]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/slub.c
mm/mempolicy.c: fix error handling in set_mempolicy and mbind.
[mirror_ubuntu-zesty-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
117d54df 127void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
128{
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
131
132 return p;
133}
134
345c905d
JK
135static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136{
137#ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
139#else
140 return false;
141#endif
142}
143
81819f0f
CL
144/*
145 * Issues still to be resolved:
146 *
81819f0f
CL
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 *
81819f0f
CL
149 * - Variable sizing of the per node arrays
150 */
151
152/* Enable to test recovery from slab corruption on boot */
153#undef SLUB_RESILIENCY_TEST
154
b789ef51
CL
155/* Enable to log cmpxchg failures */
156#undef SLUB_DEBUG_CMPXCHG
157
2086d26a
CL
158/*
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 */
76be8950 162#define MIN_PARTIAL 5
e95eed57 163
2086d26a
CL
164/*
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 167 * sort the partial list by the number of objects in use.
2086d26a
CL
168 */
169#define MAX_PARTIAL 10
170
becfda68 171#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 172 SLAB_POISON | SLAB_STORE_USER)
672bba3a 173
149daaf3
LA
174/*
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
177 */
178#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 SLAB_TRACE)
180
181
fa5ec8a1 182/*
3de47213
DR
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
185 * metadata.
fa5ec8a1 186 */
3de47213 187#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 188
210b5c06
CG
189#define OO_SHIFT 16
190#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 191#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 192
81819f0f 193/* Internal SLUB flags */
f90ec390 194#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 195#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 196
02cbc874
CL
197/*
198 * Tracking user of a slab.
199 */
d6543e39 200#define TRACK_ADDRS_COUNT 16
02cbc874 201struct track {
ce71e27c 202 unsigned long addr; /* Called from address */
d6543e39
BG
203#ifdef CONFIG_STACKTRACE
204 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
205#endif
02cbc874
CL
206 int cpu; /* Was running on cpu */
207 int pid; /* Pid context */
208 unsigned long when; /* When did the operation occur */
209};
210
211enum track_item { TRACK_ALLOC, TRACK_FREE };
212
ab4d5ed5 213#ifdef CONFIG_SYSFS
81819f0f
CL
214static int sysfs_slab_add(struct kmem_cache *);
215static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 216static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 217#else
0c710013
CL
218static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
219static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
220 { return 0; }
107dab5c 221static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
222#endif
223
4fdccdfb 224static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
225{
226#ifdef CONFIG_SLUB_STATS
88da03a6
CL
227 /*
228 * The rmw is racy on a preemptible kernel but this is acceptable, so
229 * avoid this_cpu_add()'s irq-disable overhead.
230 */
231 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
232#endif
233}
234
81819f0f
CL
235/********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
238
7656c72b
CL
239static inline void *get_freepointer(struct kmem_cache *s, void *object)
240{
241 return *(void **)(object + s->offset);
242}
243
0ad9500e
ED
244static void prefetch_freepointer(const struct kmem_cache *s, void *object)
245{
246 prefetch(object + s->offset);
247}
248
1393d9a1
CL
249static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
250{
251 void *p;
252
922d566c
JK
253 if (!debug_pagealloc_enabled())
254 return get_freepointer(s, object);
255
1393d9a1 256 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
1393d9a1
CL
257 return p;
258}
259
7656c72b
CL
260static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
261{
262 *(void **)(object + s->offset) = fp;
263}
264
265/* Loop over all objects in a slab */
224a88be 266#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
267 for (__p = fixup_red_left(__s, __addr); \
268 __p < (__addr) + (__objects) * (__s)->size; \
269 __p += (__s)->size)
7656c72b 270
54266640 271#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
d86bd1be
JK
272 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
273 __idx <= __objects; \
274 __p += (__s)->size, __idx++)
54266640 275
7656c72b
CL
276/* Determine object index from a given position */
277static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
278{
279 return (p - addr) / s->size;
280}
281
ab9a0f19
LJ
282static inline int order_objects(int order, unsigned long size, int reserved)
283{
284 return ((PAGE_SIZE << order) - reserved) / size;
285}
286
834f3d11 287static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 288 unsigned long size, int reserved)
834f3d11
CL
289{
290 struct kmem_cache_order_objects x = {
ab9a0f19 291 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
292 };
293
294 return x;
295}
296
297static inline int oo_order(struct kmem_cache_order_objects x)
298{
210b5c06 299 return x.x >> OO_SHIFT;
834f3d11
CL
300}
301
302static inline int oo_objects(struct kmem_cache_order_objects x)
303{
210b5c06 304 return x.x & OO_MASK;
834f3d11
CL
305}
306
881db7fb
CL
307/*
308 * Per slab locking using the pagelock
309 */
310static __always_inline void slab_lock(struct page *page)
311{
48c935ad 312 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
313 bit_spin_lock(PG_locked, &page->flags);
314}
315
316static __always_inline void slab_unlock(struct page *page)
317{
48c935ad 318 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
319 __bit_spin_unlock(PG_locked, &page->flags);
320}
321
a0320865
DH
322static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
323{
324 struct page tmp;
325 tmp.counters = counters_new;
326 /*
327 * page->counters can cover frozen/inuse/objects as well
0139aa7b
JK
328 * as page->_refcount. If we assign to ->counters directly
329 * we run the risk of losing updates to page->_refcount, so
a0320865
DH
330 * be careful and only assign to the fields we need.
331 */
332 page->frozen = tmp.frozen;
333 page->inuse = tmp.inuse;
334 page->objects = tmp.objects;
335}
336
1d07171c
CL
337/* Interrupts must be disabled (for the fallback code to work right) */
338static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
339 void *freelist_old, unsigned long counters_old,
340 void *freelist_new, unsigned long counters_new,
341 const char *n)
342{
343 VM_BUG_ON(!irqs_disabled());
2565409f
HC
344#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
345 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 346 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 347 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
348 freelist_old, counters_old,
349 freelist_new, counters_new))
6f6528a1 350 return true;
1d07171c
CL
351 } else
352#endif
353 {
354 slab_lock(page);
d0e0ac97
CG
355 if (page->freelist == freelist_old &&
356 page->counters == counters_old) {
1d07171c 357 page->freelist = freelist_new;
a0320865 358 set_page_slub_counters(page, counters_new);
1d07171c 359 slab_unlock(page);
6f6528a1 360 return true;
1d07171c
CL
361 }
362 slab_unlock(page);
363 }
364
365 cpu_relax();
366 stat(s, CMPXCHG_DOUBLE_FAIL);
367
368#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 369 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
370#endif
371
6f6528a1 372 return false;
1d07171c
CL
373}
374
b789ef51
CL
375static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379{
2565409f
HC
380#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 382 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 383 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
384 freelist_old, counters_old,
385 freelist_new, counters_new))
6f6528a1 386 return true;
b789ef51
CL
387 } else
388#endif
389 {
1d07171c
CL
390 unsigned long flags;
391
392 local_irq_save(flags);
881db7fb 393 slab_lock(page);
d0e0ac97
CG
394 if (page->freelist == freelist_old &&
395 page->counters == counters_old) {
b789ef51 396 page->freelist = freelist_new;
a0320865 397 set_page_slub_counters(page, counters_new);
881db7fb 398 slab_unlock(page);
1d07171c 399 local_irq_restore(flags);
6f6528a1 400 return true;
b789ef51 401 }
881db7fb 402 slab_unlock(page);
1d07171c 403 local_irq_restore(flags);
b789ef51
CL
404 }
405
406 cpu_relax();
407 stat(s, CMPXCHG_DOUBLE_FAIL);
408
409#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 410 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
411#endif
412
6f6528a1 413 return false;
b789ef51
CL
414}
415
41ecc55b 416#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
417/*
418 * Determine a map of object in use on a page.
419 *
881db7fb 420 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
421 * not vanish from under us.
422 */
423static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
424{
425 void *p;
426 void *addr = page_address(page);
427
428 for (p = page->freelist; p; p = get_freepointer(s, p))
429 set_bit(slab_index(p, s, addr), map);
430}
431
d86bd1be
JK
432static inline int size_from_object(struct kmem_cache *s)
433{
434 if (s->flags & SLAB_RED_ZONE)
435 return s->size - s->red_left_pad;
436
437 return s->size;
438}
439
440static inline void *restore_red_left(struct kmem_cache *s, void *p)
441{
442 if (s->flags & SLAB_RED_ZONE)
443 p -= s->red_left_pad;
444
445 return p;
446}
447
41ecc55b
CL
448/*
449 * Debug settings:
450 */
89d3c87e 451#if defined(CONFIG_SLUB_DEBUG_ON)
f0630fff
CL
452static int slub_debug = DEBUG_DEFAULT_FLAGS;
453#else
41ecc55b 454static int slub_debug;
f0630fff 455#endif
41ecc55b
CL
456
457static char *slub_debug_slabs;
fa5ec8a1 458static int disable_higher_order_debug;
41ecc55b 459
a79316c6
AR
460/*
461 * slub is about to manipulate internal object metadata. This memory lies
462 * outside the range of the allocated object, so accessing it would normally
463 * be reported by kasan as a bounds error. metadata_access_enable() is used
464 * to tell kasan that these accesses are OK.
465 */
466static inline void metadata_access_enable(void)
467{
468 kasan_disable_current();
469}
470
471static inline void metadata_access_disable(void)
472{
473 kasan_enable_current();
474}
475
81819f0f
CL
476/*
477 * Object debugging
478 */
d86bd1be
JK
479
480/* Verify that a pointer has an address that is valid within a slab page */
481static inline int check_valid_pointer(struct kmem_cache *s,
482 struct page *page, void *object)
483{
484 void *base;
485
486 if (!object)
487 return 1;
488
489 base = page_address(page);
490 object = restore_red_left(s, object);
491 if (object < base || object >= base + page->objects * s->size ||
492 (object - base) % s->size) {
493 return 0;
494 }
495
496 return 1;
497}
498
aa2efd5e
DT
499static void print_section(char *level, char *text, u8 *addr,
500 unsigned int length)
81819f0f 501{
a79316c6 502 metadata_access_enable();
aa2efd5e 503 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 504 length, 1);
a79316c6 505 metadata_access_disable();
81819f0f
CL
506}
507
81819f0f
CL
508static struct track *get_track(struct kmem_cache *s, void *object,
509 enum track_item alloc)
510{
511 struct track *p;
512
513 if (s->offset)
514 p = object + s->offset + sizeof(void *);
515 else
516 p = object + s->inuse;
517
518 return p + alloc;
519}
520
521static void set_track(struct kmem_cache *s, void *object,
ce71e27c 522 enum track_item alloc, unsigned long addr)
81819f0f 523{
1a00df4a 524 struct track *p = get_track(s, object, alloc);
81819f0f 525
81819f0f 526 if (addr) {
d6543e39
BG
527#ifdef CONFIG_STACKTRACE
528 struct stack_trace trace;
529 int i;
530
531 trace.nr_entries = 0;
532 trace.max_entries = TRACK_ADDRS_COUNT;
533 trace.entries = p->addrs;
534 trace.skip = 3;
a79316c6 535 metadata_access_enable();
d6543e39 536 save_stack_trace(&trace);
a79316c6 537 metadata_access_disable();
d6543e39
BG
538
539 /* See rant in lockdep.c */
540 if (trace.nr_entries != 0 &&
541 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
542 trace.nr_entries--;
543
544 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
545 p->addrs[i] = 0;
546#endif
81819f0f
CL
547 p->addr = addr;
548 p->cpu = smp_processor_id();
88e4ccf2 549 p->pid = current->pid;
81819f0f
CL
550 p->when = jiffies;
551 } else
552 memset(p, 0, sizeof(struct track));
553}
554
81819f0f
CL
555static void init_tracking(struct kmem_cache *s, void *object)
556{
24922684
CL
557 if (!(s->flags & SLAB_STORE_USER))
558 return;
559
ce71e27c
EGM
560 set_track(s, object, TRACK_FREE, 0UL);
561 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
562}
563
564static void print_track(const char *s, struct track *t)
565{
566 if (!t->addr)
567 return;
568
f9f58285
FF
569 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
570 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
571#ifdef CONFIG_STACKTRACE
572 {
573 int i;
574 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
575 if (t->addrs[i])
f9f58285 576 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
577 else
578 break;
579 }
580#endif
24922684
CL
581}
582
583static void print_tracking(struct kmem_cache *s, void *object)
584{
585 if (!(s->flags & SLAB_STORE_USER))
586 return;
587
588 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
589 print_track("Freed", get_track(s, object, TRACK_FREE));
590}
591
592static void print_page_info(struct page *page)
593{
f9f58285 594 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 595 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
596
597}
598
599static void slab_bug(struct kmem_cache *s, char *fmt, ...)
600{
ecc42fbe 601 struct va_format vaf;
24922684 602 va_list args;
24922684
CL
603
604 va_start(args, fmt);
ecc42fbe
FF
605 vaf.fmt = fmt;
606 vaf.va = &args;
f9f58285 607 pr_err("=============================================================================\n");
ecc42fbe 608 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 609 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 610
373d4d09 611 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 612 va_end(args);
81819f0f
CL
613}
614
24922684
CL
615static void slab_fix(struct kmem_cache *s, char *fmt, ...)
616{
ecc42fbe 617 struct va_format vaf;
24922684 618 va_list args;
24922684
CL
619
620 va_start(args, fmt);
ecc42fbe
FF
621 vaf.fmt = fmt;
622 vaf.va = &args;
623 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 624 va_end(args);
24922684
CL
625}
626
627static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
628{
629 unsigned int off; /* Offset of last byte */
a973e9dd 630 u8 *addr = page_address(page);
24922684
CL
631
632 print_tracking(s, p);
633
634 print_page_info(page);
635
f9f58285
FF
636 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
637 p, p - addr, get_freepointer(s, p));
24922684 638
d86bd1be 639 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
640 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
641 s->red_left_pad);
d86bd1be 642 else if (p > addr + 16)
aa2efd5e 643 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 644
aa2efd5e
DT
645 print_section(KERN_ERR, "Object ", p,
646 min_t(unsigned long, s->object_size, PAGE_SIZE));
81819f0f 647 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 648 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 649 s->inuse - s->object_size);
81819f0f 650
81819f0f
CL
651 if (s->offset)
652 off = s->offset + sizeof(void *);
653 else
654 off = s->inuse;
655
24922684 656 if (s->flags & SLAB_STORE_USER)
81819f0f 657 off += 2 * sizeof(struct track);
81819f0f 658
80a9201a
AP
659 off += kasan_metadata_size(s);
660
d86bd1be 661 if (off != size_from_object(s))
81819f0f 662 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
663 print_section(KERN_ERR, "Padding ", p + off,
664 size_from_object(s) - off);
24922684
CL
665
666 dump_stack();
81819f0f
CL
667}
668
75c66def 669void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
670 u8 *object, char *reason)
671{
3dc50637 672 slab_bug(s, "%s", reason);
24922684 673 print_trailer(s, page, object);
81819f0f
CL
674}
675
d0e0ac97
CG
676static void slab_err(struct kmem_cache *s, struct page *page,
677 const char *fmt, ...)
81819f0f
CL
678{
679 va_list args;
680 char buf[100];
681
24922684
CL
682 va_start(args, fmt);
683 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 684 va_end(args);
3dc50637 685 slab_bug(s, "%s", buf);
24922684 686 print_page_info(page);
81819f0f
CL
687 dump_stack();
688}
689
f7cb1933 690static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
691{
692 u8 *p = object;
693
d86bd1be
JK
694 if (s->flags & SLAB_RED_ZONE)
695 memset(p - s->red_left_pad, val, s->red_left_pad);
696
81819f0f 697 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
698 memset(p, POISON_FREE, s->object_size - 1);
699 p[s->object_size - 1] = POISON_END;
81819f0f
CL
700 }
701
702 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 703 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
704}
705
24922684
CL
706static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
707 void *from, void *to)
708{
709 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
710 memset(from, data, to - from);
711}
712
713static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
714 u8 *object, char *what,
06428780 715 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
716{
717 u8 *fault;
718 u8 *end;
719
a79316c6 720 metadata_access_enable();
79824820 721 fault = memchr_inv(start, value, bytes);
a79316c6 722 metadata_access_disable();
24922684
CL
723 if (!fault)
724 return 1;
725
726 end = start + bytes;
727 while (end > fault && end[-1] == value)
728 end--;
729
730 slab_bug(s, "%s overwritten", what);
f9f58285 731 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
732 fault, end - 1, fault[0], value);
733 print_trailer(s, page, object);
734
735 restore_bytes(s, what, value, fault, end);
736 return 0;
81819f0f
CL
737}
738
81819f0f
CL
739/*
740 * Object layout:
741 *
742 * object address
743 * Bytes of the object to be managed.
744 * If the freepointer may overlay the object then the free
745 * pointer is the first word of the object.
672bba3a 746 *
81819f0f
CL
747 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
748 * 0xa5 (POISON_END)
749 *
3b0efdfa 750 * object + s->object_size
81819f0f 751 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 752 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 753 * object_size == inuse.
672bba3a 754 *
81819f0f
CL
755 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
756 * 0xcc (RED_ACTIVE) for objects in use.
757 *
758 * object + s->inuse
672bba3a
CL
759 * Meta data starts here.
760 *
81819f0f
CL
761 * A. Free pointer (if we cannot overwrite object on free)
762 * B. Tracking data for SLAB_STORE_USER
672bba3a 763 * C. Padding to reach required alignment boundary or at mininum
6446faa2 764 * one word if debugging is on to be able to detect writes
672bba3a
CL
765 * before the word boundary.
766 *
767 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
768 *
769 * object + s->size
672bba3a 770 * Nothing is used beyond s->size.
81819f0f 771 *
3b0efdfa 772 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 773 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
774 * may be used with merged slabcaches.
775 */
776
81819f0f
CL
777static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
778{
779 unsigned long off = s->inuse; /* The end of info */
780
781 if (s->offset)
782 /* Freepointer is placed after the object. */
783 off += sizeof(void *);
784
785 if (s->flags & SLAB_STORE_USER)
786 /* We also have user information there */
787 off += 2 * sizeof(struct track);
788
80a9201a
AP
789 off += kasan_metadata_size(s);
790
d86bd1be 791 if (size_from_object(s) == off)
81819f0f
CL
792 return 1;
793
24922684 794 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 795 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
796}
797
39b26464 798/* Check the pad bytes at the end of a slab page */
81819f0f
CL
799static int slab_pad_check(struct kmem_cache *s, struct page *page)
800{
24922684
CL
801 u8 *start;
802 u8 *fault;
803 u8 *end;
804 int length;
805 int remainder;
81819f0f
CL
806
807 if (!(s->flags & SLAB_POISON))
808 return 1;
809
a973e9dd 810 start = page_address(page);
ab9a0f19 811 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
812 end = start + length;
813 remainder = length % s->size;
81819f0f
CL
814 if (!remainder)
815 return 1;
816
a79316c6 817 metadata_access_enable();
79824820 818 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 819 metadata_access_disable();
24922684
CL
820 if (!fault)
821 return 1;
822 while (end > fault && end[-1] == POISON_INUSE)
823 end--;
824
825 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
aa2efd5e 826 print_section(KERN_ERR, "Padding ", end - remainder, remainder);
24922684 827
8a3d271d 828 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 829 return 0;
81819f0f
CL
830}
831
832static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 833 void *object, u8 val)
81819f0f
CL
834{
835 u8 *p = object;
3b0efdfa 836 u8 *endobject = object + s->object_size;
81819f0f
CL
837
838 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
839 if (!check_bytes_and_report(s, page, object, "Redzone",
840 object - s->red_left_pad, val, s->red_left_pad))
841 return 0;
842
24922684 843 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 844 endobject, val, s->inuse - s->object_size))
81819f0f 845 return 0;
81819f0f 846 } else {
3b0efdfa 847 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 848 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
849 endobject, POISON_INUSE,
850 s->inuse - s->object_size);
3adbefee 851 }
81819f0f
CL
852 }
853
854 if (s->flags & SLAB_POISON) {
f7cb1933 855 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 856 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 857 POISON_FREE, s->object_size - 1) ||
24922684 858 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 859 p + s->object_size - 1, POISON_END, 1)))
81819f0f 860 return 0;
81819f0f
CL
861 /*
862 * check_pad_bytes cleans up on its own.
863 */
864 check_pad_bytes(s, page, p);
865 }
866
f7cb1933 867 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
868 /*
869 * Object and freepointer overlap. Cannot check
870 * freepointer while object is allocated.
871 */
872 return 1;
873
874 /* Check free pointer validity */
875 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
876 object_err(s, page, p, "Freepointer corrupt");
877 /*
9f6c708e 878 * No choice but to zap it and thus lose the remainder
81819f0f 879 * of the free objects in this slab. May cause
672bba3a 880 * another error because the object count is now wrong.
81819f0f 881 */
a973e9dd 882 set_freepointer(s, p, NULL);
81819f0f
CL
883 return 0;
884 }
885 return 1;
886}
887
888static int check_slab(struct kmem_cache *s, struct page *page)
889{
39b26464
CL
890 int maxobj;
891
81819f0f
CL
892 VM_BUG_ON(!irqs_disabled());
893
894 if (!PageSlab(page)) {
24922684 895 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
896 return 0;
897 }
39b26464 898
ab9a0f19 899 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
900 if (page->objects > maxobj) {
901 slab_err(s, page, "objects %u > max %u",
f6edde9c 902 page->objects, maxobj);
39b26464
CL
903 return 0;
904 }
905 if (page->inuse > page->objects) {
24922684 906 slab_err(s, page, "inuse %u > max %u",
f6edde9c 907 page->inuse, page->objects);
81819f0f
CL
908 return 0;
909 }
910 /* Slab_pad_check fixes things up after itself */
911 slab_pad_check(s, page);
912 return 1;
913}
914
915/*
672bba3a
CL
916 * Determine if a certain object on a page is on the freelist. Must hold the
917 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
918 */
919static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
920{
921 int nr = 0;
881db7fb 922 void *fp;
81819f0f 923 void *object = NULL;
f6edde9c 924 int max_objects;
81819f0f 925
881db7fb 926 fp = page->freelist;
39b26464 927 while (fp && nr <= page->objects) {
81819f0f
CL
928 if (fp == search)
929 return 1;
930 if (!check_valid_pointer(s, page, fp)) {
931 if (object) {
932 object_err(s, page, object,
933 "Freechain corrupt");
a973e9dd 934 set_freepointer(s, object, NULL);
81819f0f 935 } else {
24922684 936 slab_err(s, page, "Freepointer corrupt");
a973e9dd 937 page->freelist = NULL;
39b26464 938 page->inuse = page->objects;
24922684 939 slab_fix(s, "Freelist cleared");
81819f0f
CL
940 return 0;
941 }
942 break;
943 }
944 object = fp;
945 fp = get_freepointer(s, object);
946 nr++;
947 }
948
ab9a0f19 949 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
950 if (max_objects > MAX_OBJS_PER_PAGE)
951 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
952
953 if (page->objects != max_objects) {
756a025f
JP
954 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
955 page->objects, max_objects);
224a88be
CL
956 page->objects = max_objects;
957 slab_fix(s, "Number of objects adjusted.");
958 }
39b26464 959 if (page->inuse != page->objects - nr) {
756a025f
JP
960 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
961 page->inuse, page->objects - nr);
39b26464 962 page->inuse = page->objects - nr;
24922684 963 slab_fix(s, "Object count adjusted.");
81819f0f
CL
964 }
965 return search == NULL;
966}
967
0121c619
CL
968static void trace(struct kmem_cache *s, struct page *page, void *object,
969 int alloc)
3ec09742
CL
970{
971 if (s->flags & SLAB_TRACE) {
f9f58285 972 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
973 s->name,
974 alloc ? "alloc" : "free",
975 object, page->inuse,
976 page->freelist);
977
978 if (!alloc)
aa2efd5e 979 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 980 s->object_size);
3ec09742
CL
981
982 dump_stack();
983 }
984}
985
643b1138 986/*
672bba3a 987 * Tracking of fully allocated slabs for debugging purposes.
643b1138 988 */
5cc6eee8
CL
989static void add_full(struct kmem_cache *s,
990 struct kmem_cache_node *n, struct page *page)
643b1138 991{
5cc6eee8
CL
992 if (!(s->flags & SLAB_STORE_USER))
993 return;
994
255d0884 995 lockdep_assert_held(&n->list_lock);
643b1138 996 list_add(&page->lru, &n->full);
643b1138
CL
997}
998
c65c1877 999static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1000{
643b1138
CL
1001 if (!(s->flags & SLAB_STORE_USER))
1002 return;
1003
255d0884 1004 lockdep_assert_held(&n->list_lock);
643b1138 1005 list_del(&page->lru);
643b1138
CL
1006}
1007
0f389ec6
CL
1008/* Tracking of the number of slabs for debugging purposes */
1009static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1010{
1011 struct kmem_cache_node *n = get_node(s, node);
1012
1013 return atomic_long_read(&n->nr_slabs);
1014}
1015
26c02cf0
AB
1016static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1017{
1018 return atomic_long_read(&n->nr_slabs);
1019}
1020
205ab99d 1021static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1022{
1023 struct kmem_cache_node *n = get_node(s, node);
1024
1025 /*
1026 * May be called early in order to allocate a slab for the
1027 * kmem_cache_node structure. Solve the chicken-egg
1028 * dilemma by deferring the increment of the count during
1029 * bootstrap (see early_kmem_cache_node_alloc).
1030 */
338b2642 1031 if (likely(n)) {
0f389ec6 1032 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1033 atomic_long_add(objects, &n->total_objects);
1034 }
0f389ec6 1035}
205ab99d 1036static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1037{
1038 struct kmem_cache_node *n = get_node(s, node);
1039
1040 atomic_long_dec(&n->nr_slabs);
205ab99d 1041 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1042}
1043
1044/* Object debug checks for alloc/free paths */
3ec09742
CL
1045static void setup_object_debug(struct kmem_cache *s, struct page *page,
1046 void *object)
1047{
1048 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1049 return;
1050
f7cb1933 1051 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1052 init_tracking(s, object);
1053}
1054
becfda68 1055static inline int alloc_consistency_checks(struct kmem_cache *s,
d0e0ac97 1056 struct page *page,
ce71e27c 1057 void *object, unsigned long addr)
81819f0f
CL
1058{
1059 if (!check_slab(s, page))
becfda68 1060 return 0;
81819f0f 1061
81819f0f
CL
1062 if (!check_valid_pointer(s, page, object)) {
1063 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1064 return 0;
81819f0f
CL
1065 }
1066
f7cb1933 1067 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1068 return 0;
1069
1070 return 1;
1071}
1072
1073static noinline int alloc_debug_processing(struct kmem_cache *s,
1074 struct page *page,
1075 void *object, unsigned long addr)
1076{
1077 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1078 if (!alloc_consistency_checks(s, page, object, addr))
1079 goto bad;
1080 }
81819f0f 1081
3ec09742
CL
1082 /* Success perform special debug activities for allocs */
1083 if (s->flags & SLAB_STORE_USER)
1084 set_track(s, object, TRACK_ALLOC, addr);
1085 trace(s, page, object, 1);
f7cb1933 1086 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1087 return 1;
3ec09742 1088
81819f0f
CL
1089bad:
1090 if (PageSlab(page)) {
1091 /*
1092 * If this is a slab page then lets do the best we can
1093 * to avoid issues in the future. Marking all objects
672bba3a 1094 * as used avoids touching the remaining objects.
81819f0f 1095 */
24922684 1096 slab_fix(s, "Marking all objects used");
39b26464 1097 page->inuse = page->objects;
a973e9dd 1098 page->freelist = NULL;
81819f0f
CL
1099 }
1100 return 0;
1101}
1102
becfda68
LA
1103static inline int free_consistency_checks(struct kmem_cache *s,
1104 struct page *page, void *object, unsigned long addr)
81819f0f 1105{
81819f0f 1106 if (!check_valid_pointer(s, page, object)) {
70d71228 1107 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1108 return 0;
81819f0f
CL
1109 }
1110
1111 if (on_freelist(s, page, object)) {
24922684 1112 object_err(s, page, object, "Object already free");
becfda68 1113 return 0;
81819f0f
CL
1114 }
1115
f7cb1933 1116 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1117 return 0;
81819f0f 1118
1b4f59e3 1119 if (unlikely(s != page->slab_cache)) {
3adbefee 1120 if (!PageSlab(page)) {
756a025f
JP
1121 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1122 object);
1b4f59e3 1123 } else if (!page->slab_cache) {
f9f58285
FF
1124 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1125 object);
70d71228 1126 dump_stack();
06428780 1127 } else
24922684
CL
1128 object_err(s, page, object,
1129 "page slab pointer corrupt.");
becfda68
LA
1130 return 0;
1131 }
1132 return 1;
1133}
1134
1135/* Supports checking bulk free of a constructed freelist */
1136static noinline int free_debug_processing(
1137 struct kmem_cache *s, struct page *page,
1138 void *head, void *tail, int bulk_cnt,
1139 unsigned long addr)
1140{
1141 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1142 void *object = head;
1143 int cnt = 0;
1144 unsigned long uninitialized_var(flags);
1145 int ret = 0;
1146
1147 spin_lock_irqsave(&n->list_lock, flags);
1148 slab_lock(page);
1149
1150 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1151 if (!check_slab(s, page))
1152 goto out;
1153 }
1154
1155next_object:
1156 cnt++;
1157
1158 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1159 if (!free_consistency_checks(s, page, object, addr))
1160 goto out;
81819f0f 1161 }
3ec09742 1162
3ec09742
CL
1163 if (s->flags & SLAB_STORE_USER)
1164 set_track(s, object, TRACK_FREE, addr);
1165 trace(s, page, object, 0);
81084651 1166 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1167 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1168
1169 /* Reached end of constructed freelist yet? */
1170 if (object != tail) {
1171 object = get_freepointer(s, object);
1172 goto next_object;
1173 }
804aa132
LA
1174 ret = 1;
1175
5c2e4bbb 1176out:
81084651
JDB
1177 if (cnt != bulk_cnt)
1178 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1179 bulk_cnt, cnt);
1180
881db7fb 1181 slab_unlock(page);
282acb43 1182 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1183 if (!ret)
1184 slab_fix(s, "Object at 0x%p not freed", object);
1185 return ret;
81819f0f
CL
1186}
1187
41ecc55b
CL
1188static int __init setup_slub_debug(char *str)
1189{
f0630fff
CL
1190 slub_debug = DEBUG_DEFAULT_FLAGS;
1191 if (*str++ != '=' || !*str)
1192 /*
1193 * No options specified. Switch on full debugging.
1194 */
1195 goto out;
1196
1197 if (*str == ',')
1198 /*
1199 * No options but restriction on slabs. This means full
1200 * debugging for slabs matching a pattern.
1201 */
1202 goto check_slabs;
1203
1204 slub_debug = 0;
1205 if (*str == '-')
1206 /*
1207 * Switch off all debugging measures.
1208 */
1209 goto out;
1210
1211 /*
1212 * Determine which debug features should be switched on
1213 */
06428780 1214 for (; *str && *str != ','; str++) {
f0630fff
CL
1215 switch (tolower(*str)) {
1216 case 'f':
becfda68 1217 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1218 break;
1219 case 'z':
1220 slub_debug |= SLAB_RED_ZONE;
1221 break;
1222 case 'p':
1223 slub_debug |= SLAB_POISON;
1224 break;
1225 case 'u':
1226 slub_debug |= SLAB_STORE_USER;
1227 break;
1228 case 't':
1229 slub_debug |= SLAB_TRACE;
1230 break;
4c13dd3b
DM
1231 case 'a':
1232 slub_debug |= SLAB_FAILSLAB;
1233 break;
08303a73
CA
1234 case 'o':
1235 /*
1236 * Avoid enabling debugging on caches if its minimum
1237 * order would increase as a result.
1238 */
1239 disable_higher_order_debug = 1;
1240 break;
f0630fff 1241 default:
f9f58285
FF
1242 pr_err("slub_debug option '%c' unknown. skipped\n",
1243 *str);
f0630fff 1244 }
41ecc55b
CL
1245 }
1246
f0630fff 1247check_slabs:
41ecc55b
CL
1248 if (*str == ',')
1249 slub_debug_slabs = str + 1;
f0630fff 1250out:
41ecc55b
CL
1251 return 1;
1252}
1253
1254__setup("slub_debug", setup_slub_debug);
1255
423c929c 1256unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1257 unsigned long flags, const char *name,
51cc5068 1258 void (*ctor)(void *))
41ecc55b
CL
1259{
1260 /*
e153362a 1261 * Enable debugging if selected on the kernel commandline.
41ecc55b 1262 */
c6f58d9b
CL
1263 if (slub_debug && (!slub_debug_slabs || (name &&
1264 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1265 flags |= slub_debug;
ba0268a8
CL
1266
1267 return flags;
41ecc55b 1268}
b4a64718 1269#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1270static inline void setup_object_debug(struct kmem_cache *s,
1271 struct page *page, void *object) {}
41ecc55b 1272
3ec09742 1273static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1274 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1275
282acb43 1276static inline int free_debug_processing(
81084651
JDB
1277 struct kmem_cache *s, struct page *page,
1278 void *head, void *tail, int bulk_cnt,
282acb43 1279 unsigned long addr) { return 0; }
41ecc55b 1280
41ecc55b
CL
1281static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1282 { return 1; }
1283static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1284 void *object, u8 val) { return 1; }
5cc6eee8
CL
1285static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1286 struct page *page) {}
c65c1877
PZ
1287static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1288 struct page *page) {}
423c929c 1289unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1290 unsigned long flags, const char *name,
51cc5068 1291 void (*ctor)(void *))
ba0268a8
CL
1292{
1293 return flags;
1294}
41ecc55b 1295#define slub_debug 0
0f389ec6 1296
fdaa45e9
IM
1297#define disable_higher_order_debug 0
1298
0f389ec6
CL
1299static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1300 { return 0; }
26c02cf0
AB
1301static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1302 { return 0; }
205ab99d
CL
1303static inline void inc_slabs_node(struct kmem_cache *s, int node,
1304 int objects) {}
1305static inline void dec_slabs_node(struct kmem_cache *s, int node,
1306 int objects) {}
7d550c56 1307
02e72cc6
AR
1308#endif /* CONFIG_SLUB_DEBUG */
1309
1310/*
1311 * Hooks for other subsystems that check memory allocations. In a typical
1312 * production configuration these hooks all should produce no code at all.
1313 */
d56791b3
RB
1314static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1315{
1316 kmemleak_alloc(ptr, size, 1, flags);
505f5dcb 1317 kasan_kmalloc_large(ptr, size, flags);
d56791b3
RB
1318}
1319
1320static inline void kfree_hook(const void *x)
1321{
1322 kmemleak_free(x);
0316bec2 1323 kasan_kfree_large(x);
d56791b3
RB
1324}
1325
80a9201a 1326static inline void *slab_free_hook(struct kmem_cache *s, void *x)
d56791b3 1327{
80a9201a
AP
1328 void *freeptr;
1329
d56791b3 1330 kmemleak_free_recursive(x, s->flags);
7d550c56 1331
02e72cc6
AR
1332 /*
1333 * Trouble is that we may no longer disable interrupts in the fast path
1334 * So in order to make the debug calls that expect irqs to be
1335 * disabled we need to disable interrupts temporarily.
1336 */
1337#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1338 {
1339 unsigned long flags;
1340
1341 local_irq_save(flags);
1342 kmemcheck_slab_free(s, x, s->object_size);
1343 debug_check_no_locks_freed(x, s->object_size);
1344 local_irq_restore(flags);
1345 }
1346#endif
1347 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1348 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1349
80a9201a
AP
1350 freeptr = get_freepointer(s, x);
1351 /*
1352 * kasan_slab_free() may put x into memory quarantine, delaying its
1353 * reuse. In this case the object's freelist pointer is changed.
1354 */
0316bec2 1355 kasan_slab_free(s, x);
80a9201a 1356 return freeptr;
02e72cc6 1357}
205ab99d 1358
81084651
JDB
1359static inline void slab_free_freelist_hook(struct kmem_cache *s,
1360 void *head, void *tail)
1361{
1362/*
1363 * Compiler cannot detect this function can be removed if slab_free_hook()
1364 * evaluates to nothing. Thus, catch all relevant config debug options here.
1365 */
1366#if defined(CONFIG_KMEMCHECK) || \
1367 defined(CONFIG_LOCKDEP) || \
1368 defined(CONFIG_DEBUG_KMEMLEAK) || \
1369 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1370 defined(CONFIG_KASAN)
1371
1372 void *object = head;
1373 void *tail_obj = tail ? : head;
80a9201a 1374 void *freeptr;
81084651
JDB
1375
1376 do {
80a9201a
AP
1377 freeptr = slab_free_hook(s, object);
1378 } while ((object != tail_obj) && (object = freeptr));
81084651
JDB
1379#endif
1380}
1381
588f8ba9
TG
1382static void setup_object(struct kmem_cache *s, struct page *page,
1383 void *object)
1384{
1385 setup_object_debug(s, page, object);
b3cbd9bf 1386 kasan_init_slab_obj(s, object);
588f8ba9
TG
1387 if (unlikely(s->ctor)) {
1388 kasan_unpoison_object_data(s, object);
1389 s->ctor(object);
1390 kasan_poison_object_data(s, object);
1391 }
1392}
1393
81819f0f
CL
1394/*
1395 * Slab allocation and freeing
1396 */
5dfb4175
VD
1397static inline struct page *alloc_slab_page(struct kmem_cache *s,
1398 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1399{
5dfb4175 1400 struct page *page;
65c3376a
CL
1401 int order = oo_order(oo);
1402
b1eeab67
VN
1403 flags |= __GFP_NOTRACK;
1404
2154a336 1405 if (node == NUMA_NO_NODE)
5dfb4175 1406 page = alloc_pages(flags, order);
65c3376a 1407 else
96db800f 1408 page = __alloc_pages_node(node, flags, order);
5dfb4175 1409
f3ccb2c4
VD
1410 if (page && memcg_charge_slab(page, flags, order, s)) {
1411 __free_pages(page, order);
1412 page = NULL;
1413 }
5dfb4175
VD
1414
1415 return page;
65c3376a
CL
1416}
1417
210e7a43
TG
1418#ifdef CONFIG_SLAB_FREELIST_RANDOM
1419/* Pre-initialize the random sequence cache */
1420static int init_cache_random_seq(struct kmem_cache *s)
1421{
1422 int err;
1423 unsigned long i, count = oo_objects(s->oo);
1424
a810007a
SR
1425 /* Bailout if already initialised */
1426 if (s->random_seq)
1427 return 0;
1428
210e7a43
TG
1429 err = cache_random_seq_create(s, count, GFP_KERNEL);
1430 if (err) {
1431 pr_err("SLUB: Unable to initialize free list for %s\n",
1432 s->name);
1433 return err;
1434 }
1435
1436 /* Transform to an offset on the set of pages */
1437 if (s->random_seq) {
1438 for (i = 0; i < count; i++)
1439 s->random_seq[i] *= s->size;
1440 }
1441 return 0;
1442}
1443
1444/* Initialize each random sequence freelist per cache */
1445static void __init init_freelist_randomization(void)
1446{
1447 struct kmem_cache *s;
1448
1449 mutex_lock(&slab_mutex);
1450
1451 list_for_each_entry(s, &slab_caches, list)
1452 init_cache_random_seq(s);
1453
1454 mutex_unlock(&slab_mutex);
1455}
1456
1457/* Get the next entry on the pre-computed freelist randomized */
1458static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1459 unsigned long *pos, void *start,
1460 unsigned long page_limit,
1461 unsigned long freelist_count)
1462{
1463 unsigned int idx;
1464
1465 /*
1466 * If the target page allocation failed, the number of objects on the
1467 * page might be smaller than the usual size defined by the cache.
1468 */
1469 do {
1470 idx = s->random_seq[*pos];
1471 *pos += 1;
1472 if (*pos >= freelist_count)
1473 *pos = 0;
1474 } while (unlikely(idx >= page_limit));
1475
1476 return (char *)start + idx;
1477}
1478
1479/* Shuffle the single linked freelist based on a random pre-computed sequence */
1480static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1481{
1482 void *start;
1483 void *cur;
1484 void *next;
1485 unsigned long idx, pos, page_limit, freelist_count;
1486
1487 if (page->objects < 2 || !s->random_seq)
1488 return false;
1489
1490 freelist_count = oo_objects(s->oo);
1491 pos = get_random_int() % freelist_count;
1492
1493 page_limit = page->objects * s->size;
1494 start = fixup_red_left(s, page_address(page));
1495
1496 /* First entry is used as the base of the freelist */
1497 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1498 freelist_count);
1499 page->freelist = cur;
1500
1501 for (idx = 1; idx < page->objects; idx++) {
1502 setup_object(s, page, cur);
1503 next = next_freelist_entry(s, page, &pos, start, page_limit,
1504 freelist_count);
1505 set_freepointer(s, cur, next);
1506 cur = next;
1507 }
1508 setup_object(s, page, cur);
1509 set_freepointer(s, cur, NULL);
1510
1511 return true;
1512}
1513#else
1514static inline int init_cache_random_seq(struct kmem_cache *s)
1515{
1516 return 0;
1517}
1518static inline void init_freelist_randomization(void) { }
1519static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1520{
1521 return false;
1522}
1523#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1524
81819f0f
CL
1525static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1526{
06428780 1527 struct page *page;
834f3d11 1528 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1529 gfp_t alloc_gfp;
588f8ba9
TG
1530 void *start, *p;
1531 int idx, order;
210e7a43 1532 bool shuffle;
81819f0f 1533
7e0528da
CL
1534 flags &= gfp_allowed_mask;
1535
d0164adc 1536 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1537 local_irq_enable();
1538
b7a49f0d 1539 flags |= s->allocflags;
e12ba74d 1540
ba52270d
PE
1541 /*
1542 * Let the initial higher-order allocation fail under memory pressure
1543 * so we fall-back to the minimum order allocation.
1544 */
1545 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1546 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1547 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1548
5dfb4175 1549 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1550 if (unlikely(!page)) {
1551 oo = s->min;
80c3a998 1552 alloc_gfp = flags;
65c3376a
CL
1553 /*
1554 * Allocation may have failed due to fragmentation.
1555 * Try a lower order alloc if possible
1556 */
5dfb4175 1557 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1558 if (unlikely(!page))
1559 goto out;
1560 stat(s, ORDER_FALLBACK);
65c3376a 1561 }
5a896d9e 1562
588f8ba9
TG
1563 if (kmemcheck_enabled &&
1564 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1565 int pages = 1 << oo_order(oo);
1566
80c3a998 1567 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1568
1569 /*
1570 * Objects from caches that have a constructor don't get
1571 * cleared when they're allocated, so we need to do it here.
1572 */
1573 if (s->ctor)
1574 kmemcheck_mark_uninitialized_pages(page, pages);
1575 else
1576 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1577 }
1578
834f3d11 1579 page->objects = oo_objects(oo);
81819f0f 1580
1f458cbf 1581 order = compound_order(page);
1b4f59e3 1582 page->slab_cache = s;
c03f94cc 1583 __SetPageSlab(page);
2f064f34 1584 if (page_is_pfmemalloc(page))
072bb0aa 1585 SetPageSlabPfmemalloc(page);
81819f0f
CL
1586
1587 start = page_address(page);
81819f0f
CL
1588
1589 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1590 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1591
0316bec2
AR
1592 kasan_poison_slab(page);
1593
210e7a43
TG
1594 shuffle = shuffle_freelist(s, page);
1595
1596 if (!shuffle) {
1597 for_each_object_idx(p, idx, s, start, page->objects) {
1598 setup_object(s, page, p);
1599 if (likely(idx < page->objects))
1600 set_freepointer(s, p, p + s->size);
1601 else
1602 set_freepointer(s, p, NULL);
1603 }
1604 page->freelist = fixup_red_left(s, start);
81819f0f 1605 }
81819f0f 1606
e6e82ea1 1607 page->inuse = page->objects;
8cb0a506 1608 page->frozen = 1;
588f8ba9 1609
81819f0f 1610out:
d0164adc 1611 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1612 local_irq_disable();
1613 if (!page)
1614 return NULL;
1615
1616 mod_zone_page_state(page_zone(page),
1617 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1618 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1619 1 << oo_order(oo));
1620
1621 inc_slabs_node(s, page_to_nid(page), page->objects);
1622
81819f0f
CL
1623 return page;
1624}
1625
588f8ba9
TG
1626static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1627{
1628 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1629 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1630 flags &= ~GFP_SLAB_BUG_MASK;
1631 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1632 invalid_mask, &invalid_mask, flags, &flags);
588f8ba9
TG
1633 }
1634
1635 return allocate_slab(s,
1636 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1637}
1638
81819f0f
CL
1639static void __free_slab(struct kmem_cache *s, struct page *page)
1640{
834f3d11
CL
1641 int order = compound_order(page);
1642 int pages = 1 << order;
81819f0f 1643
becfda68 1644 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1645 void *p;
1646
1647 slab_pad_check(s, page);
224a88be
CL
1648 for_each_object(p, s, page_address(page),
1649 page->objects)
f7cb1933 1650 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1651 }
1652
b1eeab67 1653 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1654
81819f0f
CL
1655 mod_zone_page_state(page_zone(page),
1656 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1657 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1658 -pages);
81819f0f 1659
072bb0aa 1660 __ClearPageSlabPfmemalloc(page);
49bd5221 1661 __ClearPageSlab(page);
1f458cbf 1662
22b751c3 1663 page_mapcount_reset(page);
1eb5ac64
NP
1664 if (current->reclaim_state)
1665 current->reclaim_state->reclaimed_slab += pages;
27ee57c9
VD
1666 memcg_uncharge_slab(page, order, s);
1667 __free_pages(page, order);
81819f0f
CL
1668}
1669
da9a638c
LJ
1670#define need_reserve_slab_rcu \
1671 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1672
81819f0f
CL
1673static void rcu_free_slab(struct rcu_head *h)
1674{
1675 struct page *page;
1676
da9a638c
LJ
1677 if (need_reserve_slab_rcu)
1678 page = virt_to_head_page(h);
1679 else
1680 page = container_of((struct list_head *)h, struct page, lru);
1681
1b4f59e3 1682 __free_slab(page->slab_cache, page);
81819f0f
CL
1683}
1684
1685static void free_slab(struct kmem_cache *s, struct page *page)
1686{
1687 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1688 struct rcu_head *head;
1689
1690 if (need_reserve_slab_rcu) {
1691 int order = compound_order(page);
1692 int offset = (PAGE_SIZE << order) - s->reserved;
1693
1694 VM_BUG_ON(s->reserved != sizeof(*head));
1695 head = page_address(page) + offset;
1696 } else {
bc4f610d 1697 head = &page->rcu_head;
da9a638c 1698 }
81819f0f
CL
1699
1700 call_rcu(head, rcu_free_slab);
1701 } else
1702 __free_slab(s, page);
1703}
1704
1705static void discard_slab(struct kmem_cache *s, struct page *page)
1706{
205ab99d 1707 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1708 free_slab(s, page);
1709}
1710
1711/*
5cc6eee8 1712 * Management of partially allocated slabs.
81819f0f 1713 */
1e4dd946
SR
1714static inline void
1715__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1716{
e95eed57 1717 n->nr_partial++;
136333d1 1718 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1719 list_add_tail(&page->lru, &n->partial);
1720 else
1721 list_add(&page->lru, &n->partial);
81819f0f
CL
1722}
1723
1e4dd946
SR
1724static inline void add_partial(struct kmem_cache_node *n,
1725 struct page *page, int tail)
62e346a8 1726{
c65c1877 1727 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1728 __add_partial(n, page, tail);
1729}
c65c1877 1730
1e4dd946
SR
1731static inline void remove_partial(struct kmem_cache_node *n,
1732 struct page *page)
1733{
1734 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1735 list_del(&page->lru);
1736 n->nr_partial--;
1e4dd946
SR
1737}
1738
81819f0f 1739/*
7ced3719
CL
1740 * Remove slab from the partial list, freeze it and
1741 * return the pointer to the freelist.
81819f0f 1742 *
497b66f2 1743 * Returns a list of objects or NULL if it fails.
81819f0f 1744 */
497b66f2 1745static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1746 struct kmem_cache_node *n, struct page *page,
633b0764 1747 int mode, int *objects)
81819f0f 1748{
2cfb7455
CL
1749 void *freelist;
1750 unsigned long counters;
1751 struct page new;
1752
c65c1877
PZ
1753 lockdep_assert_held(&n->list_lock);
1754
2cfb7455
CL
1755 /*
1756 * Zap the freelist and set the frozen bit.
1757 * The old freelist is the list of objects for the
1758 * per cpu allocation list.
1759 */
7ced3719
CL
1760 freelist = page->freelist;
1761 counters = page->counters;
1762 new.counters = counters;
633b0764 1763 *objects = new.objects - new.inuse;
23910c50 1764 if (mode) {
7ced3719 1765 new.inuse = page->objects;
23910c50
PE
1766 new.freelist = NULL;
1767 } else {
1768 new.freelist = freelist;
1769 }
2cfb7455 1770
a0132ac0 1771 VM_BUG_ON(new.frozen);
7ced3719 1772 new.frozen = 1;
2cfb7455 1773
7ced3719 1774 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1775 freelist, counters,
02d7633f 1776 new.freelist, new.counters,
7ced3719 1777 "acquire_slab"))
7ced3719 1778 return NULL;
2cfb7455
CL
1779
1780 remove_partial(n, page);
7ced3719 1781 WARN_ON(!freelist);
49e22585 1782 return freelist;
81819f0f
CL
1783}
1784
633b0764 1785static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1786static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1787
81819f0f 1788/*
672bba3a 1789 * Try to allocate a partial slab from a specific node.
81819f0f 1790 */
8ba00bb6
JK
1791static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1792 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1793{
49e22585
CL
1794 struct page *page, *page2;
1795 void *object = NULL;
633b0764
JK
1796 int available = 0;
1797 int objects;
81819f0f
CL
1798
1799 /*
1800 * Racy check. If we mistakenly see no partial slabs then we
1801 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1802 * partial slab and there is none available then get_partials()
1803 * will return NULL.
81819f0f
CL
1804 */
1805 if (!n || !n->nr_partial)
1806 return NULL;
1807
1808 spin_lock(&n->list_lock);
49e22585 1809 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1810 void *t;
49e22585 1811
8ba00bb6
JK
1812 if (!pfmemalloc_match(page, flags))
1813 continue;
1814
633b0764 1815 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1816 if (!t)
1817 break;
1818
633b0764 1819 available += objects;
12d79634 1820 if (!object) {
49e22585 1821 c->page = page;
49e22585 1822 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1823 object = t;
49e22585 1824 } else {
633b0764 1825 put_cpu_partial(s, page, 0);
8028dcea 1826 stat(s, CPU_PARTIAL_NODE);
49e22585 1827 }
345c905d
JK
1828 if (!kmem_cache_has_cpu_partial(s)
1829 || available > s->cpu_partial / 2)
49e22585
CL
1830 break;
1831
497b66f2 1832 }
81819f0f 1833 spin_unlock(&n->list_lock);
497b66f2 1834 return object;
81819f0f
CL
1835}
1836
1837/*
672bba3a 1838 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1839 */
de3ec035 1840static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1841 struct kmem_cache_cpu *c)
81819f0f
CL
1842{
1843#ifdef CONFIG_NUMA
1844 struct zonelist *zonelist;
dd1a239f 1845 struct zoneref *z;
54a6eb5c
MG
1846 struct zone *zone;
1847 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1848 void *object;
cc9a6c87 1849 unsigned int cpuset_mems_cookie;
81819f0f
CL
1850
1851 /*
672bba3a
CL
1852 * The defrag ratio allows a configuration of the tradeoffs between
1853 * inter node defragmentation and node local allocations. A lower
1854 * defrag_ratio increases the tendency to do local allocations
1855 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1856 *
672bba3a
CL
1857 * If the defrag_ratio is set to 0 then kmalloc() always
1858 * returns node local objects. If the ratio is higher then kmalloc()
1859 * may return off node objects because partial slabs are obtained
1860 * from other nodes and filled up.
81819f0f 1861 *
43efd3ea
LP
1862 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1863 * (which makes defrag_ratio = 1000) then every (well almost)
1864 * allocation will first attempt to defrag slab caches on other nodes.
1865 * This means scanning over all nodes to look for partial slabs which
1866 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1867 * with available objects.
81819f0f 1868 */
9824601e
CL
1869 if (!s->remote_node_defrag_ratio ||
1870 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1871 return NULL;
1872
cc9a6c87 1873 do {
d26914d1 1874 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1875 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1876 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1877 struct kmem_cache_node *n;
1878
1879 n = get_node(s, zone_to_nid(zone));
1880
dee2f8aa 1881 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1882 n->nr_partial > s->min_partial) {
8ba00bb6 1883 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1884 if (object) {
1885 /*
d26914d1
MG
1886 * Don't check read_mems_allowed_retry()
1887 * here - if mems_allowed was updated in
1888 * parallel, that was a harmless race
1889 * between allocation and the cpuset
1890 * update
cc9a6c87 1891 */
cc9a6c87
MG
1892 return object;
1893 }
c0ff7453 1894 }
81819f0f 1895 }
d26914d1 1896 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1897#endif
1898 return NULL;
1899}
1900
1901/*
1902 * Get a partial page, lock it and return it.
1903 */
497b66f2 1904static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1905 struct kmem_cache_cpu *c)
81819f0f 1906{
497b66f2 1907 void *object;
a561ce00
JK
1908 int searchnode = node;
1909
1910 if (node == NUMA_NO_NODE)
1911 searchnode = numa_mem_id();
1912 else if (!node_present_pages(node))
1913 searchnode = node_to_mem_node(node);
81819f0f 1914
8ba00bb6 1915 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1916 if (object || node != NUMA_NO_NODE)
1917 return object;
81819f0f 1918
acd19fd1 1919 return get_any_partial(s, flags, c);
81819f0f
CL
1920}
1921
8a5ec0ba
CL
1922#ifdef CONFIG_PREEMPT
1923/*
1924 * Calculate the next globally unique transaction for disambiguiation
1925 * during cmpxchg. The transactions start with the cpu number and are then
1926 * incremented by CONFIG_NR_CPUS.
1927 */
1928#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1929#else
1930/*
1931 * No preemption supported therefore also no need to check for
1932 * different cpus.
1933 */
1934#define TID_STEP 1
1935#endif
1936
1937static inline unsigned long next_tid(unsigned long tid)
1938{
1939 return tid + TID_STEP;
1940}
1941
1942static inline unsigned int tid_to_cpu(unsigned long tid)
1943{
1944 return tid % TID_STEP;
1945}
1946
1947static inline unsigned long tid_to_event(unsigned long tid)
1948{
1949 return tid / TID_STEP;
1950}
1951
1952static inline unsigned int init_tid(int cpu)
1953{
1954 return cpu;
1955}
1956
1957static inline void note_cmpxchg_failure(const char *n,
1958 const struct kmem_cache *s, unsigned long tid)
1959{
1960#ifdef SLUB_DEBUG_CMPXCHG
1961 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1962
f9f58285 1963 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1964
1965#ifdef CONFIG_PREEMPT
1966 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1967 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1968 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1969 else
1970#endif
1971 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1972 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1973 tid_to_event(tid), tid_to_event(actual_tid));
1974 else
f9f58285 1975 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1976 actual_tid, tid, next_tid(tid));
1977#endif
4fdccdfb 1978 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1979}
1980
788e1aad 1981static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1982{
8a5ec0ba
CL
1983 int cpu;
1984
1985 for_each_possible_cpu(cpu)
1986 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1987}
2cfb7455 1988
81819f0f
CL
1989/*
1990 * Remove the cpu slab
1991 */
d0e0ac97
CG
1992static void deactivate_slab(struct kmem_cache *s, struct page *page,
1993 void *freelist)
81819f0f 1994{
2cfb7455 1995 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1996 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1997 int lock = 0;
1998 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1999 void *nextfree;
136333d1 2000 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2001 struct page new;
2002 struct page old;
2003
2004 if (page->freelist) {
84e554e6 2005 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2006 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2007 }
2008
894b8788 2009 /*
2cfb7455
CL
2010 * Stage one: Free all available per cpu objects back
2011 * to the page freelist while it is still frozen. Leave the
2012 * last one.
2013 *
2014 * There is no need to take the list->lock because the page
2015 * is still frozen.
2016 */
2017 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2018 void *prior;
2019 unsigned long counters;
2020
2021 do {
2022 prior = page->freelist;
2023 counters = page->counters;
2024 set_freepointer(s, freelist, prior);
2025 new.counters = counters;
2026 new.inuse--;
a0132ac0 2027 VM_BUG_ON(!new.frozen);
2cfb7455 2028
1d07171c 2029 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2030 prior, counters,
2031 freelist, new.counters,
2032 "drain percpu freelist"));
2033
2034 freelist = nextfree;
2035 }
2036
894b8788 2037 /*
2cfb7455
CL
2038 * Stage two: Ensure that the page is unfrozen while the
2039 * list presence reflects the actual number of objects
2040 * during unfreeze.
2041 *
2042 * We setup the list membership and then perform a cmpxchg
2043 * with the count. If there is a mismatch then the page
2044 * is not unfrozen but the page is on the wrong list.
2045 *
2046 * Then we restart the process which may have to remove
2047 * the page from the list that we just put it on again
2048 * because the number of objects in the slab may have
2049 * changed.
894b8788 2050 */
2cfb7455 2051redo:
894b8788 2052
2cfb7455
CL
2053 old.freelist = page->freelist;
2054 old.counters = page->counters;
a0132ac0 2055 VM_BUG_ON(!old.frozen);
7c2e132c 2056
2cfb7455
CL
2057 /* Determine target state of the slab */
2058 new.counters = old.counters;
2059 if (freelist) {
2060 new.inuse--;
2061 set_freepointer(s, freelist, old.freelist);
2062 new.freelist = freelist;
2063 } else
2064 new.freelist = old.freelist;
2065
2066 new.frozen = 0;
2067
8a5b20ae 2068 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2069 m = M_FREE;
2070 else if (new.freelist) {
2071 m = M_PARTIAL;
2072 if (!lock) {
2073 lock = 1;
2074 /*
2075 * Taking the spinlock removes the possiblity
2076 * that acquire_slab() will see a slab page that
2077 * is frozen
2078 */
2079 spin_lock(&n->list_lock);
2080 }
2081 } else {
2082 m = M_FULL;
2083 if (kmem_cache_debug(s) && !lock) {
2084 lock = 1;
2085 /*
2086 * This also ensures that the scanning of full
2087 * slabs from diagnostic functions will not see
2088 * any frozen slabs.
2089 */
2090 spin_lock(&n->list_lock);
2091 }
2092 }
2093
2094 if (l != m) {
2095
2096 if (l == M_PARTIAL)
2097
2098 remove_partial(n, page);
2099
2100 else if (l == M_FULL)
894b8788 2101
c65c1877 2102 remove_full(s, n, page);
2cfb7455
CL
2103
2104 if (m == M_PARTIAL) {
2105
2106 add_partial(n, page, tail);
136333d1 2107 stat(s, tail);
2cfb7455
CL
2108
2109 } else if (m == M_FULL) {
894b8788 2110
2cfb7455
CL
2111 stat(s, DEACTIVATE_FULL);
2112 add_full(s, n, page);
2113
2114 }
2115 }
2116
2117 l = m;
1d07171c 2118 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2119 old.freelist, old.counters,
2120 new.freelist, new.counters,
2121 "unfreezing slab"))
2122 goto redo;
2123
2cfb7455
CL
2124 if (lock)
2125 spin_unlock(&n->list_lock);
2126
2127 if (m == M_FREE) {
2128 stat(s, DEACTIVATE_EMPTY);
2129 discard_slab(s, page);
2130 stat(s, FREE_SLAB);
894b8788 2131 }
81819f0f
CL
2132}
2133
d24ac77f
JK
2134/*
2135 * Unfreeze all the cpu partial slabs.
2136 *
59a09917
CL
2137 * This function must be called with interrupts disabled
2138 * for the cpu using c (or some other guarantee must be there
2139 * to guarantee no concurrent accesses).
d24ac77f 2140 */
59a09917
CL
2141static void unfreeze_partials(struct kmem_cache *s,
2142 struct kmem_cache_cpu *c)
49e22585 2143{
345c905d 2144#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2145 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2146 struct page *page, *discard_page = NULL;
49e22585
CL
2147
2148 while ((page = c->partial)) {
49e22585
CL
2149 struct page new;
2150 struct page old;
2151
2152 c->partial = page->next;
43d77867
JK
2153
2154 n2 = get_node(s, page_to_nid(page));
2155 if (n != n2) {
2156 if (n)
2157 spin_unlock(&n->list_lock);
2158
2159 n = n2;
2160 spin_lock(&n->list_lock);
2161 }
49e22585
CL
2162
2163 do {
2164
2165 old.freelist = page->freelist;
2166 old.counters = page->counters;
a0132ac0 2167 VM_BUG_ON(!old.frozen);
49e22585
CL
2168
2169 new.counters = old.counters;
2170 new.freelist = old.freelist;
2171
2172 new.frozen = 0;
2173
d24ac77f 2174 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2175 old.freelist, old.counters,
2176 new.freelist, new.counters,
2177 "unfreezing slab"));
2178
8a5b20ae 2179 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2180 page->next = discard_page;
2181 discard_page = page;
43d77867
JK
2182 } else {
2183 add_partial(n, page, DEACTIVATE_TO_TAIL);
2184 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2185 }
2186 }
2187
2188 if (n)
2189 spin_unlock(&n->list_lock);
9ada1934
SL
2190
2191 while (discard_page) {
2192 page = discard_page;
2193 discard_page = discard_page->next;
2194
2195 stat(s, DEACTIVATE_EMPTY);
2196 discard_slab(s, page);
2197 stat(s, FREE_SLAB);
2198 }
345c905d 2199#endif
49e22585
CL
2200}
2201
2202/*
2203 * Put a page that was just frozen (in __slab_free) into a partial page
2204 * slot if available. This is done without interrupts disabled and without
2205 * preemption disabled. The cmpxchg is racy and may put the partial page
2206 * onto a random cpus partial slot.
2207 *
2208 * If we did not find a slot then simply move all the partials to the
2209 * per node partial list.
2210 */
633b0764 2211static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2212{
345c905d 2213#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2214 struct page *oldpage;
2215 int pages;
2216 int pobjects;
2217
d6e0b7fa 2218 preempt_disable();
49e22585
CL
2219 do {
2220 pages = 0;
2221 pobjects = 0;
2222 oldpage = this_cpu_read(s->cpu_slab->partial);
2223
2224 if (oldpage) {
2225 pobjects = oldpage->pobjects;
2226 pages = oldpage->pages;
2227 if (drain && pobjects > s->cpu_partial) {
2228 unsigned long flags;
2229 /*
2230 * partial array is full. Move the existing
2231 * set to the per node partial list.
2232 */
2233 local_irq_save(flags);
59a09917 2234 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2235 local_irq_restore(flags);
e24fc410 2236 oldpage = NULL;
49e22585
CL
2237 pobjects = 0;
2238 pages = 0;
8028dcea 2239 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2240 }
2241 }
2242
2243 pages++;
2244 pobjects += page->objects - page->inuse;
2245
2246 page->pages = pages;
2247 page->pobjects = pobjects;
2248 page->next = oldpage;
2249
d0e0ac97
CG
2250 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2251 != oldpage);
d6e0b7fa
VD
2252 if (unlikely(!s->cpu_partial)) {
2253 unsigned long flags;
2254
2255 local_irq_save(flags);
2256 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2257 local_irq_restore(flags);
2258 }
2259 preempt_enable();
345c905d 2260#endif
49e22585
CL
2261}
2262
dfb4f096 2263static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2264{
84e554e6 2265 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2266 deactivate_slab(s, c->page, c->freelist);
2267
2268 c->tid = next_tid(c->tid);
2269 c->page = NULL;
2270 c->freelist = NULL;
81819f0f
CL
2271}
2272
2273/*
2274 * Flush cpu slab.
6446faa2 2275 *
81819f0f
CL
2276 * Called from IPI handler with interrupts disabled.
2277 */
0c710013 2278static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2279{
9dfc6e68 2280 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2281
49e22585
CL
2282 if (likely(c)) {
2283 if (c->page)
2284 flush_slab(s, c);
2285
59a09917 2286 unfreeze_partials(s, c);
49e22585 2287 }
81819f0f
CL
2288}
2289
2290static void flush_cpu_slab(void *d)
2291{
2292 struct kmem_cache *s = d;
81819f0f 2293
dfb4f096 2294 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2295}
2296
a8364d55
GBY
2297static bool has_cpu_slab(int cpu, void *info)
2298{
2299 struct kmem_cache *s = info;
2300 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2301
02e1a9cd 2302 return c->page || c->partial;
a8364d55
GBY
2303}
2304
81819f0f
CL
2305static void flush_all(struct kmem_cache *s)
2306{
a8364d55 2307 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2308}
2309
a96a87bf
SAS
2310/*
2311 * Use the cpu notifier to insure that the cpu slabs are flushed when
2312 * necessary.
2313 */
2314static int slub_cpu_dead(unsigned int cpu)
2315{
2316 struct kmem_cache *s;
2317 unsigned long flags;
2318
2319 mutex_lock(&slab_mutex);
2320 list_for_each_entry(s, &slab_caches, list) {
2321 local_irq_save(flags);
2322 __flush_cpu_slab(s, cpu);
2323 local_irq_restore(flags);
2324 }
2325 mutex_unlock(&slab_mutex);
2326 return 0;
2327}
2328
dfb4f096
CL
2329/*
2330 * Check if the objects in a per cpu structure fit numa
2331 * locality expectations.
2332 */
57d437d2 2333static inline int node_match(struct page *page, int node)
dfb4f096
CL
2334{
2335#ifdef CONFIG_NUMA
4d7868e6 2336 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2337 return 0;
2338#endif
2339 return 1;
2340}
2341
9a02d699 2342#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2343static int count_free(struct page *page)
2344{
2345 return page->objects - page->inuse;
2346}
2347
9a02d699
DR
2348static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2349{
2350 return atomic_long_read(&n->total_objects);
2351}
2352#endif /* CONFIG_SLUB_DEBUG */
2353
2354#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2355static unsigned long count_partial(struct kmem_cache_node *n,
2356 int (*get_count)(struct page *))
2357{
2358 unsigned long flags;
2359 unsigned long x = 0;
2360 struct page *page;
2361
2362 spin_lock_irqsave(&n->list_lock, flags);
2363 list_for_each_entry(page, &n->partial, lru)
2364 x += get_count(page);
2365 spin_unlock_irqrestore(&n->list_lock, flags);
2366 return x;
2367}
9a02d699 2368#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2369
781b2ba6
PE
2370static noinline void
2371slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2372{
9a02d699
DR
2373#ifdef CONFIG_SLUB_DEBUG
2374 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2375 DEFAULT_RATELIMIT_BURST);
781b2ba6 2376 int node;
fa45dc25 2377 struct kmem_cache_node *n;
781b2ba6 2378
9a02d699
DR
2379 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2380 return;
2381
5b3810e5
VB
2382 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2383 nid, gfpflags, &gfpflags);
f9f58285
FF
2384 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2385 s->name, s->object_size, s->size, oo_order(s->oo),
2386 oo_order(s->min));
781b2ba6 2387
3b0efdfa 2388 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2389 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2390 s->name);
fa5ec8a1 2391
fa45dc25 2392 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2393 unsigned long nr_slabs;
2394 unsigned long nr_objs;
2395 unsigned long nr_free;
2396
26c02cf0
AB
2397 nr_free = count_partial(n, count_free);
2398 nr_slabs = node_nr_slabs(n);
2399 nr_objs = node_nr_objs(n);
781b2ba6 2400
f9f58285 2401 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2402 node, nr_slabs, nr_objs, nr_free);
2403 }
9a02d699 2404#endif
781b2ba6
PE
2405}
2406
497b66f2
CL
2407static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2408 int node, struct kmem_cache_cpu **pc)
2409{
6faa6833 2410 void *freelist;
188fd063
CL
2411 struct kmem_cache_cpu *c = *pc;
2412 struct page *page;
497b66f2 2413
188fd063 2414 freelist = get_partial(s, flags, node, c);
497b66f2 2415
188fd063
CL
2416 if (freelist)
2417 return freelist;
2418
2419 page = new_slab(s, flags, node);
497b66f2 2420 if (page) {
7c8e0181 2421 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2422 if (c->page)
2423 flush_slab(s, c);
2424
2425 /*
2426 * No other reference to the page yet so we can
2427 * muck around with it freely without cmpxchg
2428 */
6faa6833 2429 freelist = page->freelist;
497b66f2
CL
2430 page->freelist = NULL;
2431
2432 stat(s, ALLOC_SLAB);
497b66f2
CL
2433 c->page = page;
2434 *pc = c;
2435 } else
6faa6833 2436 freelist = NULL;
497b66f2 2437
6faa6833 2438 return freelist;
497b66f2
CL
2439}
2440
072bb0aa
MG
2441static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2442{
2443 if (unlikely(PageSlabPfmemalloc(page)))
2444 return gfp_pfmemalloc_allowed(gfpflags);
2445
2446 return true;
2447}
2448
213eeb9f 2449/*
d0e0ac97
CG
2450 * Check the page->freelist of a page and either transfer the freelist to the
2451 * per cpu freelist or deactivate the page.
213eeb9f
CL
2452 *
2453 * The page is still frozen if the return value is not NULL.
2454 *
2455 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2456 *
2457 * This function must be called with interrupt disabled.
213eeb9f
CL
2458 */
2459static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2460{
2461 struct page new;
2462 unsigned long counters;
2463 void *freelist;
2464
2465 do {
2466 freelist = page->freelist;
2467 counters = page->counters;
6faa6833 2468
213eeb9f 2469 new.counters = counters;
a0132ac0 2470 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2471
2472 new.inuse = page->objects;
2473 new.frozen = freelist != NULL;
2474
d24ac77f 2475 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2476 freelist, counters,
2477 NULL, new.counters,
2478 "get_freelist"));
2479
2480 return freelist;
2481}
2482
81819f0f 2483/*
894b8788
CL
2484 * Slow path. The lockless freelist is empty or we need to perform
2485 * debugging duties.
2486 *
894b8788
CL
2487 * Processing is still very fast if new objects have been freed to the
2488 * regular freelist. In that case we simply take over the regular freelist
2489 * as the lockless freelist and zap the regular freelist.
81819f0f 2490 *
894b8788
CL
2491 * If that is not working then we fall back to the partial lists. We take the
2492 * first element of the freelist as the object to allocate now and move the
2493 * rest of the freelist to the lockless freelist.
81819f0f 2494 *
894b8788 2495 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2496 * we need to allocate a new slab. This is the slowest path since it involves
2497 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2498 *
2499 * Version of __slab_alloc to use when we know that interrupts are
2500 * already disabled (which is the case for bulk allocation).
81819f0f 2501 */
a380a3c7 2502static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2503 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2504{
6faa6833 2505 void *freelist;
f6e7def7 2506 struct page *page;
81819f0f 2507
f6e7def7
CL
2508 page = c->page;
2509 if (!page)
81819f0f 2510 goto new_slab;
49e22585 2511redo:
6faa6833 2512
57d437d2 2513 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2514 int searchnode = node;
2515
2516 if (node != NUMA_NO_NODE && !node_present_pages(node))
2517 searchnode = node_to_mem_node(node);
2518
2519 if (unlikely(!node_match(page, searchnode))) {
2520 stat(s, ALLOC_NODE_MISMATCH);
2521 deactivate_slab(s, page, c->freelist);
2522 c->page = NULL;
2523 c->freelist = NULL;
2524 goto new_slab;
2525 }
fc59c053 2526 }
6446faa2 2527
072bb0aa
MG
2528 /*
2529 * By rights, we should be searching for a slab page that was
2530 * PFMEMALLOC but right now, we are losing the pfmemalloc
2531 * information when the page leaves the per-cpu allocator
2532 */
2533 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2534 deactivate_slab(s, page, c->freelist);
2535 c->page = NULL;
2536 c->freelist = NULL;
2537 goto new_slab;
2538 }
2539
73736e03 2540 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2541 freelist = c->freelist;
2542 if (freelist)
73736e03 2543 goto load_freelist;
03e404af 2544
f6e7def7 2545 freelist = get_freelist(s, page);
6446faa2 2546
6faa6833 2547 if (!freelist) {
03e404af
CL
2548 c->page = NULL;
2549 stat(s, DEACTIVATE_BYPASS);
fc59c053 2550 goto new_slab;
03e404af 2551 }
6446faa2 2552
84e554e6 2553 stat(s, ALLOC_REFILL);
6446faa2 2554
894b8788 2555load_freelist:
507effea
CL
2556 /*
2557 * freelist is pointing to the list of objects to be used.
2558 * page is pointing to the page from which the objects are obtained.
2559 * That page must be frozen for per cpu allocations to work.
2560 */
a0132ac0 2561 VM_BUG_ON(!c->page->frozen);
6faa6833 2562 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2563 c->tid = next_tid(c->tid);
6faa6833 2564 return freelist;
81819f0f 2565
81819f0f 2566new_slab:
2cfb7455 2567
49e22585 2568 if (c->partial) {
f6e7def7
CL
2569 page = c->page = c->partial;
2570 c->partial = page->next;
49e22585
CL
2571 stat(s, CPU_PARTIAL_ALLOC);
2572 c->freelist = NULL;
2573 goto redo;
81819f0f
CL
2574 }
2575
188fd063 2576 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2577
f4697436 2578 if (unlikely(!freelist)) {
9a02d699 2579 slab_out_of_memory(s, gfpflags, node);
f4697436 2580 return NULL;
81819f0f 2581 }
2cfb7455 2582
f6e7def7 2583 page = c->page;
5091b74a 2584 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2585 goto load_freelist;
2cfb7455 2586
497b66f2 2587 /* Only entered in the debug case */
d0e0ac97
CG
2588 if (kmem_cache_debug(s) &&
2589 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2590 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2591
f6e7def7 2592 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2593 c->page = NULL;
2594 c->freelist = NULL;
6faa6833 2595 return freelist;
894b8788
CL
2596}
2597
a380a3c7
CL
2598/*
2599 * Another one that disabled interrupt and compensates for possible
2600 * cpu changes by refetching the per cpu area pointer.
2601 */
2602static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2603 unsigned long addr, struct kmem_cache_cpu *c)
2604{
2605 void *p;
2606 unsigned long flags;
2607
2608 local_irq_save(flags);
2609#ifdef CONFIG_PREEMPT
2610 /*
2611 * We may have been preempted and rescheduled on a different
2612 * cpu before disabling interrupts. Need to reload cpu area
2613 * pointer.
2614 */
2615 c = this_cpu_ptr(s->cpu_slab);
2616#endif
2617
2618 p = ___slab_alloc(s, gfpflags, node, addr, c);
2619 local_irq_restore(flags);
2620 return p;
2621}
2622
894b8788
CL
2623/*
2624 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2625 * have the fastpath folded into their functions. So no function call
2626 * overhead for requests that can be satisfied on the fastpath.
2627 *
2628 * The fastpath works by first checking if the lockless freelist can be used.
2629 * If not then __slab_alloc is called for slow processing.
2630 *
2631 * Otherwise we can simply pick the next object from the lockless free list.
2632 */
2b847c3c 2633static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2634 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2635{
03ec0ed5 2636 void *object;
dfb4f096 2637 struct kmem_cache_cpu *c;
57d437d2 2638 struct page *page;
8a5ec0ba 2639 unsigned long tid;
1f84260c 2640
8135be5a
VD
2641 s = slab_pre_alloc_hook(s, gfpflags);
2642 if (!s)
773ff60e 2643 return NULL;
8a5ec0ba 2644redo:
8a5ec0ba
CL
2645 /*
2646 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2647 * enabled. We may switch back and forth between cpus while
2648 * reading from one cpu area. That does not matter as long
2649 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2650 *
9aabf810
JK
2651 * We should guarantee that tid and kmem_cache are retrieved on
2652 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2653 * to check if it is matched or not.
8a5ec0ba 2654 */
9aabf810
JK
2655 do {
2656 tid = this_cpu_read(s->cpu_slab->tid);
2657 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2658 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2659 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2660
2661 /*
2662 * Irqless object alloc/free algorithm used here depends on sequence
2663 * of fetching cpu_slab's data. tid should be fetched before anything
2664 * on c to guarantee that object and page associated with previous tid
2665 * won't be used with current tid. If we fetch tid first, object and
2666 * page could be one associated with next tid and our alloc/free
2667 * request will be failed. In this case, we will retry. So, no problem.
2668 */
2669 barrier();
8a5ec0ba 2670
8a5ec0ba
CL
2671 /*
2672 * The transaction ids are globally unique per cpu and per operation on
2673 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2674 * occurs on the right processor and that there was no operation on the
2675 * linked list in between.
2676 */
8a5ec0ba 2677
9dfc6e68 2678 object = c->freelist;
57d437d2 2679 page = c->page;
8eae1492 2680 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2681 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2682 stat(s, ALLOC_SLOWPATH);
2683 } else {
0ad9500e
ED
2684 void *next_object = get_freepointer_safe(s, object);
2685
8a5ec0ba 2686 /*
25985edc 2687 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2688 * operation and if we are on the right processor.
2689 *
d0e0ac97
CG
2690 * The cmpxchg does the following atomically (without lock
2691 * semantics!)
8a5ec0ba
CL
2692 * 1. Relocate first pointer to the current per cpu area.
2693 * 2. Verify that tid and freelist have not been changed
2694 * 3. If they were not changed replace tid and freelist
2695 *
d0e0ac97
CG
2696 * Since this is without lock semantics the protection is only
2697 * against code executing on this cpu *not* from access by
2698 * other cpus.
8a5ec0ba 2699 */
933393f5 2700 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2701 s->cpu_slab->freelist, s->cpu_slab->tid,
2702 object, tid,
0ad9500e 2703 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2704
2705 note_cmpxchg_failure("slab_alloc", s, tid);
2706 goto redo;
2707 }
0ad9500e 2708 prefetch_freepointer(s, next_object);
84e554e6 2709 stat(s, ALLOC_FASTPATH);
894b8788 2710 }
8a5ec0ba 2711
74e2134f 2712 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2713 memset(object, 0, s->object_size);
d07dbea4 2714
03ec0ed5 2715 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2716
894b8788 2717 return object;
81819f0f
CL
2718}
2719
2b847c3c
EG
2720static __always_inline void *slab_alloc(struct kmem_cache *s,
2721 gfp_t gfpflags, unsigned long addr)
2722{
2723 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2724}
2725
81819f0f
CL
2726void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2727{
2b847c3c 2728 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2729
d0e0ac97
CG
2730 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2731 s->size, gfpflags);
5b882be4
EGM
2732
2733 return ret;
81819f0f
CL
2734}
2735EXPORT_SYMBOL(kmem_cache_alloc);
2736
0f24f128 2737#ifdef CONFIG_TRACING
4a92379b
RK
2738void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2739{
2b847c3c 2740 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2741 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
505f5dcb 2742 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2743 return ret;
2744}
2745EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2746#endif
2747
81819f0f
CL
2748#ifdef CONFIG_NUMA
2749void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2750{
2b847c3c 2751 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2752
ca2b84cb 2753 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2754 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2755
2756 return ret;
81819f0f
CL
2757}
2758EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2759
0f24f128 2760#ifdef CONFIG_TRACING
4a92379b 2761void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2762 gfp_t gfpflags,
4a92379b 2763 int node, size_t size)
5b882be4 2764{
2b847c3c 2765 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2766
2767 trace_kmalloc_node(_RET_IP_, ret,
2768 size, s->size, gfpflags, node);
0316bec2 2769
505f5dcb 2770 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2771 return ret;
5b882be4 2772}
4a92379b 2773EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2774#endif
5d1f57e4 2775#endif
5b882be4 2776
81819f0f 2777/*
94e4d712 2778 * Slow path handling. This may still be called frequently since objects
894b8788 2779 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2780 *
894b8788
CL
2781 * So we still attempt to reduce cache line usage. Just take the slab
2782 * lock and free the item. If there is no additional partial page
2783 * handling required then we can return immediately.
81819f0f 2784 */
894b8788 2785static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2786 void *head, void *tail, int cnt,
2787 unsigned long addr)
2788
81819f0f
CL
2789{
2790 void *prior;
2cfb7455 2791 int was_frozen;
2cfb7455
CL
2792 struct page new;
2793 unsigned long counters;
2794 struct kmem_cache_node *n = NULL;
61728d1e 2795 unsigned long uninitialized_var(flags);
81819f0f 2796
8a5ec0ba 2797 stat(s, FREE_SLOWPATH);
81819f0f 2798
19c7ff9e 2799 if (kmem_cache_debug(s) &&
282acb43 2800 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2801 return;
6446faa2 2802
2cfb7455 2803 do {
837d678d
JK
2804 if (unlikely(n)) {
2805 spin_unlock_irqrestore(&n->list_lock, flags);
2806 n = NULL;
2807 }
2cfb7455
CL
2808 prior = page->freelist;
2809 counters = page->counters;
81084651 2810 set_freepointer(s, tail, prior);
2cfb7455
CL
2811 new.counters = counters;
2812 was_frozen = new.frozen;
81084651 2813 new.inuse -= cnt;
837d678d 2814 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2815
c65c1877 2816 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2817
2818 /*
d0e0ac97
CG
2819 * Slab was on no list before and will be
2820 * partially empty
2821 * We can defer the list move and instead
2822 * freeze it.
49e22585
CL
2823 */
2824 new.frozen = 1;
2825
c65c1877 2826 } else { /* Needs to be taken off a list */
49e22585 2827
b455def2 2828 n = get_node(s, page_to_nid(page));
49e22585
CL
2829 /*
2830 * Speculatively acquire the list_lock.
2831 * If the cmpxchg does not succeed then we may
2832 * drop the list_lock without any processing.
2833 *
2834 * Otherwise the list_lock will synchronize with
2835 * other processors updating the list of slabs.
2836 */
2837 spin_lock_irqsave(&n->list_lock, flags);
2838
2839 }
2cfb7455 2840 }
81819f0f 2841
2cfb7455
CL
2842 } while (!cmpxchg_double_slab(s, page,
2843 prior, counters,
81084651 2844 head, new.counters,
2cfb7455 2845 "__slab_free"));
81819f0f 2846
2cfb7455 2847 if (likely(!n)) {
49e22585
CL
2848
2849 /*
2850 * If we just froze the page then put it onto the
2851 * per cpu partial list.
2852 */
8028dcea 2853 if (new.frozen && !was_frozen) {
49e22585 2854 put_cpu_partial(s, page, 1);
8028dcea
AS
2855 stat(s, CPU_PARTIAL_FREE);
2856 }
49e22585 2857 /*
2cfb7455
CL
2858 * The list lock was not taken therefore no list
2859 * activity can be necessary.
2860 */
b455def2
L
2861 if (was_frozen)
2862 stat(s, FREE_FROZEN);
2863 return;
2864 }
81819f0f 2865
8a5b20ae 2866 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2867 goto slab_empty;
2868
81819f0f 2869 /*
837d678d
JK
2870 * Objects left in the slab. If it was not on the partial list before
2871 * then add it.
81819f0f 2872 */
345c905d
JK
2873 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2874 if (kmem_cache_debug(s))
c65c1877 2875 remove_full(s, n, page);
837d678d
JK
2876 add_partial(n, page, DEACTIVATE_TO_TAIL);
2877 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2878 }
80f08c19 2879 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2880 return;
2881
2882slab_empty:
a973e9dd 2883 if (prior) {
81819f0f 2884 /*
6fbabb20 2885 * Slab on the partial list.
81819f0f 2886 */
5cc6eee8 2887 remove_partial(n, page);
84e554e6 2888 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2889 } else {
6fbabb20 2890 /* Slab must be on the full list */
c65c1877
PZ
2891 remove_full(s, n, page);
2892 }
2cfb7455 2893
80f08c19 2894 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2895 stat(s, FREE_SLAB);
81819f0f 2896 discard_slab(s, page);
81819f0f
CL
2897}
2898
894b8788
CL
2899/*
2900 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2901 * can perform fastpath freeing without additional function calls.
2902 *
2903 * The fastpath is only possible if we are freeing to the current cpu slab
2904 * of this processor. This typically the case if we have just allocated
2905 * the item before.
2906 *
2907 * If fastpath is not possible then fall back to __slab_free where we deal
2908 * with all sorts of special processing.
81084651
JDB
2909 *
2910 * Bulk free of a freelist with several objects (all pointing to the
2911 * same page) possible by specifying head and tail ptr, plus objects
2912 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2913 */
80a9201a
AP
2914static __always_inline void do_slab_free(struct kmem_cache *s,
2915 struct page *page, void *head, void *tail,
2916 int cnt, unsigned long addr)
894b8788 2917{
81084651 2918 void *tail_obj = tail ? : head;
dfb4f096 2919 struct kmem_cache_cpu *c;
8a5ec0ba 2920 unsigned long tid;
8a5ec0ba
CL
2921redo:
2922 /*
2923 * Determine the currently cpus per cpu slab.
2924 * The cpu may change afterward. However that does not matter since
2925 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2926 * during the cmpxchg then the free will succeed.
8a5ec0ba 2927 */
9aabf810
JK
2928 do {
2929 tid = this_cpu_read(s->cpu_slab->tid);
2930 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2931 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2932 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2933
9aabf810
JK
2934 /* Same with comment on barrier() in slab_alloc_node() */
2935 barrier();
c016b0bd 2936
442b06bc 2937 if (likely(page == c->page)) {
81084651 2938 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2939
933393f5 2940 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2941 s->cpu_slab->freelist, s->cpu_slab->tid,
2942 c->freelist, tid,
81084651 2943 head, next_tid(tid)))) {
8a5ec0ba
CL
2944
2945 note_cmpxchg_failure("slab_free", s, tid);
2946 goto redo;
2947 }
84e554e6 2948 stat(s, FREE_FASTPATH);
894b8788 2949 } else
81084651 2950 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2951
894b8788
CL
2952}
2953
80a9201a
AP
2954static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2955 void *head, void *tail, int cnt,
2956 unsigned long addr)
2957{
2958 slab_free_freelist_hook(s, head, tail);
2959 /*
2960 * slab_free_freelist_hook() could have put the items into quarantine.
2961 * If so, no need to free them.
2962 */
2963 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_DESTROY_BY_RCU))
2964 return;
2965 do_slab_free(s, page, head, tail, cnt, addr);
2966}
2967
2968#ifdef CONFIG_KASAN
2969void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2970{
2971 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2972}
2973#endif
2974
81819f0f
CL
2975void kmem_cache_free(struct kmem_cache *s, void *x)
2976{
b9ce5ef4
GC
2977 s = cache_from_obj(s, x);
2978 if (!s)
79576102 2979 return;
81084651 2980 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 2981 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2982}
2983EXPORT_SYMBOL(kmem_cache_free);
2984
d0ecd894 2985struct detached_freelist {
fbd02630 2986 struct page *page;
d0ecd894
JDB
2987 void *tail;
2988 void *freelist;
2989 int cnt;
376bf125 2990 struct kmem_cache *s;
d0ecd894 2991};
fbd02630 2992
d0ecd894
JDB
2993/*
2994 * This function progressively scans the array with free objects (with
2995 * a limited look ahead) and extract objects belonging to the same
2996 * page. It builds a detached freelist directly within the given
2997 * page/objects. This can happen without any need for
2998 * synchronization, because the objects are owned by running process.
2999 * The freelist is build up as a single linked list in the objects.
3000 * The idea is, that this detached freelist can then be bulk
3001 * transferred to the real freelist(s), but only requiring a single
3002 * synchronization primitive. Look ahead in the array is limited due
3003 * to performance reasons.
3004 */
376bf125
JDB
3005static inline
3006int build_detached_freelist(struct kmem_cache *s, size_t size,
3007 void **p, struct detached_freelist *df)
d0ecd894
JDB
3008{
3009 size_t first_skipped_index = 0;
3010 int lookahead = 3;
3011 void *object;
ca257195 3012 struct page *page;
fbd02630 3013
d0ecd894
JDB
3014 /* Always re-init detached_freelist */
3015 df->page = NULL;
fbd02630 3016
d0ecd894
JDB
3017 do {
3018 object = p[--size];
ca257195 3019 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3020 } while (!object && size);
3eed034d 3021
d0ecd894
JDB
3022 if (!object)
3023 return 0;
fbd02630 3024
ca257195
JDB
3025 page = virt_to_head_page(object);
3026 if (!s) {
3027 /* Handle kalloc'ed objects */
3028 if (unlikely(!PageSlab(page))) {
3029 BUG_ON(!PageCompound(page));
3030 kfree_hook(object);
4949148a 3031 __free_pages(page, compound_order(page));
ca257195
JDB
3032 p[size] = NULL; /* mark object processed */
3033 return size;
3034 }
3035 /* Derive kmem_cache from object */
3036 df->s = page->slab_cache;
3037 } else {
3038 df->s = cache_from_obj(s, object); /* Support for memcg */
3039 }
376bf125 3040
d0ecd894 3041 /* Start new detached freelist */
ca257195 3042 df->page = page;
376bf125 3043 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3044 df->tail = object;
3045 df->freelist = object;
3046 p[size] = NULL; /* mark object processed */
3047 df->cnt = 1;
3048
3049 while (size) {
3050 object = p[--size];
3051 if (!object)
3052 continue; /* Skip processed objects */
3053
3054 /* df->page is always set at this point */
3055 if (df->page == virt_to_head_page(object)) {
3056 /* Opportunity build freelist */
376bf125 3057 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3058 df->freelist = object;
3059 df->cnt++;
3060 p[size] = NULL; /* mark object processed */
3061
3062 continue;
fbd02630 3063 }
d0ecd894
JDB
3064
3065 /* Limit look ahead search */
3066 if (!--lookahead)
3067 break;
3068
3069 if (!first_skipped_index)
3070 first_skipped_index = size + 1;
fbd02630 3071 }
d0ecd894
JDB
3072
3073 return first_skipped_index;
3074}
3075
d0ecd894 3076/* Note that interrupts must be enabled when calling this function. */
376bf125 3077void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3078{
3079 if (WARN_ON(!size))
3080 return;
3081
3082 do {
3083 struct detached_freelist df;
3084
3085 size = build_detached_freelist(s, size, p, &df);
84582c8a 3086 if (!df.page)
d0ecd894
JDB
3087 continue;
3088
376bf125 3089 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3090 } while (likely(size));
484748f0
CL
3091}
3092EXPORT_SYMBOL(kmem_cache_free_bulk);
3093
994eb764 3094/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3095int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3096 void **p)
484748f0 3097{
994eb764
JDB
3098 struct kmem_cache_cpu *c;
3099 int i;
3100
03ec0ed5
JDB
3101 /* memcg and kmem_cache debug support */
3102 s = slab_pre_alloc_hook(s, flags);
3103 if (unlikely(!s))
3104 return false;
994eb764
JDB
3105 /*
3106 * Drain objects in the per cpu slab, while disabling local
3107 * IRQs, which protects against PREEMPT and interrupts
3108 * handlers invoking normal fastpath.
3109 */
3110 local_irq_disable();
3111 c = this_cpu_ptr(s->cpu_slab);
3112
3113 for (i = 0; i < size; i++) {
3114 void *object = c->freelist;
3115
ebe909e0 3116 if (unlikely(!object)) {
ebe909e0
JDB
3117 /*
3118 * Invoking slow path likely have side-effect
3119 * of re-populating per CPU c->freelist
3120 */
87098373 3121 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3122 _RET_IP_, c);
87098373
CL
3123 if (unlikely(!p[i]))
3124 goto error;
3125
ebe909e0
JDB
3126 c = this_cpu_ptr(s->cpu_slab);
3127 continue; /* goto for-loop */
3128 }
994eb764
JDB
3129 c->freelist = get_freepointer(s, object);
3130 p[i] = object;
3131 }
3132 c->tid = next_tid(c->tid);
3133 local_irq_enable();
3134
3135 /* Clear memory outside IRQ disabled fastpath loop */
3136 if (unlikely(flags & __GFP_ZERO)) {
3137 int j;
3138
3139 for (j = 0; j < i; j++)
3140 memset(p[j], 0, s->object_size);
3141 }
3142
03ec0ed5
JDB
3143 /* memcg and kmem_cache debug support */
3144 slab_post_alloc_hook(s, flags, size, p);
865762a8 3145 return i;
87098373 3146error:
87098373 3147 local_irq_enable();
03ec0ed5
JDB
3148 slab_post_alloc_hook(s, flags, i, p);
3149 __kmem_cache_free_bulk(s, i, p);
865762a8 3150 return 0;
484748f0
CL
3151}
3152EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3153
3154
81819f0f 3155/*
672bba3a
CL
3156 * Object placement in a slab is made very easy because we always start at
3157 * offset 0. If we tune the size of the object to the alignment then we can
3158 * get the required alignment by putting one properly sized object after
3159 * another.
81819f0f
CL
3160 *
3161 * Notice that the allocation order determines the sizes of the per cpu
3162 * caches. Each processor has always one slab available for allocations.
3163 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3164 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3165 * locking overhead.
81819f0f
CL
3166 */
3167
3168/*
3169 * Mininum / Maximum order of slab pages. This influences locking overhead
3170 * and slab fragmentation. A higher order reduces the number of partial slabs
3171 * and increases the number of allocations possible without having to
3172 * take the list_lock.
3173 */
3174static int slub_min_order;
114e9e89 3175static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 3176static int slub_min_objects;
81819f0f 3177
81819f0f
CL
3178/*
3179 * Calculate the order of allocation given an slab object size.
3180 *
672bba3a
CL
3181 * The order of allocation has significant impact on performance and other
3182 * system components. Generally order 0 allocations should be preferred since
3183 * order 0 does not cause fragmentation in the page allocator. Larger objects
3184 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3185 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3186 * would be wasted.
3187 *
3188 * In order to reach satisfactory performance we must ensure that a minimum
3189 * number of objects is in one slab. Otherwise we may generate too much
3190 * activity on the partial lists which requires taking the list_lock. This is
3191 * less a concern for large slabs though which are rarely used.
81819f0f 3192 *
672bba3a
CL
3193 * slub_max_order specifies the order where we begin to stop considering the
3194 * number of objects in a slab as critical. If we reach slub_max_order then
3195 * we try to keep the page order as low as possible. So we accept more waste
3196 * of space in favor of a small page order.
81819f0f 3197 *
672bba3a
CL
3198 * Higher order allocations also allow the placement of more objects in a
3199 * slab and thereby reduce object handling overhead. If the user has
3200 * requested a higher mininum order then we start with that one instead of
3201 * the smallest order which will fit the object.
81819f0f 3202 */
5e6d444e 3203static inline int slab_order(int size, int min_objects,
ab9a0f19 3204 int max_order, int fract_leftover, int reserved)
81819f0f
CL
3205{
3206 int order;
3207 int rem;
6300ea75 3208 int min_order = slub_min_order;
81819f0f 3209
ab9a0f19 3210 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 3211 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3212
9f835703 3213 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 3214 order <= max_order; order++) {
81819f0f 3215
5e6d444e 3216 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 3217
ab9a0f19 3218 rem = (slab_size - reserved) % size;
81819f0f 3219
5e6d444e 3220 if (rem <= slab_size / fract_leftover)
81819f0f 3221 break;
81819f0f 3222 }
672bba3a 3223
81819f0f
CL
3224 return order;
3225}
3226
ab9a0f19 3227static inline int calculate_order(int size, int reserved)
5e6d444e
CL
3228{
3229 int order;
3230 int min_objects;
3231 int fraction;
e8120ff1 3232 int max_objects;
5e6d444e
CL
3233
3234 /*
3235 * Attempt to find best configuration for a slab. This
3236 * works by first attempting to generate a layout with
3237 * the best configuration and backing off gradually.
3238 *
422ff4d7 3239 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3240 * we reduce the minimum objects required in a slab.
3241 */
3242 min_objects = slub_min_objects;
9b2cd506
CL
3243 if (!min_objects)
3244 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3245 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3246 min_objects = min(min_objects, max_objects);
3247
5e6d444e 3248 while (min_objects > 1) {
c124f5b5 3249 fraction = 16;
5e6d444e
CL
3250 while (fraction >= 4) {
3251 order = slab_order(size, min_objects,
ab9a0f19 3252 slub_max_order, fraction, reserved);
5e6d444e
CL
3253 if (order <= slub_max_order)
3254 return order;
3255 fraction /= 2;
3256 }
5086c389 3257 min_objects--;
5e6d444e
CL
3258 }
3259
3260 /*
3261 * We were unable to place multiple objects in a slab. Now
3262 * lets see if we can place a single object there.
3263 */
ab9a0f19 3264 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3265 if (order <= slub_max_order)
3266 return order;
3267
3268 /*
3269 * Doh this slab cannot be placed using slub_max_order.
3270 */
ab9a0f19 3271 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3272 if (order < MAX_ORDER)
5e6d444e
CL
3273 return order;
3274 return -ENOSYS;
3275}
3276
5595cffc 3277static void
4053497d 3278init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3279{
3280 n->nr_partial = 0;
81819f0f
CL
3281 spin_lock_init(&n->list_lock);
3282 INIT_LIST_HEAD(&n->partial);
8ab1372f 3283#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3284 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3285 atomic_long_set(&n->total_objects, 0);
643b1138 3286 INIT_LIST_HEAD(&n->full);
8ab1372f 3287#endif
81819f0f
CL
3288}
3289
55136592 3290static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3291{
6c182dc0 3292 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3293 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3294
8a5ec0ba 3295 /*
d4d84fef
CM
3296 * Must align to double word boundary for the double cmpxchg
3297 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3298 */
d4d84fef
CM
3299 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3300 2 * sizeof(void *));
8a5ec0ba
CL
3301
3302 if (!s->cpu_slab)
3303 return 0;
3304
3305 init_kmem_cache_cpus(s);
4c93c355 3306
8a5ec0ba 3307 return 1;
4c93c355 3308}
4c93c355 3309
51df1142
CL
3310static struct kmem_cache *kmem_cache_node;
3311
81819f0f
CL
3312/*
3313 * No kmalloc_node yet so do it by hand. We know that this is the first
3314 * slab on the node for this slabcache. There are no concurrent accesses
3315 * possible.
3316 *
721ae22a
ZYW
3317 * Note that this function only works on the kmem_cache_node
3318 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3319 * memory on a fresh node that has no slab structures yet.
81819f0f 3320 */
55136592 3321static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3322{
3323 struct page *page;
3324 struct kmem_cache_node *n;
3325
51df1142 3326 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3327
51df1142 3328 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3329
3330 BUG_ON(!page);
a2f92ee7 3331 if (page_to_nid(page) != node) {
f9f58285
FF
3332 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3333 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3334 }
3335
81819f0f
CL
3336 n = page->freelist;
3337 BUG_ON(!n);
51df1142 3338 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3339 page->inuse = 1;
8cb0a506 3340 page->frozen = 0;
51df1142 3341 kmem_cache_node->node[node] = n;
8ab1372f 3342#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3343 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3344 init_tracking(kmem_cache_node, n);
8ab1372f 3345#endif
505f5dcb
AP
3346 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3347 GFP_KERNEL);
4053497d 3348 init_kmem_cache_node(n);
51df1142 3349 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3350
67b6c900 3351 /*
1e4dd946
SR
3352 * No locks need to be taken here as it has just been
3353 * initialized and there is no concurrent access.
67b6c900 3354 */
1e4dd946 3355 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3356}
3357
3358static void free_kmem_cache_nodes(struct kmem_cache *s)
3359{
3360 int node;
fa45dc25 3361 struct kmem_cache_node *n;
81819f0f 3362
fa45dc25
CL
3363 for_each_kmem_cache_node(s, node, n) {
3364 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3365 s->node[node] = NULL;
3366 }
3367}
3368
52b4b950
DS
3369void __kmem_cache_release(struct kmem_cache *s)
3370{
210e7a43 3371 cache_random_seq_destroy(s);
52b4b950
DS
3372 free_percpu(s->cpu_slab);
3373 free_kmem_cache_nodes(s);
3374}
3375
55136592 3376static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3377{
3378 int node;
81819f0f 3379
f64dc58c 3380 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3381 struct kmem_cache_node *n;
3382
73367bd8 3383 if (slab_state == DOWN) {
55136592 3384 early_kmem_cache_node_alloc(node);
73367bd8
AD
3385 continue;
3386 }
51df1142 3387 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3388 GFP_KERNEL, node);
81819f0f 3389
73367bd8
AD
3390 if (!n) {
3391 free_kmem_cache_nodes(s);
3392 return 0;
81819f0f 3393 }
73367bd8 3394
81819f0f 3395 s->node[node] = n;
4053497d 3396 init_kmem_cache_node(n);
81819f0f
CL
3397 }
3398 return 1;
3399}
81819f0f 3400
c0bdb232 3401static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3402{
3403 if (min < MIN_PARTIAL)
3404 min = MIN_PARTIAL;
3405 else if (min > MAX_PARTIAL)
3406 min = MAX_PARTIAL;
3407 s->min_partial = min;
3408}
3409
81819f0f
CL
3410/*
3411 * calculate_sizes() determines the order and the distribution of data within
3412 * a slab object.
3413 */
06b285dc 3414static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3415{
3416 unsigned long flags = s->flags;
80a9201a 3417 size_t size = s->object_size;
834f3d11 3418 int order;
81819f0f 3419
d8b42bf5
CL
3420 /*
3421 * Round up object size to the next word boundary. We can only
3422 * place the free pointer at word boundaries and this determines
3423 * the possible location of the free pointer.
3424 */
3425 size = ALIGN(size, sizeof(void *));
3426
3427#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3428 /*
3429 * Determine if we can poison the object itself. If the user of
3430 * the slab may touch the object after free or before allocation
3431 * then we should never poison the object itself.
3432 */
3433 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 3434 !s->ctor)
81819f0f
CL
3435 s->flags |= __OBJECT_POISON;
3436 else
3437 s->flags &= ~__OBJECT_POISON;
3438
81819f0f
CL
3439
3440 /*
672bba3a 3441 * If we are Redzoning then check if there is some space between the
81819f0f 3442 * end of the object and the free pointer. If not then add an
672bba3a 3443 * additional word to have some bytes to store Redzone information.
81819f0f 3444 */
3b0efdfa 3445 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3446 size += sizeof(void *);
41ecc55b 3447#endif
81819f0f
CL
3448
3449 /*
672bba3a
CL
3450 * With that we have determined the number of bytes in actual use
3451 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3452 */
3453 s->inuse = size;
3454
3455 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3456 s->ctor)) {
81819f0f
CL
3457 /*
3458 * Relocate free pointer after the object if it is not
3459 * permitted to overwrite the first word of the object on
3460 * kmem_cache_free.
3461 *
3462 * This is the case if we do RCU, have a constructor or
3463 * destructor or are poisoning the objects.
3464 */
3465 s->offset = size;
3466 size += sizeof(void *);
3467 }
3468
c12b3c62 3469#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3470 if (flags & SLAB_STORE_USER)
3471 /*
3472 * Need to store information about allocs and frees after
3473 * the object.
3474 */
3475 size += 2 * sizeof(struct track);
80a9201a 3476#endif
81819f0f 3477
80a9201a
AP
3478 kasan_cache_create(s, &size, &s->flags);
3479#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3480 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3481 /*
3482 * Add some empty padding so that we can catch
3483 * overwrites from earlier objects rather than let
3484 * tracking information or the free pointer be
0211a9c8 3485 * corrupted if a user writes before the start
81819f0f
CL
3486 * of the object.
3487 */
3488 size += sizeof(void *);
d86bd1be
JK
3489
3490 s->red_left_pad = sizeof(void *);
3491 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3492 size += s->red_left_pad;
3493 }
41ecc55b 3494#endif
672bba3a 3495
81819f0f
CL
3496 /*
3497 * SLUB stores one object immediately after another beginning from
3498 * offset 0. In order to align the objects we have to simply size
3499 * each object to conform to the alignment.
3500 */
45906855 3501 size = ALIGN(size, s->align);
81819f0f 3502 s->size = size;
06b285dc
CL
3503 if (forced_order >= 0)
3504 order = forced_order;
3505 else
ab9a0f19 3506 order = calculate_order(size, s->reserved);
81819f0f 3507
834f3d11 3508 if (order < 0)
81819f0f
CL
3509 return 0;
3510
b7a49f0d 3511 s->allocflags = 0;
834f3d11 3512 if (order)
b7a49f0d
CL
3513 s->allocflags |= __GFP_COMP;
3514
3515 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3516 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3517
3518 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3519 s->allocflags |= __GFP_RECLAIMABLE;
3520
81819f0f
CL
3521 /*
3522 * Determine the number of objects per slab
3523 */
ab9a0f19
LJ
3524 s->oo = oo_make(order, size, s->reserved);
3525 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3526 if (oo_objects(s->oo) > oo_objects(s->max))
3527 s->max = s->oo;
81819f0f 3528
834f3d11 3529 return !!oo_objects(s->oo);
81819f0f
CL
3530}
3531
8a13a4cc 3532static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3533{
8a13a4cc 3534 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3535 s->reserved = 0;
81819f0f 3536
da9a638c
LJ
3537 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3538 s->reserved = sizeof(struct rcu_head);
81819f0f 3539
06b285dc 3540 if (!calculate_sizes(s, -1))
81819f0f 3541 goto error;
3de47213
DR
3542 if (disable_higher_order_debug) {
3543 /*
3544 * Disable debugging flags that store metadata if the min slab
3545 * order increased.
3546 */
3b0efdfa 3547 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3548 s->flags &= ~DEBUG_METADATA_FLAGS;
3549 s->offset = 0;
3550 if (!calculate_sizes(s, -1))
3551 goto error;
3552 }
3553 }
81819f0f 3554
2565409f
HC
3555#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3556 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3557 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3558 /* Enable fast mode */
3559 s->flags |= __CMPXCHG_DOUBLE;
3560#endif
3561
3b89d7d8
DR
3562 /*
3563 * The larger the object size is, the more pages we want on the partial
3564 * list to avoid pounding the page allocator excessively.
3565 */
49e22585
CL
3566 set_min_partial(s, ilog2(s->size) / 2);
3567
3568 /*
3569 * cpu_partial determined the maximum number of objects kept in the
3570 * per cpu partial lists of a processor.
3571 *
3572 * Per cpu partial lists mainly contain slabs that just have one
3573 * object freed. If they are used for allocation then they can be
3574 * filled up again with minimal effort. The slab will never hit the
3575 * per node partial lists and therefore no locking will be required.
3576 *
3577 * This setting also determines
3578 *
3579 * A) The number of objects from per cpu partial slabs dumped to the
3580 * per node list when we reach the limit.
9f264904 3581 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3582 * per node list when we run out of per cpu objects. We only fetch
3583 * 50% to keep some capacity around for frees.
49e22585 3584 */
345c905d 3585 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3586 s->cpu_partial = 0;
3587 else if (s->size >= PAGE_SIZE)
49e22585
CL
3588 s->cpu_partial = 2;
3589 else if (s->size >= 1024)
3590 s->cpu_partial = 6;
3591 else if (s->size >= 256)
3592 s->cpu_partial = 13;
3593 else
3594 s->cpu_partial = 30;
3595
81819f0f 3596#ifdef CONFIG_NUMA
e2cb96b7 3597 s->remote_node_defrag_ratio = 1000;
81819f0f 3598#endif
210e7a43
TG
3599
3600 /* Initialize the pre-computed randomized freelist if slab is up */
3601 if (slab_state >= UP) {
3602 if (init_cache_random_seq(s))
3603 goto error;
3604 }
3605
55136592 3606 if (!init_kmem_cache_nodes(s))
dfb4f096 3607 goto error;
81819f0f 3608
55136592 3609 if (alloc_kmem_cache_cpus(s))
278b1bb1 3610 return 0;
ff12059e 3611
4c93c355 3612 free_kmem_cache_nodes(s);
81819f0f
CL
3613error:
3614 if (flags & SLAB_PANIC)
756a025f
JP
3615 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3616 s->name, (unsigned long)s->size, s->size,
3617 oo_order(s->oo), s->offset, flags);
278b1bb1 3618 return -EINVAL;
81819f0f 3619}
81819f0f 3620
33b12c38
CL
3621static void list_slab_objects(struct kmem_cache *s, struct page *page,
3622 const char *text)
3623{
3624#ifdef CONFIG_SLUB_DEBUG
3625 void *addr = page_address(page);
3626 void *p;
a5dd5c11
NK
3627 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3628 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3629 if (!map)
3630 return;
945cf2b6 3631 slab_err(s, page, text, s->name);
33b12c38 3632 slab_lock(page);
33b12c38 3633
5f80b13a 3634 get_map(s, page, map);
33b12c38
CL
3635 for_each_object(p, s, addr, page->objects) {
3636
3637 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3638 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3639 print_tracking(s, p);
3640 }
3641 }
3642 slab_unlock(page);
bbd7d57b 3643 kfree(map);
33b12c38
CL
3644#endif
3645}
3646
81819f0f 3647/*
599870b1 3648 * Attempt to free all partial slabs on a node.
52b4b950
DS
3649 * This is called from __kmem_cache_shutdown(). We must take list_lock
3650 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3651 */
599870b1 3652static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3653{
60398923 3654 LIST_HEAD(discard);
81819f0f
CL
3655 struct page *page, *h;
3656
52b4b950
DS
3657 BUG_ON(irqs_disabled());
3658 spin_lock_irq(&n->list_lock);
33b12c38 3659 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3660 if (!page->inuse) {
52b4b950 3661 remove_partial(n, page);
60398923 3662 list_add(&page->lru, &discard);
33b12c38
CL
3663 } else {
3664 list_slab_objects(s, page,
52b4b950 3665 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3666 }
33b12c38 3667 }
52b4b950 3668 spin_unlock_irq(&n->list_lock);
60398923
CW
3669
3670 list_for_each_entry_safe(page, h, &discard, lru)
3671 discard_slab(s, page);
81819f0f
CL
3672}
3673
3674/*
672bba3a 3675 * Release all resources used by a slab cache.
81819f0f 3676 */
52b4b950 3677int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3678{
3679 int node;
fa45dc25 3680 struct kmem_cache_node *n;
81819f0f
CL
3681
3682 flush_all(s);
81819f0f 3683 /* Attempt to free all objects */
fa45dc25 3684 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3685 free_partial(s, n);
3686 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3687 return 1;
3688 }
81819f0f
CL
3689 return 0;
3690}
3691
81819f0f
CL
3692/********************************************************************
3693 * Kmalloc subsystem
3694 *******************************************************************/
3695
81819f0f
CL
3696static int __init setup_slub_min_order(char *str)
3697{
06428780 3698 get_option(&str, &slub_min_order);
81819f0f
CL
3699
3700 return 1;
3701}
3702
3703__setup("slub_min_order=", setup_slub_min_order);
3704
3705static int __init setup_slub_max_order(char *str)
3706{
06428780 3707 get_option(&str, &slub_max_order);
818cf590 3708 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3709
3710 return 1;
3711}
3712
3713__setup("slub_max_order=", setup_slub_max_order);
3714
3715static int __init setup_slub_min_objects(char *str)
3716{
06428780 3717 get_option(&str, &slub_min_objects);
81819f0f
CL
3718
3719 return 1;
3720}
3721
3722__setup("slub_min_objects=", setup_slub_min_objects);
3723
81819f0f
CL
3724void *__kmalloc(size_t size, gfp_t flags)
3725{
aadb4bc4 3726 struct kmem_cache *s;
5b882be4 3727 void *ret;
81819f0f 3728
95a05b42 3729 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3730 return kmalloc_large(size, flags);
aadb4bc4 3731
2c59dd65 3732 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3733
3734 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3735 return s;
3736
2b847c3c 3737 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3738
ca2b84cb 3739 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3740
505f5dcb 3741 kasan_kmalloc(s, ret, size, flags);
0316bec2 3742
5b882be4 3743 return ret;
81819f0f
CL
3744}
3745EXPORT_SYMBOL(__kmalloc);
3746
5d1f57e4 3747#ifdef CONFIG_NUMA
f619cfe1
CL
3748static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3749{
b1eeab67 3750 struct page *page;
e4f7c0b4 3751 void *ptr = NULL;
f619cfe1 3752
52383431 3753 flags |= __GFP_COMP | __GFP_NOTRACK;
4949148a 3754 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3755 if (page)
e4f7c0b4
CM
3756 ptr = page_address(page);
3757
d56791b3 3758 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3759 return ptr;
f619cfe1
CL
3760}
3761
81819f0f
CL
3762void *__kmalloc_node(size_t size, gfp_t flags, int node)
3763{
aadb4bc4 3764 struct kmem_cache *s;
5b882be4 3765 void *ret;
81819f0f 3766
95a05b42 3767 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3768 ret = kmalloc_large_node(size, flags, node);
3769
ca2b84cb
EGM
3770 trace_kmalloc_node(_RET_IP_, ret,
3771 size, PAGE_SIZE << get_order(size),
3772 flags, node);
5b882be4
EGM
3773
3774 return ret;
3775 }
aadb4bc4 3776
2c59dd65 3777 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3778
3779 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3780 return s;
3781
2b847c3c 3782 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3783
ca2b84cb 3784 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3785
505f5dcb 3786 kasan_kmalloc(s, ret, size, flags);
0316bec2 3787
5b882be4 3788 return ret;
81819f0f
CL
3789}
3790EXPORT_SYMBOL(__kmalloc_node);
3791#endif
3792
ed18adc1
KC
3793#ifdef CONFIG_HARDENED_USERCOPY
3794/*
3795 * Rejects objects that are incorrectly sized.
3796 *
3797 * Returns NULL if check passes, otherwise const char * to name of cache
3798 * to indicate an error.
3799 */
3800const char *__check_heap_object(const void *ptr, unsigned long n,
3801 struct page *page)
3802{
3803 struct kmem_cache *s;
3804 unsigned long offset;
3805 size_t object_size;
3806
3807 /* Find object and usable object size. */
3808 s = page->slab_cache;
3809 object_size = slab_ksize(s);
3810
3811 /* Reject impossible pointers. */
3812 if (ptr < page_address(page))
3813 return s->name;
3814
3815 /* Find offset within object. */
3816 offset = (ptr - page_address(page)) % s->size;
3817
3818 /* Adjust for redzone and reject if within the redzone. */
3819 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3820 if (offset < s->red_left_pad)
3821 return s->name;
3822 offset -= s->red_left_pad;
3823 }
3824
3825 /* Allow address range falling entirely within object size. */
3826 if (offset <= object_size && n <= object_size - offset)
3827 return NULL;
3828
3829 return s->name;
3830}
3831#endif /* CONFIG_HARDENED_USERCOPY */
3832
0316bec2 3833static size_t __ksize(const void *object)
81819f0f 3834{
272c1d21 3835 struct page *page;
81819f0f 3836
ef8b4520 3837 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3838 return 0;
3839
294a80a8 3840 page = virt_to_head_page(object);
294a80a8 3841
76994412
PE
3842 if (unlikely(!PageSlab(page))) {
3843 WARN_ON(!PageCompound(page));
294a80a8 3844 return PAGE_SIZE << compound_order(page);
76994412 3845 }
81819f0f 3846
1b4f59e3 3847 return slab_ksize(page->slab_cache);
81819f0f 3848}
0316bec2
AR
3849
3850size_t ksize(const void *object)
3851{
3852 size_t size = __ksize(object);
3853 /* We assume that ksize callers could use whole allocated area,
4ebb31a4
AP
3854 * so we need to unpoison this area.
3855 */
3856 kasan_unpoison_shadow(object, size);
0316bec2
AR
3857 return size;
3858}
b1aabecd 3859EXPORT_SYMBOL(ksize);
81819f0f
CL
3860
3861void kfree(const void *x)
3862{
81819f0f 3863 struct page *page;
5bb983b0 3864 void *object = (void *)x;
81819f0f 3865
2121db74
PE
3866 trace_kfree(_RET_IP_, x);
3867
2408c550 3868 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3869 return;
3870
b49af68f 3871 page = virt_to_head_page(x);
aadb4bc4 3872 if (unlikely(!PageSlab(page))) {
0937502a 3873 BUG_ON(!PageCompound(page));
d56791b3 3874 kfree_hook(x);
4949148a 3875 __free_pages(page, compound_order(page));
aadb4bc4
CL
3876 return;
3877 }
81084651 3878 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3879}
3880EXPORT_SYMBOL(kfree);
3881
832f37f5
VD
3882#define SHRINK_PROMOTE_MAX 32
3883
2086d26a 3884/*
832f37f5
VD
3885 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3886 * up most to the head of the partial lists. New allocations will then
3887 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3888 *
3889 * The slabs with the least items are placed last. This results in them
3890 * being allocated from last increasing the chance that the last objects
3891 * are freed in them.
2086d26a 3892 */
89e364db 3893int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3894{
3895 int node;
3896 int i;
3897 struct kmem_cache_node *n;
3898 struct page *page;
3899 struct page *t;
832f37f5
VD
3900 struct list_head discard;
3901 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3902 unsigned long flags;
ce3712d7 3903 int ret = 0;
2086d26a 3904
2086d26a 3905 flush_all(s);
fa45dc25 3906 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3907 INIT_LIST_HEAD(&discard);
3908 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3909 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3910
3911 spin_lock_irqsave(&n->list_lock, flags);
3912
3913 /*
832f37f5 3914 * Build lists of slabs to discard or promote.
2086d26a 3915 *
672bba3a
CL
3916 * Note that concurrent frees may occur while we hold the
3917 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3918 */
3919 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3920 int free = page->objects - page->inuse;
3921
3922 /* Do not reread page->inuse */
3923 barrier();
3924
3925 /* We do not keep full slabs on the list */
3926 BUG_ON(free <= 0);
3927
3928 if (free == page->objects) {
3929 list_move(&page->lru, &discard);
69cb8e6b 3930 n->nr_partial--;
832f37f5
VD
3931 } else if (free <= SHRINK_PROMOTE_MAX)
3932 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3933 }
3934
2086d26a 3935 /*
832f37f5
VD
3936 * Promote the slabs filled up most to the head of the
3937 * partial list.
2086d26a 3938 */
832f37f5
VD
3939 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3940 list_splice(promote + i, &n->partial);
2086d26a 3941
2086d26a 3942 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3943
3944 /* Release empty slabs */
832f37f5 3945 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3946 discard_slab(s, page);
ce3712d7
VD
3947
3948 if (slabs_node(s, node))
3949 ret = 1;
2086d26a
CL
3950 }
3951
ce3712d7 3952 return ret;
2086d26a 3953}
2086d26a 3954
b9049e23
YG
3955static int slab_mem_going_offline_callback(void *arg)
3956{
3957 struct kmem_cache *s;
3958
18004c5d 3959 mutex_lock(&slab_mutex);
b9049e23 3960 list_for_each_entry(s, &slab_caches, list)
89e364db 3961 __kmem_cache_shrink(s);
18004c5d 3962 mutex_unlock(&slab_mutex);
b9049e23
YG
3963
3964 return 0;
3965}
3966
3967static void slab_mem_offline_callback(void *arg)
3968{
3969 struct kmem_cache_node *n;
3970 struct kmem_cache *s;
3971 struct memory_notify *marg = arg;
3972 int offline_node;
3973
b9d5ab25 3974 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3975
3976 /*
3977 * If the node still has available memory. we need kmem_cache_node
3978 * for it yet.
3979 */
3980 if (offline_node < 0)
3981 return;
3982
18004c5d 3983 mutex_lock(&slab_mutex);
b9049e23
YG
3984 list_for_each_entry(s, &slab_caches, list) {
3985 n = get_node(s, offline_node);
3986 if (n) {
3987 /*
3988 * if n->nr_slabs > 0, slabs still exist on the node
3989 * that is going down. We were unable to free them,
c9404c9c 3990 * and offline_pages() function shouldn't call this
b9049e23
YG
3991 * callback. So, we must fail.
3992 */
0f389ec6 3993 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3994
3995 s->node[offline_node] = NULL;
8de66a0c 3996 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3997 }
3998 }
18004c5d 3999 mutex_unlock(&slab_mutex);
b9049e23
YG
4000}
4001
4002static int slab_mem_going_online_callback(void *arg)
4003{
4004 struct kmem_cache_node *n;
4005 struct kmem_cache *s;
4006 struct memory_notify *marg = arg;
b9d5ab25 4007 int nid = marg->status_change_nid_normal;
b9049e23
YG
4008 int ret = 0;
4009
4010 /*
4011 * If the node's memory is already available, then kmem_cache_node is
4012 * already created. Nothing to do.
4013 */
4014 if (nid < 0)
4015 return 0;
4016
4017 /*
0121c619 4018 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4019 * allocate a kmem_cache_node structure in order to bring the node
4020 * online.
4021 */
18004c5d 4022 mutex_lock(&slab_mutex);
b9049e23
YG
4023 list_for_each_entry(s, &slab_caches, list) {
4024 /*
4025 * XXX: kmem_cache_alloc_node will fallback to other nodes
4026 * since memory is not yet available from the node that
4027 * is brought up.
4028 */
8de66a0c 4029 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4030 if (!n) {
4031 ret = -ENOMEM;
4032 goto out;
4033 }
4053497d 4034 init_kmem_cache_node(n);
b9049e23
YG
4035 s->node[nid] = n;
4036 }
4037out:
18004c5d 4038 mutex_unlock(&slab_mutex);
b9049e23
YG
4039 return ret;
4040}
4041
4042static int slab_memory_callback(struct notifier_block *self,
4043 unsigned long action, void *arg)
4044{
4045 int ret = 0;
4046
4047 switch (action) {
4048 case MEM_GOING_ONLINE:
4049 ret = slab_mem_going_online_callback(arg);
4050 break;
4051 case MEM_GOING_OFFLINE:
4052 ret = slab_mem_going_offline_callback(arg);
4053 break;
4054 case MEM_OFFLINE:
4055 case MEM_CANCEL_ONLINE:
4056 slab_mem_offline_callback(arg);
4057 break;
4058 case MEM_ONLINE:
4059 case MEM_CANCEL_OFFLINE:
4060 break;
4061 }
dc19f9db
KH
4062 if (ret)
4063 ret = notifier_from_errno(ret);
4064 else
4065 ret = NOTIFY_OK;
b9049e23
YG
4066 return ret;
4067}
4068
3ac38faa
AM
4069static struct notifier_block slab_memory_callback_nb = {
4070 .notifier_call = slab_memory_callback,
4071 .priority = SLAB_CALLBACK_PRI,
4072};
b9049e23 4073
81819f0f
CL
4074/********************************************************************
4075 * Basic setup of slabs
4076 *******************************************************************/
4077
51df1142
CL
4078/*
4079 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4080 * the page allocator. Allocate them properly then fix up the pointers
4081 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4082 */
4083
dffb4d60 4084static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4085{
4086 int node;
dffb4d60 4087 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4088 struct kmem_cache_node *n;
51df1142 4089
dffb4d60 4090 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4091
7d557b3c
GC
4092 /*
4093 * This runs very early, and only the boot processor is supposed to be
4094 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4095 * IPIs around.
4096 */
4097 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4098 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4099 struct page *p;
4100
fa45dc25
CL
4101 list_for_each_entry(p, &n->partial, lru)
4102 p->slab_cache = s;
51df1142 4103
607bf324 4104#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
4105 list_for_each_entry(p, &n->full, lru)
4106 p->slab_cache = s;
51df1142 4107#endif
51df1142 4108 }
f7ce3190 4109 slab_init_memcg_params(s);
dffb4d60
CL
4110 list_add(&s->list, &slab_caches);
4111 return s;
51df1142
CL
4112}
4113
81819f0f
CL
4114void __init kmem_cache_init(void)
4115{
dffb4d60
CL
4116 static __initdata struct kmem_cache boot_kmem_cache,
4117 boot_kmem_cache_node;
51df1142 4118
fc8d8620
SG
4119 if (debug_guardpage_minorder())
4120 slub_max_order = 0;
4121
dffb4d60
CL
4122 kmem_cache_node = &boot_kmem_cache_node;
4123 kmem_cache = &boot_kmem_cache;
51df1142 4124
dffb4d60
CL
4125 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4126 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 4127
3ac38faa 4128 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4129
4130 /* Able to allocate the per node structures */
4131 slab_state = PARTIAL;
4132
dffb4d60
CL
4133 create_boot_cache(kmem_cache, "kmem_cache",
4134 offsetof(struct kmem_cache, node) +
4135 nr_node_ids * sizeof(struct kmem_cache_node *),
4136 SLAB_HWCACHE_ALIGN);
8a13a4cc 4137
dffb4d60 4138 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 4139
51df1142
CL
4140 /*
4141 * Allocate kmem_cache_node properly from the kmem_cache slab.
4142 * kmem_cache_node is separately allocated so no need to
4143 * update any list pointers.
4144 */
dffb4d60 4145 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4146
4147 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4148 setup_kmalloc_cache_index_table();
f97d5f63 4149 create_kmalloc_caches(0);
81819f0f 4150
210e7a43
TG
4151 /* Setup random freelists for each cache */
4152 init_freelist_randomization();
4153
a96a87bf
SAS
4154 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4155 slub_cpu_dead);
81819f0f 4156
f9f58285 4157 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 4158 cache_line_size(),
81819f0f
CL
4159 slub_min_order, slub_max_order, slub_min_objects,
4160 nr_cpu_ids, nr_node_ids);
4161}
4162
7e85ee0c
PE
4163void __init kmem_cache_init_late(void)
4164{
7e85ee0c
PE
4165}
4166
2633d7a0 4167struct kmem_cache *
a44cb944
VD
4168__kmem_cache_alias(const char *name, size_t size, size_t align,
4169 unsigned long flags, void (*ctor)(void *))
81819f0f 4170{
426589f5 4171 struct kmem_cache *s, *c;
81819f0f 4172
a44cb944 4173 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4174 if (s) {
4175 s->refcount++;
84d0ddd6 4176
81819f0f
CL
4177 /*
4178 * Adjust the object sizes so that we clear
4179 * the complete object on kzalloc.
4180 */
3b0efdfa 4181 s->object_size = max(s->object_size, (int)size);
81819f0f 4182 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4183
426589f5 4184 for_each_memcg_cache(c, s) {
84d0ddd6
VD
4185 c->object_size = s->object_size;
4186 c->inuse = max_t(int, c->inuse,
4187 ALIGN(size, sizeof(void *)));
4188 }
4189
7b8f3b66 4190 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4191 s->refcount--;
cbb79694 4192 s = NULL;
7b8f3b66 4193 }
a0e1d1be 4194 }
6446faa2 4195
cbb79694
CL
4196 return s;
4197}
84c1cf62 4198
8a13a4cc 4199int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 4200{
aac3a166
PE
4201 int err;
4202
4203 err = kmem_cache_open(s, flags);
4204 if (err)
4205 return err;
20cea968 4206
45530c44
CL
4207 /* Mutex is not taken during early boot */
4208 if (slab_state <= UP)
4209 return 0;
4210
107dab5c 4211 memcg_propagate_slab_attrs(s);
aac3a166 4212 err = sysfs_slab_add(s);
aac3a166 4213 if (err)
52b4b950 4214 __kmem_cache_release(s);
20cea968 4215
aac3a166 4216 return err;
81819f0f 4217}
81819f0f 4218
ce71e27c 4219void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4220{
aadb4bc4 4221 struct kmem_cache *s;
94b528d0 4222 void *ret;
aadb4bc4 4223
95a05b42 4224 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4225 return kmalloc_large(size, gfpflags);
4226
2c59dd65 4227 s = kmalloc_slab(size, gfpflags);
81819f0f 4228
2408c550 4229 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4230 return s;
81819f0f 4231
2b847c3c 4232 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4233
25985edc 4234 /* Honor the call site pointer we received. */
ca2b84cb 4235 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4236
4237 return ret;
81819f0f
CL
4238}
4239
5d1f57e4 4240#ifdef CONFIG_NUMA
81819f0f 4241void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4242 int node, unsigned long caller)
81819f0f 4243{
aadb4bc4 4244 struct kmem_cache *s;
94b528d0 4245 void *ret;
aadb4bc4 4246
95a05b42 4247 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4248 ret = kmalloc_large_node(size, gfpflags, node);
4249
4250 trace_kmalloc_node(caller, ret,
4251 size, PAGE_SIZE << get_order(size),
4252 gfpflags, node);
4253
4254 return ret;
4255 }
eada35ef 4256
2c59dd65 4257 s = kmalloc_slab(size, gfpflags);
81819f0f 4258
2408c550 4259 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4260 return s;
81819f0f 4261
2b847c3c 4262 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4263
25985edc 4264 /* Honor the call site pointer we received. */
ca2b84cb 4265 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4266
4267 return ret;
81819f0f 4268}
5d1f57e4 4269#endif
81819f0f 4270
ab4d5ed5 4271#ifdef CONFIG_SYSFS
205ab99d
CL
4272static int count_inuse(struct page *page)
4273{
4274 return page->inuse;
4275}
4276
4277static int count_total(struct page *page)
4278{
4279 return page->objects;
4280}
ab4d5ed5 4281#endif
205ab99d 4282
ab4d5ed5 4283#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4284static int validate_slab(struct kmem_cache *s, struct page *page,
4285 unsigned long *map)
53e15af0
CL
4286{
4287 void *p;
a973e9dd 4288 void *addr = page_address(page);
53e15af0
CL
4289
4290 if (!check_slab(s, page) ||
4291 !on_freelist(s, page, NULL))
4292 return 0;
4293
4294 /* Now we know that a valid freelist exists */
39b26464 4295 bitmap_zero(map, page->objects);
53e15af0 4296
5f80b13a
CL
4297 get_map(s, page, map);
4298 for_each_object(p, s, addr, page->objects) {
4299 if (test_bit(slab_index(p, s, addr), map))
4300 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4301 return 0;
53e15af0
CL
4302 }
4303
224a88be 4304 for_each_object(p, s, addr, page->objects)
7656c72b 4305 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4306 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4307 return 0;
4308 return 1;
4309}
4310
434e245d
CL
4311static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4312 unsigned long *map)
53e15af0 4313{
881db7fb
CL
4314 slab_lock(page);
4315 validate_slab(s, page, map);
4316 slab_unlock(page);
53e15af0
CL
4317}
4318
434e245d
CL
4319static int validate_slab_node(struct kmem_cache *s,
4320 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4321{
4322 unsigned long count = 0;
4323 struct page *page;
4324 unsigned long flags;
4325
4326 spin_lock_irqsave(&n->list_lock, flags);
4327
4328 list_for_each_entry(page, &n->partial, lru) {
434e245d 4329 validate_slab_slab(s, page, map);
53e15af0
CL
4330 count++;
4331 }
4332 if (count != n->nr_partial)
f9f58285
FF
4333 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4334 s->name, count, n->nr_partial);
53e15af0
CL
4335
4336 if (!(s->flags & SLAB_STORE_USER))
4337 goto out;
4338
4339 list_for_each_entry(page, &n->full, lru) {
434e245d 4340 validate_slab_slab(s, page, map);
53e15af0
CL
4341 count++;
4342 }
4343 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4344 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4345 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4346
4347out:
4348 spin_unlock_irqrestore(&n->list_lock, flags);
4349 return count;
4350}
4351
434e245d 4352static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4353{
4354 int node;
4355 unsigned long count = 0;
205ab99d 4356 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4357 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4358 struct kmem_cache_node *n;
434e245d
CL
4359
4360 if (!map)
4361 return -ENOMEM;
53e15af0
CL
4362
4363 flush_all(s);
fa45dc25 4364 for_each_kmem_cache_node(s, node, n)
434e245d 4365 count += validate_slab_node(s, n, map);
434e245d 4366 kfree(map);
53e15af0
CL
4367 return count;
4368}
88a420e4 4369/*
672bba3a 4370 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4371 * and freed.
4372 */
4373
4374struct location {
4375 unsigned long count;
ce71e27c 4376 unsigned long addr;
45edfa58
CL
4377 long long sum_time;
4378 long min_time;
4379 long max_time;
4380 long min_pid;
4381 long max_pid;
174596a0 4382 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4383 nodemask_t nodes;
88a420e4
CL
4384};
4385
4386struct loc_track {
4387 unsigned long max;
4388 unsigned long count;
4389 struct location *loc;
4390};
4391
4392static void free_loc_track(struct loc_track *t)
4393{
4394 if (t->max)
4395 free_pages((unsigned long)t->loc,
4396 get_order(sizeof(struct location) * t->max));
4397}
4398
68dff6a9 4399static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4400{
4401 struct location *l;
4402 int order;
4403
88a420e4
CL
4404 order = get_order(sizeof(struct location) * max);
4405
68dff6a9 4406 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4407 if (!l)
4408 return 0;
4409
4410 if (t->count) {
4411 memcpy(l, t->loc, sizeof(struct location) * t->count);
4412 free_loc_track(t);
4413 }
4414 t->max = max;
4415 t->loc = l;
4416 return 1;
4417}
4418
4419static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4420 const struct track *track)
88a420e4
CL
4421{
4422 long start, end, pos;
4423 struct location *l;
ce71e27c 4424 unsigned long caddr;
45edfa58 4425 unsigned long age = jiffies - track->when;
88a420e4
CL
4426
4427 start = -1;
4428 end = t->count;
4429
4430 for ( ; ; ) {
4431 pos = start + (end - start + 1) / 2;
4432
4433 /*
4434 * There is nothing at "end". If we end up there
4435 * we need to add something to before end.
4436 */
4437 if (pos == end)
4438 break;
4439
4440 caddr = t->loc[pos].addr;
45edfa58
CL
4441 if (track->addr == caddr) {
4442
4443 l = &t->loc[pos];
4444 l->count++;
4445 if (track->when) {
4446 l->sum_time += age;
4447 if (age < l->min_time)
4448 l->min_time = age;
4449 if (age > l->max_time)
4450 l->max_time = age;
4451
4452 if (track->pid < l->min_pid)
4453 l->min_pid = track->pid;
4454 if (track->pid > l->max_pid)
4455 l->max_pid = track->pid;
4456
174596a0
RR
4457 cpumask_set_cpu(track->cpu,
4458 to_cpumask(l->cpus));
45edfa58
CL
4459 }
4460 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4461 return 1;
4462 }
4463
45edfa58 4464 if (track->addr < caddr)
88a420e4
CL
4465 end = pos;
4466 else
4467 start = pos;
4468 }
4469
4470 /*
672bba3a 4471 * Not found. Insert new tracking element.
88a420e4 4472 */
68dff6a9 4473 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4474 return 0;
4475
4476 l = t->loc + pos;
4477 if (pos < t->count)
4478 memmove(l + 1, l,
4479 (t->count - pos) * sizeof(struct location));
4480 t->count++;
4481 l->count = 1;
45edfa58
CL
4482 l->addr = track->addr;
4483 l->sum_time = age;
4484 l->min_time = age;
4485 l->max_time = age;
4486 l->min_pid = track->pid;
4487 l->max_pid = track->pid;
174596a0
RR
4488 cpumask_clear(to_cpumask(l->cpus));
4489 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4490 nodes_clear(l->nodes);
4491 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4492 return 1;
4493}
4494
4495static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4496 struct page *page, enum track_item alloc,
a5dd5c11 4497 unsigned long *map)
88a420e4 4498{
a973e9dd 4499 void *addr = page_address(page);
88a420e4
CL
4500 void *p;
4501
39b26464 4502 bitmap_zero(map, page->objects);
5f80b13a 4503 get_map(s, page, map);
88a420e4 4504
224a88be 4505 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4506 if (!test_bit(slab_index(p, s, addr), map))
4507 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4508}
4509
4510static int list_locations(struct kmem_cache *s, char *buf,
4511 enum track_item alloc)
4512{
e374d483 4513 int len = 0;
88a420e4 4514 unsigned long i;
68dff6a9 4515 struct loc_track t = { 0, 0, NULL };
88a420e4 4516 int node;
bbd7d57b
ED
4517 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4518 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4519 struct kmem_cache_node *n;
88a420e4 4520
bbd7d57b
ED
4521 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4522 GFP_TEMPORARY)) {
4523 kfree(map);
68dff6a9 4524 return sprintf(buf, "Out of memory\n");
bbd7d57b 4525 }
88a420e4
CL
4526 /* Push back cpu slabs */
4527 flush_all(s);
4528
fa45dc25 4529 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4530 unsigned long flags;
4531 struct page *page;
4532
9e86943b 4533 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4534 continue;
4535
4536 spin_lock_irqsave(&n->list_lock, flags);
4537 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4538 process_slab(&t, s, page, alloc, map);
88a420e4 4539 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4540 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4541 spin_unlock_irqrestore(&n->list_lock, flags);
4542 }
4543
4544 for (i = 0; i < t.count; i++) {
45edfa58 4545 struct location *l = &t.loc[i];
88a420e4 4546
9c246247 4547 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4548 break;
e374d483 4549 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4550
4551 if (l->addr)
62c70bce 4552 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4553 else
e374d483 4554 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4555
4556 if (l->sum_time != l->min_time) {
e374d483 4557 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4558 l->min_time,
4559 (long)div_u64(l->sum_time, l->count),
4560 l->max_time);
45edfa58 4561 } else
e374d483 4562 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4563 l->min_time);
4564
4565 if (l->min_pid != l->max_pid)
e374d483 4566 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4567 l->min_pid, l->max_pid);
4568 else
e374d483 4569 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4570 l->min_pid);
4571
174596a0
RR
4572 if (num_online_cpus() > 1 &&
4573 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4574 len < PAGE_SIZE - 60)
4575 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4576 " cpus=%*pbl",
4577 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4578
62bc62a8 4579 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4580 len < PAGE_SIZE - 60)
4581 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4582 " nodes=%*pbl",
4583 nodemask_pr_args(&l->nodes));
45edfa58 4584
e374d483 4585 len += sprintf(buf + len, "\n");
88a420e4
CL
4586 }
4587
4588 free_loc_track(&t);
bbd7d57b 4589 kfree(map);
88a420e4 4590 if (!t.count)
e374d483
HH
4591 len += sprintf(buf, "No data\n");
4592 return len;
88a420e4 4593}
ab4d5ed5 4594#endif
88a420e4 4595
a5a84755 4596#ifdef SLUB_RESILIENCY_TEST
c07b8183 4597static void __init resiliency_test(void)
a5a84755
CL
4598{
4599 u8 *p;
4600
95a05b42 4601 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4602
f9f58285
FF
4603 pr_err("SLUB resiliency testing\n");
4604 pr_err("-----------------------\n");
4605 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4606
4607 p = kzalloc(16, GFP_KERNEL);
4608 p[16] = 0x12;
f9f58285
FF
4609 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4610 p + 16);
a5a84755
CL
4611
4612 validate_slab_cache(kmalloc_caches[4]);
4613
4614 /* Hmmm... The next two are dangerous */
4615 p = kzalloc(32, GFP_KERNEL);
4616 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4617 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4618 p);
4619 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4620
4621 validate_slab_cache(kmalloc_caches[5]);
4622 p = kzalloc(64, GFP_KERNEL);
4623 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4624 *p = 0x56;
f9f58285
FF
4625 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4626 p);
4627 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4628 validate_slab_cache(kmalloc_caches[6]);
4629
f9f58285 4630 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4631 p = kzalloc(128, GFP_KERNEL);
4632 kfree(p);
4633 *p = 0x78;
f9f58285 4634 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4635 validate_slab_cache(kmalloc_caches[7]);
4636
4637 p = kzalloc(256, GFP_KERNEL);
4638 kfree(p);
4639 p[50] = 0x9a;
f9f58285 4640 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4641 validate_slab_cache(kmalloc_caches[8]);
4642
4643 p = kzalloc(512, GFP_KERNEL);
4644 kfree(p);
4645 p[512] = 0xab;
f9f58285 4646 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4647 validate_slab_cache(kmalloc_caches[9]);
4648}
4649#else
4650#ifdef CONFIG_SYSFS
4651static void resiliency_test(void) {};
4652#endif
4653#endif
4654
ab4d5ed5 4655#ifdef CONFIG_SYSFS
81819f0f 4656enum slab_stat_type {
205ab99d
CL
4657 SL_ALL, /* All slabs */
4658 SL_PARTIAL, /* Only partially allocated slabs */
4659 SL_CPU, /* Only slabs used for cpu caches */
4660 SL_OBJECTS, /* Determine allocated objects not slabs */
4661 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4662};
4663
205ab99d 4664#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4665#define SO_PARTIAL (1 << SL_PARTIAL)
4666#define SO_CPU (1 << SL_CPU)
4667#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4668#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4669
62e5c4b4
CG
4670static ssize_t show_slab_objects(struct kmem_cache *s,
4671 char *buf, unsigned long flags)
81819f0f
CL
4672{
4673 unsigned long total = 0;
81819f0f
CL
4674 int node;
4675 int x;
4676 unsigned long *nodes;
81819f0f 4677
e35e1a97 4678 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4679 if (!nodes)
4680 return -ENOMEM;
81819f0f 4681
205ab99d
CL
4682 if (flags & SO_CPU) {
4683 int cpu;
81819f0f 4684
205ab99d 4685 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4686 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4687 cpu);
ec3ab083 4688 int node;
49e22585 4689 struct page *page;
dfb4f096 4690
4db0c3c2 4691 page = READ_ONCE(c->page);
ec3ab083
CL
4692 if (!page)
4693 continue;
205ab99d 4694
ec3ab083
CL
4695 node = page_to_nid(page);
4696 if (flags & SO_TOTAL)
4697 x = page->objects;
4698 else if (flags & SO_OBJECTS)
4699 x = page->inuse;
4700 else
4701 x = 1;
49e22585 4702
ec3ab083
CL
4703 total += x;
4704 nodes[node] += x;
4705
4db0c3c2 4706 page = READ_ONCE(c->partial);
49e22585 4707 if (page) {
8afb1474
LZ
4708 node = page_to_nid(page);
4709 if (flags & SO_TOTAL)
4710 WARN_ON_ONCE(1);
4711 else if (flags & SO_OBJECTS)
4712 WARN_ON_ONCE(1);
4713 else
4714 x = page->pages;
bc6697d8
ED
4715 total += x;
4716 nodes[node] += x;
49e22585 4717 }
81819f0f
CL
4718 }
4719 }
4720
bfc8c901 4721 get_online_mems();
ab4d5ed5 4722#ifdef CONFIG_SLUB_DEBUG
205ab99d 4723 if (flags & SO_ALL) {
fa45dc25
CL
4724 struct kmem_cache_node *n;
4725
4726 for_each_kmem_cache_node(s, node, n) {
205ab99d 4727
d0e0ac97
CG
4728 if (flags & SO_TOTAL)
4729 x = atomic_long_read(&n->total_objects);
4730 else if (flags & SO_OBJECTS)
4731 x = atomic_long_read(&n->total_objects) -
4732 count_partial(n, count_free);
81819f0f 4733 else
205ab99d 4734 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4735 total += x;
4736 nodes[node] += x;
4737 }
4738
ab4d5ed5
CL
4739 } else
4740#endif
4741 if (flags & SO_PARTIAL) {
fa45dc25 4742 struct kmem_cache_node *n;
81819f0f 4743
fa45dc25 4744 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4745 if (flags & SO_TOTAL)
4746 x = count_partial(n, count_total);
4747 else if (flags & SO_OBJECTS)
4748 x = count_partial(n, count_inuse);
81819f0f 4749 else
205ab99d 4750 x = n->nr_partial;
81819f0f
CL
4751 total += x;
4752 nodes[node] += x;
4753 }
4754 }
81819f0f
CL
4755 x = sprintf(buf, "%lu", total);
4756#ifdef CONFIG_NUMA
fa45dc25 4757 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4758 if (nodes[node])
4759 x += sprintf(buf + x, " N%d=%lu",
4760 node, nodes[node]);
4761#endif
bfc8c901 4762 put_online_mems();
81819f0f
CL
4763 kfree(nodes);
4764 return x + sprintf(buf + x, "\n");
4765}
4766
ab4d5ed5 4767#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4768static int any_slab_objects(struct kmem_cache *s)
4769{
4770 int node;
fa45dc25 4771 struct kmem_cache_node *n;
81819f0f 4772
fa45dc25 4773 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4774 if (atomic_long_read(&n->total_objects))
81819f0f 4775 return 1;
fa45dc25 4776
81819f0f
CL
4777 return 0;
4778}
ab4d5ed5 4779#endif
81819f0f
CL
4780
4781#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4782#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4783
4784struct slab_attribute {
4785 struct attribute attr;
4786 ssize_t (*show)(struct kmem_cache *s, char *buf);
4787 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4788};
4789
4790#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4791 static struct slab_attribute _name##_attr = \
4792 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4793
4794#define SLAB_ATTR(_name) \
4795 static struct slab_attribute _name##_attr = \
ab067e99 4796 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4797
81819f0f
CL
4798static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4799{
4800 return sprintf(buf, "%d\n", s->size);
4801}
4802SLAB_ATTR_RO(slab_size);
4803
4804static ssize_t align_show(struct kmem_cache *s, char *buf)
4805{
4806 return sprintf(buf, "%d\n", s->align);
4807}
4808SLAB_ATTR_RO(align);
4809
4810static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4811{
3b0efdfa 4812 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4813}
4814SLAB_ATTR_RO(object_size);
4815
4816static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4817{
834f3d11 4818 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4819}
4820SLAB_ATTR_RO(objs_per_slab);
4821
06b285dc
CL
4822static ssize_t order_store(struct kmem_cache *s,
4823 const char *buf, size_t length)
4824{
0121c619
CL
4825 unsigned long order;
4826 int err;
4827
3dbb95f7 4828 err = kstrtoul(buf, 10, &order);
0121c619
CL
4829 if (err)
4830 return err;
06b285dc
CL
4831
4832 if (order > slub_max_order || order < slub_min_order)
4833 return -EINVAL;
4834
4835 calculate_sizes(s, order);
4836 return length;
4837}
4838
81819f0f
CL
4839static ssize_t order_show(struct kmem_cache *s, char *buf)
4840{
834f3d11 4841 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4842}
06b285dc 4843SLAB_ATTR(order);
81819f0f 4844
73d342b1
DR
4845static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4846{
4847 return sprintf(buf, "%lu\n", s->min_partial);
4848}
4849
4850static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4851 size_t length)
4852{
4853 unsigned long min;
4854 int err;
4855
3dbb95f7 4856 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4857 if (err)
4858 return err;
4859
c0bdb232 4860 set_min_partial(s, min);
73d342b1
DR
4861 return length;
4862}
4863SLAB_ATTR(min_partial);
4864
49e22585
CL
4865static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4866{
4867 return sprintf(buf, "%u\n", s->cpu_partial);
4868}
4869
4870static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4871 size_t length)
4872{
4873 unsigned long objects;
4874 int err;
4875
3dbb95f7 4876 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4877 if (err)
4878 return err;
345c905d 4879 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4880 return -EINVAL;
49e22585
CL
4881
4882 s->cpu_partial = objects;
4883 flush_all(s);
4884 return length;
4885}
4886SLAB_ATTR(cpu_partial);
4887
81819f0f
CL
4888static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4889{
62c70bce
JP
4890 if (!s->ctor)
4891 return 0;
4892 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4893}
4894SLAB_ATTR_RO(ctor);
4895
81819f0f
CL
4896static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4897{
4307c14f 4898 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4899}
4900SLAB_ATTR_RO(aliases);
4901
81819f0f
CL
4902static ssize_t partial_show(struct kmem_cache *s, char *buf)
4903{
d9acf4b7 4904 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4905}
4906SLAB_ATTR_RO(partial);
4907
4908static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4909{
d9acf4b7 4910 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4911}
4912SLAB_ATTR_RO(cpu_slabs);
4913
4914static ssize_t objects_show(struct kmem_cache *s, char *buf)
4915{
205ab99d 4916 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4917}
4918SLAB_ATTR_RO(objects);
4919
205ab99d
CL
4920static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4921{
4922 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4923}
4924SLAB_ATTR_RO(objects_partial);
4925
49e22585
CL
4926static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4927{
4928 int objects = 0;
4929 int pages = 0;
4930 int cpu;
4931 int len;
4932
4933 for_each_online_cpu(cpu) {
4934 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4935
4936 if (page) {
4937 pages += page->pages;
4938 objects += page->pobjects;
4939 }
4940 }
4941
4942 len = sprintf(buf, "%d(%d)", objects, pages);
4943
4944#ifdef CONFIG_SMP
4945 for_each_online_cpu(cpu) {
4946 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4947
4948 if (page && len < PAGE_SIZE - 20)
4949 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4950 page->pobjects, page->pages);
4951 }
4952#endif
4953 return len + sprintf(buf + len, "\n");
4954}
4955SLAB_ATTR_RO(slabs_cpu_partial);
4956
a5a84755
CL
4957static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4958{
4959 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4960}
4961
4962static ssize_t reclaim_account_store(struct kmem_cache *s,
4963 const char *buf, size_t length)
4964{
4965 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4966 if (buf[0] == '1')
4967 s->flags |= SLAB_RECLAIM_ACCOUNT;
4968 return length;
4969}
4970SLAB_ATTR(reclaim_account);
4971
4972static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4973{
4974 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4975}
4976SLAB_ATTR_RO(hwcache_align);
4977
4978#ifdef CONFIG_ZONE_DMA
4979static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4980{
4981 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4982}
4983SLAB_ATTR_RO(cache_dma);
4984#endif
4985
4986static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4987{
4988 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4989}
4990SLAB_ATTR_RO(destroy_by_rcu);
4991
ab9a0f19
LJ
4992static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4993{
4994 return sprintf(buf, "%d\n", s->reserved);
4995}
4996SLAB_ATTR_RO(reserved);
4997
ab4d5ed5 4998#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4999static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5000{
5001 return show_slab_objects(s, buf, SO_ALL);
5002}
5003SLAB_ATTR_RO(slabs);
5004
205ab99d
CL
5005static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5006{
5007 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5008}
5009SLAB_ATTR_RO(total_objects);
5010
81819f0f
CL
5011static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5012{
becfda68 5013 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5014}
5015
5016static ssize_t sanity_checks_store(struct kmem_cache *s,
5017 const char *buf, size_t length)
5018{
becfda68 5019 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5020 if (buf[0] == '1') {
5021 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5022 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5023 }
81819f0f
CL
5024 return length;
5025}
5026SLAB_ATTR(sanity_checks);
5027
5028static ssize_t trace_show(struct kmem_cache *s, char *buf)
5029{
5030 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5031}
5032
5033static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5034 size_t length)
5035{
c9e16131
CL
5036 /*
5037 * Tracing a merged cache is going to give confusing results
5038 * as well as cause other issues like converting a mergeable
5039 * cache into an umergeable one.
5040 */
5041 if (s->refcount > 1)
5042 return -EINVAL;
5043
81819f0f 5044 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5045 if (buf[0] == '1') {
5046 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5047 s->flags |= SLAB_TRACE;
b789ef51 5048 }
81819f0f
CL
5049 return length;
5050}
5051SLAB_ATTR(trace);
5052
81819f0f
CL
5053static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5054{
5055 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5056}
5057
5058static ssize_t red_zone_store(struct kmem_cache *s,
5059 const char *buf, size_t length)
5060{
5061 if (any_slab_objects(s))
5062 return -EBUSY;
5063
5064 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5065 if (buf[0] == '1') {
81819f0f 5066 s->flags |= SLAB_RED_ZONE;
b789ef51 5067 }
06b285dc 5068 calculate_sizes(s, -1);
81819f0f
CL
5069 return length;
5070}
5071SLAB_ATTR(red_zone);
5072
5073static ssize_t poison_show(struct kmem_cache *s, char *buf)
5074{
5075 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5076}
5077
5078static ssize_t poison_store(struct kmem_cache *s,
5079 const char *buf, size_t length)
5080{
5081 if (any_slab_objects(s))
5082 return -EBUSY;
5083
5084 s->flags &= ~SLAB_POISON;
b789ef51 5085 if (buf[0] == '1') {
81819f0f 5086 s->flags |= SLAB_POISON;
b789ef51 5087 }
06b285dc 5088 calculate_sizes(s, -1);
81819f0f
CL
5089 return length;
5090}
5091SLAB_ATTR(poison);
5092
5093static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5094{
5095 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5096}
5097
5098static ssize_t store_user_store(struct kmem_cache *s,
5099 const char *buf, size_t length)
5100{
5101 if (any_slab_objects(s))
5102 return -EBUSY;
5103
5104 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5105 if (buf[0] == '1') {
5106 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5107 s->flags |= SLAB_STORE_USER;
b789ef51 5108 }
06b285dc 5109 calculate_sizes(s, -1);
81819f0f
CL
5110 return length;
5111}
5112SLAB_ATTR(store_user);
5113
53e15af0
CL
5114static ssize_t validate_show(struct kmem_cache *s, char *buf)
5115{
5116 return 0;
5117}
5118
5119static ssize_t validate_store(struct kmem_cache *s,
5120 const char *buf, size_t length)
5121{
434e245d
CL
5122 int ret = -EINVAL;
5123
5124 if (buf[0] == '1') {
5125 ret = validate_slab_cache(s);
5126 if (ret >= 0)
5127 ret = length;
5128 }
5129 return ret;
53e15af0
CL
5130}
5131SLAB_ATTR(validate);
a5a84755
CL
5132
5133static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5134{
5135 if (!(s->flags & SLAB_STORE_USER))
5136 return -ENOSYS;
5137 return list_locations(s, buf, TRACK_ALLOC);
5138}
5139SLAB_ATTR_RO(alloc_calls);
5140
5141static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5142{
5143 if (!(s->flags & SLAB_STORE_USER))
5144 return -ENOSYS;
5145 return list_locations(s, buf, TRACK_FREE);
5146}
5147SLAB_ATTR_RO(free_calls);
5148#endif /* CONFIG_SLUB_DEBUG */
5149
5150#ifdef CONFIG_FAILSLAB
5151static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5152{
5153 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5154}
5155
5156static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5157 size_t length)
5158{
c9e16131
CL
5159 if (s->refcount > 1)
5160 return -EINVAL;
5161
a5a84755
CL
5162 s->flags &= ~SLAB_FAILSLAB;
5163 if (buf[0] == '1')
5164 s->flags |= SLAB_FAILSLAB;
5165 return length;
5166}
5167SLAB_ATTR(failslab);
ab4d5ed5 5168#endif
53e15af0 5169
2086d26a
CL
5170static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5171{
5172 return 0;
5173}
5174
5175static ssize_t shrink_store(struct kmem_cache *s,
5176 const char *buf, size_t length)
5177{
832f37f5
VD
5178 if (buf[0] == '1')
5179 kmem_cache_shrink(s);
5180 else
2086d26a
CL
5181 return -EINVAL;
5182 return length;
5183}
5184SLAB_ATTR(shrink);
5185
81819f0f 5186#ifdef CONFIG_NUMA
9824601e 5187static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5188{
9824601e 5189 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5190}
5191
9824601e 5192static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5193 const char *buf, size_t length)
5194{
0121c619
CL
5195 unsigned long ratio;
5196 int err;
5197
3dbb95f7 5198 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
5199 if (err)
5200 return err;
5201
e2cb96b7 5202 if (ratio <= 100)
0121c619 5203 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5204
81819f0f
CL
5205 return length;
5206}
9824601e 5207SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5208#endif
5209
8ff12cfc 5210#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5211static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5212{
5213 unsigned long sum = 0;
5214 int cpu;
5215 int len;
5216 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5217
5218 if (!data)
5219 return -ENOMEM;
5220
5221 for_each_online_cpu(cpu) {
9dfc6e68 5222 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5223
5224 data[cpu] = x;
5225 sum += x;
5226 }
5227
5228 len = sprintf(buf, "%lu", sum);
5229
50ef37b9 5230#ifdef CONFIG_SMP
8ff12cfc
CL
5231 for_each_online_cpu(cpu) {
5232 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5233 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5234 }
50ef37b9 5235#endif
8ff12cfc
CL
5236 kfree(data);
5237 return len + sprintf(buf + len, "\n");
5238}
5239
78eb00cc
DR
5240static void clear_stat(struct kmem_cache *s, enum stat_item si)
5241{
5242 int cpu;
5243
5244 for_each_online_cpu(cpu)
9dfc6e68 5245 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5246}
5247
8ff12cfc
CL
5248#define STAT_ATTR(si, text) \
5249static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5250{ \
5251 return show_stat(s, buf, si); \
5252} \
78eb00cc
DR
5253static ssize_t text##_store(struct kmem_cache *s, \
5254 const char *buf, size_t length) \
5255{ \
5256 if (buf[0] != '0') \
5257 return -EINVAL; \
5258 clear_stat(s, si); \
5259 return length; \
5260} \
5261SLAB_ATTR(text); \
8ff12cfc
CL
5262
5263STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5264STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5265STAT_ATTR(FREE_FASTPATH, free_fastpath);
5266STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5267STAT_ATTR(FREE_FROZEN, free_frozen);
5268STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5269STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5270STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5271STAT_ATTR(ALLOC_SLAB, alloc_slab);
5272STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5273STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5274STAT_ATTR(FREE_SLAB, free_slab);
5275STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5276STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5277STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5278STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5279STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5280STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5281STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5282STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5283STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5284STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5285STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5286STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5287STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5288STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5289#endif
5290
06428780 5291static struct attribute *slab_attrs[] = {
81819f0f
CL
5292 &slab_size_attr.attr,
5293 &object_size_attr.attr,
5294 &objs_per_slab_attr.attr,
5295 &order_attr.attr,
73d342b1 5296 &min_partial_attr.attr,
49e22585 5297 &cpu_partial_attr.attr,
81819f0f 5298 &objects_attr.attr,
205ab99d 5299 &objects_partial_attr.attr,
81819f0f
CL
5300 &partial_attr.attr,
5301 &cpu_slabs_attr.attr,
5302 &ctor_attr.attr,
81819f0f
CL
5303 &aliases_attr.attr,
5304 &align_attr.attr,
81819f0f
CL
5305 &hwcache_align_attr.attr,
5306 &reclaim_account_attr.attr,
5307 &destroy_by_rcu_attr.attr,
a5a84755 5308 &shrink_attr.attr,
ab9a0f19 5309 &reserved_attr.attr,
49e22585 5310 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5311#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5312 &total_objects_attr.attr,
5313 &slabs_attr.attr,
5314 &sanity_checks_attr.attr,
5315 &trace_attr.attr,
81819f0f
CL
5316 &red_zone_attr.attr,
5317 &poison_attr.attr,
5318 &store_user_attr.attr,
53e15af0 5319 &validate_attr.attr,
88a420e4
CL
5320 &alloc_calls_attr.attr,
5321 &free_calls_attr.attr,
ab4d5ed5 5322#endif
81819f0f
CL
5323#ifdef CONFIG_ZONE_DMA
5324 &cache_dma_attr.attr,
5325#endif
5326#ifdef CONFIG_NUMA
9824601e 5327 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5328#endif
5329#ifdef CONFIG_SLUB_STATS
5330 &alloc_fastpath_attr.attr,
5331 &alloc_slowpath_attr.attr,
5332 &free_fastpath_attr.attr,
5333 &free_slowpath_attr.attr,
5334 &free_frozen_attr.attr,
5335 &free_add_partial_attr.attr,
5336 &free_remove_partial_attr.attr,
5337 &alloc_from_partial_attr.attr,
5338 &alloc_slab_attr.attr,
5339 &alloc_refill_attr.attr,
e36a2652 5340 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5341 &free_slab_attr.attr,
5342 &cpuslab_flush_attr.attr,
5343 &deactivate_full_attr.attr,
5344 &deactivate_empty_attr.attr,
5345 &deactivate_to_head_attr.attr,
5346 &deactivate_to_tail_attr.attr,
5347 &deactivate_remote_frees_attr.attr,
03e404af 5348 &deactivate_bypass_attr.attr,
65c3376a 5349 &order_fallback_attr.attr,
b789ef51
CL
5350 &cmpxchg_double_fail_attr.attr,
5351 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5352 &cpu_partial_alloc_attr.attr,
5353 &cpu_partial_free_attr.attr,
8028dcea
AS
5354 &cpu_partial_node_attr.attr,
5355 &cpu_partial_drain_attr.attr,
81819f0f 5356#endif
4c13dd3b
DM
5357#ifdef CONFIG_FAILSLAB
5358 &failslab_attr.attr,
5359#endif
5360
81819f0f
CL
5361 NULL
5362};
5363
5364static struct attribute_group slab_attr_group = {
5365 .attrs = slab_attrs,
5366};
5367
5368static ssize_t slab_attr_show(struct kobject *kobj,
5369 struct attribute *attr,
5370 char *buf)
5371{
5372 struct slab_attribute *attribute;
5373 struct kmem_cache *s;
5374 int err;
5375
5376 attribute = to_slab_attr(attr);
5377 s = to_slab(kobj);
5378
5379 if (!attribute->show)
5380 return -EIO;
5381
5382 err = attribute->show(s, buf);
5383
5384 return err;
5385}
5386
5387static ssize_t slab_attr_store(struct kobject *kobj,
5388 struct attribute *attr,
5389 const char *buf, size_t len)
5390{
5391 struct slab_attribute *attribute;
5392 struct kmem_cache *s;
5393 int err;
5394
5395 attribute = to_slab_attr(attr);
5396 s = to_slab(kobj);
5397
5398 if (!attribute->store)
5399 return -EIO;
5400
5401 err = attribute->store(s, buf, len);
127424c8 5402#ifdef CONFIG_MEMCG
107dab5c 5403 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5404 struct kmem_cache *c;
81819f0f 5405
107dab5c
GC
5406 mutex_lock(&slab_mutex);
5407 if (s->max_attr_size < len)
5408 s->max_attr_size = len;
5409
ebe945c2
GC
5410 /*
5411 * This is a best effort propagation, so this function's return
5412 * value will be determined by the parent cache only. This is
5413 * basically because not all attributes will have a well
5414 * defined semantics for rollbacks - most of the actions will
5415 * have permanent effects.
5416 *
5417 * Returning the error value of any of the children that fail
5418 * is not 100 % defined, in the sense that users seeing the
5419 * error code won't be able to know anything about the state of
5420 * the cache.
5421 *
5422 * Only returning the error code for the parent cache at least
5423 * has well defined semantics. The cache being written to
5424 * directly either failed or succeeded, in which case we loop
5425 * through the descendants with best-effort propagation.
5426 */
426589f5
VD
5427 for_each_memcg_cache(c, s)
5428 attribute->store(c, buf, len);
107dab5c
GC
5429 mutex_unlock(&slab_mutex);
5430 }
5431#endif
81819f0f
CL
5432 return err;
5433}
5434
107dab5c
GC
5435static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5436{
127424c8 5437#ifdef CONFIG_MEMCG
107dab5c
GC
5438 int i;
5439 char *buffer = NULL;
93030d83 5440 struct kmem_cache *root_cache;
107dab5c 5441
93030d83 5442 if (is_root_cache(s))
107dab5c
GC
5443 return;
5444
f7ce3190 5445 root_cache = s->memcg_params.root_cache;
93030d83 5446
107dab5c
GC
5447 /*
5448 * This mean this cache had no attribute written. Therefore, no point
5449 * in copying default values around
5450 */
93030d83 5451 if (!root_cache->max_attr_size)
107dab5c
GC
5452 return;
5453
5454 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5455 char mbuf[64];
5456 char *buf;
5457 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5458
5459 if (!attr || !attr->store || !attr->show)
5460 continue;
5461
5462 /*
5463 * It is really bad that we have to allocate here, so we will
5464 * do it only as a fallback. If we actually allocate, though,
5465 * we can just use the allocated buffer until the end.
5466 *
5467 * Most of the slub attributes will tend to be very small in
5468 * size, but sysfs allows buffers up to a page, so they can
5469 * theoretically happen.
5470 */
5471 if (buffer)
5472 buf = buffer;
93030d83 5473 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5474 buf = mbuf;
5475 else {
5476 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5477 if (WARN_ON(!buffer))
5478 continue;
5479 buf = buffer;
5480 }
5481
93030d83 5482 attr->show(root_cache, buf);
107dab5c
GC
5483 attr->store(s, buf, strlen(buf));
5484 }
5485
5486 if (buffer)
5487 free_page((unsigned long)buffer);
5488#endif
5489}
5490
41a21285
CL
5491static void kmem_cache_release(struct kobject *k)
5492{
5493 slab_kmem_cache_release(to_slab(k));
5494}
5495
52cf25d0 5496static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5497 .show = slab_attr_show,
5498 .store = slab_attr_store,
5499};
5500
5501static struct kobj_type slab_ktype = {
5502 .sysfs_ops = &slab_sysfs_ops,
41a21285 5503 .release = kmem_cache_release,
81819f0f
CL
5504};
5505
5506static int uevent_filter(struct kset *kset, struct kobject *kobj)
5507{
5508 struct kobj_type *ktype = get_ktype(kobj);
5509
5510 if (ktype == &slab_ktype)
5511 return 1;
5512 return 0;
5513}
5514
9cd43611 5515static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5516 .filter = uevent_filter,
5517};
5518
27c3a314 5519static struct kset *slab_kset;
81819f0f 5520
9a41707b
VD
5521static inline struct kset *cache_kset(struct kmem_cache *s)
5522{
127424c8 5523#ifdef CONFIG_MEMCG
9a41707b 5524 if (!is_root_cache(s))
f7ce3190 5525 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5526#endif
5527 return slab_kset;
5528}
5529
81819f0f
CL
5530#define ID_STR_LENGTH 64
5531
5532/* Create a unique string id for a slab cache:
6446faa2
CL
5533 *
5534 * Format :[flags-]size
81819f0f
CL
5535 */
5536static char *create_unique_id(struct kmem_cache *s)
5537{
5538 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5539 char *p = name;
5540
5541 BUG_ON(!name);
5542
5543 *p++ = ':';
5544 /*
5545 * First flags affecting slabcache operations. We will only
5546 * get here for aliasable slabs so we do not need to support
5547 * too many flags. The flags here must cover all flags that
5548 * are matched during merging to guarantee that the id is
5549 * unique.
5550 */
5551 if (s->flags & SLAB_CACHE_DMA)
5552 *p++ = 'd';
5553 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5554 *p++ = 'a';
becfda68 5555 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5556 *p++ = 'F';
5a896d9e
VN
5557 if (!(s->flags & SLAB_NOTRACK))
5558 *p++ = 't';
230e9fc2
VD
5559 if (s->flags & SLAB_ACCOUNT)
5560 *p++ = 'A';
81819f0f
CL
5561 if (p != name + 1)
5562 *p++ = '-';
5563 p += sprintf(p, "%07d", s->size);
2633d7a0 5564
81819f0f
CL
5565 BUG_ON(p > name + ID_STR_LENGTH - 1);
5566 return name;
5567}
5568
5569static int sysfs_slab_add(struct kmem_cache *s)
5570{
5571 int err;
5572 const char *name;
45530c44 5573 int unmergeable = slab_unmergeable(s);
81819f0f 5574
81819f0f
CL
5575 if (unmergeable) {
5576 /*
5577 * Slabcache can never be merged so we can use the name proper.
5578 * This is typically the case for debug situations. In that
5579 * case we can catch duplicate names easily.
5580 */
27c3a314 5581 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5582 name = s->name;
5583 } else {
5584 /*
5585 * Create a unique name for the slab as a target
5586 * for the symlinks.
5587 */
5588 name = create_unique_id(s);
5589 }
5590
9a41707b 5591 s->kobj.kset = cache_kset(s);
26e4f205 5592 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5593 if (err)
80da026a 5594 goto out;
81819f0f
CL
5595
5596 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5597 if (err)
5598 goto out_del_kobj;
9a41707b 5599
127424c8 5600#ifdef CONFIG_MEMCG
9a41707b
VD
5601 if (is_root_cache(s)) {
5602 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5603 if (!s->memcg_kset) {
54b6a731
DJ
5604 err = -ENOMEM;
5605 goto out_del_kobj;
9a41707b
VD
5606 }
5607 }
5608#endif
5609
81819f0f
CL
5610 kobject_uevent(&s->kobj, KOBJ_ADD);
5611 if (!unmergeable) {
5612 /* Setup first alias */
5613 sysfs_slab_alias(s, s->name);
81819f0f 5614 }
54b6a731
DJ
5615out:
5616 if (!unmergeable)
5617 kfree(name);
5618 return err;
5619out_del_kobj:
5620 kobject_del(&s->kobj);
54b6a731 5621 goto out;
81819f0f
CL
5622}
5623
41a21285 5624void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5625{
97d06609 5626 if (slab_state < FULL)
2bce6485
CL
5627 /*
5628 * Sysfs has not been setup yet so no need to remove the
5629 * cache from sysfs.
5630 */
5631 return;
5632
127424c8 5633#ifdef CONFIG_MEMCG
9a41707b
VD
5634 kset_unregister(s->memcg_kset);
5635#endif
81819f0f
CL
5636 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5637 kobject_del(&s->kobj);
151c602f 5638 kobject_put(&s->kobj);
81819f0f
CL
5639}
5640
5641/*
5642 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5643 * available lest we lose that information.
81819f0f
CL
5644 */
5645struct saved_alias {
5646 struct kmem_cache *s;
5647 const char *name;
5648 struct saved_alias *next;
5649};
5650
5af328a5 5651static struct saved_alias *alias_list;
81819f0f
CL
5652
5653static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5654{
5655 struct saved_alias *al;
5656
97d06609 5657 if (slab_state == FULL) {
81819f0f
CL
5658 /*
5659 * If we have a leftover link then remove it.
5660 */
27c3a314
GKH
5661 sysfs_remove_link(&slab_kset->kobj, name);
5662 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5663 }
5664
5665 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5666 if (!al)
5667 return -ENOMEM;
5668
5669 al->s = s;
5670 al->name = name;
5671 al->next = alias_list;
5672 alias_list = al;
5673 return 0;
5674}
5675
5676static int __init slab_sysfs_init(void)
5677{
5b95a4ac 5678 struct kmem_cache *s;
81819f0f
CL
5679 int err;
5680
18004c5d 5681 mutex_lock(&slab_mutex);
2bce6485 5682
0ff21e46 5683 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5684 if (!slab_kset) {
18004c5d 5685 mutex_unlock(&slab_mutex);
f9f58285 5686 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5687 return -ENOSYS;
5688 }
5689
97d06609 5690 slab_state = FULL;
26a7bd03 5691
5b95a4ac 5692 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5693 err = sysfs_slab_add(s);
5d540fb7 5694 if (err)
f9f58285
FF
5695 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5696 s->name);
26a7bd03 5697 }
81819f0f
CL
5698
5699 while (alias_list) {
5700 struct saved_alias *al = alias_list;
5701
5702 alias_list = alias_list->next;
5703 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5704 if (err)
f9f58285
FF
5705 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5706 al->name);
81819f0f
CL
5707 kfree(al);
5708 }
5709
18004c5d 5710 mutex_unlock(&slab_mutex);
81819f0f
CL
5711 resiliency_test();
5712 return 0;
5713}
5714
5715__initcall(slab_sysfs_init);
ab4d5ed5 5716#endif /* CONFIG_SYSFS */
57ed3eda
PE
5717
5718/*
5719 * The /proc/slabinfo ABI
5720 */
158a9624 5721#ifdef CONFIG_SLABINFO
0d7561c6 5722void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5723{
57ed3eda 5724 unsigned long nr_slabs = 0;
205ab99d
CL
5725 unsigned long nr_objs = 0;
5726 unsigned long nr_free = 0;
57ed3eda 5727 int node;
fa45dc25 5728 struct kmem_cache_node *n;
57ed3eda 5729
fa45dc25 5730 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5731 nr_slabs += node_nr_slabs(n);
5732 nr_objs += node_nr_objs(n);
205ab99d 5733 nr_free += count_partial(n, count_free);
57ed3eda
PE
5734 }
5735
0d7561c6
GC
5736 sinfo->active_objs = nr_objs - nr_free;
5737 sinfo->num_objs = nr_objs;
5738 sinfo->active_slabs = nr_slabs;
5739 sinfo->num_slabs = nr_slabs;
5740 sinfo->objects_per_slab = oo_objects(s->oo);
5741 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5742}
5743
0d7561c6 5744void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5745{
7b3c3a50
AD
5746}
5747
b7454ad3
GC
5748ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5749 size_t count, loff_t *ppos)
7b3c3a50 5750{
b7454ad3 5751 return -EIO;
7b3c3a50 5752}
158a9624 5753#endif /* CONFIG_SLABINFO */