]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/slab.c
mm/slab: remove useless structure define
[mirror_ubuntu-zesty-kernel.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
f315e3fa
JK
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
30321c7b 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 170
072bb0aa
MG
171/*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175static bool pfmemalloc_active __read_mostly;
176
1da177e4
LT
177/*
178 * struct array_cache
179 *
1da177e4
LT
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
bda5b655 194 void *entry[]; /*
a737b3e2
AM
195 * Must have this definition in here for the proper
196 * alignment of array_cache. Also simplifies accessing
197 * the entries.
072bb0aa
MG
198 *
199 * Entries should not be directly dereferenced as
200 * entries belonging to slabs marked pfmemalloc will
201 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 202 */
1da177e4
LT
203};
204
c8522a3a
JK
205struct alien_cache {
206 spinlock_t lock;
207 struct array_cache ac;
208};
209
072bb0aa
MG
210#define SLAB_OBJ_PFMEMALLOC 1
211static inline bool is_obj_pfmemalloc(void *objp)
212{
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214}
215
216static inline void set_obj_pfmemalloc(void **objp)
217{
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 return;
220}
221
222static inline void clear_obj_pfmemalloc(void **objp)
223{
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225}
226
e498be7d
CL
227/*
228 * Need this for bootstrapping a per node allocator.
229 */
bf0dea23 230#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 231static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 232#define CACHE_CACHE 0
bf0dea23 233#define SIZE_NODE (MAX_NUMNODES)
e498be7d 234
ed11d9eb 235static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 236 struct kmem_cache_node *n, int tofree);
ed11d9eb 237static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
238 int node, struct list_head *list);
239static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 240static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 241static void cache_reap(struct work_struct *unused);
ed11d9eb 242
e0a42726
IM
243static int slab_early_init = 1;
244
ce8eb6c4 245#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 246
ce8eb6c4 247static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
248{
249 INIT_LIST_HEAD(&parent->slabs_full);
250 INIT_LIST_HEAD(&parent->slabs_partial);
251 INIT_LIST_HEAD(&parent->slabs_free);
252 parent->shared = NULL;
253 parent->alien = NULL;
2e1217cf 254 parent->colour_next = 0;
e498be7d
CL
255 spin_lock_init(&parent->list_lock);
256 parent->free_objects = 0;
257 parent->free_touched = 0;
258}
259
a737b3e2
AM
260#define MAKE_LIST(cachep, listp, slab, nodeid) \
261 do { \
262 INIT_LIST_HEAD(listp); \
18bf8541 263 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
264 } while (0)
265
a737b3e2
AM
266#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
267 do { \
e498be7d
CL
268 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
269 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
270 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
271 } while (0)
1da177e4 272
1da177e4
LT
273#define CFLGS_OFF_SLAB (0x80000000UL)
274#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
d4322d88 275#define OFF_SLAB_MIN_SIZE (max_t(size_t, PAGE_SIZE >> 5, KMALLOC_MIN_SIZE + 1))
1da177e4
LT
276
277#define BATCHREFILL_LIMIT 16
a737b3e2
AM
278/*
279 * Optimization question: fewer reaps means less probability for unnessary
280 * cpucache drain/refill cycles.
1da177e4 281 *
dc6f3f27 282 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
283 * which could lock up otherwise freeable slabs.
284 */
5f0985bb
JZ
285#define REAPTIMEOUT_AC (2*HZ)
286#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
287
288#if STATS
289#define STATS_INC_ACTIVE(x) ((x)->num_active++)
290#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
291#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
292#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 293#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
294#define STATS_SET_HIGH(x) \
295 do { \
296 if ((x)->num_active > (x)->high_mark) \
297 (x)->high_mark = (x)->num_active; \
298 } while (0)
1da177e4
LT
299#define STATS_INC_ERR(x) ((x)->errors++)
300#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 301#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 302#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
303#define STATS_SET_FREEABLE(x, i) \
304 do { \
305 if ((x)->max_freeable < i) \
306 (x)->max_freeable = i; \
307 } while (0)
1da177e4
LT
308#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
309#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
310#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
311#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
312#else
313#define STATS_INC_ACTIVE(x) do { } while (0)
314#define STATS_DEC_ACTIVE(x) do { } while (0)
315#define STATS_INC_ALLOCED(x) do { } while (0)
316#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 317#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
318#define STATS_SET_HIGH(x) do { } while (0)
319#define STATS_INC_ERR(x) do { } while (0)
320#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 321#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 322#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 323#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
324#define STATS_INC_ALLOCHIT(x) do { } while (0)
325#define STATS_INC_ALLOCMISS(x) do { } while (0)
326#define STATS_INC_FREEHIT(x) do { } while (0)
327#define STATS_INC_FREEMISS(x) do { } while (0)
328#endif
329
330#if DEBUG
1da177e4 331
a737b3e2
AM
332/*
333 * memory layout of objects:
1da177e4 334 * 0 : objp
3dafccf2 335 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
336 * the end of an object is aligned with the end of the real
337 * allocation. Catches writes behind the end of the allocation.
3dafccf2 338 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 339 * redzone word.
3dafccf2 340 * cachep->obj_offset: The real object.
3b0efdfa
CL
341 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
342 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 343 * [BYTES_PER_WORD long]
1da177e4 344 */
343e0d7a 345static int obj_offset(struct kmem_cache *cachep)
1da177e4 346{
3dafccf2 347 return cachep->obj_offset;
1da177e4
LT
348}
349
b46b8f19 350static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
351{
352 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
353 return (unsigned long long*) (objp + obj_offset(cachep) -
354 sizeof(unsigned long long));
1da177e4
LT
355}
356
b46b8f19 357static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
358{
359 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
360 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 361 return (unsigned long long *)(objp + cachep->size -
b46b8f19 362 sizeof(unsigned long long) -
87a927c7 363 REDZONE_ALIGN);
3b0efdfa 364 return (unsigned long long *) (objp + cachep->size -
b46b8f19 365 sizeof(unsigned long long));
1da177e4
LT
366}
367
343e0d7a 368static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
369{
370 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 371 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
372}
373
374#else
375
3dafccf2 376#define obj_offset(x) 0
b46b8f19
DW
377#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
378#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
379#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
380
381#endif
382
03787301
JK
383#define OBJECT_FREE (0)
384#define OBJECT_ACTIVE (1)
385
386#ifdef CONFIG_DEBUG_SLAB_LEAK
387
388static void set_obj_status(struct page *page, int idx, int val)
389{
390 int freelist_size;
391 char *status;
392 struct kmem_cache *cachep = page->slab_cache;
393
394 freelist_size = cachep->num * sizeof(freelist_idx_t);
395 status = (char *)page->freelist + freelist_size;
396 status[idx] = val;
397}
398
399static inline unsigned int get_obj_status(struct page *page, int idx)
400{
401 int freelist_size;
402 char *status;
403 struct kmem_cache *cachep = page->slab_cache;
404
405 freelist_size = cachep->num * sizeof(freelist_idx_t);
406 status = (char *)page->freelist + freelist_size;
407
408 return status[idx];
409}
410
411#else
412static inline void set_obj_status(struct page *page, int idx, int val) {}
413
414#endif
415
1da177e4 416/*
3df1cccd
DR
417 * Do not go above this order unless 0 objects fit into the slab or
418 * overridden on the command line.
1da177e4 419 */
543585cc
DR
420#define SLAB_MAX_ORDER_HI 1
421#define SLAB_MAX_ORDER_LO 0
422static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 423static bool slab_max_order_set __initdata;
1da177e4 424
6ed5eb22
PE
425static inline struct kmem_cache *virt_to_cache(const void *obj)
426{
b49af68f 427 struct page *page = virt_to_head_page(obj);
35026088 428 return page->slab_cache;
6ed5eb22
PE
429}
430
8456a648 431static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
432 unsigned int idx)
433{
8456a648 434 return page->s_mem + cache->size * idx;
8fea4e96
PE
435}
436
6a2d7a95 437/*
3b0efdfa
CL
438 * We want to avoid an expensive divide : (offset / cache->size)
439 * Using the fact that size is a constant for a particular cache,
440 * we can replace (offset / cache->size) by
6a2d7a95
ED
441 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
442 */
443static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 444 const struct page *page, void *obj)
8fea4e96 445{
8456a648 446 u32 offset = (obj - page->s_mem);
6a2d7a95 447 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
448}
449
6fb92430 450#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 451/* internal cache of cache description objs */
9b030cb8 452static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
453 .batchcount = 1,
454 .limit = BOOT_CPUCACHE_ENTRIES,
455 .shared = 1,
3b0efdfa 456 .size = sizeof(struct kmem_cache),
b28a02de 457 .name = "kmem_cache",
1da177e4
LT
458};
459
edcad250
JK
460#define BAD_ALIEN_MAGIC 0x01020304ul
461
1871e52c 462static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 463
343e0d7a 464static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 465{
bf0dea23 466 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
467}
468
03787301
JK
469static size_t calculate_freelist_size(int nr_objs, size_t align)
470{
471 size_t freelist_size;
472
473 freelist_size = nr_objs * sizeof(freelist_idx_t);
474 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
475 freelist_size += nr_objs * sizeof(char);
476
477 if (align)
478 freelist_size = ALIGN(freelist_size, align);
479
480 return freelist_size;
481}
482
9cef2e2b
JK
483static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
484 size_t idx_size, size_t align)
1da177e4 485{
9cef2e2b 486 int nr_objs;
03787301 487 size_t remained_size;
9cef2e2b 488 size_t freelist_size;
03787301 489 int extra_space = 0;
9cef2e2b 490
03787301
JK
491 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
492 extra_space = sizeof(char);
9cef2e2b
JK
493 /*
494 * Ignore padding for the initial guess. The padding
495 * is at most @align-1 bytes, and @buffer_size is at
496 * least @align. In the worst case, this result will
497 * be one greater than the number of objects that fit
498 * into the memory allocation when taking the padding
499 * into account.
500 */
03787301 501 nr_objs = slab_size / (buffer_size + idx_size + extra_space);
9cef2e2b
JK
502
503 /*
504 * This calculated number will be either the right
505 * amount, or one greater than what we want.
506 */
03787301
JK
507 remained_size = slab_size - nr_objs * buffer_size;
508 freelist_size = calculate_freelist_size(nr_objs, align);
509 if (remained_size < freelist_size)
9cef2e2b
JK
510 nr_objs--;
511
512 return nr_objs;
fbaccacf 513}
1da177e4 514
a737b3e2
AM
515/*
516 * Calculate the number of objects and left-over bytes for a given buffer size.
517 */
fbaccacf
SR
518static void cache_estimate(unsigned long gfporder, size_t buffer_size,
519 size_t align, int flags, size_t *left_over,
520 unsigned int *num)
521{
522 int nr_objs;
523 size_t mgmt_size;
524 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 525
fbaccacf
SR
526 /*
527 * The slab management structure can be either off the slab or
528 * on it. For the latter case, the memory allocated for a
529 * slab is used for:
530 *
12c61fe9 531 * - One freelist_idx_t for each object
fbaccacf
SR
532 * - Padding to respect alignment of @align
533 * - @buffer_size bytes for each object
534 *
535 * If the slab management structure is off the slab, then the
536 * alignment will already be calculated into the size. Because
537 * the slabs are all pages aligned, the objects will be at the
538 * correct alignment when allocated.
539 */
540 if (flags & CFLGS_OFF_SLAB) {
541 mgmt_size = 0;
542 nr_objs = slab_size / buffer_size;
543
fbaccacf 544 } else {
9cef2e2b 545 nr_objs = calculate_nr_objs(slab_size, buffer_size,
a41adfaa 546 sizeof(freelist_idx_t), align);
03787301 547 mgmt_size = calculate_freelist_size(nr_objs, align);
fbaccacf
SR
548 }
549 *num = nr_objs;
550 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
551}
552
f28510d3 553#if DEBUG
d40cee24 554#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 555
a737b3e2
AM
556static void __slab_error(const char *function, struct kmem_cache *cachep,
557 char *msg)
1da177e4
LT
558{
559 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 560 function, cachep->name, msg);
1da177e4 561 dump_stack();
373d4d09 562 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 563}
f28510d3 564#endif
1da177e4 565
3395ee05
PM
566/*
567 * By default on NUMA we use alien caches to stage the freeing of
568 * objects allocated from other nodes. This causes massive memory
569 * inefficiencies when using fake NUMA setup to split memory into a
570 * large number of small nodes, so it can be disabled on the command
571 * line
572 */
573
574static int use_alien_caches __read_mostly = 1;
575static int __init noaliencache_setup(char *s)
576{
577 use_alien_caches = 0;
578 return 1;
579}
580__setup("noaliencache", noaliencache_setup);
581
3df1cccd
DR
582static int __init slab_max_order_setup(char *str)
583{
584 get_option(&str, &slab_max_order);
585 slab_max_order = slab_max_order < 0 ? 0 :
586 min(slab_max_order, MAX_ORDER - 1);
587 slab_max_order_set = true;
588
589 return 1;
590}
591__setup("slab_max_order=", slab_max_order_setup);
592
8fce4d8e
CL
593#ifdef CONFIG_NUMA
594/*
595 * Special reaping functions for NUMA systems called from cache_reap().
596 * These take care of doing round robin flushing of alien caches (containing
597 * objects freed on different nodes from which they were allocated) and the
598 * flushing of remote pcps by calling drain_node_pages.
599 */
1871e52c 600static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
601
602static void init_reap_node(int cpu)
603{
604 int node;
605
7d6e6d09 606 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 607 if (node == MAX_NUMNODES)
442295c9 608 node = first_node(node_online_map);
8fce4d8e 609
1871e52c 610 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
611}
612
613static void next_reap_node(void)
614{
909ea964 615 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 616
8fce4d8e
CL
617 node = next_node(node, node_online_map);
618 if (unlikely(node >= MAX_NUMNODES))
619 node = first_node(node_online_map);
909ea964 620 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
621}
622
623#else
624#define init_reap_node(cpu) do { } while (0)
625#define next_reap_node(void) do { } while (0)
626#endif
627
1da177e4
LT
628/*
629 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
630 * via the workqueue/eventd.
631 * Add the CPU number into the expiration time to minimize the possibility of
632 * the CPUs getting into lockstep and contending for the global cache chain
633 * lock.
634 */
0db0628d 635static void start_cpu_timer(int cpu)
1da177e4 636{
1871e52c 637 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
638
639 /*
640 * When this gets called from do_initcalls via cpucache_init(),
641 * init_workqueues() has already run, so keventd will be setup
642 * at that time.
643 */
52bad64d 644 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 645 init_reap_node(cpu);
203b42f7 646 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
647 schedule_delayed_work_on(cpu, reap_work,
648 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
649 }
650}
651
1fe00d50 652static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 653{
d5cff635
CM
654 /*
655 * The array_cache structures contain pointers to free object.
25985edc 656 * However, when such objects are allocated or transferred to another
d5cff635
CM
657 * cache the pointers are not cleared and they could be counted as
658 * valid references during a kmemleak scan. Therefore, kmemleak must
659 * not scan such objects.
660 */
1fe00d50
JK
661 kmemleak_no_scan(ac);
662 if (ac) {
663 ac->avail = 0;
664 ac->limit = limit;
665 ac->batchcount = batch;
666 ac->touched = 0;
1da177e4 667 }
1fe00d50
JK
668}
669
670static struct array_cache *alloc_arraycache(int node, int entries,
671 int batchcount, gfp_t gfp)
672{
5e804789 673 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
674 struct array_cache *ac = NULL;
675
676 ac = kmalloc_node(memsize, gfp, node);
677 init_arraycache(ac, entries, batchcount);
678 return ac;
1da177e4
LT
679}
680
8456a648 681static inline bool is_slab_pfmemalloc(struct page *page)
072bb0aa 682{
072bb0aa
MG
683 return PageSlabPfmemalloc(page);
684}
685
686/* Clears pfmemalloc_active if no slabs have pfmalloc set */
687static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
688 struct array_cache *ac)
689{
18bf8541 690 struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
8456a648 691 struct page *page;
072bb0aa
MG
692 unsigned long flags;
693
694 if (!pfmemalloc_active)
695 return;
696
ce8eb6c4 697 spin_lock_irqsave(&n->list_lock, flags);
8456a648
JK
698 list_for_each_entry(page, &n->slabs_full, lru)
699 if (is_slab_pfmemalloc(page))
072bb0aa
MG
700 goto out;
701
8456a648
JK
702 list_for_each_entry(page, &n->slabs_partial, lru)
703 if (is_slab_pfmemalloc(page))
072bb0aa
MG
704 goto out;
705
8456a648
JK
706 list_for_each_entry(page, &n->slabs_free, lru)
707 if (is_slab_pfmemalloc(page))
072bb0aa
MG
708 goto out;
709
710 pfmemalloc_active = false;
711out:
ce8eb6c4 712 spin_unlock_irqrestore(&n->list_lock, flags);
072bb0aa
MG
713}
714
381760ea 715static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
716 gfp_t flags, bool force_refill)
717{
718 int i;
719 void *objp = ac->entry[--ac->avail];
720
721 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
722 if (unlikely(is_obj_pfmemalloc(objp))) {
ce8eb6c4 723 struct kmem_cache_node *n;
072bb0aa
MG
724
725 if (gfp_pfmemalloc_allowed(flags)) {
726 clear_obj_pfmemalloc(&objp);
727 return objp;
728 }
729
730 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 731 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
732 /* If a !PFMEMALLOC object is found, swap them */
733 if (!is_obj_pfmemalloc(ac->entry[i])) {
734 objp = ac->entry[i];
735 ac->entry[i] = ac->entry[ac->avail];
736 ac->entry[ac->avail] = objp;
737 return objp;
738 }
739 }
740
741 /*
742 * If there are empty slabs on the slabs_free list and we are
743 * being forced to refill the cache, mark this one !pfmemalloc.
744 */
18bf8541 745 n = get_node(cachep, numa_mem_id());
ce8eb6c4 746 if (!list_empty(&n->slabs_free) && force_refill) {
8456a648 747 struct page *page = virt_to_head_page(objp);
7ecccf9d 748 ClearPageSlabPfmemalloc(page);
072bb0aa
MG
749 clear_obj_pfmemalloc(&objp);
750 recheck_pfmemalloc_active(cachep, ac);
751 return objp;
752 }
753
754 /* No !PFMEMALLOC objects available */
755 ac->avail++;
756 objp = NULL;
757 }
758
759 return objp;
760}
761
381760ea
MG
762static inline void *ac_get_obj(struct kmem_cache *cachep,
763 struct array_cache *ac, gfp_t flags, bool force_refill)
764{
765 void *objp;
766
767 if (unlikely(sk_memalloc_socks()))
768 objp = __ac_get_obj(cachep, ac, flags, force_refill);
769 else
770 objp = ac->entry[--ac->avail];
771
772 return objp;
773}
774
d3aec344
JK
775static noinline void *__ac_put_obj(struct kmem_cache *cachep,
776 struct array_cache *ac, void *objp)
072bb0aa
MG
777{
778 if (unlikely(pfmemalloc_active)) {
779 /* Some pfmemalloc slabs exist, check if this is one */
30c29bea 780 struct page *page = virt_to_head_page(objp);
072bb0aa
MG
781 if (PageSlabPfmemalloc(page))
782 set_obj_pfmemalloc(&objp);
783 }
784
381760ea
MG
785 return objp;
786}
787
788static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
789 void *objp)
790{
791 if (unlikely(sk_memalloc_socks()))
792 objp = __ac_put_obj(cachep, ac, objp);
793
072bb0aa
MG
794 ac->entry[ac->avail++] = objp;
795}
796
3ded175a
CL
797/*
798 * Transfer objects in one arraycache to another.
799 * Locking must be handled by the caller.
800 *
801 * Return the number of entries transferred.
802 */
803static int transfer_objects(struct array_cache *to,
804 struct array_cache *from, unsigned int max)
805{
806 /* Figure out how many entries to transfer */
732eacc0 807 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
808
809 if (!nr)
810 return 0;
811
812 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
813 sizeof(void *) *nr);
814
815 from->avail -= nr;
816 to->avail += nr;
3ded175a
CL
817 return nr;
818}
819
765c4507
CL
820#ifndef CONFIG_NUMA
821
822#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 823#define reap_alien(cachep, n) do { } while (0)
765c4507 824
c8522a3a
JK
825static inline struct alien_cache **alloc_alien_cache(int node,
826 int limit, gfp_t gfp)
765c4507 827{
edcad250 828 return (struct alien_cache **)BAD_ALIEN_MAGIC;
765c4507
CL
829}
830
c8522a3a 831static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
832{
833}
834
835static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
836{
837 return 0;
838}
839
840static inline void *alternate_node_alloc(struct kmem_cache *cachep,
841 gfp_t flags)
842{
843 return NULL;
844}
845
8b98c169 846static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
847 gfp_t flags, int nodeid)
848{
849 return NULL;
850}
851
4167e9b2
DR
852static inline gfp_t gfp_exact_node(gfp_t flags)
853{
854 return flags;
855}
856
765c4507
CL
857#else /* CONFIG_NUMA */
858
8b98c169 859static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 860static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 861
c8522a3a
JK
862static struct alien_cache *__alloc_alien_cache(int node, int entries,
863 int batch, gfp_t gfp)
864{
5e804789 865 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
866 struct alien_cache *alc = NULL;
867
868 alc = kmalloc_node(memsize, gfp, node);
869 init_arraycache(&alc->ac, entries, batch);
49dfc304 870 spin_lock_init(&alc->lock);
c8522a3a
JK
871 return alc;
872}
873
874static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 875{
c8522a3a 876 struct alien_cache **alc_ptr;
5e804789 877 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
878 int i;
879
880 if (limit > 1)
881 limit = 12;
c8522a3a
JK
882 alc_ptr = kzalloc_node(memsize, gfp, node);
883 if (!alc_ptr)
884 return NULL;
885
886 for_each_node(i) {
887 if (i == node || !node_online(i))
888 continue;
889 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
890 if (!alc_ptr[i]) {
891 for (i--; i >= 0; i--)
892 kfree(alc_ptr[i]);
893 kfree(alc_ptr);
894 return NULL;
e498be7d
CL
895 }
896 }
c8522a3a 897 return alc_ptr;
e498be7d
CL
898}
899
c8522a3a 900static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
901{
902 int i;
903
c8522a3a 904 if (!alc_ptr)
e498be7d 905 return;
e498be7d 906 for_each_node(i)
c8522a3a
JK
907 kfree(alc_ptr[i]);
908 kfree(alc_ptr);
e498be7d
CL
909}
910
343e0d7a 911static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
912 struct array_cache *ac, int node,
913 struct list_head *list)
e498be7d 914{
18bf8541 915 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
916
917 if (ac->avail) {
ce8eb6c4 918 spin_lock(&n->list_lock);
e00946fe
CL
919 /*
920 * Stuff objects into the remote nodes shared array first.
921 * That way we could avoid the overhead of putting the objects
922 * into the free lists and getting them back later.
923 */
ce8eb6c4
CL
924 if (n->shared)
925 transfer_objects(n->shared, ac, ac->limit);
e00946fe 926
833b706c 927 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 928 ac->avail = 0;
ce8eb6c4 929 spin_unlock(&n->list_lock);
e498be7d
CL
930 }
931}
932
8fce4d8e
CL
933/*
934 * Called from cache_reap() to regularly drain alien caches round robin.
935 */
ce8eb6c4 936static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 937{
909ea964 938 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 939
ce8eb6c4 940 if (n->alien) {
c8522a3a
JK
941 struct alien_cache *alc = n->alien[node];
942 struct array_cache *ac;
943
944 if (alc) {
945 ac = &alc->ac;
49dfc304 946 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
947 LIST_HEAD(list);
948
949 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 950 spin_unlock_irq(&alc->lock);
833b706c 951 slabs_destroy(cachep, &list);
c8522a3a 952 }
8fce4d8e
CL
953 }
954 }
955}
956
a737b3e2 957static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 958 struct alien_cache **alien)
e498be7d 959{
b28a02de 960 int i = 0;
c8522a3a 961 struct alien_cache *alc;
e498be7d
CL
962 struct array_cache *ac;
963 unsigned long flags;
964
965 for_each_online_node(i) {
c8522a3a
JK
966 alc = alien[i];
967 if (alc) {
833b706c
JK
968 LIST_HEAD(list);
969
c8522a3a 970 ac = &alc->ac;
49dfc304 971 spin_lock_irqsave(&alc->lock, flags);
833b706c 972 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 973 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 974 slabs_destroy(cachep, &list);
e498be7d
CL
975 }
976 }
977}
729bd0b7 978
25c4f304
JK
979static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
980 int node, int page_node)
729bd0b7 981{
ce8eb6c4 982 struct kmem_cache_node *n;
c8522a3a
JK
983 struct alien_cache *alien = NULL;
984 struct array_cache *ac;
97654dfa 985 LIST_HEAD(list);
1ca4cb24 986
18bf8541 987 n = get_node(cachep, node);
729bd0b7 988 STATS_INC_NODEFREES(cachep);
25c4f304
JK
989 if (n->alien && n->alien[page_node]) {
990 alien = n->alien[page_node];
c8522a3a 991 ac = &alien->ac;
49dfc304 992 spin_lock(&alien->lock);
c8522a3a 993 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 994 STATS_INC_ACOVERFLOW(cachep);
25c4f304 995 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 996 }
c8522a3a 997 ac_put_obj(cachep, ac, objp);
49dfc304 998 spin_unlock(&alien->lock);
833b706c 999 slabs_destroy(cachep, &list);
729bd0b7 1000 } else {
25c4f304 1001 n = get_node(cachep, page_node);
18bf8541 1002 spin_lock(&n->list_lock);
25c4f304 1003 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 1004 spin_unlock(&n->list_lock);
97654dfa 1005 slabs_destroy(cachep, &list);
729bd0b7
PE
1006 }
1007 return 1;
1008}
25c4f304
JK
1009
1010static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1011{
1012 int page_node = page_to_nid(virt_to_page(objp));
1013 int node = numa_mem_id();
1014 /*
1015 * Make sure we are not freeing a object from another node to the array
1016 * cache on this cpu.
1017 */
1018 if (likely(node == page_node))
1019 return 0;
1020
1021 return __cache_free_alien(cachep, objp, node, page_node);
1022}
4167e9b2
DR
1023
1024/*
d0164adc
MG
1025 * Construct gfp mask to allocate from a specific node but do not direct reclaim
1026 * or warn about failures. kswapd may still wake to reclaim in the background.
4167e9b2
DR
1027 */
1028static inline gfp_t gfp_exact_node(gfp_t flags)
1029{
d0164adc 1030 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_DIRECT_RECLAIM;
4167e9b2 1031}
e498be7d
CL
1032#endif
1033
8f9f8d9e 1034/*
6a67368c 1035 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 1036 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 1037 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 1038 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
1039 * already in use.
1040 *
18004c5d 1041 * Must hold slab_mutex.
8f9f8d9e 1042 */
6a67368c 1043static int init_cache_node_node(int node)
8f9f8d9e
DR
1044{
1045 struct kmem_cache *cachep;
ce8eb6c4 1046 struct kmem_cache_node *n;
5e804789 1047 const size_t memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 1048
18004c5d 1049 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e 1050 /*
5f0985bb 1051 * Set up the kmem_cache_node for cpu before we can
8f9f8d9e
DR
1052 * begin anything. Make sure some other cpu on this
1053 * node has not already allocated this
1054 */
18bf8541
CL
1055 n = get_node(cachep, node);
1056 if (!n) {
ce8eb6c4
CL
1057 n = kmalloc_node(memsize, GFP_KERNEL, node);
1058 if (!n)
8f9f8d9e 1059 return -ENOMEM;
ce8eb6c4 1060 kmem_cache_node_init(n);
5f0985bb
JZ
1061 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1062 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
8f9f8d9e
DR
1063
1064 /*
5f0985bb
JZ
1065 * The kmem_cache_nodes don't come and go as CPUs
1066 * come and go. slab_mutex is sufficient
8f9f8d9e
DR
1067 * protection here.
1068 */
ce8eb6c4 1069 cachep->node[node] = n;
8f9f8d9e
DR
1070 }
1071
18bf8541
CL
1072 spin_lock_irq(&n->list_lock);
1073 n->free_limit =
8f9f8d9e
DR
1074 (1 + nr_cpus_node(node)) *
1075 cachep->batchcount + cachep->num;
18bf8541 1076 spin_unlock_irq(&n->list_lock);
8f9f8d9e
DR
1077 }
1078 return 0;
1079}
1080
0fa8103b
WL
1081static inline int slabs_tofree(struct kmem_cache *cachep,
1082 struct kmem_cache_node *n)
1083{
1084 return (n->free_objects + cachep->num - 1) / cachep->num;
1085}
1086
0db0628d 1087static void cpuup_canceled(long cpu)
fbf1e473
AM
1088{
1089 struct kmem_cache *cachep;
ce8eb6c4 1090 struct kmem_cache_node *n = NULL;
7d6e6d09 1091 int node = cpu_to_mem(cpu);
a70f7302 1092 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1093
18004c5d 1094 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1095 struct array_cache *nc;
1096 struct array_cache *shared;
c8522a3a 1097 struct alien_cache **alien;
97654dfa 1098 LIST_HEAD(list);
fbf1e473 1099
18bf8541 1100 n = get_node(cachep, node);
ce8eb6c4 1101 if (!n)
bf0dea23 1102 continue;
fbf1e473 1103
ce8eb6c4 1104 spin_lock_irq(&n->list_lock);
fbf1e473 1105
ce8eb6c4
CL
1106 /* Free limit for this kmem_cache_node */
1107 n->free_limit -= cachep->batchcount;
bf0dea23
JK
1108
1109 /* cpu is dead; no one can alloc from it. */
1110 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1111 if (nc) {
97654dfa 1112 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
1113 nc->avail = 0;
1114 }
fbf1e473 1115
58463c1f 1116 if (!cpumask_empty(mask)) {
ce8eb6c4 1117 spin_unlock_irq(&n->list_lock);
bf0dea23 1118 goto free_slab;
fbf1e473
AM
1119 }
1120
ce8eb6c4 1121 shared = n->shared;
fbf1e473
AM
1122 if (shared) {
1123 free_block(cachep, shared->entry,
97654dfa 1124 shared->avail, node, &list);
ce8eb6c4 1125 n->shared = NULL;
fbf1e473
AM
1126 }
1127
ce8eb6c4
CL
1128 alien = n->alien;
1129 n->alien = NULL;
fbf1e473 1130
ce8eb6c4 1131 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1132
1133 kfree(shared);
1134 if (alien) {
1135 drain_alien_cache(cachep, alien);
1136 free_alien_cache(alien);
1137 }
bf0dea23
JK
1138
1139free_slab:
97654dfa 1140 slabs_destroy(cachep, &list);
fbf1e473
AM
1141 }
1142 /*
1143 * In the previous loop, all the objects were freed to
1144 * the respective cache's slabs, now we can go ahead and
1145 * shrink each nodelist to its limit.
1146 */
18004c5d 1147 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1148 n = get_node(cachep, node);
ce8eb6c4 1149 if (!n)
fbf1e473 1150 continue;
0fa8103b 1151 drain_freelist(cachep, n, slabs_tofree(cachep, n));
fbf1e473
AM
1152 }
1153}
1154
0db0628d 1155static int cpuup_prepare(long cpu)
1da177e4 1156{
343e0d7a 1157 struct kmem_cache *cachep;
ce8eb6c4 1158 struct kmem_cache_node *n = NULL;
7d6e6d09 1159 int node = cpu_to_mem(cpu);
8f9f8d9e 1160 int err;
1da177e4 1161
fbf1e473
AM
1162 /*
1163 * We need to do this right in the beginning since
1164 * alloc_arraycache's are going to use this list.
1165 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1166 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1167 */
6a67368c 1168 err = init_cache_node_node(node);
8f9f8d9e
DR
1169 if (err < 0)
1170 goto bad;
fbf1e473
AM
1171
1172 /*
1173 * Now we can go ahead with allocating the shared arrays and
1174 * array caches
1175 */
18004c5d 1176 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473 1177 struct array_cache *shared = NULL;
c8522a3a 1178 struct alien_cache **alien = NULL;
fbf1e473 1179
fbf1e473
AM
1180 if (cachep->shared) {
1181 shared = alloc_arraycache(node,
1182 cachep->shared * cachep->batchcount,
83b519e8 1183 0xbaadf00d, GFP_KERNEL);
bf0dea23 1184 if (!shared)
1da177e4 1185 goto bad;
fbf1e473
AM
1186 }
1187 if (use_alien_caches) {
83b519e8 1188 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1189 if (!alien) {
1190 kfree(shared);
fbf1e473 1191 goto bad;
12d00f6a 1192 }
fbf1e473 1193 }
18bf8541 1194 n = get_node(cachep, node);
ce8eb6c4 1195 BUG_ON(!n);
fbf1e473 1196
ce8eb6c4
CL
1197 spin_lock_irq(&n->list_lock);
1198 if (!n->shared) {
fbf1e473
AM
1199 /*
1200 * We are serialised from CPU_DEAD or
1201 * CPU_UP_CANCELLED by the cpucontrol lock
1202 */
ce8eb6c4 1203 n->shared = shared;
fbf1e473
AM
1204 shared = NULL;
1205 }
4484ebf1 1206#ifdef CONFIG_NUMA
ce8eb6c4
CL
1207 if (!n->alien) {
1208 n->alien = alien;
fbf1e473 1209 alien = NULL;
1da177e4 1210 }
fbf1e473 1211#endif
ce8eb6c4 1212 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1213 kfree(shared);
1214 free_alien_cache(alien);
1215 }
ce79ddc8 1216
fbf1e473
AM
1217 return 0;
1218bad:
12d00f6a 1219 cpuup_canceled(cpu);
fbf1e473
AM
1220 return -ENOMEM;
1221}
1222
0db0628d 1223static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1224 unsigned long action, void *hcpu)
1225{
1226 long cpu = (long)hcpu;
1227 int err = 0;
1228
1229 switch (action) {
fbf1e473
AM
1230 case CPU_UP_PREPARE:
1231 case CPU_UP_PREPARE_FROZEN:
18004c5d 1232 mutex_lock(&slab_mutex);
fbf1e473 1233 err = cpuup_prepare(cpu);
18004c5d 1234 mutex_unlock(&slab_mutex);
1da177e4
LT
1235 break;
1236 case CPU_ONLINE:
8bb78442 1237 case CPU_ONLINE_FROZEN:
1da177e4
LT
1238 start_cpu_timer(cpu);
1239 break;
1240#ifdef CONFIG_HOTPLUG_CPU
5830c590 1241 case CPU_DOWN_PREPARE:
8bb78442 1242 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1243 /*
18004c5d 1244 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1245 * held so that if cache_reap() is invoked it cannot do
1246 * anything expensive but will only modify reap_work
1247 * and reschedule the timer.
1248 */
afe2c511 1249 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1250 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1251 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1252 break;
1253 case CPU_DOWN_FAILED:
8bb78442 1254 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1255 start_cpu_timer(cpu);
1256 break;
1da177e4 1257 case CPU_DEAD:
8bb78442 1258 case CPU_DEAD_FROZEN:
4484ebf1
RT
1259 /*
1260 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1261 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1262 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1263 * memory from the node of the cpu going down. The node
4484ebf1
RT
1264 * structure is usually allocated from kmem_cache_create() and
1265 * gets destroyed at kmem_cache_destroy().
1266 */
183ff22b 1267 /* fall through */
8f5be20b 1268#endif
1da177e4 1269 case CPU_UP_CANCELED:
8bb78442 1270 case CPU_UP_CANCELED_FROZEN:
18004c5d 1271 mutex_lock(&slab_mutex);
fbf1e473 1272 cpuup_canceled(cpu);
18004c5d 1273 mutex_unlock(&slab_mutex);
1da177e4 1274 break;
1da177e4 1275 }
eac40680 1276 return notifier_from_errno(err);
1da177e4
LT
1277}
1278
0db0628d 1279static struct notifier_block cpucache_notifier = {
74b85f37
CS
1280 &cpuup_callback, NULL, 0
1281};
1da177e4 1282
8f9f8d9e
DR
1283#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1284/*
1285 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1286 * Returns -EBUSY if all objects cannot be drained so that the node is not
1287 * removed.
1288 *
18004c5d 1289 * Must hold slab_mutex.
8f9f8d9e 1290 */
6a67368c 1291static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1292{
1293 struct kmem_cache *cachep;
1294 int ret = 0;
1295
18004c5d 1296 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1297 struct kmem_cache_node *n;
8f9f8d9e 1298
18bf8541 1299 n = get_node(cachep, node);
ce8eb6c4 1300 if (!n)
8f9f8d9e
DR
1301 continue;
1302
0fa8103b 1303 drain_freelist(cachep, n, slabs_tofree(cachep, n));
8f9f8d9e 1304
ce8eb6c4
CL
1305 if (!list_empty(&n->slabs_full) ||
1306 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1307 ret = -EBUSY;
1308 break;
1309 }
1310 }
1311 return ret;
1312}
1313
1314static int __meminit slab_memory_callback(struct notifier_block *self,
1315 unsigned long action, void *arg)
1316{
1317 struct memory_notify *mnb = arg;
1318 int ret = 0;
1319 int nid;
1320
1321 nid = mnb->status_change_nid;
1322 if (nid < 0)
1323 goto out;
1324
1325 switch (action) {
1326 case MEM_GOING_ONLINE:
18004c5d 1327 mutex_lock(&slab_mutex);
6a67368c 1328 ret = init_cache_node_node(nid);
18004c5d 1329 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1330 break;
1331 case MEM_GOING_OFFLINE:
18004c5d 1332 mutex_lock(&slab_mutex);
6a67368c 1333 ret = drain_cache_node_node(nid);
18004c5d 1334 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1335 break;
1336 case MEM_ONLINE:
1337 case MEM_OFFLINE:
1338 case MEM_CANCEL_ONLINE:
1339 case MEM_CANCEL_OFFLINE:
1340 break;
1341 }
1342out:
5fda1bd5 1343 return notifier_from_errno(ret);
8f9f8d9e
DR
1344}
1345#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1346
e498be7d 1347/*
ce8eb6c4 1348 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1349 */
6744f087 1350static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1351 int nodeid)
e498be7d 1352{
6744f087 1353 struct kmem_cache_node *ptr;
e498be7d 1354
6744f087 1355 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1356 BUG_ON(!ptr);
1357
6744f087 1358 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1359 /*
1360 * Do not assume that spinlocks can be initialized via memcpy:
1361 */
1362 spin_lock_init(&ptr->list_lock);
1363
e498be7d 1364 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1365 cachep->node[nodeid] = ptr;
e498be7d
CL
1366}
1367
556a169d 1368/*
ce8eb6c4
CL
1369 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1370 * size of kmem_cache_node.
556a169d 1371 */
ce8eb6c4 1372static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1373{
1374 int node;
1375
1376 for_each_online_node(node) {
ce8eb6c4 1377 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1378 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1379 REAPTIMEOUT_NODE +
1380 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1381 }
1382}
1383
a737b3e2
AM
1384/*
1385 * Initialisation. Called after the page allocator have been initialised and
1386 * before smp_init().
1da177e4
LT
1387 */
1388void __init kmem_cache_init(void)
1389{
e498be7d
CL
1390 int i;
1391
68126702
JK
1392 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1393 sizeof(struct rcu_head));
9b030cb8
CL
1394 kmem_cache = &kmem_cache_boot;
1395
b6e68bc1 1396 if (num_possible_nodes() == 1)
62918a03
SS
1397 use_alien_caches = 0;
1398
3c583465 1399 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1400 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1401
1da177e4
LT
1402 /*
1403 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1404 * page orders on machines with more than 32MB of memory if
1405 * not overridden on the command line.
1da177e4 1406 */
3df1cccd 1407 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1408 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1409
1da177e4
LT
1410 /* Bootstrap is tricky, because several objects are allocated
1411 * from caches that do not exist yet:
9b030cb8
CL
1412 * 1) initialize the kmem_cache cache: it contains the struct
1413 * kmem_cache structures of all caches, except kmem_cache itself:
1414 * kmem_cache is statically allocated.
e498be7d 1415 * Initially an __init data area is used for the head array and the
ce8eb6c4 1416 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1417 * array at the end of the bootstrap.
1da177e4 1418 * 2) Create the first kmalloc cache.
343e0d7a 1419 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1420 * An __init data area is used for the head array.
1421 * 3) Create the remaining kmalloc caches, with minimally sized
1422 * head arrays.
9b030cb8 1423 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1424 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1425 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1426 * the other cache's with kmalloc allocated memory.
1427 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1428 */
1429
9b030cb8 1430 /* 1) create the kmem_cache */
1da177e4 1431
8da3430d 1432 /*
b56efcf0 1433 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1434 */
2f9baa9f 1435 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1436 offsetof(struct kmem_cache, node) +
6744f087 1437 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1438 SLAB_HWCACHE_ALIGN);
1439 list_add(&kmem_cache->list, &slab_caches);
bf0dea23 1440 slab_state = PARTIAL;
1da177e4 1441
a737b3e2 1442 /*
bf0dea23
JK
1443 * Initialize the caches that provide memory for the kmem_cache_node
1444 * structures first. Without this, further allocations will bug.
e498be7d 1445 */
bf0dea23 1446 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
ce8eb6c4 1447 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
bf0dea23 1448 slab_state = PARTIAL_NODE;
34cc6990 1449 setup_kmalloc_cache_index_table();
e498be7d 1450
e0a42726
IM
1451 slab_early_init = 0;
1452
ce8eb6c4 1453 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1454 {
1ca4cb24
PE
1455 int nid;
1456
9c09a95c 1457 for_each_online_node(nid) {
ce8eb6c4 1458 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1459
bf0dea23 1460 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1461 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1462 }
1463 }
1da177e4 1464
f97d5f63 1465 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1466}
1467
1468void __init kmem_cache_init_late(void)
1469{
1470 struct kmem_cache *cachep;
1471
97d06609 1472 slab_state = UP;
52cef189 1473
8429db5c 1474 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1475 mutex_lock(&slab_mutex);
1476 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1477 if (enable_cpucache(cachep, GFP_NOWAIT))
1478 BUG();
18004c5d 1479 mutex_unlock(&slab_mutex);
056c6241 1480
97d06609
CL
1481 /* Done! */
1482 slab_state = FULL;
1483
a737b3e2
AM
1484 /*
1485 * Register a cpu startup notifier callback that initializes
1486 * cpu_cache_get for all new cpus
1da177e4
LT
1487 */
1488 register_cpu_notifier(&cpucache_notifier);
1da177e4 1489
8f9f8d9e
DR
1490#ifdef CONFIG_NUMA
1491 /*
1492 * Register a memory hotplug callback that initializes and frees
6a67368c 1493 * node.
8f9f8d9e
DR
1494 */
1495 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1496#endif
1497
a737b3e2
AM
1498 /*
1499 * The reap timers are started later, with a module init call: That part
1500 * of the kernel is not yet operational.
1da177e4
LT
1501 */
1502}
1503
1504static int __init cpucache_init(void)
1505{
1506 int cpu;
1507
a737b3e2
AM
1508 /*
1509 * Register the timers that return unneeded pages to the page allocator
1da177e4 1510 */
e498be7d 1511 for_each_online_cpu(cpu)
a737b3e2 1512 start_cpu_timer(cpu);
a164f896
GC
1513
1514 /* Done! */
97d06609 1515 slab_state = FULL;
1da177e4
LT
1516 return 0;
1517}
1da177e4
LT
1518__initcall(cpucache_init);
1519
8bdec192
RA
1520static noinline void
1521slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1522{
9a02d699 1523#if DEBUG
ce8eb6c4 1524 struct kmem_cache_node *n;
8456a648 1525 struct page *page;
8bdec192
RA
1526 unsigned long flags;
1527 int node;
9a02d699
DR
1528 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1529 DEFAULT_RATELIMIT_BURST);
1530
1531 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1532 return;
8bdec192
RA
1533
1534 printk(KERN_WARNING
1535 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1536 nodeid, gfpflags);
1537 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1538 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1539
18bf8541 1540 for_each_kmem_cache_node(cachep, node, n) {
8bdec192
RA
1541 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1542 unsigned long active_slabs = 0, num_slabs = 0;
1543
ce8eb6c4 1544 spin_lock_irqsave(&n->list_lock, flags);
8456a648 1545 list_for_each_entry(page, &n->slabs_full, lru) {
8bdec192
RA
1546 active_objs += cachep->num;
1547 active_slabs++;
1548 }
8456a648
JK
1549 list_for_each_entry(page, &n->slabs_partial, lru) {
1550 active_objs += page->active;
8bdec192
RA
1551 active_slabs++;
1552 }
8456a648 1553 list_for_each_entry(page, &n->slabs_free, lru)
8bdec192
RA
1554 num_slabs++;
1555
ce8eb6c4
CL
1556 free_objects += n->free_objects;
1557 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1558
1559 num_slabs += active_slabs;
1560 num_objs = num_slabs * cachep->num;
1561 printk(KERN_WARNING
1562 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1563 node, active_slabs, num_slabs, active_objs, num_objs,
1564 free_objects);
1565 }
9a02d699 1566#endif
8bdec192
RA
1567}
1568
1da177e4 1569/*
8a7d9b43
WSH
1570 * Interface to system's page allocator. No need to hold the
1571 * kmem_cache_node ->list_lock.
1da177e4
LT
1572 *
1573 * If we requested dmaable memory, we will get it. Even if we
1574 * did not request dmaable memory, we might get it, but that
1575 * would be relatively rare and ignorable.
1576 */
0c3aa83e
JK
1577static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1578 int nodeid)
1da177e4
LT
1579{
1580 struct page *page;
e1b6aa6f 1581 int nr_pages;
765c4507 1582
a618e89f 1583 flags |= cachep->allocflags;
e12ba74d
MG
1584 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1585 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1586
96db800f 1587 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192 1588 if (!page) {
9a02d699 1589 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1590 return NULL;
8bdec192 1591 }
1da177e4 1592
f3ccb2c4
VD
1593 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1594 __free_pages(page, cachep->gfporder);
1595 return NULL;
1596 }
1597
b37f1dd0 1598 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
2f064f34 1599 if (page_is_pfmemalloc(page))
072bb0aa
MG
1600 pfmemalloc_active = true;
1601
e1b6aa6f 1602 nr_pages = (1 << cachep->gfporder);
1da177e4 1603 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1604 add_zone_page_state(page_zone(page),
1605 NR_SLAB_RECLAIMABLE, nr_pages);
1606 else
1607 add_zone_page_state(page_zone(page),
1608 NR_SLAB_UNRECLAIMABLE, nr_pages);
a57a4988 1609 __SetPageSlab(page);
2f064f34 1610 if (page_is_pfmemalloc(page))
a57a4988 1611 SetPageSlabPfmemalloc(page);
072bb0aa 1612
b1eeab67
VN
1613 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1614 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1615
1616 if (cachep->ctor)
1617 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1618 else
1619 kmemcheck_mark_unallocated_pages(page, nr_pages);
1620 }
c175eea4 1621
0c3aa83e 1622 return page;
1da177e4
LT
1623}
1624
1625/*
1626 * Interface to system's page release.
1627 */
0c3aa83e 1628static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1629{
a57a4988 1630 const unsigned long nr_freed = (1 << cachep->gfporder);
1da177e4 1631
b1eeab67 1632 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1633
972d1a7b
CL
1634 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1635 sub_zone_page_state(page_zone(page),
1636 NR_SLAB_RECLAIMABLE, nr_freed);
1637 else
1638 sub_zone_page_state(page_zone(page),
1639 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1640
a57a4988 1641 BUG_ON(!PageSlab(page));
73293c2f 1642 __ClearPageSlabPfmemalloc(page);
a57a4988 1643 __ClearPageSlab(page);
8456a648
JK
1644 page_mapcount_reset(page);
1645 page->mapping = NULL;
1f458cbf 1646
1da177e4
LT
1647 if (current->reclaim_state)
1648 current->reclaim_state->reclaimed_slab += nr_freed;
f3ccb2c4 1649 __free_kmem_pages(page, cachep->gfporder);
1da177e4
LT
1650}
1651
1652static void kmem_rcu_free(struct rcu_head *head)
1653{
68126702
JK
1654 struct kmem_cache *cachep;
1655 struct page *page;
1da177e4 1656
68126702
JK
1657 page = container_of(head, struct page, rcu_head);
1658 cachep = page->slab_cache;
1659
1660 kmem_freepages(cachep, page);
1da177e4
LT
1661}
1662
1663#if DEBUG
1664
1665#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1666static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1667 unsigned long caller)
1da177e4 1668{
8c138bc0 1669 int size = cachep->object_size;
1da177e4 1670
3dafccf2 1671 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1672
b28a02de 1673 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1674 return;
1675
b28a02de
PE
1676 *addr++ = 0x12345678;
1677 *addr++ = caller;
1678 *addr++ = smp_processor_id();
1679 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1680 {
1681 unsigned long *sptr = &caller;
1682 unsigned long svalue;
1683
1684 while (!kstack_end(sptr)) {
1685 svalue = *sptr++;
1686 if (kernel_text_address(svalue)) {
b28a02de 1687 *addr++ = svalue;
1da177e4
LT
1688 size -= sizeof(unsigned long);
1689 if (size <= sizeof(unsigned long))
1690 break;
1691 }
1692 }
1693
1694 }
b28a02de 1695 *addr++ = 0x87654321;
1da177e4
LT
1696}
1697#endif
1698
343e0d7a 1699static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1700{
8c138bc0 1701 int size = cachep->object_size;
3dafccf2 1702 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1703
1704 memset(addr, val, size);
b28a02de 1705 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1706}
1707
1708static void dump_line(char *data, int offset, int limit)
1709{
1710 int i;
aa83aa40
DJ
1711 unsigned char error = 0;
1712 int bad_count = 0;
1713
fdde6abb 1714 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1715 for (i = 0; i < limit; i++) {
1716 if (data[offset + i] != POISON_FREE) {
1717 error = data[offset + i];
1718 bad_count++;
1719 }
aa83aa40 1720 }
fdde6abb
SAS
1721 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1722 &data[offset], limit, 1);
aa83aa40
DJ
1723
1724 if (bad_count == 1) {
1725 error ^= POISON_FREE;
1726 if (!(error & (error - 1))) {
1727 printk(KERN_ERR "Single bit error detected. Probably "
1728 "bad RAM.\n");
1729#ifdef CONFIG_X86
1730 printk(KERN_ERR "Run memtest86+ or a similar memory "
1731 "test tool.\n");
1732#else
1733 printk(KERN_ERR "Run a memory test tool.\n");
1734#endif
1735 }
1736 }
1da177e4
LT
1737}
1738#endif
1739
1740#if DEBUG
1741
343e0d7a 1742static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1743{
1744 int i, size;
1745 char *realobj;
1746
1747 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1748 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1749 *dbg_redzone1(cachep, objp),
1750 *dbg_redzone2(cachep, objp));
1da177e4
LT
1751 }
1752
1753 if (cachep->flags & SLAB_STORE_USER) {
071361d3
JP
1754 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1755 *dbg_userword(cachep, objp),
1756 *dbg_userword(cachep, objp));
1da177e4 1757 }
3dafccf2 1758 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1759 size = cachep->object_size;
b28a02de 1760 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1761 int limit;
1762 limit = 16;
b28a02de
PE
1763 if (i + limit > size)
1764 limit = size - i;
1da177e4
LT
1765 dump_line(realobj, i, limit);
1766 }
1767}
1768
343e0d7a 1769static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1770{
1771 char *realobj;
1772 int size, i;
1773 int lines = 0;
1774
3dafccf2 1775 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1776 size = cachep->object_size;
1da177e4 1777
b28a02de 1778 for (i = 0; i < size; i++) {
1da177e4 1779 char exp = POISON_FREE;
b28a02de 1780 if (i == size - 1)
1da177e4
LT
1781 exp = POISON_END;
1782 if (realobj[i] != exp) {
1783 int limit;
1784 /* Mismatch ! */
1785 /* Print header */
1786 if (lines == 0) {
b28a02de 1787 printk(KERN_ERR
face37f5
DJ
1788 "Slab corruption (%s): %s start=%p, len=%d\n",
1789 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1790 print_objinfo(cachep, objp, 0);
1791 }
1792 /* Hexdump the affected line */
b28a02de 1793 i = (i / 16) * 16;
1da177e4 1794 limit = 16;
b28a02de
PE
1795 if (i + limit > size)
1796 limit = size - i;
1da177e4
LT
1797 dump_line(realobj, i, limit);
1798 i += 16;
1799 lines++;
1800 /* Limit to 5 lines */
1801 if (lines > 5)
1802 break;
1803 }
1804 }
1805 if (lines != 0) {
1806 /* Print some data about the neighboring objects, if they
1807 * exist:
1808 */
8456a648 1809 struct page *page = virt_to_head_page(objp);
8fea4e96 1810 unsigned int objnr;
1da177e4 1811
8456a648 1812 objnr = obj_to_index(cachep, page, objp);
1da177e4 1813 if (objnr) {
8456a648 1814 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1815 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1816 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1817 realobj, size);
1da177e4
LT
1818 print_objinfo(cachep, objp, 2);
1819 }
b28a02de 1820 if (objnr + 1 < cachep->num) {
8456a648 1821 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1822 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1823 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1824 realobj, size);
1da177e4
LT
1825 print_objinfo(cachep, objp, 2);
1826 }
1827 }
1828}
1829#endif
1830
12dd36fa 1831#if DEBUG
8456a648
JK
1832static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1833 struct page *page)
1da177e4 1834{
1da177e4
LT
1835 int i;
1836 for (i = 0; i < cachep->num; i++) {
8456a648 1837 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1838
1839 if (cachep->flags & SLAB_POISON) {
1840#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 1841 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 1842 OFF_SLAB(cachep))
b28a02de 1843 kernel_map_pages(virt_to_page(objp),
3b0efdfa 1844 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
1845 else
1846 check_poison_obj(cachep, objp);
1847#else
1848 check_poison_obj(cachep, objp);
1849#endif
1850 }
1851 if (cachep->flags & SLAB_RED_ZONE) {
1852 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1853 slab_error(cachep, "start of a freed object "
b28a02de 1854 "was overwritten");
1da177e4
LT
1855 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1856 slab_error(cachep, "end of a freed object "
b28a02de 1857 "was overwritten");
1da177e4 1858 }
1da177e4 1859 }
12dd36fa 1860}
1da177e4 1861#else
8456a648
JK
1862static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1863 struct page *page)
12dd36fa 1864{
12dd36fa 1865}
1da177e4
LT
1866#endif
1867
911851e6
RD
1868/**
1869 * slab_destroy - destroy and release all objects in a slab
1870 * @cachep: cache pointer being destroyed
cb8ee1a3 1871 * @page: page pointer being destroyed
911851e6 1872 *
8a7d9b43
WSH
1873 * Destroy all the objs in a slab page, and release the mem back to the system.
1874 * Before calling the slab page must have been unlinked from the cache. The
1875 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1876 */
8456a648 1877static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1878{
7e007355 1879 void *freelist;
12dd36fa 1880
8456a648
JK
1881 freelist = page->freelist;
1882 slab_destroy_debugcheck(cachep, page);
bc4f610d
KS
1883 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1884 call_rcu(&page->rcu_head, kmem_rcu_free);
1885 else
0c3aa83e 1886 kmem_freepages(cachep, page);
68126702
JK
1887
1888 /*
8456a648 1889 * From now on, we don't use freelist
68126702
JK
1890 * although actual page can be freed in rcu context
1891 */
1892 if (OFF_SLAB(cachep))
8456a648 1893 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1894}
1895
97654dfa
JK
1896static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1897{
1898 struct page *page, *n;
1899
1900 list_for_each_entry_safe(page, n, list, lru) {
1901 list_del(&page->lru);
1902 slab_destroy(cachep, page);
1903 }
1904}
1905
4d268eba 1906/**
a70773dd
RD
1907 * calculate_slab_order - calculate size (page order) of slabs
1908 * @cachep: pointer to the cache that is being created
1909 * @size: size of objects to be created in this cache.
1910 * @align: required alignment for the objects.
1911 * @flags: slab allocation flags
1912 *
1913 * Also calculates the number of objects per slab.
4d268eba
PE
1914 *
1915 * This could be made much more intelligent. For now, try to avoid using
1916 * high order pages for slabs. When the gfp() functions are more friendly
1917 * towards high-order requests, this should be changed.
1918 */
a737b3e2 1919static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1920 size_t size, size_t align, unsigned long flags)
4d268eba 1921{
b1ab41c4 1922 unsigned long offslab_limit;
4d268eba 1923 size_t left_over = 0;
9888e6fa 1924 int gfporder;
4d268eba 1925
0aa817f0 1926 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1927 unsigned int num;
1928 size_t remainder;
1929
9888e6fa 1930 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1931 if (!num)
1932 continue;
9888e6fa 1933
f315e3fa
JK
1934 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1935 if (num > SLAB_OBJ_MAX_NUM)
1936 break;
1937
b1ab41c4 1938 if (flags & CFLGS_OFF_SLAB) {
03787301 1939 size_t freelist_size_per_obj = sizeof(freelist_idx_t);
b1ab41c4
IM
1940 /*
1941 * Max number of objs-per-slab for caches which
1942 * use off-slab slabs. Needed to avoid a possible
1943 * looping condition in cache_grow().
1944 */
03787301
JK
1945 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
1946 freelist_size_per_obj += sizeof(char);
8456a648 1947 offslab_limit = size;
03787301 1948 offslab_limit /= freelist_size_per_obj;
b1ab41c4
IM
1949
1950 if (num > offslab_limit)
1951 break;
1952 }
4d268eba 1953
9888e6fa 1954 /* Found something acceptable - save it away */
4d268eba 1955 cachep->num = num;
9888e6fa 1956 cachep->gfporder = gfporder;
4d268eba
PE
1957 left_over = remainder;
1958
f78bb8ad
LT
1959 /*
1960 * A VFS-reclaimable slab tends to have most allocations
1961 * as GFP_NOFS and we really don't want to have to be allocating
1962 * higher-order pages when we are unable to shrink dcache.
1963 */
1964 if (flags & SLAB_RECLAIM_ACCOUNT)
1965 break;
1966
4d268eba
PE
1967 /*
1968 * Large number of objects is good, but very large slabs are
1969 * currently bad for the gfp()s.
1970 */
543585cc 1971 if (gfporder >= slab_max_order)
4d268eba
PE
1972 break;
1973
9888e6fa
LT
1974 /*
1975 * Acceptable internal fragmentation?
1976 */
a737b3e2 1977 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1978 break;
1979 }
1980 return left_over;
1981}
1982
bf0dea23
JK
1983static struct array_cache __percpu *alloc_kmem_cache_cpus(
1984 struct kmem_cache *cachep, int entries, int batchcount)
1985{
1986 int cpu;
1987 size_t size;
1988 struct array_cache __percpu *cpu_cache;
1989
1990 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1991 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1992
1993 if (!cpu_cache)
1994 return NULL;
1995
1996 for_each_possible_cpu(cpu) {
1997 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1998 entries, batchcount);
1999 }
2000
2001 return cpu_cache;
2002}
2003
83b519e8 2004static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2005{
97d06609 2006 if (slab_state >= FULL)
83b519e8 2007 return enable_cpucache(cachep, gfp);
2ed3a4ef 2008
bf0dea23
JK
2009 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2010 if (!cachep->cpu_cache)
2011 return 1;
2012
97d06609 2013 if (slab_state == DOWN) {
bf0dea23
JK
2014 /* Creation of first cache (kmem_cache). */
2015 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 2016 } else if (slab_state == PARTIAL) {
bf0dea23
JK
2017 /* For kmem_cache_node */
2018 set_up_node(cachep, SIZE_NODE);
f30cf7d1 2019 } else {
bf0dea23 2020 int node;
f30cf7d1 2021
bf0dea23
JK
2022 for_each_online_node(node) {
2023 cachep->node[node] = kmalloc_node(
2024 sizeof(struct kmem_cache_node), gfp, node);
2025 BUG_ON(!cachep->node[node]);
2026 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
2027 }
2028 }
bf0dea23 2029
6a67368c 2030 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
2031 jiffies + REAPTIMEOUT_NODE +
2032 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
2033
2034 cpu_cache_get(cachep)->avail = 0;
2035 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2036 cpu_cache_get(cachep)->batchcount = 1;
2037 cpu_cache_get(cachep)->touched = 0;
2038 cachep->batchcount = 1;
2039 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2040 return 0;
f30cf7d1
PE
2041}
2042
12220dea
JK
2043unsigned long kmem_cache_flags(unsigned long object_size,
2044 unsigned long flags, const char *name,
2045 void (*ctor)(void *))
2046{
2047 return flags;
2048}
2049
2050struct kmem_cache *
2051__kmem_cache_alias(const char *name, size_t size, size_t align,
2052 unsigned long flags, void (*ctor)(void *))
2053{
2054 struct kmem_cache *cachep;
2055
2056 cachep = find_mergeable(size, align, flags, name, ctor);
2057 if (cachep) {
2058 cachep->refcount++;
2059
2060 /*
2061 * Adjust the object sizes so that we clear
2062 * the complete object on kzalloc.
2063 */
2064 cachep->object_size = max_t(int, cachep->object_size, size);
2065 }
2066 return cachep;
2067}
2068
1da177e4 2069/**
039363f3 2070 * __kmem_cache_create - Create a cache.
a755b76a 2071 * @cachep: cache management descriptor
1da177e4 2072 * @flags: SLAB flags
1da177e4
LT
2073 *
2074 * Returns a ptr to the cache on success, NULL on failure.
2075 * Cannot be called within a int, but can be interrupted.
20c2df83 2076 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2077 *
1da177e4
LT
2078 * The flags are
2079 *
2080 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2081 * to catch references to uninitialised memory.
2082 *
2083 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2084 * for buffer overruns.
2085 *
1da177e4
LT
2086 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2087 * cacheline. This can be beneficial if you're counting cycles as closely
2088 * as davem.
2089 */
278b1bb1 2090int
8a13a4cc 2091__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2092{
d4a5fca5
DR
2093 size_t left_over, freelist_size;
2094 size_t ralign = BYTES_PER_WORD;
83b519e8 2095 gfp_t gfp;
278b1bb1 2096 int err;
8a13a4cc 2097 size_t size = cachep->size;
1da177e4 2098
1da177e4 2099#if DEBUG
1da177e4
LT
2100#if FORCED_DEBUG
2101 /*
2102 * Enable redzoning and last user accounting, except for caches with
2103 * large objects, if the increased size would increase the object size
2104 * above the next power of two: caches with object sizes just above a
2105 * power of two have a significant amount of internal fragmentation.
2106 */
87a927c7
DW
2107 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2108 2 * sizeof(unsigned long long)))
b28a02de 2109 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2110 if (!(flags & SLAB_DESTROY_BY_RCU))
2111 flags |= SLAB_POISON;
2112#endif
2113 if (flags & SLAB_DESTROY_BY_RCU)
2114 BUG_ON(flags & SLAB_POISON);
2115#endif
1da177e4 2116
a737b3e2
AM
2117 /*
2118 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2119 * unaligned accesses for some archs when redzoning is used, and makes
2120 * sure any on-slab bufctl's are also correctly aligned.
2121 */
b28a02de
PE
2122 if (size & (BYTES_PER_WORD - 1)) {
2123 size += (BYTES_PER_WORD - 1);
2124 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2125 }
2126
87a927c7
DW
2127 if (flags & SLAB_RED_ZONE) {
2128 ralign = REDZONE_ALIGN;
2129 /* If redzoning, ensure that the second redzone is suitably
2130 * aligned, by adjusting the object size accordingly. */
2131 size += REDZONE_ALIGN - 1;
2132 size &= ~(REDZONE_ALIGN - 1);
2133 }
ca5f9703 2134
a44b56d3 2135 /* 3) caller mandated alignment */
8a13a4cc
CL
2136 if (ralign < cachep->align) {
2137 ralign = cachep->align;
1da177e4 2138 }
3ff84a7f
PE
2139 /* disable debug if necessary */
2140 if (ralign > __alignof__(unsigned long long))
a44b56d3 2141 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2142 /*
ca5f9703 2143 * 4) Store it.
1da177e4 2144 */
8a13a4cc 2145 cachep->align = ralign;
1da177e4 2146
83b519e8
PE
2147 if (slab_is_available())
2148 gfp = GFP_KERNEL;
2149 else
2150 gfp = GFP_NOWAIT;
2151
1da177e4 2152#if DEBUG
1da177e4 2153
ca5f9703
PE
2154 /*
2155 * Both debugging options require word-alignment which is calculated
2156 * into align above.
2157 */
1da177e4 2158 if (flags & SLAB_RED_ZONE) {
1da177e4 2159 /* add space for red zone words */
3ff84a7f
PE
2160 cachep->obj_offset += sizeof(unsigned long long);
2161 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2162 }
2163 if (flags & SLAB_STORE_USER) {
ca5f9703 2164 /* user store requires one word storage behind the end of
87a927c7
DW
2165 * the real object. But if the second red zone needs to be
2166 * aligned to 64 bits, we must allow that much space.
1da177e4 2167 */
87a927c7
DW
2168 if (flags & SLAB_RED_ZONE)
2169 size += REDZONE_ALIGN;
2170 else
2171 size += BYTES_PER_WORD;
1da177e4
LT
2172 }
2173#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
03a2d2a3
JK
2174 /*
2175 * To activate debug pagealloc, off-slab management is necessary
2176 * requirement. In early phase of initialization, small sized slab
2177 * doesn't get initialized so it would not be possible. So, we need
2178 * to check size >= 256. It guarantees that all necessary small
2179 * sized slab is initialized in current slab initialization sequence.
2180 */
2181 if (!slab_early_init && size >= kmalloc_size(INDEX_NODE) &&
2182 size >= 256 && cachep->object_size > cache_line_size() &&
2183 ALIGN(size, cachep->align) < PAGE_SIZE) {
608da7e3 2184 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
1da177e4
LT
2185 size = PAGE_SIZE;
2186 }
2187#endif
2188#endif
2189
e0a42726
IM
2190 /*
2191 * Determine if the slab management is 'on' or 'off' slab.
2192 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2193 * it too early on. Always use on-slab management when
2194 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2195 */
d4322d88 2196 if (size >= OFF_SLAB_MIN_SIZE && !slab_early_init &&
e7cb55b9 2197 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2198 /*
2199 * Size is large, assume best to place the slab management obj
2200 * off-slab (should allow better packing of objs).
2201 */
2202 flags |= CFLGS_OFF_SLAB;
2203
8a13a4cc 2204 size = ALIGN(size, cachep->align);
f315e3fa
JK
2205 /*
2206 * We should restrict the number of objects in a slab to implement
2207 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2208 */
2209 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2210 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
1da177e4 2211
8a13a4cc 2212 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2213
8a13a4cc 2214 if (!cachep->num)
278b1bb1 2215 return -E2BIG;
1da177e4 2216
03787301 2217 freelist_size = calculate_freelist_size(cachep->num, cachep->align);
1da177e4
LT
2218
2219 /*
2220 * If the slab has been placed off-slab, and we have enough space then
2221 * move it on-slab. This is at the expense of any extra colouring.
2222 */
8456a648 2223 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
1da177e4 2224 flags &= ~CFLGS_OFF_SLAB;
8456a648 2225 left_over -= freelist_size;
1da177e4
LT
2226 }
2227
2228 if (flags & CFLGS_OFF_SLAB) {
2229 /* really off slab. No need for manual alignment */
03787301 2230 freelist_size = calculate_freelist_size(cachep->num, 0);
67461365
RL
2231
2232#ifdef CONFIG_PAGE_POISONING
2233 /* If we're going to use the generic kernel_map_pages()
2234 * poisoning, then it's going to smash the contents of
2235 * the redzone and userword anyhow, so switch them off.
2236 */
2237 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2238 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2239#endif
1da177e4
LT
2240 }
2241
2242 cachep->colour_off = cache_line_size();
2243 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2244 if (cachep->colour_off < cachep->align)
2245 cachep->colour_off = cachep->align;
b28a02de 2246 cachep->colour = left_over / cachep->colour_off;
8456a648 2247 cachep->freelist_size = freelist_size;
1da177e4 2248 cachep->flags = flags;
a57a4988 2249 cachep->allocflags = __GFP_COMP;
4b51d669 2250 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2251 cachep->allocflags |= GFP_DMA;
3b0efdfa 2252 cachep->size = size;
6a2d7a95 2253 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2254
e5ac9c5a 2255 if (flags & CFLGS_OFF_SLAB) {
8456a648 2256 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
e5ac9c5a 2257 /*
5f0985bb 2258 * This is a possibility for one of the kmalloc_{dma,}_caches.
e5ac9c5a 2259 * But since we go off slab only for object size greater than
d4322d88 2260 * OFF_SLAB_MIN_SIZE, and kmalloc_{dma,}_caches get created
5f0985bb 2261 * in ascending order,this should not happen at all.
e5ac9c5a
RT
2262 * But leave a BUG_ON for some lucky dude.
2263 */
8456a648 2264 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
e5ac9c5a 2265 }
1da177e4 2266
278b1bb1
CL
2267 err = setup_cpu_cache(cachep, gfp);
2268 if (err) {
52b4b950 2269 __kmem_cache_release(cachep);
278b1bb1 2270 return err;
2ed3a4ef 2271 }
1da177e4 2272
278b1bb1 2273 return 0;
1da177e4 2274}
1da177e4
LT
2275
2276#if DEBUG
2277static void check_irq_off(void)
2278{
2279 BUG_ON(!irqs_disabled());
2280}
2281
2282static void check_irq_on(void)
2283{
2284 BUG_ON(irqs_disabled());
2285}
2286
343e0d7a 2287static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2288{
2289#ifdef CONFIG_SMP
2290 check_irq_off();
18bf8541 2291 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2292#endif
2293}
e498be7d 2294
343e0d7a 2295static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2296{
2297#ifdef CONFIG_SMP
2298 check_irq_off();
18bf8541 2299 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2300#endif
2301}
2302
1da177e4
LT
2303#else
2304#define check_irq_off() do { } while(0)
2305#define check_irq_on() do { } while(0)
2306#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2307#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2308#endif
2309
ce8eb6c4 2310static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
aab2207c
CL
2311 struct array_cache *ac,
2312 int force, int node);
2313
1da177e4
LT
2314static void do_drain(void *arg)
2315{
a737b3e2 2316 struct kmem_cache *cachep = arg;
1da177e4 2317 struct array_cache *ac;
7d6e6d09 2318 int node = numa_mem_id();
18bf8541 2319 struct kmem_cache_node *n;
97654dfa 2320 LIST_HEAD(list);
1da177e4
LT
2321
2322 check_irq_off();
9a2dba4b 2323 ac = cpu_cache_get(cachep);
18bf8541
CL
2324 n = get_node(cachep, node);
2325 spin_lock(&n->list_lock);
97654dfa 2326 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2327 spin_unlock(&n->list_lock);
97654dfa 2328 slabs_destroy(cachep, &list);
1da177e4
LT
2329 ac->avail = 0;
2330}
2331
343e0d7a 2332static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2333{
ce8eb6c4 2334 struct kmem_cache_node *n;
e498be7d
CL
2335 int node;
2336
15c8b6c1 2337 on_each_cpu(do_drain, cachep, 1);
1da177e4 2338 check_irq_on();
18bf8541
CL
2339 for_each_kmem_cache_node(cachep, node, n)
2340 if (n->alien)
ce8eb6c4 2341 drain_alien_cache(cachep, n->alien);
a4523a8b 2342
18bf8541
CL
2343 for_each_kmem_cache_node(cachep, node, n)
2344 drain_array(cachep, n, n->shared, 1, node);
1da177e4
LT
2345}
2346
ed11d9eb
CL
2347/*
2348 * Remove slabs from the list of free slabs.
2349 * Specify the number of slabs to drain in tofree.
2350 *
2351 * Returns the actual number of slabs released.
2352 */
2353static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2354 struct kmem_cache_node *n, int tofree)
1da177e4 2355{
ed11d9eb
CL
2356 struct list_head *p;
2357 int nr_freed;
8456a648 2358 struct page *page;
1da177e4 2359
ed11d9eb 2360 nr_freed = 0;
ce8eb6c4 2361 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2362
ce8eb6c4
CL
2363 spin_lock_irq(&n->list_lock);
2364 p = n->slabs_free.prev;
2365 if (p == &n->slabs_free) {
2366 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2367 goto out;
2368 }
1da177e4 2369
8456a648 2370 page = list_entry(p, struct page, lru);
1da177e4 2371#if DEBUG
8456a648 2372 BUG_ON(page->active);
1da177e4 2373#endif
8456a648 2374 list_del(&page->lru);
ed11d9eb
CL
2375 /*
2376 * Safe to drop the lock. The slab is no longer linked
2377 * to the cache.
2378 */
ce8eb6c4
CL
2379 n->free_objects -= cache->num;
2380 spin_unlock_irq(&n->list_lock);
8456a648 2381 slab_destroy(cache, page);
ed11d9eb 2382 nr_freed++;
1da177e4 2383 }
ed11d9eb
CL
2384out:
2385 return nr_freed;
1da177e4
LT
2386}
2387
d6e0b7fa 2388int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
e498be7d 2389{
18bf8541
CL
2390 int ret = 0;
2391 int node;
ce8eb6c4 2392 struct kmem_cache_node *n;
e498be7d
CL
2393
2394 drain_cpu_caches(cachep);
2395
2396 check_irq_on();
18bf8541 2397 for_each_kmem_cache_node(cachep, node, n) {
0fa8103b 2398 drain_freelist(cachep, n, slabs_tofree(cachep, n));
ed11d9eb 2399
ce8eb6c4
CL
2400 ret += !list_empty(&n->slabs_full) ||
2401 !list_empty(&n->slabs_partial);
e498be7d
CL
2402 }
2403 return (ret ? 1 : 0);
2404}
2405
945cf2b6 2406int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950
DS
2407{
2408 return __kmem_cache_shrink(cachep, false);
2409}
2410
2411void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2412{
12c3667f 2413 int i;
ce8eb6c4 2414 struct kmem_cache_node *n;
1da177e4 2415
bf0dea23 2416 free_percpu(cachep->cpu_cache);
1da177e4 2417
ce8eb6c4 2418 /* NUMA: free the node structures */
18bf8541
CL
2419 for_each_kmem_cache_node(cachep, i, n) {
2420 kfree(n->shared);
2421 free_alien_cache(n->alien);
2422 kfree(n);
2423 cachep->node[i] = NULL;
12c3667f 2424 }
1da177e4 2425}
1da177e4 2426
e5ac9c5a
RT
2427/*
2428 * Get the memory for a slab management obj.
5f0985bb
JZ
2429 *
2430 * For a slab cache when the slab descriptor is off-slab, the
2431 * slab descriptor can't come from the same cache which is being created,
2432 * Because if it is the case, that means we defer the creation of
2433 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2434 * And we eventually call down to __kmem_cache_create(), which
2435 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2436 * This is a "chicken-and-egg" problem.
2437 *
2438 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2439 * which are all initialized during kmem_cache_init().
e5ac9c5a 2440 */
7e007355 2441static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2442 struct page *page, int colour_off,
2443 gfp_t local_flags, int nodeid)
1da177e4 2444{
7e007355 2445 void *freelist;
0c3aa83e 2446 void *addr = page_address(page);
b28a02de 2447
1da177e4
LT
2448 if (OFF_SLAB(cachep)) {
2449 /* Slab management obj is off-slab. */
8456a648 2450 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2451 local_flags, nodeid);
8456a648 2452 if (!freelist)
1da177e4
LT
2453 return NULL;
2454 } else {
8456a648
JK
2455 freelist = addr + colour_off;
2456 colour_off += cachep->freelist_size;
1da177e4 2457 }
8456a648
JK
2458 page->active = 0;
2459 page->s_mem = addr + colour_off;
2460 return freelist;
1da177e4
LT
2461}
2462
7cc68973 2463static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2464{
a41adfaa 2465 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2466}
2467
2468static inline void set_free_obj(struct page *page,
7cc68973 2469 unsigned int idx, freelist_idx_t val)
e5c58dfd 2470{
a41adfaa 2471 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2472}
2473
343e0d7a 2474static void cache_init_objs(struct kmem_cache *cachep,
8456a648 2475 struct page *page)
1da177e4
LT
2476{
2477 int i;
2478
2479 for (i = 0; i < cachep->num; i++) {
8456a648 2480 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
2481#if DEBUG
2482 /* need to poison the objs? */
2483 if (cachep->flags & SLAB_POISON)
2484 poison_obj(cachep, objp, POISON_FREE);
2485 if (cachep->flags & SLAB_STORE_USER)
2486 *dbg_userword(cachep, objp) = NULL;
2487
2488 if (cachep->flags & SLAB_RED_ZONE) {
2489 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2490 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2491 }
2492 /*
a737b3e2
AM
2493 * Constructors are not allowed to allocate memory from the same
2494 * cache which they are a constructor for. Otherwise, deadlock.
2495 * They must also be threaded.
1da177e4
LT
2496 */
2497 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2498 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2499
2500 if (cachep->flags & SLAB_RED_ZONE) {
2501 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2502 slab_error(cachep, "constructor overwrote the"
b28a02de 2503 " end of an object");
1da177e4
LT
2504 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2505 slab_error(cachep, "constructor overwrote the"
b28a02de 2506 " start of an object");
1da177e4 2507 }
3b0efdfa 2508 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2509 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2510 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2511 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2512#else
2513 if (cachep->ctor)
51cc5068 2514 cachep->ctor(objp);
1da177e4 2515#endif
03787301 2516 set_obj_status(page, i, OBJECT_FREE);
e5c58dfd 2517 set_free_obj(page, i, i);
1da177e4 2518 }
1da177e4
LT
2519}
2520
343e0d7a 2521static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2522{
4b51d669
CL
2523 if (CONFIG_ZONE_DMA_FLAG) {
2524 if (flags & GFP_DMA)
a618e89f 2525 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2526 else
a618e89f 2527 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2528 }
1da177e4
LT
2529}
2530
8456a648 2531static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
a737b3e2 2532 int nodeid)
78d382d7 2533{
b1cb0982 2534 void *objp;
78d382d7 2535
e5c58dfd 2536 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2537 page->active++;
78d382d7 2538#if DEBUG
1ea991b0 2539 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2540#endif
78d382d7
MD
2541
2542 return objp;
2543}
2544
8456a648 2545static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
a737b3e2 2546 void *objp, int nodeid)
78d382d7 2547{
8456a648 2548 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2549#if DEBUG
16025177 2550 unsigned int i;
b1cb0982 2551
78d382d7 2552 /* Verify that the slab belongs to the intended node */
1ea991b0 2553 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2554
b1cb0982 2555 /* Verify double free bug */
8456a648 2556 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2557 if (get_free_obj(page, i) == objnr) {
b1cb0982
JK
2558 printk(KERN_ERR "slab: double free detected in cache "
2559 "'%s', objp %p\n", cachep->name, objp);
2560 BUG();
2561 }
78d382d7
MD
2562 }
2563#endif
8456a648 2564 page->active--;
e5c58dfd 2565 set_free_obj(page, page->active, objnr);
78d382d7
MD
2566}
2567
4776874f
PE
2568/*
2569 * Map pages beginning at addr to the given cache and slab. This is required
2570 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2571 * virtual address for kfree, ksize, and slab debugging.
4776874f 2572 */
8456a648 2573static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2574 void *freelist)
1da177e4 2575{
a57a4988 2576 page->slab_cache = cache;
8456a648 2577 page->freelist = freelist;
1da177e4
LT
2578}
2579
2580/*
2581 * Grow (by 1) the number of slabs within a cache. This is called by
2582 * kmem_cache_alloc() when there are no active objs left in a cache.
2583 */
3c517a61 2584static int cache_grow(struct kmem_cache *cachep,
0c3aa83e 2585 gfp_t flags, int nodeid, struct page *page)
1da177e4 2586{
7e007355 2587 void *freelist;
b28a02de
PE
2588 size_t offset;
2589 gfp_t local_flags;
ce8eb6c4 2590 struct kmem_cache_node *n;
1da177e4 2591
a737b3e2
AM
2592 /*
2593 * Be lazy and only check for valid flags here, keeping it out of the
2594 * critical path in kmem_cache_alloc().
1da177e4 2595 */
c871ac4e
AM
2596 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2597 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2598 BUG();
2599 }
6cb06229 2600 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2601
ce8eb6c4 2602 /* Take the node list lock to change the colour_next on this node */
1da177e4 2603 check_irq_off();
18bf8541 2604 n = get_node(cachep, nodeid);
ce8eb6c4 2605 spin_lock(&n->list_lock);
1da177e4
LT
2606
2607 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2608 offset = n->colour_next;
2609 n->colour_next++;
2610 if (n->colour_next >= cachep->colour)
2611 n->colour_next = 0;
2612 spin_unlock(&n->list_lock);
1da177e4 2613
2e1217cf 2614 offset *= cachep->colour_off;
1da177e4 2615
d0164adc 2616 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2617 local_irq_enable();
2618
2619 /*
2620 * The test for missing atomic flag is performed here, rather than
2621 * the more obvious place, simply to reduce the critical path length
2622 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2623 * will eventually be caught here (where it matters).
2624 */
2625 kmem_flagcheck(cachep, flags);
2626
a737b3e2
AM
2627 /*
2628 * Get mem for the objs. Attempt to allocate a physical page from
2629 * 'nodeid'.
e498be7d 2630 */
0c3aa83e
JK
2631 if (!page)
2632 page = kmem_getpages(cachep, local_flags, nodeid);
2633 if (!page)
1da177e4
LT
2634 goto failed;
2635
2636 /* Get slab management. */
8456a648 2637 freelist = alloc_slabmgmt(cachep, page, offset,
6cb06229 2638 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
8456a648 2639 if (!freelist)
1da177e4
LT
2640 goto opps1;
2641
8456a648 2642 slab_map_pages(cachep, page, freelist);
1da177e4 2643
8456a648 2644 cache_init_objs(cachep, page);
1da177e4 2645
d0164adc 2646 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2647 local_irq_disable();
2648 check_irq_off();
ce8eb6c4 2649 spin_lock(&n->list_lock);
1da177e4
LT
2650
2651 /* Make slab active. */
8456a648 2652 list_add_tail(&page->lru, &(n->slabs_free));
1da177e4 2653 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2654 n->free_objects += cachep->num;
2655 spin_unlock(&n->list_lock);
1da177e4 2656 return 1;
a737b3e2 2657opps1:
0c3aa83e 2658 kmem_freepages(cachep, page);
a737b3e2 2659failed:
d0164adc 2660 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2661 local_irq_disable();
2662 return 0;
2663}
2664
2665#if DEBUG
2666
2667/*
2668 * Perform extra freeing checks:
2669 * - detect bad pointers.
2670 * - POISON/RED_ZONE checking
1da177e4
LT
2671 */
2672static void kfree_debugcheck(const void *objp)
2673{
1da177e4
LT
2674 if (!virt_addr_valid(objp)) {
2675 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2676 (unsigned long)objp);
2677 BUG();
1da177e4 2678 }
1da177e4
LT
2679}
2680
58ce1fd5
PE
2681static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2682{
b46b8f19 2683 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2684
2685 redzone1 = *dbg_redzone1(cache, obj);
2686 redzone2 = *dbg_redzone2(cache, obj);
2687
2688 /*
2689 * Redzone is ok.
2690 */
2691 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2692 return;
2693
2694 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2695 slab_error(cache, "double free detected");
2696 else
2697 slab_error(cache, "memory outside object was overwritten");
2698
b46b8f19 2699 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2700 obj, redzone1, redzone2);
2701}
2702
343e0d7a 2703static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2704 unsigned long caller)
1da177e4 2705{
1da177e4 2706 unsigned int objnr;
8456a648 2707 struct page *page;
1da177e4 2708
80cbd911
MW
2709 BUG_ON(virt_to_cache(objp) != cachep);
2710
3dafccf2 2711 objp -= obj_offset(cachep);
1da177e4 2712 kfree_debugcheck(objp);
b49af68f 2713 page = virt_to_head_page(objp);
1da177e4 2714
1da177e4 2715 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2716 verify_redzone_free(cachep, objp);
1da177e4
LT
2717 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2718 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2719 }
2720 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2721 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2722
8456a648 2723 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2724
2725 BUG_ON(objnr >= cachep->num);
8456a648 2726 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2727
03787301 2728 set_obj_status(page, objnr, OBJECT_FREE);
1da177e4
LT
2729 if (cachep->flags & SLAB_POISON) {
2730#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2731 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 2732 store_stackinfo(cachep, objp, caller);
b28a02de 2733 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2734 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2735 } else {
2736 poison_obj(cachep, objp, POISON_FREE);
2737 }
2738#else
2739 poison_obj(cachep, objp, POISON_FREE);
2740#endif
2741 }
2742 return objp;
2743}
2744
1da177e4
LT
2745#else
2746#define kfree_debugcheck(x) do { } while(0)
2747#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2748#endif
2749
7aa0d227
GT
2750static struct page *get_first_slab(struct kmem_cache_node *n)
2751{
2752 struct page *page;
2753
2754 page = list_first_entry_or_null(&n->slabs_partial,
2755 struct page, lru);
2756 if (!page) {
2757 n->free_touched = 1;
2758 page = list_first_entry_or_null(&n->slabs_free,
2759 struct page, lru);
2760 }
2761
2762 return page;
2763}
2764
072bb0aa
MG
2765static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2766 bool force_refill)
1da177e4
LT
2767{
2768 int batchcount;
ce8eb6c4 2769 struct kmem_cache_node *n;
1da177e4 2770 struct array_cache *ac;
1ca4cb24
PE
2771 int node;
2772
1da177e4 2773 check_irq_off();
7d6e6d09 2774 node = numa_mem_id();
072bb0aa
MG
2775 if (unlikely(force_refill))
2776 goto force_grow;
2777retry:
9a2dba4b 2778 ac = cpu_cache_get(cachep);
1da177e4
LT
2779 batchcount = ac->batchcount;
2780 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2781 /*
2782 * If there was little recent activity on this cache, then
2783 * perform only a partial refill. Otherwise we could generate
2784 * refill bouncing.
1da177e4
LT
2785 */
2786 batchcount = BATCHREFILL_LIMIT;
2787 }
18bf8541 2788 n = get_node(cachep, node);
e498be7d 2789
ce8eb6c4
CL
2790 BUG_ON(ac->avail > 0 || !n);
2791 spin_lock(&n->list_lock);
1da177e4 2792
3ded175a 2793 /* See if we can refill from the shared array */
ce8eb6c4
CL
2794 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2795 n->shared->touched = 1;
3ded175a 2796 goto alloc_done;
44b57f1c 2797 }
3ded175a 2798
1da177e4 2799 while (batchcount > 0) {
8456a648 2800 struct page *page;
1da177e4 2801 /* Get slab alloc is to come from. */
7aa0d227
GT
2802 page = get_first_slab(n);
2803 if (!page)
2804 goto must_grow;
1da177e4 2805
1da177e4 2806 check_spinlock_acquired(cachep);
714b8171
PE
2807
2808 /*
2809 * The slab was either on partial or free list so
2810 * there must be at least one object available for
2811 * allocation.
2812 */
8456a648 2813 BUG_ON(page->active >= cachep->num);
714b8171 2814
8456a648 2815 while (page->active < cachep->num && batchcount--) {
1da177e4
LT
2816 STATS_INC_ALLOCED(cachep);
2817 STATS_INC_ACTIVE(cachep);
2818 STATS_SET_HIGH(cachep);
2819
8456a648 2820 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
072bb0aa 2821 node));
1da177e4 2822 }
1da177e4
LT
2823
2824 /* move slabp to correct slabp list: */
8456a648
JK
2825 list_del(&page->lru);
2826 if (page->active == cachep->num)
34bf6ef9 2827 list_add(&page->lru, &n->slabs_full);
1da177e4 2828 else
34bf6ef9 2829 list_add(&page->lru, &n->slabs_partial);
1da177e4
LT
2830 }
2831
a737b3e2 2832must_grow:
ce8eb6c4 2833 n->free_objects -= ac->avail;
a737b3e2 2834alloc_done:
ce8eb6c4 2835 spin_unlock(&n->list_lock);
1da177e4
LT
2836
2837 if (unlikely(!ac->avail)) {
2838 int x;
072bb0aa 2839force_grow:
4167e9b2 2840 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
e498be7d 2841
a737b3e2 2842 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2843 ac = cpu_cache_get(cachep);
51cd8e6f 2844 node = numa_mem_id();
072bb0aa
MG
2845
2846 /* no objects in sight? abort */
2847 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
2848 return NULL;
2849
a737b3e2 2850 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2851 goto retry;
2852 }
2853 ac->touched = 1;
072bb0aa
MG
2854
2855 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
2856}
2857
a737b3e2
AM
2858static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2859 gfp_t flags)
1da177e4 2860{
d0164adc 2861 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
2862#if DEBUG
2863 kmem_flagcheck(cachep, flags);
2864#endif
2865}
2866
2867#if DEBUG
a737b3e2 2868static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2869 gfp_t flags, void *objp, unsigned long caller)
1da177e4 2870{
03787301
JK
2871 struct page *page;
2872
b28a02de 2873 if (!objp)
1da177e4 2874 return objp;
b28a02de 2875 if (cachep->flags & SLAB_POISON) {
1da177e4 2876#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2877 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2878 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2879 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2880 else
2881 check_poison_obj(cachep, objp);
2882#else
2883 check_poison_obj(cachep, objp);
2884#endif
2885 poison_obj(cachep, objp, POISON_INUSE);
2886 }
2887 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2888 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
2889
2890 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2891 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2892 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2893 slab_error(cachep, "double free, or memory outside"
2894 " object was overwritten");
b28a02de 2895 printk(KERN_ERR
b46b8f19 2896 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
2897 objp, *dbg_redzone1(cachep, objp),
2898 *dbg_redzone2(cachep, objp));
1da177e4
LT
2899 }
2900 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2901 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2902 }
03787301
JK
2903
2904 page = virt_to_head_page(objp);
2905 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
3dafccf2 2906 objp += obj_offset(cachep);
4f104934 2907 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 2908 cachep->ctor(objp);
7ea466f2
TH
2909 if (ARCH_SLAB_MINALIGN &&
2910 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 2911 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 2912 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 2913 }
1da177e4
LT
2914 return objp;
2915}
2916#else
2917#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2918#endif
2919
343e0d7a 2920static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2921{
b28a02de 2922 void *objp;
1da177e4 2923 struct array_cache *ac;
072bb0aa 2924 bool force_refill = false;
1da177e4 2925
5c382300 2926 check_irq_off();
8a8b6502 2927
9a2dba4b 2928 ac = cpu_cache_get(cachep);
1da177e4 2929 if (likely(ac->avail)) {
1da177e4 2930 ac->touched = 1;
072bb0aa
MG
2931 objp = ac_get_obj(cachep, ac, flags, false);
2932
ddbf2e83 2933 /*
072bb0aa
MG
2934 * Allow for the possibility all avail objects are not allowed
2935 * by the current flags
ddbf2e83 2936 */
072bb0aa
MG
2937 if (objp) {
2938 STATS_INC_ALLOCHIT(cachep);
2939 goto out;
2940 }
2941 force_refill = true;
1da177e4 2942 }
072bb0aa
MG
2943
2944 STATS_INC_ALLOCMISS(cachep);
2945 objp = cache_alloc_refill(cachep, flags, force_refill);
2946 /*
2947 * the 'ac' may be updated by cache_alloc_refill(),
2948 * and kmemleak_erase() requires its correct value.
2949 */
2950 ac = cpu_cache_get(cachep);
2951
2952out:
d5cff635
CM
2953 /*
2954 * To avoid a false negative, if an object that is in one of the
2955 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2956 * treat the array pointers as a reference to the object.
2957 */
f3d8b53a
O
2958 if (objp)
2959 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
2960 return objp;
2961}
2962
e498be7d 2963#ifdef CONFIG_NUMA
c61afb18 2964/*
2ad654bc 2965 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
2966 *
2967 * If we are in_interrupt, then process context, including cpusets and
2968 * mempolicy, may not apply and should not be used for allocation policy.
2969 */
2970static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2971{
2972 int nid_alloc, nid_here;
2973
765c4507 2974 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 2975 return NULL;
7d6e6d09 2976 nid_alloc = nid_here = numa_mem_id();
c61afb18 2977 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 2978 nid_alloc = cpuset_slab_spread_node();
c61afb18 2979 else if (current->mempolicy)
2a389610 2980 nid_alloc = mempolicy_slab_node();
c61afb18 2981 if (nid_alloc != nid_here)
8b98c169 2982 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
2983 return NULL;
2984}
2985
765c4507
CL
2986/*
2987 * Fallback function if there was no memory available and no objects on a
3c517a61 2988 * certain node and fall back is permitted. First we scan all the
6a67368c 2989 * available node for available objects. If that fails then we
3c517a61
CL
2990 * perform an allocation without specifying a node. This allows the page
2991 * allocator to do its reclaim / fallback magic. We then insert the
2992 * slab into the proper nodelist and then allocate from it.
765c4507 2993 */
8c8cc2c1 2994static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 2995{
8c8cc2c1
PE
2996 struct zonelist *zonelist;
2997 gfp_t local_flags;
dd1a239f 2998 struct zoneref *z;
54a6eb5c
MG
2999 struct zone *zone;
3000 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3001 void *obj = NULL;
3c517a61 3002 int nid;
cc9a6c87 3003 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3004
3005 if (flags & __GFP_THISNODE)
3006 return NULL;
3007
6cb06229 3008 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3009
cc9a6c87 3010retry_cpuset:
d26914d1 3011 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3012 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3013
3c517a61
CL
3014retry:
3015 /*
3016 * Look through allowed nodes for objects available
3017 * from existing per node queues.
3018 */
54a6eb5c
MG
3019 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3020 nid = zone_to_nid(zone);
aedb0eb1 3021
061d7074 3022 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3023 get_node(cache, nid) &&
3024 get_node(cache, nid)->free_objects) {
3c517a61 3025 obj = ____cache_alloc_node(cache,
4167e9b2 3026 gfp_exact_node(flags), nid);
481c5346
CL
3027 if (obj)
3028 break;
3029 }
3c517a61
CL
3030 }
3031
cfce6604 3032 if (!obj) {
3c517a61
CL
3033 /*
3034 * This allocation will be performed within the constraints
3035 * of the current cpuset / memory policy requirements.
3036 * We may trigger various forms of reclaim on the allowed
3037 * set and go into memory reserves if necessary.
3038 */
0c3aa83e
JK
3039 struct page *page;
3040
d0164adc 3041 if (gfpflags_allow_blocking(local_flags))
dd47ea75
CL
3042 local_irq_enable();
3043 kmem_flagcheck(cache, flags);
0c3aa83e 3044 page = kmem_getpages(cache, local_flags, numa_mem_id());
d0164adc 3045 if (gfpflags_allow_blocking(local_flags))
dd47ea75 3046 local_irq_disable();
0c3aa83e 3047 if (page) {
3c517a61
CL
3048 /*
3049 * Insert into the appropriate per node queues
3050 */
0c3aa83e
JK
3051 nid = page_to_nid(page);
3052 if (cache_grow(cache, flags, nid, page)) {
3c517a61 3053 obj = ____cache_alloc_node(cache,
4167e9b2 3054 gfp_exact_node(flags), nid);
3c517a61
CL
3055 if (!obj)
3056 /*
3057 * Another processor may allocate the
3058 * objects in the slab since we are
3059 * not holding any locks.
3060 */
3061 goto retry;
3062 } else {
b6a60451 3063 /* cache_grow already freed obj */
3c517a61
CL
3064 obj = NULL;
3065 }
3066 }
aedb0eb1 3067 }
cc9a6c87 3068
d26914d1 3069 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3070 goto retry_cpuset;
765c4507
CL
3071 return obj;
3072}
3073
e498be7d
CL
3074/*
3075 * A interface to enable slab creation on nodeid
1da177e4 3076 */
8b98c169 3077static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3078 int nodeid)
e498be7d 3079{
8456a648 3080 struct page *page;
ce8eb6c4 3081 struct kmem_cache_node *n;
b28a02de 3082 void *obj;
b28a02de
PE
3083 int x;
3084
7c3fbbdd 3085 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3086 n = get_node(cachep, nodeid);
ce8eb6c4 3087 BUG_ON(!n);
b28a02de 3088
a737b3e2 3089retry:
ca3b9b91 3090 check_irq_off();
ce8eb6c4 3091 spin_lock(&n->list_lock);
7aa0d227
GT
3092 page = get_first_slab(n);
3093 if (!page)
3094 goto must_grow;
b28a02de 3095
b28a02de 3096 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3097
3098 STATS_INC_NODEALLOCS(cachep);
3099 STATS_INC_ACTIVE(cachep);
3100 STATS_SET_HIGH(cachep);
3101
8456a648 3102 BUG_ON(page->active == cachep->num);
b28a02de 3103
8456a648 3104 obj = slab_get_obj(cachep, page, nodeid);
ce8eb6c4 3105 n->free_objects--;
b28a02de 3106 /* move slabp to correct slabp list: */
8456a648 3107 list_del(&page->lru);
b28a02de 3108
8456a648
JK
3109 if (page->active == cachep->num)
3110 list_add(&page->lru, &n->slabs_full);
a737b3e2 3111 else
8456a648 3112 list_add(&page->lru, &n->slabs_partial);
e498be7d 3113
ce8eb6c4 3114 spin_unlock(&n->list_lock);
b28a02de 3115 goto done;
e498be7d 3116
a737b3e2 3117must_grow:
ce8eb6c4 3118 spin_unlock(&n->list_lock);
4167e9b2 3119 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
765c4507
CL
3120 if (x)
3121 goto retry;
1da177e4 3122
8c8cc2c1 3123 return fallback_alloc(cachep, flags);
e498be7d 3124
a737b3e2 3125done:
b28a02de 3126 return obj;
e498be7d 3127}
8c8cc2c1 3128
8c8cc2c1 3129static __always_inline void *
48356303 3130slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3131 unsigned long caller)
8c8cc2c1
PE
3132{
3133 unsigned long save_flags;
3134 void *ptr;
7d6e6d09 3135 int slab_node = numa_mem_id();
8c8cc2c1 3136
dcce284a 3137 flags &= gfp_allowed_mask;
011eceaf
JDB
3138 cachep = slab_pre_alloc_hook(cachep, flags);
3139 if (unlikely(!cachep))
824ebef1
AM
3140 return NULL;
3141
8c8cc2c1
PE
3142 cache_alloc_debugcheck_before(cachep, flags);
3143 local_irq_save(save_flags);
3144
eacbbae3 3145 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3146 nodeid = slab_node;
8c8cc2c1 3147
18bf8541 3148 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3149 /* Node not bootstrapped yet */
3150 ptr = fallback_alloc(cachep, flags);
3151 goto out;
3152 }
3153
7d6e6d09 3154 if (nodeid == slab_node) {
8c8cc2c1
PE
3155 /*
3156 * Use the locally cached objects if possible.
3157 * However ____cache_alloc does not allow fallback
3158 * to other nodes. It may fail while we still have
3159 * objects on other nodes available.
3160 */
3161 ptr = ____cache_alloc(cachep, flags);
3162 if (ptr)
3163 goto out;
3164 }
3165 /* ___cache_alloc_node can fall back to other nodes */
3166 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3167 out:
3168 local_irq_restore(save_flags);
3169 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3170
d5e3ed66
JDB
3171 if (unlikely(flags & __GFP_ZERO) && ptr)
3172 memset(ptr, 0, cachep->object_size);
d07dbea4 3173
d5e3ed66 3174 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3175 return ptr;
3176}
3177
3178static __always_inline void *
3179__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3180{
3181 void *objp;
3182
2ad654bc 3183 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3184 objp = alternate_node_alloc(cache, flags);
3185 if (objp)
3186 goto out;
3187 }
3188 objp = ____cache_alloc(cache, flags);
3189
3190 /*
3191 * We may just have run out of memory on the local node.
3192 * ____cache_alloc_node() knows how to locate memory on other nodes
3193 */
7d6e6d09
LS
3194 if (!objp)
3195 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3196
3197 out:
3198 return objp;
3199}
3200#else
3201
3202static __always_inline void *
3203__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3204{
3205 return ____cache_alloc(cachep, flags);
3206}
3207
3208#endif /* CONFIG_NUMA */
3209
3210static __always_inline void *
48356303 3211slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3212{
3213 unsigned long save_flags;
3214 void *objp;
3215
dcce284a 3216 flags &= gfp_allowed_mask;
011eceaf
JDB
3217 cachep = slab_pre_alloc_hook(cachep, flags);
3218 if (unlikely(!cachep))
824ebef1
AM
3219 return NULL;
3220
8c8cc2c1
PE
3221 cache_alloc_debugcheck_before(cachep, flags);
3222 local_irq_save(save_flags);
3223 objp = __do_cache_alloc(cachep, flags);
3224 local_irq_restore(save_flags);
3225 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3226 prefetchw(objp);
3227
d5e3ed66
JDB
3228 if (unlikely(flags & __GFP_ZERO) && objp)
3229 memset(objp, 0, cachep->object_size);
d07dbea4 3230
d5e3ed66 3231 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3232 return objp;
3233}
e498be7d
CL
3234
3235/*
5f0985bb 3236 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3237 * @list: List of detached free slabs should be freed by caller
e498be7d 3238 */
97654dfa
JK
3239static void free_block(struct kmem_cache *cachep, void **objpp,
3240 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3241{
3242 int i;
25c063fb 3243 struct kmem_cache_node *n = get_node(cachep, node);
1da177e4
LT
3244
3245 for (i = 0; i < nr_objects; i++) {
072bb0aa 3246 void *objp;
8456a648 3247 struct page *page;
1da177e4 3248
072bb0aa
MG
3249 clear_obj_pfmemalloc(&objpp[i]);
3250 objp = objpp[i];
3251
8456a648 3252 page = virt_to_head_page(objp);
8456a648 3253 list_del(&page->lru);
ff69416e 3254 check_spinlock_acquired_node(cachep, node);
8456a648 3255 slab_put_obj(cachep, page, objp, node);
1da177e4 3256 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3257 n->free_objects++;
1da177e4
LT
3258
3259 /* fixup slab chains */
8456a648 3260 if (page->active == 0) {
ce8eb6c4
CL
3261 if (n->free_objects > n->free_limit) {
3262 n->free_objects -= cachep->num;
97654dfa 3263 list_add_tail(&page->lru, list);
1da177e4 3264 } else {
8456a648 3265 list_add(&page->lru, &n->slabs_free);
1da177e4
LT
3266 }
3267 } else {
3268 /* Unconditionally move a slab to the end of the
3269 * partial list on free - maximum time for the
3270 * other objects to be freed, too.
3271 */
8456a648 3272 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3273 }
3274 }
3275}
3276
343e0d7a 3277static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3278{
3279 int batchcount;
ce8eb6c4 3280 struct kmem_cache_node *n;
7d6e6d09 3281 int node = numa_mem_id();
97654dfa 3282 LIST_HEAD(list);
1da177e4
LT
3283
3284 batchcount = ac->batchcount;
3285#if DEBUG
3286 BUG_ON(!batchcount || batchcount > ac->avail);
3287#endif
3288 check_irq_off();
18bf8541 3289 n = get_node(cachep, node);
ce8eb6c4
CL
3290 spin_lock(&n->list_lock);
3291 if (n->shared) {
3292 struct array_cache *shared_array = n->shared;
b28a02de 3293 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3294 if (max) {
3295 if (batchcount > max)
3296 batchcount = max;
e498be7d 3297 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3298 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3299 shared_array->avail += batchcount;
3300 goto free_done;
3301 }
3302 }
3303
97654dfa 3304 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3305free_done:
1da177e4
LT
3306#if STATS
3307 {
3308 int i = 0;
73c0219d 3309 struct page *page;
1da177e4 3310
73c0219d 3311 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3312 BUG_ON(page->active);
1da177e4
LT
3313
3314 i++;
1da177e4
LT
3315 }
3316 STATS_SET_FREEABLE(cachep, i);
3317 }
3318#endif
ce8eb6c4 3319 spin_unlock(&n->list_lock);
97654dfa 3320 slabs_destroy(cachep, &list);
1da177e4 3321 ac->avail -= batchcount;
a737b3e2 3322 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3323}
3324
3325/*
a737b3e2
AM
3326 * Release an obj back to its cache. If the obj has a constructed state, it must
3327 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3328 */
a947eb95 3329static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3330 unsigned long caller)
1da177e4 3331{
9a2dba4b 3332 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3333
3334 check_irq_off();
d5cff635 3335 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3336 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3337
8c138bc0 3338 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3339
1807a1aa
SS
3340 /*
3341 * Skip calling cache_free_alien() when the platform is not numa.
3342 * This will avoid cache misses that happen while accessing slabp (which
3343 * is per page memory reference) to get nodeid. Instead use a global
3344 * variable to skip the call, which is mostly likely to be present in
3345 * the cache.
3346 */
b6e68bc1 3347 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3348 return;
3349
3d880194 3350 if (ac->avail < ac->limit) {
1da177e4 3351 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3352 } else {
3353 STATS_INC_FREEMISS(cachep);
3354 cache_flusharray(cachep, ac);
1da177e4 3355 }
42c8c99c 3356
072bb0aa 3357 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3358}
3359
3360/**
3361 * kmem_cache_alloc - Allocate an object
3362 * @cachep: The cache to allocate from.
3363 * @flags: See kmalloc().
3364 *
3365 * Allocate an object from this cache. The flags are only relevant
3366 * if the cache has no available objects.
3367 */
343e0d7a 3368void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3369{
48356303 3370 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3371
ca2b84cb 3372 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3373 cachep->object_size, cachep->size, flags);
36555751
EGM
3374
3375 return ret;
1da177e4
LT
3376}
3377EXPORT_SYMBOL(kmem_cache_alloc);
3378
7b0501dd
JDB
3379static __always_inline void
3380cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3381 size_t size, void **p, unsigned long caller)
3382{
3383 size_t i;
3384
3385 for (i = 0; i < size; i++)
3386 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3387}
3388
865762a8 3389int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3390 void **p)
484748f0 3391{
2a777eac
JDB
3392 size_t i;
3393
3394 s = slab_pre_alloc_hook(s, flags);
3395 if (!s)
3396 return 0;
3397
3398 cache_alloc_debugcheck_before(s, flags);
3399
3400 local_irq_disable();
3401 for (i = 0; i < size; i++) {
3402 void *objp = __do_cache_alloc(s, flags);
3403
2a777eac
JDB
3404 if (unlikely(!objp))
3405 goto error;
3406 p[i] = objp;
3407 }
3408 local_irq_enable();
3409
7b0501dd
JDB
3410 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3411
2a777eac
JDB
3412 /* Clear memory outside IRQ disabled section */
3413 if (unlikely(flags & __GFP_ZERO))
3414 for (i = 0; i < size; i++)
3415 memset(p[i], 0, s->object_size);
3416
3417 slab_post_alloc_hook(s, flags, size, p);
3418 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3419 return size;
3420error:
3421 local_irq_enable();
7b0501dd 3422 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3423 slab_post_alloc_hook(s, flags, i, p);
3424 __kmem_cache_free_bulk(s, i, p);
3425 return 0;
484748f0
CL
3426}
3427EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3428
0f24f128 3429#ifdef CONFIG_TRACING
85beb586 3430void *
4052147c 3431kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3432{
85beb586
SR
3433 void *ret;
3434
48356303 3435 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3436
3437 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3438 size, cachep->size, flags);
85beb586 3439 return ret;
36555751 3440}
85beb586 3441EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3442#endif
3443
1da177e4 3444#ifdef CONFIG_NUMA
d0d04b78
ZL
3445/**
3446 * kmem_cache_alloc_node - Allocate an object on the specified node
3447 * @cachep: The cache to allocate from.
3448 * @flags: See kmalloc().
3449 * @nodeid: node number of the target node.
3450 *
3451 * Identical to kmem_cache_alloc but it will allocate memory on the given
3452 * node, which can improve the performance for cpu bound structures.
3453 *
3454 * Fallback to other node is possible if __GFP_THISNODE is not set.
3455 */
8b98c169
CH
3456void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3457{
48356303 3458 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3459
ca2b84cb 3460 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3461 cachep->object_size, cachep->size,
ca2b84cb 3462 flags, nodeid);
36555751
EGM
3463
3464 return ret;
8b98c169 3465}
1da177e4
LT
3466EXPORT_SYMBOL(kmem_cache_alloc_node);
3467
0f24f128 3468#ifdef CONFIG_TRACING
4052147c 3469void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3470 gfp_t flags,
4052147c
EG
3471 int nodeid,
3472 size_t size)
36555751 3473{
85beb586
SR
3474 void *ret;
3475
592f4145 3476 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3477
85beb586 3478 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3479 size, cachep->size,
85beb586
SR
3480 flags, nodeid);
3481 return ret;
36555751 3482}
85beb586 3483EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3484#endif
3485
8b98c169 3486static __always_inline void *
7c0cb9c6 3487__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3488{
343e0d7a 3489 struct kmem_cache *cachep;
97e2bde4 3490
2c59dd65 3491 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3492 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3493 return cachep;
4052147c 3494 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3495}
8b98c169 3496
8b98c169
CH
3497void *__kmalloc_node(size_t size, gfp_t flags, int node)
3498{
7c0cb9c6 3499 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3500}
dbe5e69d 3501EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3502
3503void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3504 int node, unsigned long caller)
8b98c169 3505{
7c0cb9c6 3506 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3507}
3508EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3509#endif /* CONFIG_NUMA */
1da177e4
LT
3510
3511/**
800590f5 3512 * __do_kmalloc - allocate memory
1da177e4 3513 * @size: how many bytes of memory are required.
800590f5 3514 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3515 * @caller: function caller for debug tracking of the caller
1da177e4 3516 */
7fd6b141 3517static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3518 unsigned long caller)
1da177e4 3519{
343e0d7a 3520 struct kmem_cache *cachep;
36555751 3521 void *ret;
1da177e4 3522
2c59dd65 3523 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3524 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3525 return cachep;
48356303 3526 ret = slab_alloc(cachep, flags, caller);
36555751 3527
7c0cb9c6 3528 trace_kmalloc(caller, ret,
3b0efdfa 3529 size, cachep->size, flags);
36555751
EGM
3530
3531 return ret;
7fd6b141
PE
3532}
3533
7fd6b141
PE
3534void *__kmalloc(size_t size, gfp_t flags)
3535{
7c0cb9c6 3536 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3537}
3538EXPORT_SYMBOL(__kmalloc);
3539
ce71e27c 3540void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3541{
7c0cb9c6 3542 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3543}
3544EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3545
1da177e4
LT
3546/**
3547 * kmem_cache_free - Deallocate an object
3548 * @cachep: The cache the allocation was from.
3549 * @objp: The previously allocated object.
3550 *
3551 * Free an object which was previously allocated from this
3552 * cache.
3553 */
343e0d7a 3554void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3555{
3556 unsigned long flags;
b9ce5ef4
GC
3557 cachep = cache_from_obj(cachep, objp);
3558 if (!cachep)
3559 return;
1da177e4
LT
3560
3561 local_irq_save(flags);
d97d476b 3562 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3563 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3564 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3565 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3566 local_irq_restore(flags);
36555751 3567
ca2b84cb 3568 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3569}
3570EXPORT_SYMBOL(kmem_cache_free);
3571
e6cdb58d
JDB
3572void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3573{
3574 struct kmem_cache *s;
3575 size_t i;
3576
3577 local_irq_disable();
3578 for (i = 0; i < size; i++) {
3579 void *objp = p[i];
3580
ca257195
JDB
3581 if (!orig_s) /* called via kfree_bulk */
3582 s = virt_to_cache(objp);
3583 else
3584 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3585
3586 debug_check_no_locks_freed(objp, s->object_size);
3587 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3588 debug_check_no_obj_freed(objp, s->object_size);
3589
3590 __cache_free(s, objp, _RET_IP_);
3591 }
3592 local_irq_enable();
3593
3594 /* FIXME: add tracing */
3595}
3596EXPORT_SYMBOL(kmem_cache_free_bulk);
3597
1da177e4
LT
3598/**
3599 * kfree - free previously allocated memory
3600 * @objp: pointer returned by kmalloc.
3601 *
80e93eff
PE
3602 * If @objp is NULL, no operation is performed.
3603 *
1da177e4
LT
3604 * Don't free memory not originally allocated by kmalloc()
3605 * or you will run into trouble.
3606 */
3607void kfree(const void *objp)
3608{
343e0d7a 3609 struct kmem_cache *c;
1da177e4
LT
3610 unsigned long flags;
3611
2121db74
PE
3612 trace_kfree(_RET_IP_, objp);
3613
6cb8f913 3614 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3615 return;
3616 local_irq_save(flags);
3617 kfree_debugcheck(objp);
6ed5eb22 3618 c = virt_to_cache(objp);
8c138bc0
CL
3619 debug_check_no_locks_freed(objp, c->object_size);
3620
3621 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3622 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3623 local_irq_restore(flags);
3624}
3625EXPORT_SYMBOL(kfree);
3626
e498be7d 3627/*
ce8eb6c4 3628 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3629 */
5f0985bb 3630static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3631{
3632 int node;
ce8eb6c4 3633 struct kmem_cache_node *n;
cafeb02e 3634 struct array_cache *new_shared;
c8522a3a 3635 struct alien_cache **new_alien = NULL;
e498be7d 3636
9c09a95c 3637 for_each_online_node(node) {
cafeb02e 3638
b455def2
L
3639 if (use_alien_caches) {
3640 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3641 if (!new_alien)
3642 goto fail;
3643 }
cafeb02e 3644
63109846
ED
3645 new_shared = NULL;
3646 if (cachep->shared) {
3647 new_shared = alloc_arraycache(node,
0718dc2a 3648 cachep->shared*cachep->batchcount,
83b519e8 3649 0xbaadf00d, gfp);
63109846
ED
3650 if (!new_shared) {
3651 free_alien_cache(new_alien);
3652 goto fail;
3653 }
0718dc2a 3654 }
cafeb02e 3655
18bf8541 3656 n = get_node(cachep, node);
ce8eb6c4
CL
3657 if (n) {
3658 struct array_cache *shared = n->shared;
97654dfa 3659 LIST_HEAD(list);
cafeb02e 3660
ce8eb6c4 3661 spin_lock_irq(&n->list_lock);
e498be7d 3662
cafeb02e 3663 if (shared)
0718dc2a 3664 free_block(cachep, shared->entry,
97654dfa 3665 shared->avail, node, &list);
e498be7d 3666
ce8eb6c4
CL
3667 n->shared = new_shared;
3668 if (!n->alien) {
3669 n->alien = new_alien;
e498be7d
CL
3670 new_alien = NULL;
3671 }
ce8eb6c4 3672 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3673 cachep->batchcount + cachep->num;
ce8eb6c4 3674 spin_unlock_irq(&n->list_lock);
97654dfa 3675 slabs_destroy(cachep, &list);
cafeb02e 3676 kfree(shared);
e498be7d
CL
3677 free_alien_cache(new_alien);
3678 continue;
3679 }
ce8eb6c4
CL
3680 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3681 if (!n) {
0718dc2a
CL
3682 free_alien_cache(new_alien);
3683 kfree(new_shared);
e498be7d 3684 goto fail;
0718dc2a 3685 }
e498be7d 3686
ce8eb6c4 3687 kmem_cache_node_init(n);
5f0985bb
JZ
3688 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3689 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
ce8eb6c4
CL
3690 n->shared = new_shared;
3691 n->alien = new_alien;
3692 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3693 cachep->batchcount + cachep->num;
ce8eb6c4 3694 cachep->node[node] = n;
e498be7d 3695 }
cafeb02e 3696 return 0;
0718dc2a 3697
a737b3e2 3698fail:
3b0efdfa 3699 if (!cachep->list.next) {
0718dc2a
CL
3700 /* Cache is not active yet. Roll back what we did */
3701 node--;
3702 while (node >= 0) {
18bf8541
CL
3703 n = get_node(cachep, node);
3704 if (n) {
ce8eb6c4
CL
3705 kfree(n->shared);
3706 free_alien_cache(n->alien);
3707 kfree(n);
6a67368c 3708 cachep->node[node] = NULL;
0718dc2a
CL
3709 }
3710 node--;
3711 }
3712 }
cafeb02e 3713 return -ENOMEM;
e498be7d
CL
3714}
3715
18004c5d 3716/* Always called with the slab_mutex held */
943a451a 3717static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3718 int batchcount, int shared, gfp_t gfp)
1da177e4 3719{
bf0dea23
JK
3720 struct array_cache __percpu *cpu_cache, *prev;
3721 int cpu;
1da177e4 3722
bf0dea23
JK
3723 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3724 if (!cpu_cache)
d2e7b7d0
SS
3725 return -ENOMEM;
3726
bf0dea23
JK
3727 prev = cachep->cpu_cache;
3728 cachep->cpu_cache = cpu_cache;
3729 kick_all_cpus_sync();
e498be7d 3730
1da177e4 3731 check_irq_on();
1da177e4
LT
3732 cachep->batchcount = batchcount;
3733 cachep->limit = limit;
e498be7d 3734 cachep->shared = shared;
1da177e4 3735
bf0dea23
JK
3736 if (!prev)
3737 goto alloc_node;
3738
3739 for_each_online_cpu(cpu) {
97654dfa 3740 LIST_HEAD(list);
18bf8541
CL
3741 int node;
3742 struct kmem_cache_node *n;
bf0dea23 3743 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3744
bf0dea23 3745 node = cpu_to_mem(cpu);
18bf8541
CL
3746 n = get_node(cachep, node);
3747 spin_lock_irq(&n->list_lock);
bf0dea23 3748 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3749 spin_unlock_irq(&n->list_lock);
97654dfa 3750 slabs_destroy(cachep, &list);
1da177e4 3751 }
bf0dea23
JK
3752 free_percpu(prev);
3753
3754alloc_node:
5f0985bb 3755 return alloc_kmem_cache_node(cachep, gfp);
1da177e4
LT
3756}
3757
943a451a
GC
3758static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3759 int batchcount, int shared, gfp_t gfp)
3760{
3761 int ret;
426589f5 3762 struct kmem_cache *c;
943a451a
GC
3763
3764 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3765
3766 if (slab_state < FULL)
3767 return ret;
3768
3769 if ((ret < 0) || !is_root_cache(cachep))
3770 return ret;
3771
426589f5
VD
3772 lockdep_assert_held(&slab_mutex);
3773 for_each_memcg_cache(c, cachep) {
3774 /* return value determined by the root cache only */
3775 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3776 }
3777
3778 return ret;
3779}
3780
18004c5d 3781/* Called with slab_mutex held always */
83b519e8 3782static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3783{
3784 int err;
943a451a
GC
3785 int limit = 0;
3786 int shared = 0;
3787 int batchcount = 0;
3788
3789 if (!is_root_cache(cachep)) {
3790 struct kmem_cache *root = memcg_root_cache(cachep);
3791 limit = root->limit;
3792 shared = root->shared;
3793 batchcount = root->batchcount;
3794 }
1da177e4 3795
943a451a
GC
3796 if (limit && shared && batchcount)
3797 goto skip_setup;
a737b3e2
AM
3798 /*
3799 * The head array serves three purposes:
1da177e4
LT
3800 * - create a LIFO ordering, i.e. return objects that are cache-warm
3801 * - reduce the number of spinlock operations.
a737b3e2 3802 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3803 * bufctl chains: array operations are cheaper.
3804 * The numbers are guessed, we should auto-tune as described by
3805 * Bonwick.
3806 */
3b0efdfa 3807 if (cachep->size > 131072)
1da177e4 3808 limit = 1;
3b0efdfa 3809 else if (cachep->size > PAGE_SIZE)
1da177e4 3810 limit = 8;
3b0efdfa 3811 else if (cachep->size > 1024)
1da177e4 3812 limit = 24;
3b0efdfa 3813 else if (cachep->size > 256)
1da177e4
LT
3814 limit = 54;
3815 else
3816 limit = 120;
3817
a737b3e2
AM
3818 /*
3819 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3820 * allocation behaviour: Most allocs on one cpu, most free operations
3821 * on another cpu. For these cases, an efficient object passing between
3822 * cpus is necessary. This is provided by a shared array. The array
3823 * replaces Bonwick's magazine layer.
3824 * On uniprocessor, it's functionally equivalent (but less efficient)
3825 * to a larger limit. Thus disabled by default.
3826 */
3827 shared = 0;
3b0efdfa 3828 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3829 shared = 8;
1da177e4
LT
3830
3831#if DEBUG
a737b3e2
AM
3832 /*
3833 * With debugging enabled, large batchcount lead to excessively long
3834 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3835 */
3836 if (limit > 32)
3837 limit = 32;
3838#endif
943a451a
GC
3839 batchcount = (limit + 1) / 2;
3840skip_setup:
3841 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
3842 if (err)
3843 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3844 cachep->name, -err);
2ed3a4ef 3845 return err;
1da177e4
LT
3846}
3847
1b55253a 3848/*
ce8eb6c4
CL
3849 * Drain an array if it contains any elements taking the node lock only if
3850 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3851 * if drain_array() is used on the shared array.
1b55253a 3852 */
ce8eb6c4 3853static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
1b55253a 3854 struct array_cache *ac, int force, int node)
1da177e4 3855{
97654dfa 3856 LIST_HEAD(list);
1da177e4
LT
3857 int tofree;
3858
1b55253a
CL
3859 if (!ac || !ac->avail)
3860 return;
1da177e4
LT
3861 if (ac->touched && !force) {
3862 ac->touched = 0;
b18e7e65 3863 } else {
ce8eb6c4 3864 spin_lock_irq(&n->list_lock);
b18e7e65
CL
3865 if (ac->avail) {
3866 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3867 if (tofree > ac->avail)
3868 tofree = (ac->avail + 1) / 2;
97654dfa 3869 free_block(cachep, ac->entry, tofree, node, &list);
b18e7e65
CL
3870 ac->avail -= tofree;
3871 memmove(ac->entry, &(ac->entry[tofree]),
3872 sizeof(void *) * ac->avail);
3873 }
ce8eb6c4 3874 spin_unlock_irq(&n->list_lock);
97654dfa 3875 slabs_destroy(cachep, &list);
1da177e4
LT
3876 }
3877}
3878
3879/**
3880 * cache_reap - Reclaim memory from caches.
05fb6bf0 3881 * @w: work descriptor
1da177e4
LT
3882 *
3883 * Called from workqueue/eventd every few seconds.
3884 * Purpose:
3885 * - clear the per-cpu caches for this CPU.
3886 * - return freeable pages to the main free memory pool.
3887 *
a737b3e2
AM
3888 * If we cannot acquire the cache chain mutex then just give up - we'll try
3889 * again on the next iteration.
1da177e4 3890 */
7c5cae36 3891static void cache_reap(struct work_struct *w)
1da177e4 3892{
7a7c381d 3893 struct kmem_cache *searchp;
ce8eb6c4 3894 struct kmem_cache_node *n;
7d6e6d09 3895 int node = numa_mem_id();
bf6aede7 3896 struct delayed_work *work = to_delayed_work(w);
1da177e4 3897
18004c5d 3898 if (!mutex_trylock(&slab_mutex))
1da177e4 3899 /* Give up. Setup the next iteration. */
7c5cae36 3900 goto out;
1da177e4 3901
18004c5d 3902 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
3903 check_irq_on();
3904
35386e3b 3905 /*
ce8eb6c4 3906 * We only take the node lock if absolutely necessary and we
35386e3b
CL
3907 * have established with reasonable certainty that
3908 * we can do some work if the lock was obtained.
3909 */
18bf8541 3910 n = get_node(searchp, node);
35386e3b 3911
ce8eb6c4 3912 reap_alien(searchp, n);
1da177e4 3913
ce8eb6c4 3914 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
1da177e4 3915
35386e3b
CL
3916 /*
3917 * These are racy checks but it does not matter
3918 * if we skip one check or scan twice.
3919 */
ce8eb6c4 3920 if (time_after(n->next_reap, jiffies))
35386e3b 3921 goto next;
1da177e4 3922
5f0985bb 3923 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 3924
ce8eb6c4 3925 drain_array(searchp, n, n->shared, 0, node);
1da177e4 3926
ce8eb6c4
CL
3927 if (n->free_touched)
3928 n->free_touched = 0;
ed11d9eb
CL
3929 else {
3930 int freed;
1da177e4 3931
ce8eb6c4 3932 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
3933 5 * searchp->num - 1) / (5 * searchp->num));
3934 STATS_ADD_REAPED(searchp, freed);
3935 }
35386e3b 3936next:
1da177e4
LT
3937 cond_resched();
3938 }
3939 check_irq_on();
18004c5d 3940 mutex_unlock(&slab_mutex);
8fce4d8e 3941 next_reap_node();
7c5cae36 3942out:
a737b3e2 3943 /* Set up the next iteration */
5f0985bb 3944 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
3945}
3946
158a9624 3947#ifdef CONFIG_SLABINFO
0d7561c6 3948void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 3949{
8456a648 3950 struct page *page;
b28a02de
PE
3951 unsigned long active_objs;
3952 unsigned long num_objs;
3953 unsigned long active_slabs = 0;
3954 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3955 const char *name;
1da177e4 3956 char *error = NULL;
e498be7d 3957 int node;
ce8eb6c4 3958 struct kmem_cache_node *n;
1da177e4 3959
1da177e4
LT
3960 active_objs = 0;
3961 num_slabs = 0;
18bf8541 3962 for_each_kmem_cache_node(cachep, node, n) {
e498be7d 3963
ca3b9b91 3964 check_irq_on();
ce8eb6c4 3965 spin_lock_irq(&n->list_lock);
e498be7d 3966
8456a648
JK
3967 list_for_each_entry(page, &n->slabs_full, lru) {
3968 if (page->active != cachep->num && !error)
e498be7d
CL
3969 error = "slabs_full accounting error";
3970 active_objs += cachep->num;
3971 active_slabs++;
3972 }
8456a648
JK
3973 list_for_each_entry(page, &n->slabs_partial, lru) {
3974 if (page->active == cachep->num && !error)
106a74e1 3975 error = "slabs_partial accounting error";
8456a648 3976 if (!page->active && !error)
106a74e1 3977 error = "slabs_partial accounting error";
8456a648 3978 active_objs += page->active;
e498be7d
CL
3979 active_slabs++;
3980 }
8456a648
JK
3981 list_for_each_entry(page, &n->slabs_free, lru) {
3982 if (page->active && !error)
106a74e1 3983 error = "slabs_free accounting error";
e498be7d
CL
3984 num_slabs++;
3985 }
ce8eb6c4
CL
3986 free_objects += n->free_objects;
3987 if (n->shared)
3988 shared_avail += n->shared->avail;
e498be7d 3989
ce8eb6c4 3990 spin_unlock_irq(&n->list_lock);
1da177e4 3991 }
b28a02de
PE
3992 num_slabs += active_slabs;
3993 num_objs = num_slabs * cachep->num;
e498be7d 3994 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3995 error = "free_objects accounting error";
3996
b28a02de 3997 name = cachep->name;
1da177e4
LT
3998 if (error)
3999 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4000
0d7561c6
GC
4001 sinfo->active_objs = active_objs;
4002 sinfo->num_objs = num_objs;
4003 sinfo->active_slabs = active_slabs;
4004 sinfo->num_slabs = num_slabs;
4005 sinfo->shared_avail = shared_avail;
4006 sinfo->limit = cachep->limit;
4007 sinfo->batchcount = cachep->batchcount;
4008 sinfo->shared = cachep->shared;
4009 sinfo->objects_per_slab = cachep->num;
4010 sinfo->cache_order = cachep->gfporder;
4011}
4012
4013void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4014{
1da177e4 4015#if STATS
ce8eb6c4 4016 { /* node stats */
1da177e4
LT
4017 unsigned long high = cachep->high_mark;
4018 unsigned long allocs = cachep->num_allocations;
4019 unsigned long grown = cachep->grown;
4020 unsigned long reaped = cachep->reaped;
4021 unsigned long errors = cachep->errors;
4022 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4023 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4024 unsigned long node_frees = cachep->node_frees;
fb7faf33 4025 unsigned long overflows = cachep->node_overflow;
1da177e4 4026
e92dd4fd
JP
4027 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4028 "%4lu %4lu %4lu %4lu %4lu",
4029 allocs, high, grown,
4030 reaped, errors, max_freeable, node_allocs,
4031 node_frees, overflows);
1da177e4
LT
4032 }
4033 /* cpu stats */
4034 {
4035 unsigned long allochit = atomic_read(&cachep->allochit);
4036 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4037 unsigned long freehit = atomic_read(&cachep->freehit);
4038 unsigned long freemiss = atomic_read(&cachep->freemiss);
4039
4040 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4041 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4042 }
4043#endif
1da177e4
LT
4044}
4045
1da177e4
LT
4046#define MAX_SLABINFO_WRITE 128
4047/**
4048 * slabinfo_write - Tuning for the slab allocator
4049 * @file: unused
4050 * @buffer: user buffer
4051 * @count: data length
4052 * @ppos: unused
4053 */
b7454ad3 4054ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4055 size_t count, loff_t *ppos)
1da177e4 4056{
b28a02de 4057 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4058 int limit, batchcount, shared, res;
7a7c381d 4059 struct kmem_cache *cachep;
b28a02de 4060
1da177e4
LT
4061 if (count > MAX_SLABINFO_WRITE)
4062 return -EINVAL;
4063 if (copy_from_user(&kbuf, buffer, count))
4064 return -EFAULT;
b28a02de 4065 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4066
4067 tmp = strchr(kbuf, ' ');
4068 if (!tmp)
4069 return -EINVAL;
4070 *tmp = '\0';
4071 tmp++;
4072 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4073 return -EINVAL;
4074
4075 /* Find the cache in the chain of caches. */
18004c5d 4076 mutex_lock(&slab_mutex);
1da177e4 4077 res = -EINVAL;
18004c5d 4078 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4079 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4080 if (limit < 1 || batchcount < 1 ||
4081 batchcount > limit || shared < 0) {
e498be7d 4082 res = 0;
1da177e4 4083 } else {
e498be7d 4084 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4085 batchcount, shared,
4086 GFP_KERNEL);
1da177e4
LT
4087 }
4088 break;
4089 }
4090 }
18004c5d 4091 mutex_unlock(&slab_mutex);
1da177e4
LT
4092 if (res >= 0)
4093 res = count;
4094 return res;
4095}
871751e2
AV
4096
4097#ifdef CONFIG_DEBUG_SLAB_LEAK
4098
871751e2
AV
4099static inline int add_caller(unsigned long *n, unsigned long v)
4100{
4101 unsigned long *p;
4102 int l;
4103 if (!v)
4104 return 1;
4105 l = n[1];
4106 p = n + 2;
4107 while (l) {
4108 int i = l/2;
4109 unsigned long *q = p + 2 * i;
4110 if (*q == v) {
4111 q[1]++;
4112 return 1;
4113 }
4114 if (*q > v) {
4115 l = i;
4116 } else {
4117 p = q + 2;
4118 l -= i + 1;
4119 }
4120 }
4121 if (++n[1] == n[0])
4122 return 0;
4123 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4124 p[0] = v;
4125 p[1] = 1;
4126 return 1;
4127}
4128
8456a648
JK
4129static void handle_slab(unsigned long *n, struct kmem_cache *c,
4130 struct page *page)
871751e2
AV
4131{
4132 void *p;
03787301 4133 int i;
b1cb0982 4134
871751e2
AV
4135 if (n[0] == n[1])
4136 return;
8456a648 4137 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
03787301 4138 if (get_obj_status(page, i) != OBJECT_ACTIVE)
871751e2 4139 continue;
b1cb0982 4140
871751e2
AV
4141 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4142 return;
4143 }
4144}
4145
4146static void show_symbol(struct seq_file *m, unsigned long address)
4147{
4148#ifdef CONFIG_KALLSYMS
871751e2 4149 unsigned long offset, size;
9281acea 4150 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4151
a5c43dae 4152 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4153 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4154 if (modname[0])
871751e2
AV
4155 seq_printf(m, " [%s]", modname);
4156 return;
4157 }
4158#endif
4159 seq_printf(m, "%p", (void *)address);
4160}
4161
4162static int leaks_show(struct seq_file *m, void *p)
4163{
0672aa7c 4164 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4165 struct page *page;
ce8eb6c4 4166 struct kmem_cache_node *n;
871751e2 4167 const char *name;
db845067 4168 unsigned long *x = m->private;
871751e2
AV
4169 int node;
4170 int i;
4171
4172 if (!(cachep->flags & SLAB_STORE_USER))
4173 return 0;
4174 if (!(cachep->flags & SLAB_RED_ZONE))
4175 return 0;
4176
4177 /* OK, we can do it */
4178
db845067 4179 x[1] = 0;
871751e2 4180
18bf8541 4181 for_each_kmem_cache_node(cachep, node, n) {
871751e2
AV
4182
4183 check_irq_on();
ce8eb6c4 4184 spin_lock_irq(&n->list_lock);
871751e2 4185
8456a648
JK
4186 list_for_each_entry(page, &n->slabs_full, lru)
4187 handle_slab(x, cachep, page);
4188 list_for_each_entry(page, &n->slabs_partial, lru)
4189 handle_slab(x, cachep, page);
ce8eb6c4 4190 spin_unlock_irq(&n->list_lock);
871751e2
AV
4191 }
4192 name = cachep->name;
db845067 4193 if (x[0] == x[1]) {
871751e2 4194 /* Increase the buffer size */
18004c5d 4195 mutex_unlock(&slab_mutex);
db845067 4196 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4197 if (!m->private) {
4198 /* Too bad, we are really out */
db845067 4199 m->private = x;
18004c5d 4200 mutex_lock(&slab_mutex);
871751e2
AV
4201 return -ENOMEM;
4202 }
db845067
CL
4203 *(unsigned long *)m->private = x[0] * 2;
4204 kfree(x);
18004c5d 4205 mutex_lock(&slab_mutex);
871751e2
AV
4206 /* Now make sure this entry will be retried */
4207 m->count = m->size;
4208 return 0;
4209 }
db845067
CL
4210 for (i = 0; i < x[1]; i++) {
4211 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4212 show_symbol(m, x[2*i+2]);
871751e2
AV
4213 seq_putc(m, '\n');
4214 }
d2e7b7d0 4215
871751e2
AV
4216 return 0;
4217}
4218
a0ec95a8 4219static const struct seq_operations slabstats_op = {
1df3b26f 4220 .start = slab_start,
276a2439
WL
4221 .next = slab_next,
4222 .stop = slab_stop,
871751e2
AV
4223 .show = leaks_show,
4224};
a0ec95a8
AD
4225
4226static int slabstats_open(struct inode *inode, struct file *file)
4227{
b208ce32
RJ
4228 unsigned long *n;
4229
4230 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4231 if (!n)
4232 return -ENOMEM;
4233
4234 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4235
4236 return 0;
a0ec95a8
AD
4237}
4238
4239static const struct file_operations proc_slabstats_operations = {
4240 .open = slabstats_open,
4241 .read = seq_read,
4242 .llseek = seq_lseek,
4243 .release = seq_release_private,
4244};
4245#endif
4246
4247static int __init slab_proc_init(void)
4248{
4249#ifdef CONFIG_DEBUG_SLAB_LEAK
4250 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4251#endif
a0ec95a8
AD
4252 return 0;
4253}
4254module_init(slab_proc_init);
1da177e4
LT
4255#endif
4256
00e145b6
MS
4257/**
4258 * ksize - get the actual amount of memory allocated for a given object
4259 * @objp: Pointer to the object
4260 *
4261 * kmalloc may internally round up allocations and return more memory
4262 * than requested. ksize() can be used to determine the actual amount of
4263 * memory allocated. The caller may use this additional memory, even though
4264 * a smaller amount of memory was initially specified with the kmalloc call.
4265 * The caller must guarantee that objp points to a valid object previously
4266 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4267 * must not be freed during the duration of the call.
4268 */
fd76bab2 4269size_t ksize(const void *objp)
1da177e4 4270{
ef8b4520
CL
4271 BUG_ON(!objp);
4272 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4273 return 0;
1da177e4 4274
8c138bc0 4275 return virt_to_cache(objp)->object_size;
1da177e4 4276}
b1aabecd 4277EXPORT_SYMBOL(ksize);