (!trylock_page(page))
bda97eab 793 continue;
800d8c63
KS
794
795 if (PageTransTail(page)) {
796 /* Middle of THP: zero out the page */
797 clear_highpage(page);
798 unlock_page(page);
799 continue;
800 } else if (PageTransHuge(page)) {
801 if (index == round_down(end, HPAGE_PMD_NR)) {
802 /*
803 * Range ends in the middle of THP:
804 * zero out the page
805 */
806 clear_highpage(page);
807 unlock_page(page);
808 continue;
809 }
810 index += HPAGE_PMD_NR - 1;
811 i += HPAGE_PMD_NR - 1;
812 }
813
1635f6a7 814 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
815 VM_BUG_ON_PAGE(PageTail(page), page);
816 if (page_mapping(page) == mapping) {
309381fe 817 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
818 truncate_inode_page(mapping, page);
819 }
bda97eab 820 }
bda97eab
HD
821 unlock_page(page);
822 }
0cd6144a 823 pagevec_remove_exceptionals(&pvec);
24513264 824 pagevec_release(&pvec);
bda97eab
HD
825 cond_resched();
826 index++;
827 }
1da177e4 828
83e4fa9c 829 if (partial_start) {
bda97eab 830 struct page *page = NULL;
9e18eb29 831 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 832 if (page) {
09cbfeaf 833 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
834 if (start > end) {
835 top = partial_end;
836 partial_end = 0;
837 }
838 zero_user_segment(page, partial_start, top);
839 set_page_dirty(page);
840 unlock_page(page);
09cbfeaf 841 put_page(page);
83e4fa9c
HD
842 }
843 }
844 if (partial_end) {
845 struct page *page = NULL;
9e18eb29 846 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
847 if (page) {
848 zero_user_segment(page, 0, partial_end);
bda97eab
HD
849 set_page_dirty(page);
850 unlock_page(page);
09cbfeaf 851 put_page(page);
bda97eab
HD
852 }
853 }
83e4fa9c
HD
854 if (start >= end)
855 return;
bda97eab
HD
856
857 index = start;
b1a36650 858 while (index < end) {
bda97eab 859 cond_resched();
0cd6144a
JW
860
861 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 862 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 863 pvec.pages, indices);
7a5d0fbb 864 if (!pvec.nr) {
b1a36650
HD
865 /* If all gone or hole-punch or unfalloc, we're done */
866 if (index == start || end != -1)
bda97eab 867 break;
b1a36650 868 /* But if truncating, restart to make sure all gone */
bda97eab
HD
869 index = start;
870 continue;
871 }
bda97eab
HD
872 for (i = 0; i < pagevec_count(&pvec); i++) {
873 struct page *page = pvec.pages[i];
874
7a5d0fbb 875 index = indices[i];
83e4fa9c 876 if (index >= end)
bda97eab
HD
877 break;
878
7a5d0fbb 879 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
880 if (unfalloc)
881 continue;
b1a36650
HD
882 if (shmem_free_swap(mapping, index, page)) {
883 /* Swap was replaced by page: retry */
884 index--;
885 break;
886 }
887 nr_swaps_freed++;
7a5d0fbb
HD
888 continue;
889 }
890
bda97eab 891 lock_page(page);
800d8c63
KS
892
893 if (PageTransTail(page)) {
894 /* Middle of THP: zero out the page */
895 clear_highpage(page);
896 unlock_page(page);
897 /*
898 * Partial thp truncate due 'start' in middle
899 * of THP: don't need to look on these pages
900 * again on !pvec.nr restart.
901 */
902 if (index != round_down(end, HPAGE_PMD_NR))
903 start++;
904 continue;
905 } else if (PageTransHuge(page)) {
906 if (index == round_down(end, HPAGE_PMD_NR)) {
907 /*
908 * Range ends in the middle of THP:
909 * zero out the page
910 */
911 clear_highpage(page);
912 unlock_page(page);
913 continue;
914 }
915 index += HPAGE_PMD_NR - 1;
916 i += HPAGE_PMD_NR - 1;
917 }
918
1635f6a7 919 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
920 VM_BUG_ON_PAGE(PageTail(page), page);
921 if (page_mapping(page) == mapping) {
309381fe 922 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 923 truncate_inode_page(mapping, page);
b1a36650
HD
924 } else {
925 /* Page was replaced by swap: retry */
926 unlock_page(page);
927 index--;
928 break;
1635f6a7 929 }
7a5d0fbb 930 }
bda97eab
HD
931 unlock_page(page);
932 }
0cd6144a 933 pagevec_remove_exceptionals(&pvec);
24513264 934 pagevec_release(&pvec);
bda97eab
HD
935 index++;
936 }
94c1e62d 937
4595ef88 938 spin_lock_irq(&info->lock);
7a5d0fbb 939 info->swapped -= nr_swaps_freed;
1da177e4 940 shmem_recalc_inode(inode);
4595ef88 941 spin_unlock_irq(&info->lock);
1635f6a7 942}
1da177e4 943
1635f6a7
HD
944void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
945{
946 shmem_undo_range(inode, lstart, lend, false);
078cd827 947 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 948}
94c1e62d 949EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 950
44a30220
YZ
951static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
952 struct kstat *stat)
953{
954 struct inode *inode = dentry->d_inode;
955 struct shmem_inode_info *info = SHMEM_I(inode);
956
d0424c42 957 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 958 spin_lock_irq(&info->lock);
d0424c42 959 shmem_recalc_inode(inode);
4595ef88 960 spin_unlock_irq(&info->lock);
d0424c42 961 }
44a30220 962 generic_fillattr(inode, stat);
44a30220
YZ
963 return 0;
964}
965
94c1e62d 966static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 967{
75c3cfa8 968 struct inode *inode = d_inode(dentry);
40e041a2 969 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 970 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
971 int error;
972
31051c85 973 error = setattr_prepare(dentry, attr);
db78b877
CH
974 if (error)
975 return error;
976
94c1e62d
HD
977 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
978 loff_t oldsize = inode->i_size;
979 loff_t newsize = attr->ia_size;
3889e6e7 980
40e041a2
DH
981 /* protected by i_mutex */
982 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
983 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
984 return -EPERM;
985
94c1e62d 986 if (newsize != oldsize) {
77142517
KK
987 error = shmem_reacct_size(SHMEM_I(inode)->flags,
988 oldsize, newsize);
989 if (error)
990 return error;
94c1e62d 991 i_size_write(inode, newsize);
078cd827 992 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 993 }
afa2db2f 994 if (newsize <= oldsize) {
94c1e62d 995 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
996 if (oldsize > holebegin)
997 unmap_mapping_range(inode->i_mapping,
998 holebegin, 0, 1);
999 if (info->alloced)
1000 shmem_truncate_range(inode,
1001 newsize, (loff_t)-1);
94c1e62d 1002 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1003 if (oldsize > holebegin)
1004 unmap_mapping_range(inode->i_mapping,
1005 holebegin, 0, 1);
779750d2
KS
1006
1007 /*
1008 * Part of the huge page can be beyond i_size: subject
1009 * to shrink under memory pressure.
1010 */
1011 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1012 spin_lock(&sbinfo->shrinklist_lock);
1013 if (list_empty(&info->shrinklist)) {
1014 list_add_tail(&info->shrinklist,
1015 &sbinfo->shrinklist);
1016 sbinfo->shrinklist_len++;
1017 }
1018 spin_unlock(&sbinfo->shrinklist_lock);
1019 }
94c1e62d 1020 }
1da177e4
LT
1021 }
1022
db78b877 1023 setattr_copy(inode, attr);
db78b877 1024 if (attr->ia_valid & ATTR_MODE)
feda821e 1025 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1026 return error;
1027}
1028
1f895f75 1029static void shmem_evict_inode(struct inode *inode)
1da177e4 1030{
1da177e4 1031 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1032 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1033
3889e6e7 1034 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1035 shmem_unacct_size(info->flags, inode->i_size);
1036 inode->i_size = 0;
3889e6e7 1037 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1038 if (!list_empty(&info->shrinklist)) {
1039 spin_lock(&sbinfo->shrinklist_lock);
1040 if (!list_empty(&info->shrinklist)) {
1041 list_del_init(&info->shrinklist);
1042 sbinfo->shrinklist_len--;
1043 }
1044 spin_unlock(&sbinfo->shrinklist_lock);
1045 }
1da177e4 1046 if (!list_empty(&info->swaplist)) {
cb5f7b9a 1047 mutex_lock(&shmem_swaplist_mutex);
1da177e4 1048 list_del_init(&info->swaplist);
cb5f7b9a 1049 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1050 }
3ed47db3 1051 }
b09e0fa4 1052
38f38657 1053 simple_xattrs_free(&info->xattrs);
0f3c42f5 1054 WARN_ON(inode->i_blocks);
5b04c689 1055 shmem_free_inode(inode->i_sb);
dbd5768f 1056 clear_inode(inode);
1da177e4
LT
1057}
1058
478922e2
MW
1059static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1060{
1061 struct radix_tree_iter iter;
1062 void **slot;
1063 unsigned long found = -1;
1064 unsigned int checked = 0;
1065
1066 rcu_read_lock();
1067 radix_tree_for_each_slot(slot, root, &iter, 0) {
1068 if (*slot == item) {
1069 found = iter.index;
1070 break;
1071 }
1072 checked++;
1073 if ((checked % 4096) != 0)
1074 continue;
1075 slot = radix_tree_iter_resume(slot, &iter);
1076 cond_resched_rcu();
1077 }
1078
1079 rcu_read_unlock();
1080 return found;
1081}
1082
46f65ec1
HD
1083/*
1084 * If swap found in inode, free it and move page from swapcache to filecache.
1085 */
41ffe5d5 1086static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 1087 swp_entry_t swap, struct page **pagep)
1da177e4 1088{
285b2c4f 1089 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 1090 void *radswap;
41ffe5d5 1091 pgoff_t index;
bde05d1c
HD
1092 gfp_t gfp;
1093 int error = 0;
1da177e4 1094
46f65ec1 1095 radswap = swp_to_radix_entry(swap);
478922e2 1096 index = find_swap_entry(&mapping->page_tree, radswap);
46f65ec1 1097 if (index == -1)
00501b53 1098 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 1099
1b1b32f2
HD
1100 /*
1101 * Move _head_ to start search for next from here.
1f895f75 1102 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 1103 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 1104 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
1105 */
1106 if (shmem_swaplist.next != &info->swaplist)
1107 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 1108
bde05d1c
HD
1109 gfp = mapping_gfp_mask(mapping);
1110 if (shmem_should_replace_page(*pagep, gfp)) {
1111 mutex_unlock(&shmem_swaplist_mutex);
1112 error = shmem_replace_page(pagep, gfp, info, index);
1113 mutex_lock(&shmem_swaplist_mutex);
1114 /*
1115 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
1116 * allocation, but the inode might have been freed while we
1117 * dropped it: although a racing shmem_evict_inode() cannot
1118 * complete without emptying the radix_tree, our page lock
1119 * on this swapcache page is not enough to prevent that -
1120 * free_swap_and_cache() of our swap entry will only
1121 * trylock_page(), removing swap from radix_tree whatever.
1122 *
1123 * We must not proceed to shmem_add_to_page_cache() if the
1124 * inode has been freed, but of course we cannot rely on
1125 * inode or mapping or info to check that. However, we can
1126 * safely check if our swap entry is still in use (and here
1127 * it can't have got reused for another page): if it's still
1128 * in use, then the inode cannot have been freed yet, and we
1129 * can safely proceed (if it's no longer in use, that tells
1130 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
1131 */
1132 if (!page_swapcount(*pagep))
1133 error = -ENOENT;
1134 }
1135
d13d1443 1136 /*
778dd893
HD
1137 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1138 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1139 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 1140 */
bde05d1c
HD
1141 if (!error)
1142 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 1143 radswap);
48f170fb 1144 if (error != -ENOMEM) {
46f65ec1
HD
1145 /*
1146 * Truncation and eviction use free_swap_and_cache(), which
1147 * only does trylock page: if we raced, best clean up here.
1148 */
bde05d1c
HD
1149 delete_from_swap_cache(*pagep);
1150 set_page_dirty(*pagep);
46f65ec1 1151 if (!error) {
4595ef88 1152 spin_lock_irq(&info->lock);
46f65ec1 1153 info->swapped--;
4595ef88 1154 spin_unlock_irq(&info->lock);
46f65ec1
HD
1155 swap_free(swap);
1156 }
1da177e4 1157 }
2e0e26c7 1158 return error;
1da177e4
LT
1159}
1160
1161/*
46f65ec1 1162 * Search through swapped inodes to find and replace swap by page.
1da177e4 1163 */
41ffe5d5 1164int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 1165{
41ffe5d5 1166 struct list_head *this, *next;
1da177e4 1167 struct shmem_inode_info *info;
00501b53 1168 struct mem_cgroup *memcg;
bde05d1c
HD
1169 int error = 0;
1170
1171 /*
1172 * There's a faint possibility that swap page was replaced before
0142ef6c 1173 * caller locked it: caller will come back later with the right page.
bde05d1c 1174 */
0142ef6c 1175 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 1176 goto out;
778dd893
HD
1177
1178 /*
1179 * Charge page using GFP_KERNEL while we can wait, before taking
1180 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1181 * Charged back to the user (not to caller) when swap account is used.
778dd893 1182 */
f627c2f5
KS
1183 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1184 false);
778dd893
HD
1185 if (error)
1186 goto out;
46f65ec1 1187 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 1188 error = -EAGAIN;
1da177e4 1189
cb5f7b9a 1190 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
1191 list_for_each_safe(this, next, &shmem_swaplist) {
1192 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 1193 if (info->swapped)
00501b53 1194 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
1195 else
1196 list_del_init(&info->swaplist);
cb5f7b9a 1197 cond_resched();
00501b53 1198 if (error != -EAGAIN)
778dd893 1199 break;
00501b53 1200 /* found nothing in this: move on to search the next */
1da177e4 1201 }
cb5f7b9a 1202 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1203
00501b53
JW
1204 if (error) {
1205 if (error != -ENOMEM)
1206 error = 0;
f627c2f5 1207 mem_cgroup_cancel_charge(page, memcg, false);
00501b53 1208 } else
f627c2f5 1209 mem_cgroup_commit_charge(page, memcg, true, false);
778dd893 1210out:
aaa46865 1211 unlock_page(page);
09cbfeaf 1212 put_page(page);
778dd893 1213 return error;
1da177e4
LT
1214}
1215
1216/*
1217 * Move the page from the page cache to the swap cache.
1218 */
1219static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1220{
1221 struct shmem_inode_info *info;
1da177e4 1222 struct address_space *mapping;
1da177e4 1223 struct inode *inode;
6922c0c7
HD
1224 swp_entry_t swap;
1225 pgoff_t index;
1da177e4 1226
800d8c63 1227 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1228 BUG_ON(!PageLocked(page));
1da177e4
LT
1229 mapping = page->mapping;
1230 index = page->index;
1231 inode = mapping->host;
1232 info = SHMEM_I(inode);
1233 if (info->flags & VM_LOCKED)
1234 goto redirty;
d9fe526a 1235 if (!total_swap_pages)
1da177e4
LT
1236 goto redirty;
1237
d9fe526a 1238 /*
97b713ba
CH
1239 * Our capabilities prevent regular writeback or sync from ever calling
1240 * shmem_writepage; but a stacking filesystem might use ->writepage of
1241 * its underlying filesystem, in which case tmpfs should write out to
1242 * swap only in response to memory pressure, and not for the writeback
1243 * threads or sync.
d9fe526a 1244 */
48f170fb
HD
1245 if (!wbc->for_reclaim) {
1246 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1247 goto redirty;
1248 }
1635f6a7
HD
1249
1250 /*
1251 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1252 * value into swapfile.c, the only way we can correctly account for a
1253 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1254 *
1255 * That's okay for a page already fallocated earlier, but if we have
1256 * not yet completed the fallocation, then (a) we want to keep track
1257 * of this page in case we have to undo it, and (b) it may not be a
1258 * good idea to continue anyway, once we're pushing into swap. So
1259 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1260 */
1261 if (!PageUptodate(page)) {
1aac1400
HD
1262 if (inode->i_private) {
1263 struct shmem_falloc *shmem_falloc;
1264 spin_lock(&inode->i_lock);
1265 shmem_falloc = inode->i_private;
1266 if (shmem_falloc &&
8e205f77 1267 !shmem_falloc->waitq &&
1aac1400
HD
1268 index >= shmem_falloc->start &&
1269 index < shmem_falloc->next)
1270 shmem_falloc->nr_unswapped++;
1271 else
1272 shmem_falloc = NULL;
1273 spin_unlock(&inode->i_lock);
1274 if (shmem_falloc)
1275 goto redirty;
1276 }
1635f6a7
HD
1277 clear_highpage(page);
1278 flush_dcache_page(page);
1279 SetPageUptodate(page);
1280 }
1281
48f170fb
HD
1282 swap = get_swap_page();
1283 if (!swap.val)
1284 goto redirty;
d9fe526a 1285
37e84351
VD
1286 if (mem_cgroup_try_charge_swap(page, swap))
1287 goto free_swap;
1288
b1dea800
HD
1289 /*
1290 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1291 * if it's not already there. Do it now before the page is
1292 * moved to swap cache, when its pagelock no longer protects
b1dea800 1293 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1294 * we've incremented swapped, because shmem_unuse_inode() will
1295 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1296 */
48f170fb
HD
1297 mutex_lock(&shmem_swaplist_mutex);
1298 if (list_empty(&info->swaplist))
1299 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 1300
48f170fb 1301 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
4595ef88 1302 spin_lock_irq(&info->lock);
6922c0c7 1303 shmem_recalc_inode(inode);
267a4c76 1304 info->swapped++;
4595ef88 1305 spin_unlock_irq(&info->lock);
6922c0c7 1306
267a4c76
HD
1307 swap_shmem_alloc(swap);
1308 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1309
6922c0c7 1310 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1311 BUG_ON(page_mapped(page));
9fab5619 1312 swap_writepage(page, wbc);
1da177e4
LT
1313 return 0;
1314 }
1315
6922c0c7 1316 mutex_unlock(&shmem_swaplist_mutex);
37e84351 1317free_swap:
0a31bc97 1318 swapcache_free(swap);
1da177e4
LT
1319redirty:
1320 set_page_dirty(page);
d9fe526a
HD
1321 if (wbc->for_reclaim)
1322 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1323 unlock_page(page);
1324 return 0;
1da177e4
LT
1325}
1326
75edd345 1327#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1328static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1329{
095f1fc4 1330 char buffer[64];
680d794b 1331
71fe804b 1332 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1333 return; /* show nothing */
680d794b 1334
a7a88b23 1335 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1336
1337 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1338}
71fe804b
LS
1339
1340static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1341{
1342 struct mempolicy *mpol = NULL;
1343 if (sbinfo->mpol) {
1344 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1345 mpol = sbinfo->mpol;
1346 mpol_get(mpol);
1347 spin_unlock(&sbinfo->stat_lock);
1348 }
1349 return mpol;
1350}
75edd345
HD
1351#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1352static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1353{
1354}
1355static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1356{
1357 return NULL;
1358}
1359#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1360#ifndef CONFIG_NUMA
1361#define vm_policy vm_private_data
1362#endif
680d794b 1363
800d8c63
KS
1364static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1365 struct shmem_inode_info *info, pgoff_t index)
1366{
1367 /* Create a pseudo vma that just contains the policy */
1368 vma->vm_start = 0;
1369 /* Bias interleave by inode number to distribute better across nodes */
1370 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1371 vma->vm_ops = NULL;
1372 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1373}
1374
1375static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1376{
1377 /* Drop reference taken by mpol_shared_policy_lookup() */
1378 mpol_cond_put(vma->vm_policy);
1379}
1380
41ffe5d5
HD
1381static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1382 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1383{
1da177e4 1384 struct vm_area_struct pvma;
18a2f371 1385 struct page *page;
52cd3b07 1386
800d8c63 1387 shmem_pseudo_vma_init(&pvma, info, index);
18a2f371 1388 page = swapin_readahead(swap, gfp, &pvma, 0);
800d8c63 1389 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1390
800d8c63
KS
1391 return page;
1392}
1393
1394static struct page *shmem_alloc_hugepage(gfp_t gfp,
1395 struct shmem_inode_info *info, pgoff_t index)
1396{
1397 struct vm_area_struct pvma;
1398 struct inode *inode = &info->vfs_inode;
1399 struct address_space *mapping = inode->i_mapping;
4620a06e 1400 pgoff_t idx, hindex;
800d8c63
KS
1401 void __rcu **results;
1402 struct page *page;
1403
e496cf3d 1404 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1405 return NULL;
1406
4620a06e 1407 hindex = round_down(index, HPAGE_PMD_NR);
800d8c63
KS
1408 rcu_read_lock();
1409 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1410 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1411 rcu_read_unlock();
1412 return NULL;
1413 }
1414 rcu_read_unlock();
18a2f371 1415
800d8c63
KS
1416 shmem_pseudo_vma_init(&pvma, info, hindex);
1417 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1418 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1419 shmem_pseudo_vma_destroy(&pvma);
1420 if (page)
1421 prep_transhuge_page(page);
18a2f371 1422 return page;
1da177e4
LT
1423}
1424
02098fea 1425static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1426 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1427{
1428 struct vm_area_struct pvma;
18a2f371 1429 struct page *page;
1da177e4 1430
800d8c63
KS
1431 shmem_pseudo_vma_init(&pvma, info, index);
1432 page = alloc_page_vma(gfp, &pvma, 0);
1433 shmem_pseudo_vma_destroy(&pvma);
1434
1435 return page;
1436}
1437
1438static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1439 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1440 pgoff_t index, bool huge)
1441{
1442 struct page *page;
1443 int nr;
1444 int err = -ENOSPC;
52cd3b07 1445
e496cf3d 1446 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1447 huge = false;
1448 nr = huge ? HPAGE_PMD_NR : 1;
1449
1450 if (shmem_acct_block(info->flags, nr))
1451 goto failed;
1452 if (sbinfo->max_blocks) {
1453 if (percpu_counter_compare(&sbinfo->used_blocks,
1454 sbinfo->max_blocks - nr) > 0)
1455 goto unacct;
1456 percpu_counter_add(&sbinfo->used_blocks, nr);
1457 }
1458
1459 if (huge)
1460 page = shmem_alloc_hugepage(gfp, info, index);
1461 else
1462 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1463 if (page) {
1464 __SetPageLocked(page);
1465 __SetPageSwapBacked(page);
800d8c63 1466 return page;
75edd345 1467 }
18a2f371 1468
800d8c63
KS
1469 err = -ENOMEM;
1470 if (sbinfo->max_blocks)
1471 percpu_counter_add(&sbinfo->used_blocks, -nr);
1472unacct:
1473 shmem_unacct_blocks(info->flags, nr);
1474failed:
1475 return ERR_PTR(err);
1da177e4 1476}
71fe804b 1477
bde05d1c
HD
1478/*
1479 * When a page is moved from swapcache to shmem filecache (either by the
1480 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1481 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1482 * ignorance of the mapping it belongs to. If that mapping has special
1483 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1484 * we may need to copy to a suitable page before moving to filecache.
1485 *
1486 * In a future release, this may well be extended to respect cpuset and
1487 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1488 * but for now it is a simple matter of zone.
1489 */
1490static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1491{
1492 return page_zonenum(page) > gfp_zone(gfp);
1493}
1494
1495static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1496 struct shmem_inode_info *info, pgoff_t index)
1497{
1498 struct page *oldpage, *newpage;
1499 struct address_space *swap_mapping;
1500 pgoff_t swap_index;
1501 int error;
1502
1503 oldpage = *pagep;
1504 swap_index = page_private(oldpage);
1505 swap_mapping = page_mapping(oldpage);
1506
1507 /*
1508 * We have arrived here because our zones are constrained, so don't
1509 * limit chance of success by further cpuset and node constraints.
1510 */
1511 gfp &= ~GFP_CONSTRAINT_MASK;
1512 newpage = shmem_alloc_page(gfp, info, index);
1513 if (!newpage)
1514 return -ENOMEM;
bde05d1c 1515
09cbfeaf 1516 get_page(newpage);
bde05d1c 1517 copy_highpage(newpage, oldpage);
0142ef6c 1518 flush_dcache_page(newpage);
bde05d1c 1519
9956edf3
HD
1520 __SetPageLocked(newpage);
1521 __SetPageSwapBacked(newpage);
bde05d1c 1522 SetPageUptodate(newpage);
bde05d1c 1523 set_page_private(newpage, swap_index);
bde05d1c
HD
1524 SetPageSwapCache(newpage);
1525
1526 /*
1527 * Our caller will very soon move newpage out of swapcache, but it's
1528 * a nice clean interface for us to replace oldpage by newpage there.
1529 */
1530 spin_lock_irq(&swap_mapping->tree_lock);
1531 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1532 newpage);
0142ef6c 1533 if (!error) {
11fb9989
MG
1534 __inc_node_page_state(newpage, NR_FILE_PAGES);
1535 __dec_node_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1536 }
bde05d1c 1537 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1538
0142ef6c
HD
1539 if (unlikely(error)) {
1540 /*
1541 * Is this possible? I think not, now that our callers check
1542 * both PageSwapCache and page_private after getting page lock;
1543 * but be defensive. Reverse old to newpage for clear and free.
1544 */
1545 oldpage = newpage;
1546 } else {
6a93ca8f 1547 mem_cgroup_migrate(oldpage, newpage);
0142ef6c
HD
1548 lru_cache_add_anon(newpage);
1549 *pagep = newpage;
1550 }
bde05d1c
HD
1551
1552 ClearPageSwapCache(oldpage);
1553 set_page_private(oldpage, 0);
1554
1555 unlock_page(oldpage);
09cbfeaf
KS
1556 put_page(oldpage);
1557 put_page(oldpage);
0142ef6c 1558 return error;
bde05d1c
HD
1559}
1560
1da177e4 1561/*
68da9f05 1562 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1563 *
1564 * If we allocate a new one we do not mark it dirty. That's up to the
1565 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1566 * entry since a page cannot live in both the swap and page cache.
1567 *
1568 * fault_mm and fault_type are only supplied by shmem_fault:
1569 * otherwise they are NULL.
1da177e4 1570 */
41ffe5d5 1571static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29
ALC
1572 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1573 struct mm_struct *fault_mm, int *fault_type)
1da177e4
LT
1574{
1575 struct address_space *mapping = inode->i_mapping;
23f919d4 1576 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1577 struct shmem_sb_info *sbinfo;
9e18eb29 1578 struct mm_struct *charge_mm;
00501b53 1579 struct mem_cgroup *memcg;
27ab7006 1580 struct page *page;
1da177e4 1581 swp_entry_t swap;
657e3038 1582 enum sgp_type sgp_huge = sgp;
800d8c63 1583 pgoff_t hindex = index;
1da177e4 1584 int error;
54af6042 1585 int once = 0;
1635f6a7 1586 int alloced = 0;
1da177e4 1587
09cbfeaf 1588 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1589 return -EFBIG;
657e3038
KS
1590 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1591 sgp = SGP_CACHE;
1da177e4 1592repeat:
54af6042 1593 swap.val = 0;
0cd6144a 1594 page = find_lock_entry(mapping, index);
54af6042
HD
1595 if (radix_tree_exceptional_entry(page)) {
1596 swap = radix_to_swp_entry(page);
1597 page = NULL;
1598 }
1599
75edd345 1600 if (sgp <= SGP_CACHE &&
09cbfeaf 1601 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
54af6042 1602 error = -EINVAL;
267a4c76 1603 goto unlock;
54af6042
HD
1604 }
1605
66d2f4d2
HD
1606 if (page && sgp == SGP_WRITE)
1607 mark_page_accessed(page);
1608
1635f6a7
HD
1609 /* fallocated page? */
1610 if (page && !PageUptodate(page)) {
1611 if (sgp != SGP_READ)
1612 goto clear;
1613 unlock_page(page);
09cbfeaf 1614 put_page(page);
1635f6a7
HD
1615 page = NULL;
1616 }
54af6042 1617 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1618 *pagep = page;
1619 return 0;
27ab7006
HD
1620 }
1621
1622 /*
54af6042
HD
1623 * Fast cache lookup did not find it:
1624 * bring it back from swap or allocate.
27ab7006 1625 */
54af6042 1626 sbinfo = SHMEM_SB(inode->i_sb);
9e18eb29 1627 charge_mm = fault_mm ? : current->mm;
1da177e4 1628
1da177e4
LT
1629 if (swap.val) {
1630 /* Look it up and read it in.. */
27ab7006
HD
1631 page = lookup_swap_cache(swap);
1632 if (!page) {
9e18eb29
ALC
1633 /* Or update major stats only when swapin succeeds?? */
1634 if (fault_type) {
68da9f05 1635 *fault_type |= VM_FAULT_MAJOR;
9e18eb29
ALC
1636 count_vm_event(PGMAJFAULT);
1637 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1638 }
1639 /* Here we actually start the io */
41ffe5d5 1640 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1641 if (!page) {
54af6042
HD
1642 error = -ENOMEM;
1643 goto failed;
1da177e4 1644 }
1da177e4
LT
1645 }
1646
1647 /* We have to do this with page locked to prevent races */
54af6042 1648 lock_page(page);
0142ef6c 1649 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1650 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1651 error = -EEXIST; /* try again */
d1899228 1652 goto unlock;
bde05d1c 1653 }
27ab7006 1654 if (!PageUptodate(page)) {
1da177e4 1655 error = -EIO;
54af6042 1656 goto failed;
1da177e4 1657 }
54af6042
HD
1658 wait_on_page_writeback(page);
1659
bde05d1c
HD
1660 if (shmem_should_replace_page(page, gfp)) {
1661 error = shmem_replace_page(&page, gfp, info, index);
1662 if (error)
1663 goto failed;
1da177e4 1664 }
27ab7006 1665
9e18eb29 1666 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
f627c2f5 1667 false);
d1899228 1668 if (!error) {
aa3b1895 1669 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1670 swp_to_radix_entry(swap));
215c02bc
HD
1671 /*
1672 * We already confirmed swap under page lock, and make
1673 * no memory allocation here, so usually no possibility
1674 * of error; but free_swap_and_cache() only trylocks a
1675 * page, so it is just possible that the entry has been
1676 * truncated or holepunched since swap was confirmed.
1677 * shmem_undo_range() will have done some of the
1678 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1679 * the rest.
215c02bc
HD
1680 * Reset swap.val? No, leave it so "failed" goes back to
1681 * "repeat": reading a hole and writing should succeed.
1682 */
00501b53 1683 if (error) {
f627c2f5 1684 mem_cgroup_cancel_charge(page, memcg, false);
215c02bc 1685 delete_from_swap_cache(page);
00501b53 1686 }
d1899228 1687 }
54af6042
HD
1688 if (error)
1689 goto failed;
1690
f627c2f5 1691 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1692
4595ef88 1693 spin_lock_irq(&info->lock);
285b2c4f 1694 info->swapped--;
54af6042 1695 shmem_recalc_inode(inode);
4595ef88 1696 spin_unlock_irq(&info->lock);
54af6042 1697
66d2f4d2
HD
1698 if (sgp == SGP_WRITE)
1699 mark_page_accessed(page);
1700
54af6042 1701 delete_from_swap_cache(page);
27ab7006
HD
1702 set_page_dirty(page);
1703 swap_free(swap);
1704
54af6042 1705 } else {
800d8c63
KS
1706 /* shmem_symlink() */
1707 if (mapping->a_ops != &shmem_aops)
1708 goto alloc_nohuge;
657e3038 1709 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
800d8c63
KS
1710 goto alloc_nohuge;
1711 if (shmem_huge == SHMEM_HUGE_FORCE)
1712 goto alloc_huge;
1713 switch (sbinfo->huge) {
1714 loff_t i_size;
1715 pgoff_t off;
1716 case SHMEM_HUGE_NEVER:
1717 goto alloc_nohuge;
1718 case SHMEM_HUGE_WITHIN_SIZE:
1719 off = round_up(index, HPAGE_PMD_NR);
1720 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1721 if (i_size >= HPAGE_PMD_SIZE &&
1722 i_size >> PAGE_SHIFT >= off)
1723 goto alloc_huge;
1724 /* fallthrough */
1725 case SHMEM_HUGE_ADVISE:
657e3038
KS
1726 if (sgp_huge == SGP_HUGE)
1727 goto alloc_huge;
1728 /* TODO: implement fadvise() hints */
800d8c63 1729 goto alloc_nohuge;
54af6042 1730 }
1da177e4 1731
800d8c63
KS
1732alloc_huge:
1733 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1734 index, true);
1735 if (IS_ERR(page)) {
1736alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1737 index, false);
1da177e4 1738 }
800d8c63 1739 if (IS_ERR(page)) {
779750d2 1740 int retry = 5;
800d8c63
KS
1741 error = PTR_ERR(page);
1742 page = NULL;
779750d2
KS
1743 if (error != -ENOSPC)
1744 goto failed;
1745 /*
1746 * Try to reclaim some spece by splitting a huge page
1747 * beyond i_size on the filesystem.
1748 */
1749 while (retry--) {
1750 int ret;
1751 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1752 if (ret == SHRINK_STOP)
1753 break;
1754 if (ret)
1755 goto alloc_nohuge;
1756 }
800d8c63
KS
1757 goto failed;
1758 }
1759
1760 if (PageTransHuge(page))
1761 hindex = round_down(index, HPAGE_PMD_NR);
1762 else
1763 hindex = index;
1764
66d2f4d2 1765 if (sgp == SGP_WRITE)
eb39d618 1766 __SetPageReferenced(page);
66d2f4d2 1767
9e18eb29 1768 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
800d8c63 1769 PageTransHuge(page));
54af6042 1770 if (error)
800d8c63
KS
1771 goto unacct;
1772 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1773 compound_order(page));
b065b432 1774 if (!error) {
800d8c63 1775 error = shmem_add_to_page_cache(page, mapping, hindex,
fed400a1 1776 NULL);
b065b432
HD
1777 radix_tree_preload_end();
1778 }
1779 if (error) {
800d8c63
KS
1780 mem_cgroup_cancel_charge(page, memcg,
1781 PageTransHuge(page));
1782 goto unacct;
b065b432 1783 }
800d8c63
KS
1784 mem_cgroup_commit_charge(page, memcg, false,
1785 PageTransHuge(page));
54af6042
HD
1786 lru_cache_add_anon(page);
1787
4595ef88 1788 spin_lock_irq(&info->lock);
800d8c63
KS
1789 info->alloced += 1 << compound_order(page);
1790 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
54af6042 1791 shmem_recalc_inode(inode);
4595ef88 1792 spin_unlock_irq(&info->lock);
1635f6a7 1793 alloced = true;
54af6042 1794
779750d2
KS
1795 if (PageTransHuge(page) &&
1796 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1797 hindex + HPAGE_PMD_NR - 1) {
1798 /*
1799 * Part of the huge page is beyond i_size: subject
1800 * to shrink under memory pressure.
1801 */
1802 spin_lock(&sbinfo->shrinklist_lock);
1803 if (list_empty(&info->shrinklist)) {
1804 list_add_tail(&info->shrinklist,
1805 &sbinfo->shrinklist);
1806 sbinfo->shrinklist_len++;
1807 }
1808 spin_unlock(&sbinfo->shrinklist_lock);
1809 }
1810
ec9516fb 1811 /*
1635f6a7
HD
1812 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1813 */
1814 if (sgp == SGP_FALLOC)
1815 sgp = SGP_WRITE;
1816clear:
1817 /*
1818 * Let SGP_WRITE caller clear ends if write does not fill page;
1819 * but SGP_FALLOC on a page fallocated earlier must initialize
1820 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb 1821 */
800d8c63
KS
1822 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1823 struct page *head = compound_head(page);
1824 int i;
1825
1826 for (i = 0; i < (1 << compound_order(head)); i++) {
1827 clear_highpage(head + i);
1828 flush_dcache_page(head + i);
1829 }
1830 SetPageUptodate(head);
ec9516fb 1831 }
1da177e4 1832 }
bde05d1c 1833
54af6042 1834 /* Perhaps the file has been truncated since we checked */
75edd345 1835 if (sgp <= SGP_CACHE &&
09cbfeaf 1836 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1837 if (alloced) {
1838 ClearPageDirty(page);
1839 delete_from_page_cache(page);
4595ef88 1840 spin_lock_irq(&info->lock);
267a4c76 1841 shmem_recalc_inode(inode);
4595ef88 1842 spin_unlock_irq(&info->lock);
267a4c76 1843 }
54af6042 1844 error = -EINVAL;
267a4c76 1845 goto unlock;
e83c32e8 1846 }
800d8c63 1847 *pagep = page + index - hindex;
54af6042 1848 return 0;
1da177e4 1849
59a16ead 1850 /*
54af6042 1851 * Error recovery.
59a16ead 1852 */
54af6042 1853unacct:
800d8c63
KS
1854 if (sbinfo->max_blocks)
1855 percpu_counter_sub(&sbinfo->used_blocks,
1856 1 << compound_order(page));
1857 shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1858
1859 if (PageTransHuge(page)) {
1860 unlock_page(page);
1861 put_page(page);
1862 goto alloc_nohuge;
1863 }
54af6042 1864failed:
267a4c76 1865 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
d1899228
HD
1866 error = -EEXIST;
1867unlock:
27ab7006 1868 if (page) {
54af6042 1869 unlock_page(page);
09cbfeaf 1870 put_page(page);
54af6042
HD
1871 }
1872 if (error == -ENOSPC && !once++) {
4595ef88 1873 spin_lock_irq(&info->lock);
54af6042 1874 shmem_recalc_inode(inode);
4595ef88 1875 spin_unlock_irq(&info->lock);
27ab7006 1876 goto repeat;
ff36b801 1877 }
d1899228 1878 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1879 goto repeat;
1880 return error;
1da177e4
LT
1881}
1882
10d20bd2
LT
1883/*
1884 * This is like autoremove_wake_function, but it removes the wait queue
1885 * entry unconditionally - even if something else had already woken the
1886 * target.
1887 */
1888static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1889{
1890 int ret = default_wake_function(wait, mode, sync, key);
1891 list_del_init(&wait->task_list);
1892 return ret;
1893}
1894
d0217ac0 1895static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1896{
496ad9aa 1897 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 1898 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 1899 enum sgp_type sgp;
1da177e4 1900 int error;
68da9f05 1901 int ret = VM_FAULT_LOCKED;
1da177e4 1902
f00cdc6d
HD
1903 /*
1904 * Trinity finds that probing a hole which tmpfs is punching can
1905 * prevent the hole-punch from ever completing: which in turn
1906 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1907 * faulting pages into the hole while it's being punched. Although
1908 * shmem_undo_range() does remove the additions, it may be unable to
1909 * keep up, as each new page needs its own unmap_mapping_range() call,
1910 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1911 *
1912 * It does not matter if we sometimes reach this check just before the
1913 * hole-punch begins, so that one fault then races with the punch:
1914 * we just need to make racing faults a rare case.
1915 *
1916 * The implementation below would be much simpler if we just used a
1917 * standard mutex or completion: but we cannot take i_mutex in fault,
1918 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1919 */
1920 if (unlikely(inode->i_private)) {
1921 struct shmem_falloc *shmem_falloc;
1922
1923 spin_lock(&inode->i_lock);
1924 shmem_falloc = inode->i_private;
8e205f77
HD
1925 if (shmem_falloc &&
1926 shmem_falloc->waitq &&
1927 vmf->pgoff >= shmem_falloc->start &&
1928 vmf->pgoff < shmem_falloc->next) {
1929 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 1930 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
1931
1932 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1933 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1934 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1935 /* It's polite to up mmap_sem if we can */
f00cdc6d 1936 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1937 ret = VM_FAULT_RETRY;
f00cdc6d 1938 }
8e205f77
HD
1939
1940 shmem_falloc_waitq = shmem_falloc->waitq;
1941 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1942 TASK_UNINTERRUPTIBLE);
1943 spin_unlock(&inode->i_lock);
1944 schedule();
1945
1946 /*
1947 * shmem_falloc_waitq points into the shmem_fallocate()
1948 * stack of the hole-punching task: shmem_falloc_waitq
1949 * is usually invalid by the time we reach here, but
1950 * finish_wait() does not dereference it in that case;
1951 * though i_lock needed lest racing with wake_up_all().
1952 */
1953 spin_lock(&inode->i_lock);
1954 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1955 spin_unlock(&inode->i_lock);
1956 return ret;
f00cdc6d 1957 }
8e205f77 1958 spin_unlock(&inode->i_lock);
f00cdc6d
HD
1959 }
1960
657e3038
KS
1961 sgp = SGP_CACHE;
1962 if (vma->vm_flags & VM_HUGEPAGE)
1963 sgp = SGP_HUGE;
1964 else if (vma->vm_flags & VM_NOHUGEPAGE)
1965 sgp = SGP_NOHUGE;
1966
1967 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
9e18eb29 1968 gfp, vma->vm_mm, &ret);
d0217ac0
NP
1969 if (error)
1970 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1971 return ret;
1da177e4
LT
1972}
1973
c01d5b30
HD
1974unsigned long shmem_get_unmapped_area(struct file *file,
1975 unsigned long uaddr, unsigned long len,
1976 unsigned long pgoff, unsigned long flags)
1977{
1978 unsigned long (*get_area)(struct file *,
1979 unsigned long, unsigned long, unsigned long, unsigned long);
1980 unsigned long addr;
1981 unsigned long offset;
1982 unsigned long inflated_len;
1983 unsigned long inflated_addr;
1984 unsigned long inflated_offset;
1985
1986 if (len > TASK_SIZE)
1987 return -ENOMEM;
1988
1989 get_area = current->mm->get_unmapped_area;
1990 addr = get_area(file, uaddr, len, pgoff, flags);
1991
e496cf3d 1992 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
c01d5b30
HD
1993 return addr;
1994 if (IS_ERR_VALUE(addr))
1995 return addr;
1996 if (addr & ~PAGE_MASK)
1997 return addr;
1998 if (addr > TASK_SIZE - len)
1999 return addr;
2000
2001 if (shmem_huge == SHMEM_HUGE_DENY)
2002 return addr;
2003 if (len < HPAGE_PMD_SIZE)
2004 return addr;
2005 if (flags & MAP_FIXED)
2006 return addr;
2007 /*
2008 * Our priority is to support MAP_SHARED mapped hugely;
2009 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2010 * But if caller specified an address hint, respect that as before.
2011 */
2012 if (uaddr)
2013 return addr;
2014
2015 if (shmem_huge != SHMEM_HUGE_FORCE) {
2016 struct super_block *sb;
2017
2018 if (file) {
2019 VM_BUG_ON(file->f_op != &shmem_file_operations);
2020 sb = file_inode(file)->i_sb;
2021 } else {
2022 /*
2023 * Called directly from mm/mmap.c, or drivers/char/mem.c
2024 * for "/dev/zero", to create a shared anonymous object.
2025 */
2026 if (IS_ERR(shm_mnt))
2027 return addr;
2028 sb = shm_mnt->mnt_sb;
2029 }
3089bf61 2030 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2031 return addr;
2032 }
2033
2034 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2035 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2036 return addr;
2037 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2038 return addr;
2039
2040 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2041 if (inflated_len > TASK_SIZE)
2042 return addr;
2043 if (inflated_len < len)
2044 return addr;
2045
2046 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2047 if (IS_ERR_VALUE(inflated_addr))
2048 return addr;
2049 if (inflated_addr & ~PAGE_MASK)
2050 return addr;
2051
2052 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2053 inflated_addr += offset - inflated_offset;
2054 if (inflated_offset > offset)
2055 inflated_addr += HPAGE_PMD_SIZE;
2056
2057 if (inflated_addr > TASK_SIZE - len)
2058 return addr;
2059 return inflated_addr;
2060}
2061
1da177e4 2062#ifdef CONFIG_NUMA
41ffe5d5 2063static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2064{
496ad9aa 2065 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2066 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2067}
2068
d8dc74f2
AB
2069static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2070 unsigned long addr)
1da177e4 2071{
496ad9aa 2072 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2073 pgoff_t index;
1da177e4 2074
41ffe5d5
HD
2075 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2076 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2077}
2078#endif
2079
2080int shmem_lock(struct file *file, int lock, struct user_struct *user)
2081{
496ad9aa 2082 struct inode *inode = file_inode(file);
1da177e4
LT
2083 struct shmem_inode_info *info = SHMEM_I(inode);
2084 int retval = -ENOMEM;
2085
4595ef88 2086 spin_lock_irq(&info->lock);
1da177e4
LT
2087 if (lock && !(info->flags & VM_LOCKED)) {
2088 if (!user_shm_lock(inode->i_size, user))
2089 goto out_nomem;
2090 info->flags |= VM_LOCKED;
89e004ea 2091 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2092 }
2093 if (!lock && (info->flags & VM_LOCKED) && user) {
2094 user_shm_unlock(inode->i_size, user);
2095 info->flags &= ~VM_LOCKED;
89e004ea 2096 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2097 }
2098 retval = 0;
89e004ea 2099
1da177e4 2100out_nomem:
4595ef88 2101 spin_unlock_irq(&info->lock);
1da177e4
LT
2102 return retval;
2103}
2104
9b83a6a8 2105static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
2106{
2107 file_accessed(file);
2108 vma->vm_ops = &shmem_vm_ops;
e496cf3d 2109 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
2110 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2111 (vma->vm_end & HPAGE_PMD_MASK)) {
2112 khugepaged_enter(vma, vma->vm_flags);
2113 }
1da177e4
LT
2114 return 0;
2115}
2116
454abafe 2117static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2118 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2119{
2120 struct inode *inode;
2121 struct shmem_inode_info *info;
2122 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2123
5b04c689
PE
2124 if (shmem_reserve_inode(sb))
2125 return NULL;
1da177e4
LT
2126
2127 inode = new_inode(sb);
2128 if (inode) {
85fe4025 2129 inode->i_ino = get_next_ino();
454abafe 2130 inode_init_owner(inode, dir, mode);
1da177e4 2131 inode->i_blocks = 0;
078cd827 2132 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
91828a40 2133 inode->i_generation = get_seconds();
1da177e4
LT
2134 info = SHMEM_I(inode);
2135 memset(info, 0, (char *)inode - (char *)info);
2136 spin_lock_init(&info->lock);
40e041a2 2137 info->seals = F_SEAL_SEAL;
0b0a0806 2138 info->flags = flags & VM_NORESERVE;
779750d2 2139 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2140 INIT_LIST_HEAD(&info->swaplist);
38f38657 2141 simple_xattrs_init(&info->xattrs);
72c04902 2142 cache_no_acl(inode);
1da177e4
LT
2143
2144 switch (mode & S_IFMT) {
2145 default:
39f0247d 2146 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2147 init_special_inode(inode, mode, dev);
2148 break;
2149 case S_IFREG:
14fcc23f 2150 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2151 inode->i_op = &shmem_inode_operations;
2152 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2153 mpol_shared_policy_init(&info->policy,
2154 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2155 break;
2156 case S_IFDIR:
d8c76e6f 2157 inc_nlink(inode);
1da177e4
LT
2158 /* Some things misbehave if size == 0 on a directory */
2159 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2160 inode->i_op = &shmem_dir_inode_operations;
2161 inode->i_fop = &simple_dir_operations;
2162 break;
2163 case S_IFLNK:
2164 /*
2165 * Must not load anything in the rbtree,
2166 * mpol_free_shared_policy will not be called.
2167 */
71fe804b 2168 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2169 break;
2170 }
5b04c689
PE
2171 } else
2172 shmem_free_inode(sb);
1da177e4
LT
2173 return inode;
2174}
2175
0cd6144a
JW
2176bool shmem_mapping(struct address_space *mapping)
2177{
f0774d88
SL
2178 if (!mapping->host)
2179 return false;
2180
97b713ba 2181 return mapping->host->i_sb->s_op == &shmem_ops;
0cd6144a
JW
2182}
2183
1da177e4 2184#ifdef CONFIG_TMPFS
92e1d5be 2185static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2186static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2187
6d9d88d0
JS
2188#ifdef CONFIG_TMPFS_XATTR
2189static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2190#else
2191#define shmem_initxattrs NULL
2192#endif
2193
1da177e4 2194static int
800d15a5
NP
2195shmem_write_begin(struct file *file, struct address_space *mapping,
2196 loff_t pos, unsigned len, unsigned flags,
2197 struct page **pagep, void **fsdata)
1da177e4 2198{
800d15a5 2199 struct inode *inode = mapping->host;
40e041a2 2200 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2201 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DH
2202
2203 /* i_mutex is held by caller */
2204 if (unlikely(info->seals)) {
2205 if (info->seals & F_SEAL_WRITE)
2206 return -EPERM;
2207 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2208 return -EPERM;
2209 }
2210
9e18eb29 2211 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2212}
2213
2214static int
2215shmem_write_end(struct file *file, struct address_space *mapping,
2216 loff_t pos, unsigned len, unsigned copied,
2217 struct page *page, void *fsdata)
2218{
2219 struct inode *inode = mapping->host;
2220
d3602444
HD
2221 if (pos + copied > inode->i_size)
2222 i_size_write(inode, pos + copied);
2223
ec9516fb 2224 if (!PageUptodate(page)) {
800d8c63
KS
2225 struct page *head = compound_head(page);
2226 if (PageTransCompound(page)) {
2227 int i;
2228
2229 for (i = 0; i < HPAGE_PMD_NR; i++) {
2230 if (head + i == page)
2231 continue;
2232 clear_highpage(head + i);
2233 flush_dcache_page(head + i);
2234 }
2235 }
09cbfeaf
KS
2236 if (copied < PAGE_SIZE) {
2237 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2238 zero_user_segments(page, 0, from,
09cbfeaf 2239 from + copied, PAGE_SIZE);
ec9516fb 2240 }
800d8c63 2241 SetPageUptodate(head);
ec9516fb 2242 }
800d15a5 2243 set_page_dirty(page);
6746aff7 2244 unlock_page(page);
09cbfeaf 2245 put_page(page);
800d15a5 2246
800d15a5 2247 return copied;
1da177e4
LT
2248}
2249
2ba5bbed 2250static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2251{
6e58e79d
AV
2252 struct file *file = iocb->ki_filp;
2253 struct inode *inode = file_inode(file);
1da177e4 2254 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2255 pgoff_t index;
2256 unsigned long offset;
a0ee5ec5 2257 enum sgp_type sgp = SGP_READ;
f7c1d074 2258 int error = 0;
cb66a7a1 2259 ssize_t retval = 0;
6e58e79d 2260 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2261
2262 /*
2263 * Might this read be for a stacking filesystem? Then when reading
2264 * holes of a sparse file, we actually need to allocate those pages,
2265 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2266 */
777eda2c 2267 if (!iter_is_iovec(to))
75edd345 2268 sgp = SGP_CACHE;
1da177e4 2269
09cbfeaf
KS
2270 index = *ppos >> PAGE_SHIFT;
2271 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2272
2273 for (;;) {
2274 struct page *page = NULL;
41ffe5d5
HD
2275 pgoff_t end_index;
2276 unsigned long nr, ret;
1da177e4
LT
2277 loff_t i_size = i_size_read(inode);
2278
09cbfeaf 2279 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2280 if (index > end_index)
2281 break;
2282 if (index == end_index) {
09cbfeaf 2283 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2284 if (nr <= offset)
2285 break;
2286 }
2287
9e18eb29 2288 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2289 if (error) {
2290 if (error == -EINVAL)
2291 error = 0;
1da177e4
LT
2292 break;
2293 }
75edd345
HD
2294 if (page) {
2295 if (sgp == SGP_CACHE)
2296 set_page_dirty(page);
d3602444 2297 unlock_page(page);
75edd345 2298 }
1da177e4
LT
2299
2300 /*
2301 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2302 * are called without i_mutex protection against truncate
1da177e4 2303 */
09cbfeaf 2304 nr = PAGE_SIZE;
1da177e4 2305 i_size = i_size_read(inode);
09cbfeaf 2306 end_index = i_size >> PAGE_SHIFT;
1da177e4 2307 if (index == end_index) {
09cbfeaf 2308 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2309 if (nr <= offset) {
2310 if (page)
09cbfeaf 2311 put_page(page);
1da177e4
LT
2312 break;
2313 }
2314 }
2315 nr -= offset;
2316
2317 if (page) {
2318 /*
2319 * If users can be writing to this page using arbitrary
2320 * virtual addresses, take care about potential aliasing
2321 * before reading the page on the kernel side.
2322 */
2323 if (mapping_writably_mapped(mapping))
2324 flush_dcache_page(page);
2325 /*
2326 * Mark the page accessed if we read the beginning.
2327 */
2328 if (!offset)
2329 mark_page_accessed(page);
b5810039 2330 } else {
1da177e4 2331 page = ZERO_PAGE(0);
09cbfeaf 2332 get_page(page);
b5810039 2333 }
1da177e4
LT
2334
2335 /*
2336 * Ok, we have the page, and it's up-to-date, so
2337 * now we can copy it to user space...
1da177e4 2338 */
2ba5bbed 2339 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2340 retval += ret;
1da177e4 2341 offset += ret;
09cbfeaf
KS
2342 index += offset >> PAGE_SHIFT;
2343 offset &= ~PAGE_MASK;
1da177e4 2344
09cbfeaf 2345 put_page(page);
2ba5bbed 2346 if (!iov_iter_count(to))
1da177e4 2347 break;
6e58e79d
AV
2348 if (ret < nr) {
2349 error = -EFAULT;
2350 break;
2351 }
1da177e4
LT
2352 cond_resched();
2353 }
2354
09cbfeaf 2355 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2356 file_accessed(file);
2357 return retval ? retval : error;
1da177e4
LT
2358}
2359
220f2ac9
HD
2360/*
2361 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2362 */
2363static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2364 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2365{
2366 struct page *page;
2367 struct pagevec pvec;
2368 pgoff_t indices[PAGEVEC_SIZE];
2369 bool done = false;
2370 int i;
2371
2372 pagevec_init(&pvec, 0);
2373 pvec.nr = 1; /* start small: we may be there already */
2374 while (!done) {
0cd6144a 2375 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2376 pvec.nr, pvec.pages, indices);
2377 if (!pvec.nr) {
965c8e59 2378 if (whence == SEEK_DATA)
220f2ac9
HD
2379 index = end;
2380 break;
2381 }
2382 for (i = 0; i < pvec.nr; i++, index++) {
2383 if (index < indices[i]) {
965c8e59 2384 if (whence == SEEK_HOLE) {
220f2ac9
HD
2385 done = true;
2386 break;
2387 }
2388 index = indices[i];
2389 }
2390 page = pvec.pages[i];
2391 if (page && !radix_tree_exceptional_entry(page)) {
2392 if (!PageUptodate(page))
2393 page = NULL;
2394 }
2395 if (index >= end ||
965c8e59
AM
2396 (page && whence == SEEK_DATA) ||
2397 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2398 done = true;
2399 break;
2400 }
2401 }
0cd6144a 2402 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2403 pagevec_release(&pvec);
2404 pvec.nr = PAGEVEC_SIZE;
2405 cond_resched();
2406 }
2407 return index;
2408}
2409
965c8e59 2410static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2411{
2412 struct address_space *mapping = file->f_mapping;
2413 struct inode *inode = mapping->host;
2414 pgoff_t start, end;
2415 loff_t new_offset;
2416
965c8e59
AM
2417 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2418 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2419 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2420 inode_lock(inode);
220f2ac9
HD
2421 /* We're holding i_mutex so we can access i_size directly */
2422
2423 if (offset < 0)
2424 offset = -EINVAL;
2425 else if (offset >= inode->i_size)
2426 offset = -ENXIO;
2427 else {
09cbfeaf
KS
2428 start = offset >> PAGE_SHIFT;
2429 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2430 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2431 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2432 if (new_offset > offset) {
2433 if (new_offset < inode->i_size)
2434 offset = new_offset;
965c8e59 2435 else if (whence == SEEK_DATA)
220f2ac9
HD
2436 offset = -ENXIO;
2437 else
2438 offset = inode->i_size;
2439 }
2440 }
2441
387aae6f
HD
2442 if (offset >= 0)
2443 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2444 inode_unlock(inode);
220f2ac9
HD
2445 return offset;
2446}
2447
05f65b5c
DH
2448/*
2449 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2450 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2451 */
2452#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2453#define LAST_SCAN 4 /* about 150ms max */
2454
2455static void shmem_tag_pins(struct address_space *mapping)
2456{
2457 struct radix_tree_iter iter;
2458 void **slot;
2459 pgoff_t start;
2460 struct page *page;
2461
2462 lru_add_drain();
2463 start = 0;
2464 rcu_read_lock();
2465
05f65b5c
DH
2466 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2467 page = radix_tree_deref_slot(slot);
2468 if (!page || radix_tree_exception(page)) {
2cf938aa
MW
2469 if (radix_tree_deref_retry(page)) {
2470 slot = radix_tree_iter_retry(&iter);
2471 continue;
2472 }
05f65b5c
DH
2473 } else if (page_count(page) - page_mapcount(page) > 1) {
2474 spin_lock_irq(&mapping->tree_lock);
2475 radix_tree_tag_set(&mapping->page_tree, iter.index,
2476 SHMEM_TAG_PINNED);
2477 spin_unlock_irq(&mapping->tree_lock);
2478 }
2479
2480 if (need_resched()) {
148deab2 2481 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2482 cond_resched_rcu();
05f65b5c
DH
2483 }
2484 }
2485 rcu_read_unlock();
2486}
2487
2488/*
2489 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2490 * via get_user_pages(), drivers might have some pending I/O without any active
2491 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2492 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2493 * them to be dropped.
2494 * The caller must guarantee that no new user will acquire writable references
2495 * to those pages to avoid races.
2496 */
40e041a2
DH
2497static int shmem_wait_for_pins(struct address_space *mapping)
2498{
05f65b5c
DH
2499 struct radix_tree_iter iter;
2500 void **slot;
2501 pgoff_t start;
2502 struct page *page;
2503 int error, scan;
2504
2505 shmem_tag_pins(mapping);
2506
2507 error = 0;
2508 for (scan = 0; scan <= LAST_SCAN; scan++) {
2509 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2510 break;
2511
2512 if (!scan)
2513 lru_add_drain_all();
2514 else if (schedule_timeout_killable((HZ << scan) / 200))
2515 scan = LAST_SCAN;
2516
2517 start = 0;
2518 rcu_read_lock();
05f65b5c
DH
2519 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2520 start, SHMEM_TAG_PINNED) {
2521
2522 page = radix_tree_deref_slot(slot);
2523 if (radix_tree_exception(page)) {
2cf938aa
MW
2524 if (radix_tree_deref_retry(page)) {
2525 slot = radix_tree_iter_retry(&iter);
2526 continue;
2527 }
05f65b5c
DH
2528
2529 page = NULL;
2530 }
2531
2532 if (page &&
2533 page_count(page) - page_mapcount(page) != 1) {
2534 if (scan < LAST_SCAN)
2535 goto continue_resched;
2536
2537 /*
2538 * On the last scan, we clean up all those tags
2539 * we inserted; but make a note that we still
2540 * found pages pinned.
2541 */
2542 error = -EBUSY;
2543 }
2544
2545 spin_lock_irq(&mapping->tree_lock);
2546 radix_tree_tag_clear(&mapping->page_tree,
2547 iter.index, SHMEM_TAG_PINNED);
2548 spin_unlock_irq(&mapping->tree_lock);
2549continue_resched:
2550 if (need_resched()) {
148deab2 2551 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2552 cond_resched_rcu();
05f65b5c
DH
2553 }
2554 }
2555 rcu_read_unlock();
2556 }
2557
2558 return error;
40e041a2
DH
2559}
2560
2561#define F_ALL_SEALS (F_SEAL_SEAL | \
2562 F_SEAL_SHRINK | \
2563 F_SEAL_GROW | \
2564 F_SEAL_WRITE)
2565
2566int shmem_add_seals(struct file *file, unsigned int seals)
2567{
2568 struct inode *inode = file_inode(file);
2569 struct shmem_inode_info *info = SHMEM_I(inode);
2570 int error;
2571
2572 /*
2573 * SEALING
2574 * Sealing allows multiple parties to share a shmem-file but restrict
2575 * access to a specific subset of file operations. Seals can only be
2576 * added, but never removed. This way, mutually untrusted parties can
2577 * share common memory regions with a well-defined policy. A malicious
2578 * peer can thus never perform unwanted operations on a shared object.
2579 *
2580 * Seals are only supported on special shmem-files and always affect
2581 * the whole underlying inode. Once a seal is set, it may prevent some
2582 * kinds of access to the file. Currently, the following seals are
2583 * defined:
2584 * SEAL_SEAL: Prevent further seals from being set on this file
2585 * SEAL_SHRINK: Prevent the file from shrinking
2586 * SEAL_GROW: Prevent the file from growing
2587 * SEAL_WRITE: Prevent write access to the file
2588 *
2589 * As we don't require any trust relationship between two parties, we
2590 * must prevent seals from being removed. Therefore, sealing a file
2591 * only adds a given set of seals to the file, it never touches
2592 * existing seals. Furthermore, the "setting seals"-operation can be
2593 * sealed itself, which basically prevents any further seal from being
2594 * added.
2595 *
2596 * Semantics of sealing are only defined on volatile files. Only
2597 * anonymous shmem files support sealing. More importantly, seals are
2598 * never written to disk. Therefore, there's no plan to support it on
2599 * other file types.
2600 */
2601
2602 if (file->f_op != &shmem_file_operations)
2603 return -EINVAL;
2604 if (!(file->f_mode & FMODE_WRITE))
2605 return -EPERM;
2606 if (seals & ~(unsigned int)F_ALL_SEALS)
2607 return -EINVAL;
2608
5955102c 2609 inode_lock(inode);
40e041a2
DH
2610
2611 if (info->seals & F_SEAL_SEAL) {
2612 error = -EPERM;
2613 goto unlock;
2614 }
2615
2616 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2617 error = mapping_deny_writable(file->f_mapping);
2618 if (error)
2619 goto unlock;
2620
2621 error = shmem_wait_for_pins(file->f_mapping);
2622 if (error) {
2623 mapping_allow_writable(file->f_mapping);
2624 goto unlock;
2625 }
2626 }
2627
2628 info->seals |= seals;
2629 error = 0;
2630
2631unlock:
5955102c 2632 inode_unlock(inode);
40e041a2
DH
2633 return error;
2634}
2635EXPORT_SYMBOL_GPL(shmem_add_seals);
2636
2637int shmem_get_seals(struct file *file)
2638{
2639 if (file->f_op != &shmem_file_operations)
2640 return -EINVAL;
2641
2642 return SHMEM_I(file_inode(file))->seals;
2643}
2644EXPORT_SYMBOL_GPL(shmem_get_seals);
2645
2646long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2647{
2648 long error;
2649
2650 switch (cmd) {
2651 case F_ADD_SEALS:
2652 /* disallow upper 32bit */
2653 if (arg > UINT_MAX)
2654 return -EINVAL;
2655
2656 error = shmem_add_seals(file, arg);
2657 break;
2658 case F_GET_SEALS:
2659 error = shmem_get_seals(file);
2660 break;
2661 default:
2662 error = -EINVAL;
2663 break;
2664 }
2665
2666 return error;
2667}
2668
83e4fa9c
HD
2669static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2670 loff_t len)
2671{
496ad9aa 2672 struct inode *inode = file_inode(file);
e2d12e22 2673 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2674 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2675 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2676 pgoff_t start, index, end;
2677 int error;
83e4fa9c 2678
13ace4d0
HD
2679 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2680 return -EOPNOTSUPP;
2681
5955102c 2682 inode_lock(inode);
83e4fa9c
HD
2683
2684 if (mode & FALLOC_FL_PUNCH_HOLE) {
2685 struct address_space *mapping = file->f_mapping;
2686 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2687 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2688 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2689
40e041a2
DH
2690 /* protected by i_mutex */
2691 if (info->seals & F_SEAL_WRITE) {
2692 error = -EPERM;
2693 goto out;
2694 }
2695
8e205f77 2696 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2697 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2698 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2699 spin_lock(&inode->i_lock);
2700 inode->i_private = &shmem_falloc;
2701 spin_unlock(&inode->i_lock);
2702
83e4fa9c
HD
2703 if ((u64)unmap_end > (u64)unmap_start)
2704 unmap_mapping_range(mapping, unmap_start,
2705 1 + unmap_end - unmap_start, 0);
2706 shmem_truncate_range(inode, offset, offset + len - 1);
2707 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2708
2709 spin_lock(&inode->i_lock);
2710 inode->i_private = NULL;
2711 wake_up_all(&shmem_falloc_waitq);
10d20bd2 2712 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
8e205f77 2713 spin_unlock(&inode->i_lock);
83e4fa9c 2714 error = 0;
8e205f77 2715 goto out;
e2d12e22
HD
2716 }
2717
2718 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2719 error = inode_newsize_ok(inode, offset + len);
2720 if (error)
2721 goto out;
2722
40e041a2
DH
2723 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2724 error = -EPERM;
2725 goto out;
2726 }
2727
09cbfeaf
KS
2728 start = offset >> PAGE_SHIFT;
2729 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2730 /* Try to avoid a swapstorm if len is impossible to satisfy */
2731 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2732 error = -ENOSPC;
2733 goto out;
83e4fa9c
HD
2734 }
2735
8e205f77 2736 shmem_falloc.waitq = NULL;
1aac1400
HD
2737 shmem_falloc.start = start;
2738 shmem_falloc.next = start;
2739 shmem_falloc.nr_falloced = 0;
2740 shmem_falloc.nr_unswapped = 0;
2741 spin_lock(&inode->i_lock);
2742 inode->i_private = &shmem_falloc;
2743 spin_unlock(&inode->i_lock);
2744
e2d12e22
HD
2745 for (index = start; index < end; index++) {
2746 struct page *page;
2747
2748 /*
2749 * Good, the fallocate(2) manpage permits EINTR: we may have
2750 * been interrupted because we are using up too much memory.
2751 */
2752 if (signal_pending(current))
2753 error = -EINTR;
1aac1400
HD
2754 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2755 error = -ENOMEM;
e2d12e22 2756 else
9e18eb29 2757 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2758 if (error) {
1635f6a7 2759 /* Remove the !PageUptodate pages we added */
7f556567
HD
2760 if (index > start) {
2761 shmem_undo_range(inode,
2762 (loff_t)start << PAGE_SHIFT,
2763 ((loff_t)index << PAGE_SHIFT) - 1, true);
2764 }
1aac1400 2765 goto undone;
e2d12e22
HD
2766 }
2767
1aac1400
HD
2768 /*
2769 * Inform shmem_writepage() how far we have reached.
2770 * No need for lock or barrier: we have the page lock.
2771 */
2772 shmem_falloc.next++;
2773 if (!PageUptodate(page))
2774 shmem_falloc.nr_falloced++;
2775
e2d12e22 2776 /*
1635f6a7
HD
2777 * If !PageUptodate, leave it that way so that freeable pages
2778 * can be recognized if we need to rollback on error later.
2779 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2780 * than free the pages we are allocating (and SGP_CACHE pages
2781 * might still be clean: we now need to mark those dirty too).
2782 */
2783 set_page_dirty(page);
2784 unlock_page(page);
09cbfeaf 2785 put_page(page);
e2d12e22
HD
2786 cond_resched();
2787 }
2788
2789 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2790 i_size_write(inode, offset + len);
078cd827 2791 inode->i_ctime = current_time(inode);
1aac1400
HD
2792undone:
2793 spin_lock(&inode->i_lock);
2794 inode->i_private = NULL;
2795 spin_unlock(&inode->i_lock);
e2d12e22 2796out:
5955102c 2797 inode_unlock(inode);
83e4fa9c
HD
2798 return error;
2799}
2800
726c3342 2801static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2802{
726c3342 2803 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2804
2805 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2806 buf->f_bsize = PAGE_SIZE;
1da177e4 2807 buf->f_namelen = NAME_MAX;
0edd73b3 2808 if (sbinfo->max_blocks) {
1da177e4 2809 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2810 buf->f_bavail =
2811 buf->f_bfree = sbinfo->max_blocks -
2812 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2813 }
2814 if (sbinfo->max_inodes) {
1da177e4
LT
2815 buf->f_files = sbinfo->max_inodes;
2816 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2817 }
2818 /* else leave those fields 0 like simple_statfs */
2819 return 0;
2820}
2821
2822/*
2823 * File creation. Allocate an inode, and we're done..
2824 */
2825static int
1a67aafb 2826shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2827{
0b0a0806 2828 struct inode *inode;
1da177e4
LT
2829 int error = -ENOSPC;
2830
454abafe 2831 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2832 if (inode) {
feda821e
CH
2833 error = simple_acl_create(dir, inode);
2834 if (error)
2835 goto out_iput;
2a7dba39 2836 error = security_inode_init_security(inode, dir,
9d8f13ba 2837 &dentry->d_name,
6d9d88d0 2838 shmem_initxattrs, NULL);
feda821e
CH
2839 if (error && error != -EOPNOTSUPP)
2840 goto out_iput;
37ec43cd 2841
718deb6b 2842 error = 0;
1da177e4 2843 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2844 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2845 d_instantiate(dentry, inode);
2846 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2847 }
2848 return error;
feda821e
CH
2849out_iput:
2850 iput(inode);
2851 return error;
1da177e4
LT
2852}
2853
60545d0d
AV
2854static int
2855shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2856{
2857 struct inode *inode;
2858 int error = -ENOSPC;
2859
2860 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2861 if (inode) {
2862 error = security_inode_init_security(inode, dir,
2863 NULL,
2864 shmem_initxattrs, NULL);
feda821e
CH
2865 if (error && error != -EOPNOTSUPP)
2866 goto out_iput;
2867 error = simple_acl_create(dir, inode);
2868 if (error)
2869 goto out_iput;
60545d0d
AV
2870 d_tmpfile(dentry, inode);
2871 }
2872 return error;
feda821e
CH
2873out_iput:
2874 iput(inode);
2875 return error;
60545d0d
AV
2876}
2877
18bb1db3 2878static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2879{
2880 int error;
2881
2882 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2883 return error;
d8c76e6f 2884 inc_nlink(dir);
1da177e4
LT
2885 return 0;
2886}
2887
4acdaf27 2888static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2889 bool excl)
1da177e4
LT
2890{
2891 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2892}
2893
2894/*
2895 * Link a file..
2896 */
2897static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2898{
75c3cfa8 2899 struct inode *inode = d_inode(old_dentry);
5b04c689 2900 int ret;
1da177e4
LT
2901
2902 /*
2903 * No ordinary (disk based) filesystem counts links as inodes;
2904 * but each new link needs a new dentry, pinning lowmem, and
2905 * tmpfs dentries cannot be pruned until they are unlinked.
2906 */
5b04c689
PE
2907 ret = shmem_reserve_inode(inode->i_sb);
2908 if (ret)
2909 goto out;
1da177e4
LT
2910
2911 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2912 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 2913 inc_nlink(inode);
7de9c6ee 2914 ihold(inode); /* New dentry reference */
1da177e4
LT
2915 dget(dentry); /* Extra pinning count for the created dentry */
2916 d_instantiate(dentry, inode);
5b04c689
PE
2917out:
2918 return ret;
1da177e4
LT
2919}
2920
2921static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2922{
75c3cfa8 2923 struct inode *inode = d_inode(dentry);
1da177e4 2924
5b04c689
PE
2925 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2926 shmem_free_inode(inode->i_sb);
1da177e4
LT
2927
2928 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 2929 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 2930 drop_nlink(inode);
1da177e4
LT
2931 dput(dentry); /* Undo the count from "create" - this does all the work */
2932 return 0;
2933}
2934
2935static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2936{
2937 if (!simple_empty(dentry))
2938 return -ENOTEMPTY;
2939
75c3cfa8 2940 drop_nlink(d_inode(dentry));
9a53c3a7 2941 drop_nlink(dir);
1da177e4
LT
2942 return shmem_unlink(dir, dentry);
2943}
2944
37456771
MS
2945static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2946{
e36cb0b8
DH
2947 bool old_is_dir = d_is_dir(old_dentry);
2948 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
2949
2950 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2951 if (old_is_dir) {
2952 drop_nlink(old_dir);
2953 inc_nlink(new_dir);
2954 } else {
2955 drop_nlink(new_dir);
2956 inc_nlink(old_dir);
2957 }
2958 }
2959 old_dir->i_ctime = old_dir->i_mtime =
2960 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 2961 d_inode(old_dentry)->i_ctime =
078cd827 2962 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
2963
2964 return 0;
2965}
2966
46fdb794
MS
2967static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2968{
2969 struct dentry *whiteout;
2970 int error;
2971
2972 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2973 if (!whiteout)
2974 return -ENOMEM;
2975
2976 error = shmem_mknod(old_dir, whiteout,
2977 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2978 dput(whiteout);
2979 if (error)
2980 return error;
2981
2982 /*
2983 * Cheat and hash the whiteout while the old dentry is still in
2984 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2985 *
2986 * d_lookup() will consistently find one of them at this point,
2987 * not sure which one, but that isn't even important.
2988 */
2989 d_rehash(whiteout);
2990 return 0;
2991}
2992
1da177e4
LT
2993/*
2994 * The VFS layer already does all the dentry stuff for rename,
2995 * we just have to decrement the usage count for the target if
2996 * it exists so that the VFS layer correctly free's it when it
2997 * gets overwritten.
2998 */
3b69ff51 2999static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 3000{
75c3cfa8 3001 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3002 int they_are_dirs = S_ISDIR(inode->i_mode);
3003
46fdb794 3004 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3005 return -EINVAL;
3006
37456771
MS
3007 if (flags & RENAME_EXCHANGE)
3008 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3009
1da177e4
LT
3010 if (!simple_empty(new_dentry))
3011 return -ENOTEMPTY;
3012
46fdb794
MS
3013 if (flags & RENAME_WHITEOUT) {
3014 int error;
3015
3016 error = shmem_whiteout(old_dir, old_dentry);
3017 if (error)
3018 return error;
3019 }
3020
75c3cfa8 3021 if (d_really_is_positive(new_dentry)) {
1da177e4 3022 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3023 if (they_are_dirs) {
75c3cfa8 3024 drop_nlink(d_inode(new_dentry));
9a53c3a7 3025 drop_nlink(old_dir);
b928095b 3026 }
1da177e4 3027 } else if (they_are_dirs) {
9a53c3a7 3028 drop_nlink(old_dir);
d8c76e6f 3029 inc_nlink(new_dir);
1da177e4
LT
3030 }
3031
3032 old_dir->i_size -= BOGO_DIRENT_SIZE;
3033 new_dir->i_size += BOGO_DIRENT_SIZE;
3034 old_dir->i_ctime = old_dir->i_mtime =
3035 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3036 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3037 return 0;
3038}
3039
3040static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3041{
3042 int error;
3043 int len;
3044 struct inode *inode;
9276aad6 3045 struct page *page;
1da177e4
LT
3046 struct shmem_inode_info *info;
3047
3048 len = strlen(symname) + 1;
09cbfeaf 3049 if (len > PAGE_SIZE)
1da177e4
LT
3050 return -ENAMETOOLONG;
3051
454abafe 3052 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
3053 if (!inode)
3054 return -ENOSPC;
3055
9d8f13ba 3056 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3057 shmem_initxattrs, NULL);
570bc1c2
SS
3058 if (error) {
3059 if (error != -EOPNOTSUPP) {
3060 iput(inode);
3061 return error;
3062 }
3063 error = 0;
3064 }
3065
1da177e4
LT
3066 info = SHMEM_I(inode);
3067 inode->i_size = len-1;
69f07ec9 3068 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3069 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3070 if (!inode->i_link) {
69f07ec9
HD
3071 iput(inode);
3072 return -ENOMEM;
3073 }
3074 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3075 } else {
e8ecde25 3076 inode_nohighmem(inode);
9e18eb29 3077 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3078 if (error) {
3079 iput(inode);
3080 return error;
3081 }
14fcc23f 3082 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3083 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3084 memcpy(page_address(page), symname, len);
ec9516fb 3085 SetPageUptodate(page);
1da177e4 3086 set_page_dirty(page);
6746aff7 3087 unlock_page(page);
09cbfeaf 3088 put_page(page);
1da177e4 3089 }
1da177e4 3090 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3091 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3092 d_instantiate(dentry, inode);
3093 dget(dentry);
3094 return 0;
3095}
3096
fceef393 3097static void shmem_put_link(void *arg)
1da177e4 3098{
fceef393
AV
3099 mark_page_accessed(arg);
3100 put_page(arg);
1da177e4
LT
3101}
3102
6b255391 3103static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3104 struct inode *inode,
3105 struct delayed_call *done)
1da177e4 3106{
1da177e4 3107 struct page *page = NULL;
6b255391 3108 int error;
6a6c9904
AV
3109 if (!dentry) {
3110 page = find_get_page(inode->i_mapping, 0);
3111 if (!page)
3112 return ERR_PTR(-ECHILD);
3113 if (!PageUptodate(page)) {
3114 put_page(page);
3115 return ERR_PTR(-ECHILD);
3116 }
3117 } else {
9e18eb29 3118 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3119 if (error)
3120 return ERR_PTR(error);
3121 unlock_page(page);
3122 }
fceef393 3123 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3124 return page_address(page);
1da177e4
LT
3125}
3126
b09e0fa4 3127#ifdef CONFIG_TMPFS_XATTR
46711810 3128/*
b09e0fa4
EP
3129 * Superblocks without xattr inode operations may get some security.* xattr
3130 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3131 * like ACLs, we also need to implement the security.* handlers at
3132 * filesystem level, though.
3133 */
3134
6d9d88d0
JS
3135/*
3136 * Callback for security_inode_init_security() for acquiring xattrs.
3137 */
3138static int shmem_initxattrs(struct inode *inode,
3139 const struct xattr *xattr_array,
3140 void *fs_info)
3141{
3142 struct shmem_inode_info *info = SHMEM_I(inode);
3143 const struct xattr *xattr;
38f38657 3144 struct simple_xattr *new_xattr;
6d9d88d0
JS
3145 size_t len;
3146
3147 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3148 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3149 if (!new_xattr)
3150 return -ENOMEM;
3151
3152 len = strlen(xattr->name) + 1;
3153 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3154 GFP_KERNEL);
3155 if (!new_xattr->name) {
3156 kfree(new_xattr);
3157 return -ENOMEM;
3158 }
3159
3160 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3161 XATTR_SECURITY_PREFIX_LEN);
3162 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3163 xattr->name, len);
3164
38f38657 3165 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3166 }
3167
3168 return 0;
3169}
3170
aa7c5241 3171static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3172 struct dentry *unused, struct inode *inode,
3173 const char *name, void *buffer, size_t size)
b09e0fa4 3174{
b296821a 3175 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3176
aa7c5241 3177 name = xattr_full_name(handler, name);
38f38657 3178 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3179}
3180
aa7c5241 3181static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3182 struct dentry *unused, struct inode *inode,
3183 const char *name, const void *value,
3184 size_t size, int flags)
b09e0fa4 3185{
59301226 3186 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3187
aa7c5241 3188 name = xattr_full_name(handler, name);
38f38657 3189 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
3190}
3191
aa7c5241
AG
3192static const struct xattr_handler shmem_security_xattr_handler = {
3193 .prefix = XATTR_SECURITY_PREFIX,
3194 .get = shmem_xattr_handler_get,
3195 .set = shmem_xattr_handler_set,
3196};
b09e0fa4 3197
aa7c5241
AG
3198static const struct xattr_handler shmem_trusted_xattr_handler = {
3199 .prefix = XATTR_TRUSTED_PREFIX,
3200 .get = shmem_xattr_handler_get,
3201 .set = shmem_xattr_handler_set,
3202};
b09e0fa4 3203
aa7c5241
AG
3204static const struct xattr_handler *shmem_xattr_handlers[] = {
3205#ifdef CONFIG_TMPFS_POSIX_ACL
3206 &posix_acl_access_xattr_handler,
3207 &posix_acl_default_xattr_handler,
3208#endif
3209 &shmem_security_xattr_handler,
3210 &shmem_trusted_xattr_handler,
3211 NULL
3212};
b09e0fa4
EP
3213
3214static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3215{
75c3cfa8 3216 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3217 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3218}
3219#endif /* CONFIG_TMPFS_XATTR */
3220
69f07ec9 3221static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3222 .get_link = simple_get_link,
b09e0fa4 3223#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3224 .listxattr = shmem_listxattr,
b09e0fa4
EP
3225#endif
3226};
3227
3228static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3229 .get_link = shmem_get_link,
b09e0fa4 3230#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3231 .listxattr = shmem_listxattr,
39f0247d 3232#endif
b09e0fa4 3233};
39f0247d 3234
91828a40
DG
3235static struct dentry *shmem_get_parent(struct dentry *child)
3236{
3237 return ERR_PTR(-ESTALE);
3238}
3239
3240static int shmem_match(struct inode *ino, void *vfh)
3241{
3242 __u32 *fh = vfh;
3243 __u64 inum = fh[2];
3244 inum = (inum << 32) | fh[1];
3245 return ino->i_ino == inum && fh[0] == ino->i_generation;
3246}
3247
480b116c
CH
3248static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3249 struct fid *fid, int fh_len, int fh_type)
91828a40 3250{
91828a40 3251 struct inode *inode;
480b116c 3252 struct dentry *dentry = NULL;
35c2a7f4 3253 u64 inum;
480b116c
CH
3254
3255 if (fh_len < 3)
3256 return NULL;
91828a40 3257
35c2a7f4
HD
3258 inum = fid->raw[2];
3259 inum = (inum << 32) | fid->raw[1];
3260
480b116c
CH
3261 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3262 shmem_match, fid->raw);
91828a40 3263 if (inode) {
480b116c 3264 dentry = d_find_alias(inode);
91828a40
DG
3265 iput(inode);
3266 }
3267
480b116c 3268 return dentry;
91828a40
DG
3269}
3270
b0b0382b
AV
3271static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3272 struct inode *parent)
91828a40 3273{
5fe0c237
AK
3274 if (*len < 3) {
3275 *len = 3;
94e07a75 3276 return FILEID_INVALID;
5fe0c237 3277 }
91828a40 3278
1d3382cb 3279 if (inode_unhashed(inode)) {
91828a40
DG
3280 /* Unfortunately insert_inode_hash is not idempotent,
3281 * so as we hash inodes here rather than at creation
3282 * time, we need a lock to ensure we only try
3283 * to do it once
3284 */
3285 static DEFINE_SPINLOCK(lock);
3286 spin_lock(&lock);
1d3382cb 3287 if (inode_unhashed(inode))
91828a40
DG
3288 __insert_inode_hash(inode,
3289 inode->i_ino + inode->i_generation);
3290 spin_unlock(&lock);
3291 }
3292
3293 fh[0] = inode->i_generation;
3294 fh[1] = inode->i_ino;
3295 fh[2] = ((__u64)inode->i_ino) >> 32;
3296
3297 *len = 3;
3298 return 1;
3299}
3300
39655164 3301static const struct export_operations shmem_export_ops = {
91828a40 3302 .get_parent = shmem_get_parent,
91828a40 3303 .encode_fh = shmem_encode_fh,
480b116c 3304 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3305};
3306
680d794b
AM
3307static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3308 bool remount)
1da177e4
LT
3309{
3310 char *this_char, *value, *rest;
49cd0a5c 3311 struct mempolicy *mpol = NULL;
8751e039
EB
3312 uid_t uid;
3313 gid_t gid;
1da177e4 3314
b00dc3ad
HD
3315 while (options != NULL) {
3316 this_char = options;
3317 for (;;) {
3318 /*
3319 * NUL-terminate this option: unfortunately,
3320 * mount options form a comma-separated list,
3321 * but mpol's nodelist may also contain commas.
3322 */
3323 options = strchr(options, ',');
3324 if (options == NULL)
3325 break;
3326 options++;
3327 if (!isdigit(*options)) {
3328 options[-1] = '\0';
3329 break;
3330 }
3331 }
1da177e4
LT
3332 if (!*this_char)
3333 continue;
3334 if ((value = strchr(this_char,'=')) != NULL) {
3335 *value++ = 0;
3336 } else {
1170532b
JP
3337 pr_err("tmpfs: No value for mount option '%s'\n",
3338 this_char);
49cd0a5c 3339 goto error;
1da177e4
LT
3340 }
3341
3342 if (!strcmp(this_char,"size")) {
3343 unsigned long long size;
3344 size = memparse(value,&rest);
3345 if (*rest == '%') {
3346 size <<= PAGE_SHIFT;
3347 size *= totalram_pages;
3348 do_div(size, 100);
3349 rest++;
3350 }
3351 if (*rest)
3352 goto bad_val;
680d794b 3353 sbinfo->max_blocks =
09cbfeaf 3354 DIV_ROUND_UP(size, PAGE_SIZE);
1da177e4 3355 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 3356 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
3357 if (*rest)
3358 goto bad_val;
3359 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 3360 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
3361 if (*rest)
3362 goto bad_val;
3363 } else if (!strcmp(this_char,"mode")) {
680d794b 3364 if (remount)
1da177e4 3365 continue;
680d794b 3366 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
3367 if (*rest)
3368 goto bad_val;
3369 } else if (!strcmp(this_char,"uid")) {
680d794b 3370 if (remount)
1da177e4 3371 continue;
8751e039 3372 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3373 if (*rest)
3374 goto bad_val;
8751e039
EB
3375 sbinfo->uid = make_kuid(current_user_ns(), uid);
3376 if (!uid_valid(sbinfo->uid))
3377 goto bad_val;
1da177e4 3378 } else if (!strcmp(this_char,"gid")) {
680d794b 3379 if (remount)
1da177e4 3380 continue;
8751e039 3381 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3382 if (*rest)
3383 goto bad_val;
8751e039
EB
3384 sbinfo->gid = make_kgid(current_user_ns(), gid);
3385 if (!gid_valid(sbinfo->gid))
3386 goto bad_val;
e496cf3d 3387#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3388 } else if (!strcmp(this_char, "huge")) {
3389 int huge;
3390 huge = shmem_parse_huge(value);
3391 if (huge < 0)
3392 goto bad_val;
3393 if (!has_transparent_hugepage() &&
3394 huge != SHMEM_HUGE_NEVER)
3395 goto bad_val;
3396 sbinfo->huge = huge;
3397#endif
3398#ifdef CONFIG_NUMA
7339ff83 3399 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
3400 mpol_put(mpol);
3401 mpol = NULL;
3402 if (mpol_parse_str(value, &mpol))
7339ff83 3403 goto bad_val;
5a6e75f8 3404#endif
1da177e4 3405 } else {
1170532b 3406 pr_err("tmpfs: Bad mount option %s\n", this_char);
49cd0a5c 3407 goto error;
1da177e4
LT
3408 }
3409 }
49cd0a5c 3410 sbinfo->mpol = mpol;
1da177e4
LT
3411 return 0;
3412
3413bad_val:
1170532b 3414 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
1da177e4 3415 value, this_char);
49cd0a5c
GT
3416error:
3417 mpol_put(mpol);
1da177e4
LT
3418 return 1;
3419
3420}
3421
3422static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3423{
3424 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 3425 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
3426 unsigned long inodes;
3427 int error = -EINVAL;
3428
5f00110f 3429 config.mpol = NULL;
680d794b 3430 if (shmem_parse_options(data, &config, true))
0edd73b3 3431 return error;
1da177e4 3432
0edd73b3 3433 spin_lock(&sbinfo->stat_lock);
0edd73b3 3434 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 3435 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 3436 goto out;
680d794b 3437 if (config.max_inodes < inodes)
0edd73b3
HD
3438 goto out;
3439 /*
54af6042 3440 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
3441 * but we must separately disallow unlimited->limited, because
3442 * in that case we have no record of how much is already in use.
3443 */
680d794b 3444 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 3445 goto out;
680d794b 3446 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
3447 goto out;
3448
3449 error = 0;
5a6e75f8 3450 sbinfo->huge = config.huge;
680d794b 3451 sbinfo->max_blocks = config.max_blocks;
680d794b
AM
3452 sbinfo->max_inodes = config.max_inodes;
3453 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 3454
5f00110f
GT
3455 /*
3456 * Preserve previous mempolicy unless mpol remount option was specified.
3457 */
3458 if (config.mpol) {
3459 mpol_put(sbinfo->mpol);
3460 sbinfo->mpol = config.mpol; /* transfers initial ref */
3461 }
0edd73b3
HD
3462out:
3463 spin_unlock(&sbinfo->stat_lock);
3464 return error;
1da177e4 3465}
680d794b 3466
34c80b1d 3467static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3468{
34c80b1d 3469 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3470
3471 if (sbinfo->max_blocks != shmem_default_max_blocks())
3472 seq_printf(seq, ",size=%luk",
09cbfeaf 3473 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b
AM
3474 if (sbinfo->max_inodes != shmem_default_max_inodes())
3475 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3476 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 3477 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3478 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3479 seq_printf(seq, ",uid=%u",
3480 from_kuid_munged(&init_user_ns, sbinfo->uid));
3481 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3482 seq_printf(seq, ",gid=%u",
3483 from_kgid_munged(&init_user_ns, sbinfo->gid));
e496cf3d 3484#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3485 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3486 if (sbinfo->huge)
3487 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3488#endif
71fe804b 3489 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3490 return 0;
3491}
9183df25
DH
3492
3493#define MFD_NAME_PREFIX "memfd:"
3494#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3495#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3496
3497#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3498
3499SYSCALL_DEFINE2(memfd_create,
3500 const char __user *, uname,
3501 unsigned int, flags)
3502{
3503 struct shmem_inode_info *info;
3504 struct file *file;
3505 int fd, error;
3506 char *name;
3507 long len;
3508
3509 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3510 return -EINVAL;
3511
3512 /* length includes terminating zero */
3513 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3514 if (len <= 0)
3515 return -EFAULT;
3516 if (len > MFD_NAME_MAX_LEN + 1)
3517 return -EINVAL;
3518
3519 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3520 if (!name)
3521 return -ENOMEM;
3522
3523 strcpy(name, MFD_NAME_PREFIX);
3524 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3525 error = -EFAULT;
3526 goto err_name;
3527 }
3528
3529 /* terminating-zero may have changed after strnlen_user() returned */
3530 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3531 error = -EFAULT;
3532 goto err_name;
3533 }
3534
3535 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3536 if (fd < 0) {
3537 error = fd;
3538 goto err_name;
3539 }
3540
3541 file = shmem_file_setup(name, 0, VM_NORESERVE);
3542 if (IS_ERR(file)) {
3543 error = PTR_ERR(file);
3544 goto err_fd;
3545 }
3546 info = SHMEM_I(file_inode(file));
3547 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3548 file->f_flags |= O_RDWR | O_LARGEFILE;
3549 if (flags & MFD_ALLOW_SEALING)
3550 info->seals &= ~F_SEAL_SEAL;
3551
3552 fd_install(fd, file);
3553 kfree(name);
3554 return fd;
3555
3556err_fd:
3557 put_unused_fd(fd);
3558err_name:
3559 kfree(name);
3560 return error;
3561}
3562
680d794b 3563#endif /* CONFIG_TMPFS */
1da177e4
LT
3564
3565static void shmem_put_super(struct super_block *sb)
3566{
602586a8
HD
3567 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3568
3569 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3570 mpol_put(sbinfo->mpol);
602586a8 3571 kfree(sbinfo);
1da177e4
LT
3572 sb->s_fs_info = NULL;
3573}
3574
2b2af54a 3575int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3576{
3577 struct inode *inode;
0edd73b3 3578 struct shmem_sb_info *sbinfo;
680d794b
AM
3579 int err = -ENOMEM;
3580
3581 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3582 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3583 L1_CACHE_BYTES), GFP_KERNEL);
3584 if (!sbinfo)
3585 return -ENOMEM;
3586
680d794b 3587 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
3588 sbinfo->uid = current_fsuid();
3589 sbinfo->gid = current_fsgid();
680d794b 3590 sb->s_fs_info = sbinfo;
1da177e4 3591
0edd73b3 3592#ifdef CONFIG_TMPFS
1da177e4
LT
3593 /*
3594 * Per default we only allow half of the physical ram per
3595 * tmpfs instance, limiting inodes to one per page of lowmem;
3596 * but the internal instance is left unlimited.
3597 */
ca4e0519 3598 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b
AM
3599 sbinfo->max_blocks = shmem_default_max_blocks();
3600 sbinfo->max_inodes = shmem_default_max_inodes();
3601 if (shmem_parse_options(data, sbinfo, false)) {
3602 err = -EINVAL;
3603 goto failed;
3604 }
ca4e0519
AV
3605 } else {
3606 sb->s_flags |= MS_NOUSER;
1da177e4 3607 }
91828a40 3608 sb->s_export_op = &shmem_export_ops;
2f6e38f3 3609 sb->s_flags |= MS_NOSEC;
1da177e4
LT
3610#else
3611 sb->s_flags |= MS_NOUSER;
3612#endif
3613
0edd73b3 3614 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3615 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3616 goto failed;
680d794b 3617 sbinfo->free_inodes = sbinfo->max_inodes;
779750d2
KS
3618 spin_lock_init(&sbinfo->shrinklist_lock);
3619 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3620
285b2c4f 3621 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3622 sb->s_blocksize = PAGE_SIZE;
3623 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3624 sb->s_magic = TMPFS_MAGIC;
3625 sb->s_op = &shmem_ops;
cfd95a9c 3626 sb->s_time_gran = 1;
b09e0fa4 3627#ifdef CONFIG_TMPFS_XATTR
39f0247d 3628 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3629#endif
3630#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
3631 sb->s_flags |= MS_POSIXACL;
3632#endif
0edd73b3 3633
454abafe 3634 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3635 if (!inode)
3636 goto failed;
680d794b
AM
3637 inode->i_uid = sbinfo->uid;
3638 inode->i_gid = sbinfo->gid;
318ceed0
AV
3639 sb->s_root = d_make_root(inode);
3640 if (!sb->s_root)
48fde701 3641 goto failed;
1da177e4
LT
3642 return 0;
3643
1da177e4
LT
3644failed:
3645 shmem_put_super(sb);
3646 return err;
3647}
3648
fcc234f8 3649static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3650
3651static struct inode *shmem_alloc_inode(struct super_block *sb)
3652{
41ffe5d5
HD
3653 struct shmem_inode_info *info;
3654 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3655 if (!info)
1da177e4 3656 return NULL;
41ffe5d5 3657 return &info->vfs_inode;
1da177e4
LT
3658}
3659
41ffe5d5 3660static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3661{
3662 struct inode *inode = container_of(head, struct inode, i_rcu);
84e710da
AV
3663 if (S_ISLNK(inode->i_mode))
3664 kfree(inode->i_link);
fa0d7e3d
NP
3665 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3666}
3667
1da177e4
LT
3668static void shmem_destroy_inode(struct inode *inode)
3669{
09208d15 3670 if (S_ISREG(inode->i_mode))
1da177e4 3671 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3672 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3673}
3674
41ffe5d5 3675static void shmem_init_inode(void *foo)
1da177e4 3676{
41ffe5d5
HD
3677 struct shmem_inode_info *info = foo;
3678 inode_init_once(&info->vfs_inode);
1da177e4
LT
3679}
3680
41ffe5d5 3681static int shmem_init_inodecache(void)
1da177e4
LT
3682{
3683 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3684 sizeof(struct shmem_inode_info),
5d097056 3685 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3686 return 0;
3687}
3688
41ffe5d5 3689static void shmem_destroy_inodecache(void)
1da177e4 3690{
1a1d92c1 3691 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3692}
3693
f5e54d6e 3694static const struct address_space_operations shmem_aops = {
1da177e4 3695 .writepage = shmem_writepage,
76719325 3696 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3697#ifdef CONFIG_TMPFS
800d15a5
NP
3698 .write_begin = shmem_write_begin,
3699 .write_end = shmem_write_end,
1da177e4 3700#endif
1c93923c 3701#ifdef CONFIG_MIGRATION
304dbdb7 3702 .migratepage = migrate_page,
1c93923c 3703#endif
aa261f54 3704 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3705};
3706
15ad7cdc 3707static const struct file_operations shmem_file_operations = {
1da177e4 3708 .mmap = shmem_mmap,
c01d5b30 3709 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3710#ifdef CONFIG_TMPFS
220f2ac9 3711 .llseek = shmem_file_llseek,
2ba5bbed 3712 .read_iter = shmem_file_read_iter,
8174202b 3713 .write_iter = generic_file_write_iter,
1b061d92 3714 .fsync = noop_fsync,
82c156f8 3715 .splice_read = generic_file_splice_read,
f6cb85d0 3716 .splice_write = iter_file_splice_write,
83e4fa9c 3717 .fallocate = shmem_fallocate,
1da177e4
LT
3718#endif
3719};
3720
92e1d5be 3721static const struct inode_operations shmem_inode_operations = {
44a30220 3722 .getattr = shmem_getattr,
94c1e62d 3723 .setattr = shmem_setattr,
b09e0fa4 3724#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3725 .listxattr = shmem_listxattr,
feda821e 3726 .set_acl = simple_set_acl,
b09e0fa4 3727#endif
1da177e4
LT
3728};
3729
92e1d5be 3730static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3731#ifdef CONFIG_TMPFS
3732 .create = shmem_create,
3733 .lookup = simple_lookup,
3734 .link = shmem_link,
3735 .unlink = shmem_unlink,
3736 .symlink = shmem_symlink,
3737 .mkdir = shmem_mkdir,
3738 .rmdir = shmem_rmdir,
3739 .mknod = shmem_mknod,
2773bf00 3740 .rename = shmem_rename2,
60545d0d 3741 .tmpfile = shmem_tmpfile,
1da177e4 3742#endif
b09e0fa4 3743#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3744 .listxattr = shmem_listxattr,
b09e0fa4 3745#endif
39f0247d 3746#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3747 .setattr = shmem_setattr,
feda821e 3748 .set_acl = simple_set_acl,
39f0247d
AG
3749#endif
3750};
3751
92e1d5be 3752static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3753#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3754 .listxattr = shmem_listxattr,
b09e0fa4 3755#endif
39f0247d 3756#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3757 .setattr = shmem_setattr,
feda821e 3758 .set_acl = simple_set_acl,
39f0247d 3759#endif
1da177e4
LT
3760};
3761
759b9775 3762static const struct super_operations shmem_ops = {
1da177e4
LT
3763 .alloc_inode = shmem_alloc_inode,
3764 .destroy_inode = shmem_destroy_inode,
3765#ifdef CONFIG_TMPFS
3766 .statfs = shmem_statfs,
3767 .remount_fs = shmem_remount_fs,
680d794b 3768 .show_options = shmem_show_options,
1da177e4 3769#endif
1f895f75 3770 .evict_inode = shmem_evict_inode,
1da177e4
LT
3771 .drop_inode = generic_delete_inode,
3772 .put_super = shmem_put_super,
779750d2
KS
3773#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3774 .nr_cached_objects = shmem_unused_huge_count,
3775 .free_cached_objects = shmem_unused_huge_scan,
3776#endif
1da177e4
LT
3777};
3778
f0f37e2f 3779static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3780 .fault = shmem_fault,
d7c17551 3781 .map_pages = filemap_map_pages,
1da177e4
LT
3782#ifdef CONFIG_NUMA
3783 .set_policy = shmem_set_policy,
3784 .get_policy = shmem_get_policy,
3785#endif
3786};
3787
3c26ff6e
AV
3788static struct dentry *shmem_mount(struct file_system_type *fs_type,
3789 int flags, const char *dev_name, void *data)
1da177e4 3790{
3c26ff6e 3791 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3792}
3793
41ffe5d5 3794static struct file_system_type shmem_fs_type = {
1da177e4
LT
3795 .owner = THIS_MODULE,
3796 .name = "tmpfs",
3c26ff6e 3797 .mount = shmem_mount,
1da177e4 3798 .kill_sb = kill_litter_super,
2b8576cb 3799 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3800};
1da177e4 3801
41ffe5d5 3802int __init shmem_init(void)
1da177e4
LT
3803{
3804 int error;
3805
16203a7a
RL
3806 /* If rootfs called this, don't re-init */
3807 if (shmem_inode_cachep)
3808 return 0;
3809
41ffe5d5 3810 error = shmem_init_inodecache();
1da177e4
LT
3811 if (error)
3812 goto out3;
3813
41ffe5d5 3814 error = register_filesystem(&shmem_fs_type);
1da177e4 3815 if (error) {
1170532b 3816 pr_err("Could not register tmpfs\n");
1da177e4
LT
3817 goto out2;
3818 }
95dc112a 3819
ca4e0519 3820 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3821 if (IS_ERR(shm_mnt)) {
3822 error = PTR_ERR(shm_mnt);
1170532b 3823 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3824 goto out1;
3825 }
5a6e75f8 3826
e496cf3d 3827#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3828 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3829 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3830 else
3831 shmem_huge = 0; /* just in case it was patched */
3832#endif
1da177e4
LT
3833 return 0;
3834
3835out1:
41ffe5d5 3836 unregister_filesystem(&shmem_fs_type);
1da177e4 3837out2:
41ffe5d5 3838 shmem_destroy_inodecache();
1da177e4
LT
3839out3:
3840 shm_mnt = ERR_PTR(error);
3841 return error;
3842}
853ac43a 3843
e496cf3d 3844#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
3845static ssize_t shmem_enabled_show(struct kobject *kobj,
3846 struct kobj_attribute *attr, char *buf)
3847{
3848 int values[] = {
3849 SHMEM_HUGE_ALWAYS,
3850 SHMEM_HUGE_WITHIN_SIZE,
3851 SHMEM_HUGE_ADVISE,
3852 SHMEM_HUGE_NEVER,
3853 SHMEM_HUGE_DENY,
3854 SHMEM_HUGE_FORCE,
3855 };
3856 int i, count;
3857
3858 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3859 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3860
3861 count += sprintf(buf + count, fmt,
3862 shmem_format_huge(values[i]));
3863 }
3864 buf[count - 1] = '\n';
3865 return count;
3866}
3867
3868static ssize_t shmem_enabled_store(struct kobject *kobj,
3869 struct kobj_attribute *attr, const char *buf, size_t count)
3870{
3871 char tmp[16];
3872 int huge;
3873
3874 if (count + 1 > sizeof(tmp))
3875 return -EINVAL;
3876 memcpy(tmp, buf, count);
3877 tmp[count] = '\0';
3878 if (count && tmp[count - 1] == '\n')
3879 tmp[count - 1] = '\0';
3880
3881 huge = shmem_parse_huge(tmp);
3882 if (huge == -EINVAL)
3883 return -EINVAL;
3884 if (!has_transparent_hugepage() &&
3885 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3886 return -EINVAL;
3887
3888 shmem_huge = huge;
3889 if (shmem_huge < SHMEM_HUGE_DENY)
3890 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3891 return count;
3892}
3893
3894struct kobj_attribute shmem_enabled_attr =
3895 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3b33719c 3896#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
f3f0e1d2 3897
3b33719c 3898#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
f3f0e1d2
KS
3899bool shmem_huge_enabled(struct vm_area_struct *vma)
3900{
3901 struct inode *inode = file_inode(vma->vm_file);
3902 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3903 loff_t i_size;
3904 pgoff_t off;
3905
3906 if (shmem_huge == SHMEM_HUGE_FORCE)
3907 return true;
3908 if (shmem_huge == SHMEM_HUGE_DENY)
3909 return false;
3910 switch (sbinfo->huge) {
3911 case SHMEM_HUGE_NEVER:
3912 return false;
3913 case SHMEM_HUGE_ALWAYS:
3914 return true;
3915 case SHMEM_HUGE_WITHIN_SIZE:
3916 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3917 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3918 if (i_size >= HPAGE_PMD_SIZE &&
3919 i_size >> PAGE_SHIFT >= off)
3920 return true;
3921 case SHMEM_HUGE_ADVISE:
3922 /* TODO: implement fadvise() hints */
3923 return (vma->vm_flags & VM_HUGEPAGE);
3924 default:
3925 VM_BUG_ON(1);
3926 return false;
3927 }
3928}
3b33719c 3929#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 3930
853ac43a
MM
3931#else /* !CONFIG_SHMEM */
3932
3933/*
3934 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3935 *
3936 * This is intended for small system where the benefits of the full
3937 * shmem code (swap-backed and resource-limited) are outweighed by
3938 * their complexity. On systems without swap this code should be
3939 * effectively equivalent, but much lighter weight.
3940 */
3941
41ffe5d5 3942static struct file_system_type shmem_fs_type = {
853ac43a 3943 .name = "tmpfs",
3c26ff6e 3944 .mount = ramfs_mount,
853ac43a 3945 .kill_sb = kill_litter_super,
2b8576cb 3946 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
3947};
3948
41ffe5d5 3949int __init shmem_init(void)
853ac43a 3950{
41ffe5d5 3951 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 3952
41ffe5d5 3953 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
3954 BUG_ON(IS_ERR(shm_mnt));
3955
3956 return 0;
3957}
3958
41ffe5d5 3959int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
3960{
3961 return 0;
3962}
3963
3f96b79a
HD
3964int shmem_lock(struct file *file, int lock, struct user_struct *user)
3965{
3966 return 0;
3967}
3968
24513264
HD
3969void shmem_unlock_mapping(struct address_space *mapping)
3970{
3971}
3972
c01d5b30
HD
3973#ifdef CONFIG_MMU
3974unsigned long shmem_get_unmapped_area(struct file *file,
3975 unsigned long addr, unsigned long len,
3976 unsigned long pgoff, unsigned long flags)
3977{
3978 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3979}
3980#endif
3981
41ffe5d5 3982void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 3983{
41ffe5d5 3984 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
3985}
3986EXPORT_SYMBOL_GPL(shmem_truncate_range);
3987
0b0a0806
HD
3988#define shmem_vm_ops generic_file_vm_ops
3989#define shmem_file_operations ramfs_file_operations
454abafe 3990#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
3991#define shmem_acct_size(flags, size) 0
3992#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
3993
3994#endif /* CONFIG_SHMEM */
3995
3996/* common code */
1da177e4 3997
19938e35 3998static const struct dentry_operations anon_ops = {
118b2302 3999 .d_dname = simple_dname
3451538a
AV
4000};
4001
c7277090
EP
4002static struct file *__shmem_file_setup(const char *name, loff_t size,
4003 unsigned long flags, unsigned int i_flags)
1da177e4 4004{
6b4d0b27 4005 struct file *res;
1da177e4 4006 struct inode *inode;
2c48b9c4 4007 struct path path;
3451538a 4008 struct super_block *sb;
1da177e4
LT
4009 struct qstr this;
4010
4011 if (IS_ERR(shm_mnt))
6b4d0b27 4012 return ERR_CAST(shm_mnt);
1da177e4 4013
285b2c4f 4014 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4015 return ERR_PTR(-EINVAL);
4016
4017 if (shmem_acct_size(flags, size))
4018 return ERR_PTR(-ENOMEM);
4019
6b4d0b27 4020 res = ERR_PTR(-ENOMEM);
1da177e4
LT
4021 this.name = name;
4022 this.len = strlen(name);
4023 this.hash = 0; /* will go */
3451538a 4024 sb = shm_mnt->mnt_sb;
66ee4b88 4025 path.mnt = mntget(shm_mnt);
3451538a 4026 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 4027 if (!path.dentry)
1da177e4 4028 goto put_memory;
3451538a 4029 d_set_d_op(path.dentry, &anon_ops);
1da177e4 4030
6b4d0b27 4031 res = ERR_PTR(-ENOSPC);
3451538a 4032 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 4033 if (!inode)
66ee4b88 4034 goto put_memory;
1da177e4 4035
c7277090 4036 inode->i_flags |= i_flags;
2c48b9c4 4037 d_instantiate(path.dentry, inode);
1da177e4 4038 inode->i_size = size;
6d6b77f1 4039 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
4040 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4041 if (IS_ERR(res))
66ee4b88 4042 goto put_path;
4b42af81 4043
6b4d0b27 4044 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 4045 &shmem_file_operations);
6b4d0b27 4046 if (IS_ERR(res))
66ee4b88 4047 goto put_path;
4b42af81 4048
6b4d0b27 4049 return res;
1da177e4 4050
1da177e4
LT
4051put_memory:
4052 shmem_unacct_size(flags, size);
66ee4b88
KK
4053put_path:
4054 path_put(&path);
6b4d0b27 4055 return res;
1da177e4 4056}
c7277090
EP
4057
4058/**
4059 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4060 * kernel internal. There will be NO LSM permission checks against the
4061 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4062 * higher layer. The users are the big_key and shm implementations. LSM
4063 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4064 * @name: name for dentry (to be seen in /proc/<pid>/maps
4065 * @size: size to be set for the file
4066 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4067 */
4068struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4069{
4070 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4071}
4072
4073/**
4074 * shmem_file_setup - get an unlinked file living in tmpfs
4075 * @name: name for dentry (to be seen in /proc/<pid>/maps
4076 * @size: size to be set for the file
4077 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4078 */
4079struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4080{
4081 return __shmem_file_setup(name, size, flags, 0);
4082}
395e0ddc 4083EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4084
46711810 4085/**
1da177e4 4086 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
4087 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4088 */
4089int shmem_zero_setup(struct vm_area_struct *vma)
4090{
4091 struct file *file;
4092 loff_t size = vma->vm_end - vma->vm_start;
4093
66fc1303
HD
4094 /*
4095 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4096 * between XFS directory reading and selinux: since this file is only
4097 * accessible to the user through its mapping, use S_PRIVATE flag to
4098 * bypass file security, in the same way as shmem_kernel_file_setup().
4099 */
4100 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
1da177e4
LT
4101 if (IS_ERR(file))
4102 return PTR_ERR(file);
4103
4104 if (vma->vm_file)
4105 fput(vma->vm_file);
4106 vma->vm_file = file;
4107 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4108
e496cf3d 4109 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
4110 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4111 (vma->vm_end & HPAGE_PMD_MASK)) {
4112 khugepaged_enter(vma, vma->vm_flags);
4113 }
4114
1da177e4
LT
4115 return 0;
4116}
d9d90e5e
HD
4117
4118/**
4119 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4120 * @mapping: the page's address_space
4121 * @index: the page index
4122 * @gfp: the page allocator flags to use if allocating
4123 *
4124 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4125 * with any new page allocations done using the specified allocation flags.
4126 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4127 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4128 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4129 *
68da9f05
HD
4130 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4131 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4132 */
4133struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4134 pgoff_t index, gfp_t gfp)
4135{
68da9f05
HD
4136#ifdef CONFIG_SHMEM
4137 struct inode *inode = mapping->host;
9276aad6 4138 struct page *page;
68da9f05
HD
4139 int error;
4140
4141 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29
ALC
4142 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4143 gfp, NULL, NULL);
68da9f05
HD
4144 if (error)
4145 page = ERR_PTR(error);
4146 else
4147 unlock_page(page);
4148 return page;
4149#else
4150 /*
4151 * The tiny !SHMEM case uses ramfs without swap
4152 */
d9d90e5e 4153 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4154#endif
d9d90e5e
HD
4155}
4156EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);