]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/swapfile.c
Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[mirror_ubuntu-zesty-kernel.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
072441e2 17#include <linux/shmem_fs.h>
1da177e4 18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
5ad64688 24#include <linux/ksm.h>
1da177e4
LT
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
66d7dd51 32#include <linux/poll.h>
72788c38 33#include <linux/oom.h>
38b5faf4
DM
34#include <linux/frontswap.h>
35#include <linux/swapfile.h>
f981c595 36#include <linux/export.h>
1da177e4
LT
37
38#include <asm/pgtable.h>
39#include <asm/tlbflush.h>
40#include <linux/swapops.h>
5d1ea48b 41#include <linux/swap_cgroup.h>
1da177e4 42
570a335b
HD
43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 47
38b5faf4 48DEFINE_SPINLOCK(swap_lock);
7c363b8c 49static unsigned int nr_swapfiles;
ec8acf20 50atomic_long_t nr_swap_pages;
fb0fec50
CW
51/*
52 * Some modules use swappable objects and may try to swap them out under
53 * memory pressure (via the shrinker). Before doing so, they may wish to
54 * check to see if any swap space is available.
55 */
56EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 57/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 58long total_swap_pages;
78ecba08 59static int least_priority;
1da177e4 60
1da177e4
LT
61static const char Bad_file[] = "Bad swap file entry ";
62static const char Unused_file[] = "Unused swap file entry ";
63static const char Bad_offset[] = "Bad swap offset entry ";
64static const char Unused_offset[] = "Unused swap offset entry ";
65
adfab836
DS
66/*
67 * all active swap_info_structs
68 * protected with swap_lock, and ordered by priority.
69 */
18ab4d4c
DS
70PLIST_HEAD(swap_active_head);
71
72/*
73 * all available (active, not full) swap_info_structs
74 * protected with swap_avail_lock, ordered by priority.
75 * This is used by get_swap_page() instead of swap_active_head
76 * because swap_active_head includes all swap_info_structs,
77 * but get_swap_page() doesn't need to look at full ones.
78 * This uses its own lock instead of swap_lock because when a
79 * swap_info_struct changes between not-full/full, it needs to
80 * add/remove itself to/from this list, but the swap_info_struct->lock
81 * is held and the locking order requires swap_lock to be taken
82 * before any swap_info_struct->lock.
83 */
84static PLIST_HEAD(swap_avail_head);
85static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 86
38b5faf4 87struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 88
fc0abb14 89static DEFINE_MUTEX(swapon_mutex);
1da177e4 90
66d7dd51
KS
91static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
92/* Activity counter to indicate that a swapon or swapoff has occurred */
93static atomic_t proc_poll_event = ATOMIC_INIT(0);
94
8d69aaee 95static inline unsigned char swap_count(unsigned char ent)
355cfa73 96{
570a335b 97 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
98}
99
efa90a98 100/* returns 1 if swap entry is freed */
c9e44410
KH
101static int
102__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
103{
efa90a98 104 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
105 struct page *page;
106 int ret = 0;
107
f6ab1f7f 108 page = find_get_page(swap_address_space(entry), swp_offset(entry));
c9e44410
KH
109 if (!page)
110 return 0;
111 /*
112 * This function is called from scan_swap_map() and it's called
113 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
114 * We have to use trylock for avoiding deadlock. This is a special
115 * case and you should use try_to_free_swap() with explicit lock_page()
116 * in usual operations.
117 */
118 if (trylock_page(page)) {
119 ret = try_to_free_swap(page);
120 unlock_page(page);
121 }
09cbfeaf 122 put_page(page);
c9e44410
KH
123 return ret;
124}
355cfa73 125
6a6ba831
HD
126/*
127 * swapon tell device that all the old swap contents can be discarded,
128 * to allow the swap device to optimize its wear-levelling.
129 */
130static int discard_swap(struct swap_info_struct *si)
131{
132 struct swap_extent *se;
9625a5f2
HD
133 sector_t start_block;
134 sector_t nr_blocks;
6a6ba831
HD
135 int err = 0;
136
9625a5f2
HD
137 /* Do not discard the swap header page! */
138 se = &si->first_swap_extent;
139 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
140 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
141 if (nr_blocks) {
142 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 143 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
144 if (err)
145 return err;
146 cond_resched();
147 }
6a6ba831 148
9625a5f2
HD
149 list_for_each_entry(se, &si->first_swap_extent.list, list) {
150 start_block = se->start_block << (PAGE_SHIFT - 9);
151 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
152
153 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 154 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
155 if (err)
156 break;
157
158 cond_resched();
159 }
160 return err; /* That will often be -EOPNOTSUPP */
161}
162
7992fde7
HD
163/*
164 * swap allocation tell device that a cluster of swap can now be discarded,
165 * to allow the swap device to optimize its wear-levelling.
166 */
167static void discard_swap_cluster(struct swap_info_struct *si,
168 pgoff_t start_page, pgoff_t nr_pages)
169{
170 struct swap_extent *se = si->curr_swap_extent;
171 int found_extent = 0;
172
173 while (nr_pages) {
7992fde7
HD
174 if (se->start_page <= start_page &&
175 start_page < se->start_page + se->nr_pages) {
176 pgoff_t offset = start_page - se->start_page;
177 sector_t start_block = se->start_block + offset;
858a2990 178 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
179
180 if (nr_blocks > nr_pages)
181 nr_blocks = nr_pages;
182 start_page += nr_blocks;
183 nr_pages -= nr_blocks;
184
185 if (!found_extent++)
186 si->curr_swap_extent = se;
187
188 start_block <<= PAGE_SHIFT - 9;
189 nr_blocks <<= PAGE_SHIFT - 9;
190 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 191 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
192 break;
193 }
194
a8ae4991 195 se = list_next_entry(se, list);
7992fde7
HD
196 }
197}
198
048c27fd
HD
199#define SWAPFILE_CLUSTER 256
200#define LATENCY_LIMIT 256
201
2a8f9449
SL
202static inline void cluster_set_flag(struct swap_cluster_info *info,
203 unsigned int flag)
204{
205 info->flags = flag;
206}
207
208static inline unsigned int cluster_count(struct swap_cluster_info *info)
209{
210 return info->data;
211}
212
213static inline void cluster_set_count(struct swap_cluster_info *info,
214 unsigned int c)
215{
216 info->data = c;
217}
218
219static inline void cluster_set_count_flag(struct swap_cluster_info *info,
220 unsigned int c, unsigned int f)
221{
222 info->flags = f;
223 info->data = c;
224}
225
226static inline unsigned int cluster_next(struct swap_cluster_info *info)
227{
228 return info->data;
229}
230
231static inline void cluster_set_next(struct swap_cluster_info *info,
232 unsigned int n)
233{
234 info->data = n;
235}
236
237static inline void cluster_set_next_flag(struct swap_cluster_info *info,
238 unsigned int n, unsigned int f)
239{
240 info->flags = f;
241 info->data = n;
242}
243
244static inline bool cluster_is_free(struct swap_cluster_info *info)
245{
246 return info->flags & CLUSTER_FLAG_FREE;
247}
248
249static inline bool cluster_is_null(struct swap_cluster_info *info)
250{
251 return info->flags & CLUSTER_FLAG_NEXT_NULL;
252}
253
254static inline void cluster_set_null(struct swap_cluster_info *info)
255{
256 info->flags = CLUSTER_FLAG_NEXT_NULL;
257 info->data = 0;
258}
259
6b534915
HY
260static inline bool cluster_list_empty(struct swap_cluster_list *list)
261{
262 return cluster_is_null(&list->head);
263}
264
265static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
266{
267 return cluster_next(&list->head);
268}
269
270static void cluster_list_init(struct swap_cluster_list *list)
271{
272 cluster_set_null(&list->head);
273 cluster_set_null(&list->tail);
274}
275
276static void cluster_list_add_tail(struct swap_cluster_list *list,
277 struct swap_cluster_info *ci,
278 unsigned int idx)
279{
280 if (cluster_list_empty(list)) {
281 cluster_set_next_flag(&list->head, idx, 0);
282 cluster_set_next_flag(&list->tail, idx, 0);
283 } else {
284 unsigned int tail = cluster_next(&list->tail);
285
286 cluster_set_next(&ci[tail], idx);
287 cluster_set_next_flag(&list->tail, idx, 0);
288 }
289}
290
291static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
292 struct swap_cluster_info *ci)
293{
294 unsigned int idx;
295
296 idx = cluster_next(&list->head);
297 if (cluster_next(&list->tail) == idx) {
298 cluster_set_null(&list->head);
299 cluster_set_null(&list->tail);
300 } else
301 cluster_set_next_flag(&list->head,
302 cluster_next(&ci[idx]), 0);
303
304 return idx;
305}
306
815c2c54
SL
307/* Add a cluster to discard list and schedule it to do discard */
308static void swap_cluster_schedule_discard(struct swap_info_struct *si,
309 unsigned int idx)
310{
311 /*
312 * If scan_swap_map() can't find a free cluster, it will check
313 * si->swap_map directly. To make sure the discarding cluster isn't
314 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
315 * will be cleared after discard
316 */
317 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
318 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
319
6b534915 320 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
321
322 schedule_work(&si->discard_work);
323}
324
325/*
326 * Doing discard actually. After a cluster discard is finished, the cluster
327 * will be added to free cluster list. caller should hold si->lock.
328*/
329static void swap_do_scheduled_discard(struct swap_info_struct *si)
330{
331 struct swap_cluster_info *info;
332 unsigned int idx;
333
334 info = si->cluster_info;
335
6b534915
HY
336 while (!cluster_list_empty(&si->discard_clusters)) {
337 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
338 spin_unlock(&si->lock);
339
340 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
341 SWAPFILE_CLUSTER);
342
343 spin_lock(&si->lock);
344 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
6b534915 345 cluster_list_add_tail(&si->free_clusters, info, idx);
815c2c54
SL
346 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
347 0, SWAPFILE_CLUSTER);
348 }
349}
350
351static void swap_discard_work(struct work_struct *work)
352{
353 struct swap_info_struct *si;
354
355 si = container_of(work, struct swap_info_struct, discard_work);
356
357 spin_lock(&si->lock);
358 swap_do_scheduled_discard(si);
359 spin_unlock(&si->lock);
360}
361
2a8f9449
SL
362/*
363 * The cluster corresponding to page_nr will be used. The cluster will be
364 * removed from free cluster list and its usage counter will be increased.
365 */
366static void inc_cluster_info_page(struct swap_info_struct *p,
367 struct swap_cluster_info *cluster_info, unsigned long page_nr)
368{
369 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
370
371 if (!cluster_info)
372 return;
373 if (cluster_is_free(&cluster_info[idx])) {
6b534915
HY
374 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
375 cluster_list_del_first(&p->free_clusters, cluster_info);
2a8f9449
SL
376 cluster_set_count_flag(&cluster_info[idx], 0, 0);
377 }
378
379 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
380 cluster_set_count(&cluster_info[idx],
381 cluster_count(&cluster_info[idx]) + 1);
382}
383
384/*
385 * The cluster corresponding to page_nr decreases one usage. If the usage
386 * counter becomes 0, which means no page in the cluster is in using, we can
387 * optionally discard the cluster and add it to free cluster list.
388 */
389static void dec_cluster_info_page(struct swap_info_struct *p,
390 struct swap_cluster_info *cluster_info, unsigned long page_nr)
391{
392 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
393
394 if (!cluster_info)
395 return;
396
397 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
398 cluster_set_count(&cluster_info[idx],
399 cluster_count(&cluster_info[idx]) - 1);
400
401 if (cluster_count(&cluster_info[idx]) == 0) {
815c2c54
SL
402 /*
403 * If the swap is discardable, prepare discard the cluster
404 * instead of free it immediately. The cluster will be freed
405 * after discard.
406 */
edfe23da
SL
407 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
408 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
815c2c54
SL
409 swap_cluster_schedule_discard(p, idx);
410 return;
411 }
412
2a8f9449 413 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915 414 cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
2a8f9449
SL
415 }
416}
417
418/*
419 * It's possible scan_swap_map() uses a free cluster in the middle of free
420 * cluster list. Avoiding such abuse to avoid list corruption.
421 */
ebc2a1a6
SL
422static bool
423scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
424 unsigned long offset)
425{
ebc2a1a6
SL
426 struct percpu_cluster *percpu_cluster;
427 bool conflict;
428
2a8f9449 429 offset /= SWAPFILE_CLUSTER;
6b534915
HY
430 conflict = !cluster_list_empty(&si->free_clusters) &&
431 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 432 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
433
434 if (!conflict)
435 return false;
436
437 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
438 cluster_set_null(&percpu_cluster->index);
439 return true;
440}
441
442/*
443 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
444 * might involve allocating a new cluster for current CPU too.
445 */
446static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
447 unsigned long *offset, unsigned long *scan_base)
448{
449 struct percpu_cluster *cluster;
450 bool found_free;
451 unsigned long tmp;
452
453new_cluster:
454 cluster = this_cpu_ptr(si->percpu_cluster);
455 if (cluster_is_null(&cluster->index)) {
6b534915
HY
456 if (!cluster_list_empty(&si->free_clusters)) {
457 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
458 cluster->next = cluster_next(&cluster->index) *
459 SWAPFILE_CLUSTER;
6b534915 460 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
461 /*
462 * we don't have free cluster but have some clusters in
463 * discarding, do discard now and reclaim them
464 */
465 swap_do_scheduled_discard(si);
466 *scan_base = *offset = si->cluster_next;
467 goto new_cluster;
468 } else
469 return;
470 }
471
472 found_free = false;
473
474 /*
475 * Other CPUs can use our cluster if they can't find a free cluster,
476 * check if there is still free entry in the cluster
477 */
478 tmp = cluster->next;
479 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
480 SWAPFILE_CLUSTER) {
481 if (!si->swap_map[tmp]) {
482 found_free = true;
483 break;
484 }
485 tmp++;
486 }
487 if (!found_free) {
488 cluster_set_null(&cluster->index);
489 goto new_cluster;
490 }
491 cluster->next = tmp + 1;
492 *offset = tmp;
493 *scan_base = tmp;
2a8f9449
SL
494}
495
24b8ff7c
CEB
496static unsigned long scan_swap_map(struct swap_info_struct *si,
497 unsigned char usage)
1da177e4 498{
ebebbbe9 499 unsigned long offset;
c60aa176 500 unsigned long scan_base;
7992fde7 501 unsigned long last_in_cluster = 0;
048c27fd 502 int latency_ration = LATENCY_LIMIT;
7dfad418 503
886bb7e9 504 /*
7dfad418
HD
505 * We try to cluster swap pages by allocating them sequentially
506 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
507 * way, however, we resort to first-free allocation, starting
508 * a new cluster. This prevents us from scattering swap pages
509 * all over the entire swap partition, so that we reduce
510 * overall disk seek times between swap pages. -- sct
511 * But we do now try to find an empty cluster. -Andrea
c60aa176 512 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
513 */
514
52b7efdb 515 si->flags += SWP_SCANNING;
c60aa176 516 scan_base = offset = si->cluster_next;
ebebbbe9 517
ebc2a1a6
SL
518 /* SSD algorithm */
519 if (si->cluster_info) {
520 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
521 goto checks;
522 }
523
ebebbbe9
HD
524 if (unlikely(!si->cluster_nr--)) {
525 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
526 si->cluster_nr = SWAPFILE_CLUSTER - 1;
527 goto checks;
528 }
2a8f9449 529
ec8acf20 530 spin_unlock(&si->lock);
7dfad418 531
c60aa176
HD
532 /*
533 * If seek is expensive, start searching for new cluster from
534 * start of partition, to minimize the span of allocated swap.
50088c44
CY
535 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
536 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 537 */
50088c44 538 scan_base = offset = si->lowest_bit;
7dfad418
HD
539 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
540
541 /* Locate the first empty (unaligned) cluster */
542 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 543 if (si->swap_map[offset])
7dfad418
HD
544 last_in_cluster = offset + SWAPFILE_CLUSTER;
545 else if (offset == last_in_cluster) {
ec8acf20 546 spin_lock(&si->lock);
ebebbbe9
HD
547 offset -= SWAPFILE_CLUSTER - 1;
548 si->cluster_next = offset;
549 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
550 goto checks;
551 }
552 if (unlikely(--latency_ration < 0)) {
553 cond_resched();
554 latency_ration = LATENCY_LIMIT;
555 }
556 }
557
558 offset = scan_base;
ec8acf20 559 spin_lock(&si->lock);
ebebbbe9 560 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 561 }
7dfad418 562
ebebbbe9 563checks:
ebc2a1a6
SL
564 if (si->cluster_info) {
565 while (scan_swap_map_ssd_cluster_conflict(si, offset))
566 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
567 }
ebebbbe9 568 if (!(si->flags & SWP_WRITEOK))
52b7efdb 569 goto no_page;
7dfad418
HD
570 if (!si->highest_bit)
571 goto no_page;
ebebbbe9 572 if (offset > si->highest_bit)
c60aa176 573 scan_base = offset = si->lowest_bit;
c9e44410 574
b73d7fce
HD
575 /* reuse swap entry of cache-only swap if not busy. */
576 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 577 int swap_was_freed;
ec8acf20 578 spin_unlock(&si->lock);
c9e44410 579 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 580 spin_lock(&si->lock);
c9e44410
KH
581 /* entry was freed successfully, try to use this again */
582 if (swap_was_freed)
583 goto checks;
584 goto scan; /* check next one */
585 }
586
ebebbbe9
HD
587 if (si->swap_map[offset])
588 goto scan;
589
590 if (offset == si->lowest_bit)
591 si->lowest_bit++;
592 if (offset == si->highest_bit)
593 si->highest_bit--;
594 si->inuse_pages++;
595 if (si->inuse_pages == si->pages) {
596 si->lowest_bit = si->max;
597 si->highest_bit = 0;
18ab4d4c
DS
598 spin_lock(&swap_avail_lock);
599 plist_del(&si->avail_list, &swap_avail_head);
600 spin_unlock(&swap_avail_lock);
1da177e4 601 }
253d553b 602 si->swap_map[offset] = usage;
2a8f9449 603 inc_cluster_info_page(si, si->cluster_info, offset);
ebebbbe9
HD
604 si->cluster_next = offset + 1;
605 si->flags -= SWP_SCANNING;
7992fde7 606
ebebbbe9 607 return offset;
7dfad418 608
ebebbbe9 609scan:
ec8acf20 610 spin_unlock(&si->lock);
7dfad418 611 while (++offset <= si->highest_bit) {
52b7efdb 612 if (!si->swap_map[offset]) {
ec8acf20 613 spin_lock(&si->lock);
52b7efdb
HD
614 goto checks;
615 }
c9e44410 616 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 617 spin_lock(&si->lock);
c9e44410
KH
618 goto checks;
619 }
048c27fd
HD
620 if (unlikely(--latency_ration < 0)) {
621 cond_resched();
622 latency_ration = LATENCY_LIMIT;
623 }
7dfad418 624 }
c60aa176 625 offset = si->lowest_bit;
a5998061 626 while (offset < scan_base) {
c60aa176 627 if (!si->swap_map[offset]) {
ec8acf20 628 spin_lock(&si->lock);
c60aa176
HD
629 goto checks;
630 }
c9e44410 631 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 632 spin_lock(&si->lock);
c9e44410
KH
633 goto checks;
634 }
c60aa176
HD
635 if (unlikely(--latency_ration < 0)) {
636 cond_resched();
637 latency_ration = LATENCY_LIMIT;
638 }
a5998061 639 offset++;
c60aa176 640 }
ec8acf20 641 spin_lock(&si->lock);
7dfad418
HD
642
643no_page:
52b7efdb 644 si->flags -= SWP_SCANNING;
1da177e4
LT
645 return 0;
646}
647
648swp_entry_t get_swap_page(void)
649{
adfab836 650 struct swap_info_struct *si, *next;
fb4f88dc 651 pgoff_t offset;
1da177e4 652
ec8acf20 653 if (atomic_long_read(&nr_swap_pages) <= 0)
fb4f88dc 654 goto noswap;
ec8acf20 655 atomic_long_dec(&nr_swap_pages);
fb4f88dc 656
18ab4d4c
DS
657 spin_lock(&swap_avail_lock);
658
659start_over:
660 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
661 /* requeue si to after same-priority siblings */
662 plist_requeue(&si->avail_list, &swap_avail_head);
663 spin_unlock(&swap_avail_lock);
ec8acf20 664 spin_lock(&si->lock);
adfab836 665 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c
DS
666 spin_lock(&swap_avail_lock);
667 if (plist_node_empty(&si->avail_list)) {
668 spin_unlock(&si->lock);
669 goto nextsi;
670 }
671 WARN(!si->highest_bit,
672 "swap_info %d in list but !highest_bit\n",
673 si->type);
674 WARN(!(si->flags & SWP_WRITEOK),
675 "swap_info %d in list but !SWP_WRITEOK\n",
676 si->type);
677 plist_del(&si->avail_list, &swap_avail_head);
ec8acf20 678 spin_unlock(&si->lock);
18ab4d4c 679 goto nextsi;
ec8acf20 680 }
fb4f88dc 681
355cfa73 682 /* This is called for allocating swap entry for cache */
253d553b 683 offset = scan_swap_map(si, SWAP_HAS_CACHE);
ec8acf20
SL
684 spin_unlock(&si->lock);
685 if (offset)
adfab836 686 return swp_entry(si->type, offset);
18ab4d4c
DS
687 pr_debug("scan_swap_map of si %d failed to find offset\n",
688 si->type);
689 spin_lock(&swap_avail_lock);
690nextsi:
adfab836
DS
691 /*
692 * if we got here, it's likely that si was almost full before,
693 * and since scan_swap_map() can drop the si->lock, multiple
694 * callers probably all tried to get a page from the same si
18ab4d4c
DS
695 * and it filled up before we could get one; or, the si filled
696 * up between us dropping swap_avail_lock and taking si->lock.
697 * Since we dropped the swap_avail_lock, the swap_avail_head
698 * list may have been modified; so if next is still in the
699 * swap_avail_head list then try it, otherwise start over.
adfab836 700 */
18ab4d4c
DS
701 if (plist_node_empty(&next->avail_list))
702 goto start_over;
1da177e4 703 }
fb4f88dc 704
18ab4d4c
DS
705 spin_unlock(&swap_avail_lock);
706
ec8acf20 707 atomic_long_inc(&nr_swap_pages);
fb4f88dc 708noswap:
fb4f88dc 709 return (swp_entry_t) {0};
1da177e4
LT
710}
711
2de1a7e4 712/* The only caller of this function is now suspend routine */
910321ea
HD
713swp_entry_t get_swap_page_of_type(int type)
714{
715 struct swap_info_struct *si;
716 pgoff_t offset;
717
910321ea 718 si = swap_info[type];
ec8acf20 719 spin_lock(&si->lock);
910321ea 720 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 721 atomic_long_dec(&nr_swap_pages);
910321ea
HD
722 /* This is called for allocating swap entry, not cache */
723 offset = scan_swap_map(si, 1);
724 if (offset) {
ec8acf20 725 spin_unlock(&si->lock);
910321ea
HD
726 return swp_entry(type, offset);
727 }
ec8acf20 728 atomic_long_inc(&nr_swap_pages);
910321ea 729 }
ec8acf20 730 spin_unlock(&si->lock);
910321ea
HD
731 return (swp_entry_t) {0};
732}
733
73c34b6a 734static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1da177e4 735{
73c34b6a 736 struct swap_info_struct *p;
1da177e4
LT
737 unsigned long offset, type;
738
739 if (!entry.val)
740 goto out;
741 type = swp_type(entry);
742 if (type >= nr_swapfiles)
743 goto bad_nofile;
efa90a98 744 p = swap_info[type];
1da177e4
LT
745 if (!(p->flags & SWP_USED))
746 goto bad_device;
747 offset = swp_offset(entry);
748 if (offset >= p->max)
749 goto bad_offset;
750 if (!p->swap_map[offset])
751 goto bad_free;
ec8acf20 752 spin_lock(&p->lock);
1da177e4
LT
753 return p;
754
755bad_free:
465c47fd 756 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
1da177e4
LT
757 goto out;
758bad_offset:
465c47fd 759 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
760 goto out;
761bad_device:
465c47fd 762 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
763 goto out;
764bad_nofile:
465c47fd 765 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
766out:
767 return NULL;
886bb7e9 768}
1da177e4 769
8d69aaee
HD
770static unsigned char swap_entry_free(struct swap_info_struct *p,
771 swp_entry_t entry, unsigned char usage)
1da177e4 772{
253d553b 773 unsigned long offset = swp_offset(entry);
8d69aaee
HD
774 unsigned char count;
775 unsigned char has_cache;
355cfa73 776
253d553b
HD
777 count = p->swap_map[offset];
778 has_cache = count & SWAP_HAS_CACHE;
779 count &= ~SWAP_HAS_CACHE;
355cfa73 780
253d553b 781 if (usage == SWAP_HAS_CACHE) {
355cfa73 782 VM_BUG_ON(!has_cache);
253d553b 783 has_cache = 0;
aaa46865
HD
784 } else if (count == SWAP_MAP_SHMEM) {
785 /*
786 * Or we could insist on shmem.c using a special
787 * swap_shmem_free() and free_shmem_swap_and_cache()...
788 */
789 count = 0;
570a335b
HD
790 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
791 if (count == COUNT_CONTINUED) {
792 if (swap_count_continued(p, offset, count))
793 count = SWAP_MAP_MAX | COUNT_CONTINUED;
794 else
795 count = SWAP_MAP_MAX;
796 } else
797 count--;
798 }
253d553b 799
253d553b
HD
800 usage = count | has_cache;
801 p->swap_map[offset] = usage;
355cfa73 802
355cfa73 803 /* free if no reference */
253d553b 804 if (!usage) {
37e84351 805 mem_cgroup_uncharge_swap(entry);
2a8f9449 806 dec_cluster_info_page(p, p->cluster_info, offset);
355cfa73
KH
807 if (offset < p->lowest_bit)
808 p->lowest_bit = offset;
18ab4d4c
DS
809 if (offset > p->highest_bit) {
810 bool was_full = !p->highest_bit;
355cfa73 811 p->highest_bit = offset;
18ab4d4c
DS
812 if (was_full && (p->flags & SWP_WRITEOK)) {
813 spin_lock(&swap_avail_lock);
814 WARN_ON(!plist_node_empty(&p->avail_list));
815 if (plist_node_empty(&p->avail_list))
816 plist_add(&p->avail_list,
817 &swap_avail_head);
818 spin_unlock(&swap_avail_lock);
819 }
820 }
ec8acf20 821 atomic_long_inc(&nr_swap_pages);
355cfa73 822 p->inuse_pages--;
38b5faf4 823 frontswap_invalidate_page(p->type, offset);
73744923
MG
824 if (p->flags & SWP_BLKDEV) {
825 struct gendisk *disk = p->bdev->bd_disk;
826 if (disk->fops->swap_slot_free_notify)
827 disk->fops->swap_slot_free_notify(p->bdev,
828 offset);
829 }
1da177e4 830 }
253d553b
HD
831
832 return usage;
1da177e4
LT
833}
834
835/*
2de1a7e4 836 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
837 * is still around or has not been recycled.
838 */
839void swap_free(swp_entry_t entry)
840{
73c34b6a 841 struct swap_info_struct *p;
1da177e4
LT
842
843 p = swap_info_get(entry);
844 if (p) {
253d553b 845 swap_entry_free(p, entry, 1);
ec8acf20 846 spin_unlock(&p->lock);
1da177e4
LT
847 }
848}
849
cb4b86ba
KH
850/*
851 * Called after dropping swapcache to decrease refcnt to swap entries.
852 */
0a31bc97 853void swapcache_free(swp_entry_t entry)
cb4b86ba 854{
355cfa73
KH
855 struct swap_info_struct *p;
856
355cfa73
KH
857 p = swap_info_get(entry);
858 if (p) {
0a31bc97 859 swap_entry_free(p, entry, SWAP_HAS_CACHE);
ec8acf20 860 spin_unlock(&p->lock);
355cfa73 861 }
cb4b86ba
KH
862}
863
1da177e4 864/*
c475a8ab 865 * How many references to page are currently swapped out?
570a335b
HD
866 * This does not give an exact answer when swap count is continued,
867 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 868 */
bde05d1c 869int page_swapcount(struct page *page)
1da177e4 870{
c475a8ab
HD
871 int count = 0;
872 struct swap_info_struct *p;
1da177e4
LT
873 swp_entry_t entry;
874
4c21e2f2 875 entry.val = page_private(page);
1da177e4
LT
876 p = swap_info_get(entry);
877 if (p) {
355cfa73 878 count = swap_count(p->swap_map[swp_offset(entry)]);
ec8acf20 879 spin_unlock(&p->lock);
1da177e4 880 }
c475a8ab 881 return count;
1da177e4
LT
882}
883
8334b962
MK
884/*
885 * How many references to @entry are currently swapped out?
886 * This considers COUNT_CONTINUED so it returns exact answer.
887 */
888int swp_swapcount(swp_entry_t entry)
889{
890 int count, tmp_count, n;
891 struct swap_info_struct *p;
892 struct page *page;
893 pgoff_t offset;
894 unsigned char *map;
895
896 p = swap_info_get(entry);
897 if (!p)
898 return 0;
899
900 count = swap_count(p->swap_map[swp_offset(entry)]);
901 if (!(count & COUNT_CONTINUED))
902 goto out;
903
904 count &= ~COUNT_CONTINUED;
905 n = SWAP_MAP_MAX + 1;
906
907 offset = swp_offset(entry);
908 page = vmalloc_to_page(p->swap_map + offset);
909 offset &= ~PAGE_MASK;
910 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
911
912 do {
a8ae4991 913 page = list_next_entry(page, lru);
8334b962
MK
914 map = kmap_atomic(page);
915 tmp_count = map[offset];
916 kunmap_atomic(map);
917
918 count += (tmp_count & ~COUNT_CONTINUED) * n;
919 n *= (SWAP_CONT_MAX + 1);
920 } while (tmp_count & COUNT_CONTINUED);
921out:
922 spin_unlock(&p->lock);
923 return count;
924}
925
1da177e4 926/*
7b1fe597
HD
927 * We can write to an anon page without COW if there are no other references
928 * to it. And as a side-effect, free up its swap: because the old content
929 * on disk will never be read, and seeking back there to write new content
930 * later would only waste time away from clustering.
6d0a07ed
AA
931 *
932 * NOTE: total_mapcount should not be relied upon by the caller if
933 * reuse_swap_page() returns false, but it may be always overwritten
934 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 935 */
6d0a07ed 936bool reuse_swap_page(struct page *page, int *total_mapcount)
1da177e4 937{
c475a8ab
HD
938 int count;
939
309381fe 940 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 941 if (unlikely(PageKsm(page)))
6d0a07ed
AA
942 return false;
943 count = page_trans_huge_mapcount(page, total_mapcount);
7b1fe597 944 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 945 count += page_swapcount(page);
f0571429
MK
946 if (count != 1)
947 goto out;
948 if (!PageWriteback(page)) {
7b1fe597
HD
949 delete_from_swap_cache(page);
950 SetPageDirty(page);
f0571429
MK
951 } else {
952 swp_entry_t entry;
953 struct swap_info_struct *p;
954
955 entry.val = page_private(page);
956 p = swap_info_get(entry);
957 if (p->flags & SWP_STABLE_WRITES) {
958 spin_unlock(&p->lock);
959 return false;
960 }
961 spin_unlock(&p->lock);
7b1fe597
HD
962 }
963 }
f0571429 964out:
5ad64688 965 return count <= 1;
1da177e4
LT
966}
967
968/*
a2c43eed
HD
969 * If swap is getting full, or if there are no more mappings of this page,
970 * then try_to_free_swap is called to free its swap space.
1da177e4 971 */
a2c43eed 972int try_to_free_swap(struct page *page)
1da177e4 973{
309381fe 974 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
975
976 if (!PageSwapCache(page))
977 return 0;
978 if (PageWriteback(page))
979 return 0;
a2c43eed 980 if (page_swapcount(page))
1da177e4
LT
981 return 0;
982
b73d7fce
HD
983 /*
984 * Once hibernation has begun to create its image of memory,
985 * there's a danger that one of the calls to try_to_free_swap()
986 * - most probably a call from __try_to_reclaim_swap() while
987 * hibernation is allocating its own swap pages for the image,
988 * but conceivably even a call from memory reclaim - will free
989 * the swap from a page which has already been recorded in the
990 * image as a clean swapcache page, and then reuse its swap for
991 * another page of the image. On waking from hibernation, the
992 * original page might be freed under memory pressure, then
993 * later read back in from swap, now with the wrong data.
994 *
2de1a7e4 995 * Hibernation suspends storage while it is writing the image
f90ac398 996 * to disk so check that here.
b73d7fce 997 */
f90ac398 998 if (pm_suspended_storage())
b73d7fce
HD
999 return 0;
1000
a2c43eed
HD
1001 delete_from_swap_cache(page);
1002 SetPageDirty(page);
1003 return 1;
68a22394
RR
1004}
1005
1da177e4
LT
1006/*
1007 * Free the swap entry like above, but also try to
1008 * free the page cache entry if it is the last user.
1009 */
2509ef26 1010int free_swap_and_cache(swp_entry_t entry)
1da177e4 1011{
2509ef26 1012 struct swap_info_struct *p;
1da177e4
LT
1013 struct page *page = NULL;
1014
a7420aa5 1015 if (non_swap_entry(entry))
2509ef26 1016 return 1;
0697212a 1017
1da177e4
LT
1018 p = swap_info_get(entry);
1019 if (p) {
253d553b 1020 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
33806f06 1021 page = find_get_page(swap_address_space(entry),
f6ab1f7f 1022 swp_offset(entry));
8413ac9d 1023 if (page && !trylock_page(page)) {
09cbfeaf 1024 put_page(page);
93fac704
NP
1025 page = NULL;
1026 }
1027 }
ec8acf20 1028 spin_unlock(&p->lock);
1da177e4
LT
1029 }
1030 if (page) {
a2c43eed
HD
1031 /*
1032 * Not mapped elsewhere, or swap space full? Free it!
1033 * Also recheck PageSwapCache now page is locked (above).
1034 */
93fac704 1035 if (PageSwapCache(page) && !PageWriteback(page) &&
5ccc5aba 1036 (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1da177e4
LT
1037 delete_from_swap_cache(page);
1038 SetPageDirty(page);
1039 }
1040 unlock_page(page);
09cbfeaf 1041 put_page(page);
1da177e4 1042 }
2509ef26 1043 return p != NULL;
1da177e4
LT
1044}
1045
b0cb1a19 1046#ifdef CONFIG_HIBERNATION
f577eb30 1047/*
915bae9e 1048 * Find the swap type that corresponds to given device (if any).
f577eb30 1049 *
915bae9e
RW
1050 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1051 * from 0, in which the swap header is expected to be located.
1052 *
1053 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1054 */
7bf23687 1055int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1056{
915bae9e 1057 struct block_device *bdev = NULL;
efa90a98 1058 int type;
f577eb30 1059
915bae9e
RW
1060 if (device)
1061 bdev = bdget(device);
1062
f577eb30 1063 spin_lock(&swap_lock);
efa90a98
HD
1064 for (type = 0; type < nr_swapfiles; type++) {
1065 struct swap_info_struct *sis = swap_info[type];
f577eb30 1066
915bae9e 1067 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1068 continue;
b6b5bce3 1069
915bae9e 1070 if (!bdev) {
7bf23687 1071 if (bdev_p)
dddac6a7 1072 *bdev_p = bdgrab(sis->bdev);
7bf23687 1073
6e1819d6 1074 spin_unlock(&swap_lock);
efa90a98 1075 return type;
6e1819d6 1076 }
915bae9e 1077 if (bdev == sis->bdev) {
9625a5f2 1078 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1079
915bae9e 1080 if (se->start_block == offset) {
7bf23687 1081 if (bdev_p)
dddac6a7 1082 *bdev_p = bdgrab(sis->bdev);
7bf23687 1083
915bae9e
RW
1084 spin_unlock(&swap_lock);
1085 bdput(bdev);
efa90a98 1086 return type;
915bae9e 1087 }
f577eb30
RW
1088 }
1089 }
1090 spin_unlock(&swap_lock);
915bae9e
RW
1091 if (bdev)
1092 bdput(bdev);
1093
f577eb30
RW
1094 return -ENODEV;
1095}
1096
73c34b6a
HD
1097/*
1098 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1099 * corresponding to given index in swap_info (swap type).
1100 */
1101sector_t swapdev_block(int type, pgoff_t offset)
1102{
1103 struct block_device *bdev;
1104
1105 if ((unsigned int)type >= nr_swapfiles)
1106 return 0;
1107 if (!(swap_info[type]->flags & SWP_WRITEOK))
1108 return 0;
d4906e1a 1109 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1110}
1111
f577eb30
RW
1112/*
1113 * Return either the total number of swap pages of given type, or the number
1114 * of free pages of that type (depending on @free)
1115 *
1116 * This is needed for software suspend
1117 */
1118unsigned int count_swap_pages(int type, int free)
1119{
1120 unsigned int n = 0;
1121
efa90a98
HD
1122 spin_lock(&swap_lock);
1123 if ((unsigned int)type < nr_swapfiles) {
1124 struct swap_info_struct *sis = swap_info[type];
1125
ec8acf20 1126 spin_lock(&sis->lock);
efa90a98
HD
1127 if (sis->flags & SWP_WRITEOK) {
1128 n = sis->pages;
f577eb30 1129 if (free)
efa90a98 1130 n -= sis->inuse_pages;
f577eb30 1131 }
ec8acf20 1132 spin_unlock(&sis->lock);
f577eb30 1133 }
efa90a98 1134 spin_unlock(&swap_lock);
f577eb30
RW
1135 return n;
1136}
73c34b6a 1137#endif /* CONFIG_HIBERNATION */
f577eb30 1138
9f8bdb3f 1139static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1140{
9f8bdb3f 1141 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1142}
1143
1da177e4 1144/*
72866f6f
HD
1145 * No need to decide whether this PTE shares the swap entry with others,
1146 * just let do_wp_page work it out if a write is requested later - to
1147 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1148 */
044d66c1 1149static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1150 unsigned long addr, swp_entry_t entry, struct page *page)
1151{
9e16b7fb 1152 struct page *swapcache;
72835c86 1153 struct mem_cgroup *memcg;
044d66c1
HD
1154 spinlock_t *ptl;
1155 pte_t *pte;
1156 int ret = 1;
1157
9e16b7fb
HD
1158 swapcache = page;
1159 page = ksm_might_need_to_copy(page, vma, addr);
1160 if (unlikely(!page))
1161 return -ENOMEM;
1162
f627c2f5
KS
1163 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1164 &memcg, false)) {
044d66c1 1165 ret = -ENOMEM;
85d9fc89
KH
1166 goto out_nolock;
1167 }
044d66c1
HD
1168
1169 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1170 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1171 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1172 ret = 0;
1173 goto out;
1174 }
8a9f3ccd 1175
b084d435 1176 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1177 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1178 get_page(page);
1179 set_pte_at(vma->vm_mm, addr, pte,
1180 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1181 if (page == swapcache) {
d281ee61 1182 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1183 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1184 } else { /* ksm created a completely new copy */
d281ee61 1185 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1186 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1187 lru_cache_add_active_or_unevictable(page, vma);
1188 }
1da177e4
LT
1189 swap_free(entry);
1190 /*
1191 * Move the page to the active list so it is not
1192 * immediately swapped out again after swapon.
1193 */
1194 activate_page(page);
044d66c1
HD
1195out:
1196 pte_unmap_unlock(pte, ptl);
85d9fc89 1197out_nolock:
9e16b7fb
HD
1198 if (page != swapcache) {
1199 unlock_page(page);
1200 put_page(page);
1201 }
044d66c1 1202 return ret;
1da177e4
LT
1203}
1204
1205static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1206 unsigned long addr, unsigned long end,
1207 swp_entry_t entry, struct page *page)
1208{
1da177e4 1209 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1210 pte_t *pte;
8a9f3ccd 1211 int ret = 0;
1da177e4 1212
044d66c1
HD
1213 /*
1214 * We don't actually need pte lock while scanning for swp_pte: since
1215 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1216 * page table while we're scanning; though it could get zapped, and on
1217 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1218 * of unmatched parts which look like swp_pte, so unuse_pte must
1219 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1220 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1221 */
1222 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1223 do {
1224 /*
1225 * swapoff spends a _lot_ of time in this loop!
1226 * Test inline before going to call unuse_pte.
1227 */
9f8bdb3f 1228 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
044d66c1
HD
1229 pte_unmap(pte);
1230 ret = unuse_pte(vma, pmd, addr, entry, page);
1231 if (ret)
1232 goto out;
1233 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1234 }
1235 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1236 pte_unmap(pte - 1);
1237out:
8a9f3ccd 1238 return ret;
1da177e4
LT
1239}
1240
1241static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1242 unsigned long addr, unsigned long end,
1243 swp_entry_t entry, struct page *page)
1244{
1245 pmd_t *pmd;
1246 unsigned long next;
8a9f3ccd 1247 int ret;
1da177e4
LT
1248
1249 pmd = pmd_offset(pud, addr);
1250 do {
dc644a07 1251 cond_resched();
1da177e4 1252 next = pmd_addr_end(addr, end);
1a5a9906 1253 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1254 continue;
8a9f3ccd
BS
1255 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1256 if (ret)
1257 return ret;
1da177e4
LT
1258 } while (pmd++, addr = next, addr != end);
1259 return 0;
1260}
1261
1262static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1263 unsigned long addr, unsigned long end,
1264 swp_entry_t entry, struct page *page)
1265{
1266 pud_t *pud;
1267 unsigned long next;
8a9f3ccd 1268 int ret;
1da177e4
LT
1269
1270 pud = pud_offset(pgd, addr);
1271 do {
1272 next = pud_addr_end(addr, end);
1273 if (pud_none_or_clear_bad(pud))
1274 continue;
8a9f3ccd
BS
1275 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1276 if (ret)
1277 return ret;
1da177e4
LT
1278 } while (pud++, addr = next, addr != end);
1279 return 0;
1280}
1281
1282static int unuse_vma(struct vm_area_struct *vma,
1283 swp_entry_t entry, struct page *page)
1284{
1285 pgd_t *pgd;
1286 unsigned long addr, end, next;
8a9f3ccd 1287 int ret;
1da177e4 1288
3ca7b3c5 1289 if (page_anon_vma(page)) {
1da177e4
LT
1290 addr = page_address_in_vma(page, vma);
1291 if (addr == -EFAULT)
1292 return 0;
1293 else
1294 end = addr + PAGE_SIZE;
1295 } else {
1296 addr = vma->vm_start;
1297 end = vma->vm_end;
1298 }
1299
1300 pgd = pgd_offset(vma->vm_mm, addr);
1301 do {
1302 next = pgd_addr_end(addr, end);
1303 if (pgd_none_or_clear_bad(pgd))
1304 continue;
8a9f3ccd
BS
1305 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1306 if (ret)
1307 return ret;
1da177e4
LT
1308 } while (pgd++, addr = next, addr != end);
1309 return 0;
1310}
1311
1312static int unuse_mm(struct mm_struct *mm,
1313 swp_entry_t entry, struct page *page)
1314{
1315 struct vm_area_struct *vma;
8a9f3ccd 1316 int ret = 0;
1da177e4
LT
1317
1318 if (!down_read_trylock(&mm->mmap_sem)) {
1319 /*
7d03431c
FLVC
1320 * Activate page so shrink_inactive_list is unlikely to unmap
1321 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1322 */
c475a8ab 1323 activate_page(page);
1da177e4
LT
1324 unlock_page(page);
1325 down_read(&mm->mmap_sem);
1326 lock_page(page);
1327 }
1da177e4 1328 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1329 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4 1330 break;
dc644a07 1331 cond_resched();
1da177e4 1332 }
1da177e4 1333 up_read(&mm->mmap_sem);
8a9f3ccd 1334 return (ret < 0)? ret: 0;
1da177e4
LT
1335}
1336
1337/*
38b5faf4
DM
1338 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1339 * from current position to next entry still in use.
1da177e4
LT
1340 * Recycle to start on reaching the end, returning 0 when empty.
1341 */
6eb396dc 1342static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1343 unsigned int prev, bool frontswap)
1da177e4 1344{
6eb396dc
HD
1345 unsigned int max = si->max;
1346 unsigned int i = prev;
8d69aaee 1347 unsigned char count;
1da177e4
LT
1348
1349 /*
5d337b91 1350 * No need for swap_lock here: we're just looking
1da177e4
LT
1351 * for whether an entry is in use, not modifying it; false
1352 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1353 * allocations from this area (while holding swap_lock).
1da177e4
LT
1354 */
1355 for (;;) {
1356 if (++i >= max) {
1357 if (!prev) {
1358 i = 0;
1359 break;
1360 }
1361 /*
1362 * No entries in use at top of swap_map,
1363 * loop back to start and recheck there.
1364 */
1365 max = prev + 1;
1366 prev = 0;
1367 i = 1;
1368 }
4db0c3c2 1369 count = READ_ONCE(si->swap_map[i]);
355cfa73 1370 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
1371 if (!frontswap || frontswap_test(si, i))
1372 break;
1373 if ((i % LATENCY_LIMIT) == 0)
1374 cond_resched();
1da177e4
LT
1375 }
1376 return i;
1377}
1378
1379/*
1380 * We completely avoid races by reading each swap page in advance,
1381 * and then search for the process using it. All the necessary
1382 * page table adjustments can then be made atomically.
38b5faf4
DM
1383 *
1384 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1385 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1386 */
38b5faf4
DM
1387int try_to_unuse(unsigned int type, bool frontswap,
1388 unsigned long pages_to_unuse)
1da177e4 1389{
efa90a98 1390 struct swap_info_struct *si = swap_info[type];
1da177e4 1391 struct mm_struct *start_mm;
edfe23da
SL
1392 volatile unsigned char *swap_map; /* swap_map is accessed without
1393 * locking. Mark it as volatile
1394 * to prevent compiler doing
1395 * something odd.
1396 */
8d69aaee 1397 unsigned char swcount;
1da177e4
LT
1398 struct page *page;
1399 swp_entry_t entry;
6eb396dc 1400 unsigned int i = 0;
1da177e4 1401 int retval = 0;
1da177e4
LT
1402
1403 /*
1404 * When searching mms for an entry, a good strategy is to
1405 * start at the first mm we freed the previous entry from
1406 * (though actually we don't notice whether we or coincidence
1407 * freed the entry). Initialize this start_mm with a hold.
1408 *
1409 * A simpler strategy would be to start at the last mm we
1410 * freed the previous entry from; but that would take less
1411 * advantage of mmlist ordering, which clusters forked mms
1412 * together, child after parent. If we race with dup_mmap(), we
1413 * prefer to resolve parent before child, lest we miss entries
1414 * duplicated after we scanned child: using last mm would invert
570a335b 1415 * that.
1da177e4
LT
1416 */
1417 start_mm = &init_mm;
1418 atomic_inc(&init_mm.mm_users);
1419
1420 /*
1421 * Keep on scanning until all entries have gone. Usually,
1422 * one pass through swap_map is enough, but not necessarily:
1423 * there are races when an instance of an entry might be missed.
1424 */
38b5faf4 1425 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
1426 if (signal_pending(current)) {
1427 retval = -EINTR;
1428 break;
1429 }
1430
886bb7e9 1431 /*
1da177e4
LT
1432 * Get a page for the entry, using the existing swap
1433 * cache page if there is one. Otherwise, get a clean
886bb7e9 1434 * page and read the swap into it.
1da177e4
LT
1435 */
1436 swap_map = &si->swap_map[i];
1437 entry = swp_entry(type, i);
02098fea
HD
1438 page = read_swap_cache_async(entry,
1439 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1440 if (!page) {
1441 /*
1442 * Either swap_duplicate() failed because entry
1443 * has been freed independently, and will not be
1444 * reused since sys_swapoff() already disabled
1445 * allocation from here, or alloc_page() failed.
1446 */
edfe23da
SL
1447 swcount = *swap_map;
1448 /*
1449 * We don't hold lock here, so the swap entry could be
1450 * SWAP_MAP_BAD (when the cluster is discarding).
1451 * Instead of fail out, We can just skip the swap
1452 * entry because swapoff will wait for discarding
1453 * finish anyway.
1454 */
1455 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
1456 continue;
1457 retval = -ENOMEM;
1458 break;
1459 }
1460
1461 /*
1462 * Don't hold on to start_mm if it looks like exiting.
1463 */
1464 if (atomic_read(&start_mm->mm_users) == 1) {
1465 mmput(start_mm);
1466 start_mm = &init_mm;
1467 atomic_inc(&init_mm.mm_users);
1468 }
1469
1470 /*
1471 * Wait for and lock page. When do_swap_page races with
1472 * try_to_unuse, do_swap_page can handle the fault much
1473 * faster than try_to_unuse can locate the entry. This
1474 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1475 * defer to do_swap_page in such a case - in some tests,
1476 * do_swap_page and try_to_unuse repeatedly compete.
1477 */
1478 wait_on_page_locked(page);
1479 wait_on_page_writeback(page);
1480 lock_page(page);
1481 wait_on_page_writeback(page);
1482
1483 /*
1484 * Remove all references to entry.
1da177e4 1485 */
1da177e4 1486 swcount = *swap_map;
aaa46865
HD
1487 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1488 retval = shmem_unuse(entry, page);
1489 /* page has already been unlocked and released */
1490 if (retval < 0)
1491 break;
1492 continue;
1da177e4 1493 }
aaa46865
HD
1494 if (swap_count(swcount) && start_mm != &init_mm)
1495 retval = unuse_mm(start_mm, entry, page);
1496
355cfa73 1497 if (swap_count(*swap_map)) {
1da177e4
LT
1498 int set_start_mm = (*swap_map >= swcount);
1499 struct list_head *p = &start_mm->mmlist;
1500 struct mm_struct *new_start_mm = start_mm;
1501 struct mm_struct *prev_mm = start_mm;
1502 struct mm_struct *mm;
1503
1504 atomic_inc(&new_start_mm->mm_users);
1505 atomic_inc(&prev_mm->mm_users);
1506 spin_lock(&mmlist_lock);
aaa46865 1507 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1508 (p = p->next) != &start_mm->mmlist) {
1509 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1510 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1511 continue;
1da177e4
LT
1512 spin_unlock(&mmlist_lock);
1513 mmput(prev_mm);
1514 prev_mm = mm;
1515
1516 cond_resched();
1517
1518 swcount = *swap_map;
355cfa73 1519 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1520 ;
aaa46865 1521 else if (mm == &init_mm)
1da177e4 1522 set_start_mm = 1;
aaa46865 1523 else
1da177e4 1524 retval = unuse_mm(mm, entry, page);
355cfa73 1525
32c5fc10 1526 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1527 mmput(new_start_mm);
1528 atomic_inc(&mm->mm_users);
1529 new_start_mm = mm;
1530 set_start_mm = 0;
1531 }
1532 spin_lock(&mmlist_lock);
1533 }
1534 spin_unlock(&mmlist_lock);
1535 mmput(prev_mm);
1536 mmput(start_mm);
1537 start_mm = new_start_mm;
1538 }
1539 if (retval) {
1540 unlock_page(page);
09cbfeaf 1541 put_page(page);
1da177e4
LT
1542 break;
1543 }
1544
1da177e4
LT
1545 /*
1546 * If a reference remains (rare), we would like to leave
1547 * the page in the swap cache; but try_to_unmap could
1548 * then re-duplicate the entry once we drop page lock,
1549 * so we might loop indefinitely; also, that page could
1550 * not be swapped out to other storage meanwhile. So:
1551 * delete from cache even if there's another reference,
1552 * after ensuring that the data has been saved to disk -
1553 * since if the reference remains (rarer), it will be
1554 * read from disk into another page. Splitting into two
1555 * pages would be incorrect if swap supported "shared
1556 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1557 *
1558 * Given how unuse_vma() targets one particular offset
1559 * in an anon_vma, once the anon_vma has been determined,
1560 * this splitting happens to be just what is needed to
1561 * handle where KSM pages have been swapped out: re-reading
1562 * is unnecessarily slow, but we can fix that later on.
1da177e4 1563 */
355cfa73
KH
1564 if (swap_count(*swap_map) &&
1565 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1566 struct writeback_control wbc = {
1567 .sync_mode = WB_SYNC_NONE,
1568 };
1569
1570 swap_writepage(page, &wbc);
1571 lock_page(page);
1572 wait_on_page_writeback(page);
1573 }
68bdc8d6
HD
1574
1575 /*
1576 * It is conceivable that a racing task removed this page from
1577 * swap cache just before we acquired the page lock at the top,
1578 * or while we dropped it in unuse_mm(). The page might even
1579 * be back in swap cache on another swap area: that we must not
1580 * delete, since it may not have been written out to swap yet.
1581 */
1582 if (PageSwapCache(page) &&
1583 likely(page_private(page) == entry.val))
2e0e26c7 1584 delete_from_swap_cache(page);
1da177e4
LT
1585
1586 /*
1587 * So we could skip searching mms once swap count went
1588 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1589 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1590 */
1591 SetPageDirty(page);
1592 unlock_page(page);
09cbfeaf 1593 put_page(page);
1da177e4
LT
1594
1595 /*
1596 * Make sure that we aren't completely killing
1597 * interactive performance.
1598 */
1599 cond_resched();
38b5faf4
DM
1600 if (frontswap && pages_to_unuse > 0) {
1601 if (!--pages_to_unuse)
1602 break;
1603 }
1da177e4
LT
1604 }
1605
1606 mmput(start_mm);
1da177e4
LT
1607 return retval;
1608}
1609
1610/*
5d337b91
HD
1611 * After a successful try_to_unuse, if no swap is now in use, we know
1612 * we can empty the mmlist. swap_lock must be held on entry and exit.
1613 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1614 * added to the mmlist just after page_duplicate - before would be racy.
1615 */
1616static void drain_mmlist(void)
1617{
1618 struct list_head *p, *next;
efa90a98 1619 unsigned int type;
1da177e4 1620
efa90a98
HD
1621 for (type = 0; type < nr_swapfiles; type++)
1622 if (swap_info[type]->inuse_pages)
1da177e4
LT
1623 return;
1624 spin_lock(&mmlist_lock);
1625 list_for_each_safe(p, next, &init_mm.mmlist)
1626 list_del_init(p);
1627 spin_unlock(&mmlist_lock);
1628}
1629
1630/*
1631 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1632 * corresponds to page offset for the specified swap entry.
1633 * Note that the type of this function is sector_t, but it returns page offset
1634 * into the bdev, not sector offset.
1da177e4 1635 */
d4906e1a 1636static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1637{
f29ad6a9
HD
1638 struct swap_info_struct *sis;
1639 struct swap_extent *start_se;
1640 struct swap_extent *se;
1641 pgoff_t offset;
1642
efa90a98 1643 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1644 *bdev = sis->bdev;
1645
1646 offset = swp_offset(entry);
1647 start_se = sis->curr_swap_extent;
1648 se = start_se;
1da177e4
LT
1649
1650 for ( ; ; ) {
1da177e4
LT
1651 if (se->start_page <= offset &&
1652 offset < (se->start_page + se->nr_pages)) {
1653 return se->start_block + (offset - se->start_page);
1654 }
a8ae4991 1655 se = list_next_entry(se, list);
1da177e4
LT
1656 sis->curr_swap_extent = se;
1657 BUG_ON(se == start_se); /* It *must* be present */
1658 }
1659}
1660
d4906e1a
LS
1661/*
1662 * Returns the page offset into bdev for the specified page's swap entry.
1663 */
1664sector_t map_swap_page(struct page *page, struct block_device **bdev)
1665{
1666 swp_entry_t entry;
1667 entry.val = page_private(page);
1668 return map_swap_entry(entry, bdev);
1669}
1670
1da177e4
LT
1671/*
1672 * Free all of a swapdev's extent information
1673 */
1674static void destroy_swap_extents(struct swap_info_struct *sis)
1675{
9625a5f2 1676 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1677 struct swap_extent *se;
1678
a8ae4991 1679 se = list_first_entry(&sis->first_swap_extent.list,
1da177e4
LT
1680 struct swap_extent, list);
1681 list_del(&se->list);
1682 kfree(se);
1683 }
62c230bc
MG
1684
1685 if (sis->flags & SWP_FILE) {
1686 struct file *swap_file = sis->swap_file;
1687 struct address_space *mapping = swap_file->f_mapping;
1688
1689 sis->flags &= ~SWP_FILE;
1690 mapping->a_ops->swap_deactivate(swap_file);
1691 }
1da177e4
LT
1692}
1693
1694/*
1695 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1696 * extent list. The extent list is kept sorted in page order.
1da177e4 1697 *
11d31886 1698 * This function rather assumes that it is called in ascending page order.
1da177e4 1699 */
a509bc1a 1700int
1da177e4
LT
1701add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1702 unsigned long nr_pages, sector_t start_block)
1703{
1704 struct swap_extent *se;
1705 struct swap_extent *new_se;
1706 struct list_head *lh;
1707
9625a5f2
HD
1708 if (start_page == 0) {
1709 se = &sis->first_swap_extent;
1710 sis->curr_swap_extent = se;
1711 se->start_page = 0;
1712 se->nr_pages = nr_pages;
1713 se->start_block = start_block;
1714 return 1;
1715 } else {
1716 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1717 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1718 BUG_ON(se->start_page + se->nr_pages != start_page);
1719 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1720 /* Merge it */
1721 se->nr_pages += nr_pages;
1722 return 0;
1723 }
1da177e4
LT
1724 }
1725
1726 /*
1727 * No merge. Insert a new extent, preserving ordering.
1728 */
1729 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1730 if (new_se == NULL)
1731 return -ENOMEM;
1732 new_se->start_page = start_page;
1733 new_se->nr_pages = nr_pages;
1734 new_se->start_block = start_block;
1735
9625a5f2 1736 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1737 return 1;
1da177e4
LT
1738}
1739
1740/*
1741 * A `swap extent' is a simple thing which maps a contiguous range of pages
1742 * onto a contiguous range of disk blocks. An ordered list of swap extents
1743 * is built at swapon time and is then used at swap_writepage/swap_readpage
1744 * time for locating where on disk a page belongs.
1745 *
1746 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1747 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1748 * swap files identically.
1749 *
1750 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1751 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1752 * swapfiles are handled *identically* after swapon time.
1753 *
1754 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1755 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1756 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1757 * requirements, they are simply tossed out - we will never use those blocks
1758 * for swapping.
1759 *
b0d9bcd4 1760 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1761 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1762 * which will scribble on the fs.
1763 *
1764 * The amount of disk space which a single swap extent represents varies.
1765 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1766 * extents in the list. To avoid much list walking, we cache the previous
1767 * search location in `curr_swap_extent', and start new searches from there.
1768 * This is extremely effective. The average number of iterations in
1769 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1770 */
53092a74 1771static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 1772{
62c230bc
MG
1773 struct file *swap_file = sis->swap_file;
1774 struct address_space *mapping = swap_file->f_mapping;
1775 struct inode *inode = mapping->host;
1da177e4
LT
1776 int ret;
1777
1da177e4
LT
1778 if (S_ISBLK(inode->i_mode)) {
1779 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1780 *span = sis->pages;
a509bc1a 1781 return ret;
1da177e4
LT
1782 }
1783
62c230bc 1784 if (mapping->a_ops->swap_activate) {
a509bc1a 1785 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
1786 if (!ret) {
1787 sis->flags |= SWP_FILE;
1788 ret = add_swap_extent(sis, 0, sis->max, 0);
1789 *span = sis->pages;
1790 }
a509bc1a 1791 return ret;
62c230bc
MG
1792 }
1793
a509bc1a 1794 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
1795}
1796
cf0cac0a 1797static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
1798 unsigned char *swap_map,
1799 struct swap_cluster_info *cluster_info)
40531542 1800{
40531542
CEB
1801 if (prio >= 0)
1802 p->prio = prio;
1803 else
1804 p->prio = --least_priority;
18ab4d4c
DS
1805 /*
1806 * the plist prio is negated because plist ordering is
1807 * low-to-high, while swap ordering is high-to-low
1808 */
1809 p->list.prio = -p->prio;
1810 p->avail_list.prio = -p->prio;
40531542 1811 p->swap_map = swap_map;
2a8f9449 1812 p->cluster_info = cluster_info;
40531542 1813 p->flags |= SWP_WRITEOK;
ec8acf20 1814 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
1815 total_swap_pages += p->pages;
1816
adfab836 1817 assert_spin_locked(&swap_lock);
adfab836 1818 /*
18ab4d4c
DS
1819 * both lists are plists, and thus priority ordered.
1820 * swap_active_head needs to be priority ordered for swapoff(),
1821 * which on removal of any swap_info_struct with an auto-assigned
1822 * (i.e. negative) priority increments the auto-assigned priority
1823 * of any lower-priority swap_info_structs.
1824 * swap_avail_head needs to be priority ordered for get_swap_page(),
1825 * which allocates swap pages from the highest available priority
1826 * swap_info_struct.
adfab836 1827 */
18ab4d4c
DS
1828 plist_add(&p->list, &swap_active_head);
1829 spin_lock(&swap_avail_lock);
1830 plist_add(&p->avail_list, &swap_avail_head);
1831 spin_unlock(&swap_avail_lock);
cf0cac0a
CEB
1832}
1833
1834static void enable_swap_info(struct swap_info_struct *p, int prio,
1835 unsigned char *swap_map,
2a8f9449 1836 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
1837 unsigned long *frontswap_map)
1838{
4f89849d 1839 frontswap_init(p->type, frontswap_map);
cf0cac0a 1840 spin_lock(&swap_lock);
ec8acf20 1841 spin_lock(&p->lock);
2a8f9449 1842 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 1843 spin_unlock(&p->lock);
cf0cac0a
CEB
1844 spin_unlock(&swap_lock);
1845}
1846
1847static void reinsert_swap_info(struct swap_info_struct *p)
1848{
1849 spin_lock(&swap_lock);
ec8acf20 1850 spin_lock(&p->lock);
2a8f9449 1851 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 1852 spin_unlock(&p->lock);
40531542
CEB
1853 spin_unlock(&swap_lock);
1854}
1855
c4ea37c2 1856SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1857{
73c34b6a 1858 struct swap_info_struct *p = NULL;
8d69aaee 1859 unsigned char *swap_map;
2a8f9449 1860 struct swap_cluster_info *cluster_info;
4f89849d 1861 unsigned long *frontswap_map;
1da177e4
LT
1862 struct file *swap_file, *victim;
1863 struct address_space *mapping;
1864 struct inode *inode;
91a27b2a 1865 struct filename *pathname;
adfab836 1866 int err, found = 0;
5b808a23 1867 unsigned int old_block_size;
886bb7e9 1868
1da177e4
LT
1869 if (!capable(CAP_SYS_ADMIN))
1870 return -EPERM;
1871
191c5424
AV
1872 BUG_ON(!current->mm);
1873
1da177e4 1874 pathname = getname(specialfile);
1da177e4 1875 if (IS_ERR(pathname))
f58b59c1 1876 return PTR_ERR(pathname);
1da177e4 1877
669abf4e 1878 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
1879 err = PTR_ERR(victim);
1880 if (IS_ERR(victim))
1881 goto out;
1882
1883 mapping = victim->f_mapping;
5d337b91 1884 spin_lock(&swap_lock);
18ab4d4c 1885 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 1886 if (p->flags & SWP_WRITEOK) {
adfab836
DS
1887 if (p->swap_file->f_mapping == mapping) {
1888 found = 1;
1da177e4 1889 break;
adfab836 1890 }
1da177e4 1891 }
1da177e4 1892 }
adfab836 1893 if (!found) {
1da177e4 1894 err = -EINVAL;
5d337b91 1895 spin_unlock(&swap_lock);
1da177e4
LT
1896 goto out_dput;
1897 }
191c5424 1898 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
1899 vm_unacct_memory(p->pages);
1900 else {
1901 err = -ENOMEM;
5d337b91 1902 spin_unlock(&swap_lock);
1da177e4
LT
1903 goto out_dput;
1904 }
18ab4d4c
DS
1905 spin_lock(&swap_avail_lock);
1906 plist_del(&p->avail_list, &swap_avail_head);
1907 spin_unlock(&swap_avail_lock);
ec8acf20 1908 spin_lock(&p->lock);
78ecba08 1909 if (p->prio < 0) {
adfab836
DS
1910 struct swap_info_struct *si = p;
1911
18ab4d4c 1912 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 1913 si->prio++;
18ab4d4c
DS
1914 si->list.prio--;
1915 si->avail_list.prio--;
adfab836 1916 }
78ecba08
HD
1917 least_priority++;
1918 }
18ab4d4c 1919 plist_del(&p->list, &swap_active_head);
ec8acf20 1920 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
1921 total_swap_pages -= p->pages;
1922 p->flags &= ~SWP_WRITEOK;
ec8acf20 1923 spin_unlock(&p->lock);
5d337b91 1924 spin_unlock(&swap_lock);
fb4f88dc 1925
e1e12d2f 1926 set_current_oom_origin();
adfab836 1927 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 1928 clear_current_oom_origin();
1da177e4 1929
1da177e4
LT
1930 if (err) {
1931 /* re-insert swap space back into swap_list */
cf0cac0a 1932 reinsert_swap_info(p);
1da177e4
LT
1933 goto out_dput;
1934 }
52b7efdb 1935
815c2c54
SL
1936 flush_work(&p->discard_work);
1937
5d337b91 1938 destroy_swap_extents(p);
570a335b
HD
1939 if (p->flags & SWP_CONTINUED)
1940 free_swap_count_continuations(p);
1941
fc0abb14 1942 mutex_lock(&swapon_mutex);
5d337b91 1943 spin_lock(&swap_lock);
ec8acf20 1944 spin_lock(&p->lock);
5d337b91
HD
1945 drain_mmlist();
1946
52b7efdb 1947 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1948 p->highest_bit = 0; /* cuts scans short */
1949 while (p->flags >= SWP_SCANNING) {
ec8acf20 1950 spin_unlock(&p->lock);
5d337b91 1951 spin_unlock(&swap_lock);
13e4b57f 1952 schedule_timeout_uninterruptible(1);
5d337b91 1953 spin_lock(&swap_lock);
ec8acf20 1954 spin_lock(&p->lock);
52b7efdb 1955 }
52b7efdb 1956
1da177e4 1957 swap_file = p->swap_file;
5b808a23 1958 old_block_size = p->old_block_size;
1da177e4
LT
1959 p->swap_file = NULL;
1960 p->max = 0;
1961 swap_map = p->swap_map;
1962 p->swap_map = NULL;
2a8f9449
SL
1963 cluster_info = p->cluster_info;
1964 p->cluster_info = NULL;
4f89849d 1965 frontswap_map = frontswap_map_get(p);
ec8acf20 1966 spin_unlock(&p->lock);
5d337b91 1967 spin_unlock(&swap_lock);
adfab836 1968 frontswap_invalidate_area(p->type);
58e97ba6 1969 frontswap_map_set(p, NULL);
fc0abb14 1970 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
1971 free_percpu(p->percpu_cluster);
1972 p->percpu_cluster = NULL;
1da177e4 1973 vfree(swap_map);
2a8f9449 1974 vfree(cluster_info);
4f89849d 1975 vfree(frontswap_map);
2de1a7e4 1976 /* Destroy swap account information */
adfab836 1977 swap_cgroup_swapoff(p->type);
27a7faa0 1978
1da177e4
LT
1979 inode = mapping->host;
1980 if (S_ISBLK(inode->i_mode)) {
1981 struct block_device *bdev = I_BDEV(inode);
5b808a23 1982 set_blocksize(bdev, old_block_size);
e525fd89 1983 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 1984 } else {
5955102c 1985 inode_lock(inode);
1da177e4 1986 inode->i_flags &= ~S_SWAPFILE;
5955102c 1987 inode_unlock(inode);
1da177e4
LT
1988 }
1989 filp_close(swap_file, NULL);
f893ab41
WY
1990
1991 /*
1992 * Clear the SWP_USED flag after all resources are freed so that swapon
1993 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1994 * not hold p->lock after we cleared its SWP_WRITEOK.
1995 */
1996 spin_lock(&swap_lock);
1997 p->flags = 0;
1998 spin_unlock(&swap_lock);
1999
1da177e4 2000 err = 0;
66d7dd51
KS
2001 atomic_inc(&proc_poll_event);
2002 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2003
2004out_dput:
2005 filp_close(victim, NULL);
2006out:
f58b59c1 2007 putname(pathname);
1da177e4
LT
2008 return err;
2009}
2010
2011#ifdef CONFIG_PROC_FS
66d7dd51
KS
2012static unsigned swaps_poll(struct file *file, poll_table *wait)
2013{
f1514638 2014 struct seq_file *seq = file->private_data;
66d7dd51
KS
2015
2016 poll_wait(file, &proc_poll_wait, wait);
2017
f1514638
KS
2018 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2019 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
2020 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2021 }
2022
2023 return POLLIN | POLLRDNORM;
2024}
2025
1da177e4
LT
2026/* iterator */
2027static void *swap_start(struct seq_file *swap, loff_t *pos)
2028{
efa90a98
HD
2029 struct swap_info_struct *si;
2030 int type;
1da177e4
LT
2031 loff_t l = *pos;
2032
fc0abb14 2033 mutex_lock(&swapon_mutex);
1da177e4 2034
881e4aab
SS
2035 if (!l)
2036 return SEQ_START_TOKEN;
2037
efa90a98
HD
2038 for (type = 0; type < nr_swapfiles; type++) {
2039 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2040 si = swap_info[type];
2041 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2042 continue;
881e4aab 2043 if (!--l)
efa90a98 2044 return si;
1da177e4
LT
2045 }
2046
2047 return NULL;
2048}
2049
2050static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2051{
efa90a98
HD
2052 struct swap_info_struct *si = v;
2053 int type;
1da177e4 2054
881e4aab 2055 if (v == SEQ_START_TOKEN)
efa90a98
HD
2056 type = 0;
2057 else
2058 type = si->type + 1;
881e4aab 2059
efa90a98
HD
2060 for (; type < nr_swapfiles; type++) {
2061 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2062 si = swap_info[type];
2063 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2064 continue;
2065 ++*pos;
efa90a98 2066 return si;
1da177e4
LT
2067 }
2068
2069 return NULL;
2070}
2071
2072static void swap_stop(struct seq_file *swap, void *v)
2073{
fc0abb14 2074 mutex_unlock(&swapon_mutex);
1da177e4
LT
2075}
2076
2077static int swap_show(struct seq_file *swap, void *v)
2078{
efa90a98 2079 struct swap_info_struct *si = v;
1da177e4
LT
2080 struct file *file;
2081 int len;
2082
efa90a98 2083 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2084 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2085 return 0;
2086 }
1da177e4 2087
efa90a98 2088 file = si->swap_file;
2726d566 2089 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2090 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2091 len < 40 ? 40 - len : 1, " ",
496ad9aa 2092 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2093 "partition" : "file\t",
efa90a98
HD
2094 si->pages << (PAGE_SHIFT - 10),
2095 si->inuse_pages << (PAGE_SHIFT - 10),
2096 si->prio);
1da177e4
LT
2097 return 0;
2098}
2099
15ad7cdc 2100static const struct seq_operations swaps_op = {
1da177e4
LT
2101 .start = swap_start,
2102 .next = swap_next,
2103 .stop = swap_stop,
2104 .show = swap_show
2105};
2106
2107static int swaps_open(struct inode *inode, struct file *file)
2108{
f1514638 2109 struct seq_file *seq;
66d7dd51
KS
2110 int ret;
2111
66d7dd51 2112 ret = seq_open(file, &swaps_op);
f1514638 2113 if (ret)
66d7dd51 2114 return ret;
66d7dd51 2115
f1514638
KS
2116 seq = file->private_data;
2117 seq->poll_event = atomic_read(&proc_poll_event);
2118 return 0;
1da177e4
LT
2119}
2120
15ad7cdc 2121static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2122 .open = swaps_open,
2123 .read = seq_read,
2124 .llseek = seq_lseek,
2125 .release = seq_release,
66d7dd51 2126 .poll = swaps_poll,
1da177e4
LT
2127};
2128
2129static int __init procswaps_init(void)
2130{
3d71f86f 2131 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2132 return 0;
2133}
2134__initcall(procswaps_init);
2135#endif /* CONFIG_PROC_FS */
2136
1796316a
JB
2137#ifdef MAX_SWAPFILES_CHECK
2138static int __init max_swapfiles_check(void)
2139{
2140 MAX_SWAPFILES_CHECK();
2141 return 0;
2142}
2143late_initcall(max_swapfiles_check);
2144#endif
2145
53cbb243 2146static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2147{
73c34b6a 2148 struct swap_info_struct *p;
1da177e4 2149 unsigned int type;
efa90a98
HD
2150
2151 p = kzalloc(sizeof(*p), GFP_KERNEL);
2152 if (!p)
53cbb243 2153 return ERR_PTR(-ENOMEM);
efa90a98 2154
5d337b91 2155 spin_lock(&swap_lock);
efa90a98
HD
2156 for (type = 0; type < nr_swapfiles; type++) {
2157 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2158 break;
efa90a98 2159 }
0697212a 2160 if (type >= MAX_SWAPFILES) {
5d337b91 2161 spin_unlock(&swap_lock);
efa90a98 2162 kfree(p);
730c0581 2163 return ERR_PTR(-EPERM);
1da177e4 2164 }
efa90a98
HD
2165 if (type >= nr_swapfiles) {
2166 p->type = type;
2167 swap_info[type] = p;
2168 /*
2169 * Write swap_info[type] before nr_swapfiles, in case a
2170 * racing procfs swap_start() or swap_next() is reading them.
2171 * (We never shrink nr_swapfiles, we never free this entry.)
2172 */
2173 smp_wmb();
2174 nr_swapfiles++;
2175 } else {
2176 kfree(p);
2177 p = swap_info[type];
2178 /*
2179 * Do not memset this entry: a racing procfs swap_next()
2180 * would be relying on p->type to remain valid.
2181 */
2182 }
9625a5f2 2183 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c
DS
2184 plist_node_init(&p->list, 0);
2185 plist_node_init(&p->avail_list, 0);
1da177e4 2186 p->flags = SWP_USED;
5d337b91 2187 spin_unlock(&swap_lock);
ec8acf20 2188 spin_lock_init(&p->lock);
efa90a98 2189
53cbb243 2190 return p;
53cbb243
CEB
2191}
2192
4d0e1e10
CEB
2193static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2194{
2195 int error;
2196
2197 if (S_ISBLK(inode->i_mode)) {
2198 p->bdev = bdgrab(I_BDEV(inode));
2199 error = blkdev_get(p->bdev,
6f179af8 2200 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2201 if (error < 0) {
2202 p->bdev = NULL;
6f179af8 2203 return error;
4d0e1e10
CEB
2204 }
2205 p->old_block_size = block_size(p->bdev);
2206 error = set_blocksize(p->bdev, PAGE_SIZE);
2207 if (error < 0)
87ade72a 2208 return error;
4d0e1e10
CEB
2209 p->flags |= SWP_BLKDEV;
2210 } else if (S_ISREG(inode->i_mode)) {
2211 p->bdev = inode->i_sb->s_bdev;
5955102c 2212 inode_lock(inode);
87ade72a
CEB
2213 if (IS_SWAPFILE(inode))
2214 return -EBUSY;
2215 } else
2216 return -EINVAL;
4d0e1e10
CEB
2217
2218 return 0;
4d0e1e10
CEB
2219}
2220
ca8bd38b
CEB
2221static unsigned long read_swap_header(struct swap_info_struct *p,
2222 union swap_header *swap_header,
2223 struct inode *inode)
2224{
2225 int i;
2226 unsigned long maxpages;
2227 unsigned long swapfilepages;
d6bbbd29 2228 unsigned long last_page;
ca8bd38b
CEB
2229
2230 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2231 pr_err("Unable to find swap-space signature\n");
38719025 2232 return 0;
ca8bd38b
CEB
2233 }
2234
2235 /* swap partition endianess hack... */
2236 if (swab32(swap_header->info.version) == 1) {
2237 swab32s(&swap_header->info.version);
2238 swab32s(&swap_header->info.last_page);
2239 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2240 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2241 return 0;
ca8bd38b
CEB
2242 for (i = 0; i < swap_header->info.nr_badpages; i++)
2243 swab32s(&swap_header->info.badpages[i]);
2244 }
2245 /* Check the swap header's sub-version */
2246 if (swap_header->info.version != 1) {
465c47fd
AM
2247 pr_warn("Unable to handle swap header version %d\n",
2248 swap_header->info.version);
38719025 2249 return 0;
ca8bd38b
CEB
2250 }
2251
2252 p->lowest_bit = 1;
2253 p->cluster_next = 1;
2254 p->cluster_nr = 0;
2255
2256 /*
2257 * Find out how many pages are allowed for a single swap
9b15b817 2258 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
2259 * of bits for the swap offset in the swp_entry_t type, and
2260 * 2) the number of bits in the swap pte as defined by the
9b15b817 2261 * different architectures. In order to find the
a2c16d6c 2262 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 2263 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 2264 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
2265 * offset is extracted. This will mask all the bits from
2266 * the initial ~0UL mask that can't be encoded in either
2267 * the swp_entry_t or the architecture definition of a
9b15b817 2268 * swap pte.
ca8bd38b
CEB
2269 */
2270 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 2271 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
d6bbbd29
RJ
2272 last_page = swap_header->info.last_page;
2273 if (last_page > maxpages) {
465c47fd 2274 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2275 maxpages << (PAGE_SHIFT - 10),
2276 last_page << (PAGE_SHIFT - 10));
2277 }
2278 if (maxpages > last_page) {
2279 maxpages = last_page + 1;
ca8bd38b
CEB
2280 /* p->max is an unsigned int: don't overflow it */
2281 if ((unsigned int)maxpages == 0)
2282 maxpages = UINT_MAX;
2283 }
2284 p->highest_bit = maxpages - 1;
2285
2286 if (!maxpages)
38719025 2287 return 0;
ca8bd38b
CEB
2288 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2289 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2290 pr_warn("Swap area shorter than signature indicates\n");
38719025 2291 return 0;
ca8bd38b
CEB
2292 }
2293 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2294 return 0;
ca8bd38b 2295 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2296 return 0;
ca8bd38b
CEB
2297
2298 return maxpages;
ca8bd38b
CEB
2299}
2300
915d4d7b
CEB
2301static int setup_swap_map_and_extents(struct swap_info_struct *p,
2302 union swap_header *swap_header,
2303 unsigned char *swap_map,
2a8f9449 2304 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2305 unsigned long maxpages,
2306 sector_t *span)
2307{
2308 int i;
915d4d7b
CEB
2309 unsigned int nr_good_pages;
2310 int nr_extents;
2a8f9449
SL
2311 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2312 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
915d4d7b
CEB
2313
2314 nr_good_pages = maxpages - 1; /* omit header page */
2315
6b534915
HY
2316 cluster_list_init(&p->free_clusters);
2317 cluster_list_init(&p->discard_clusters);
2a8f9449 2318
915d4d7b
CEB
2319 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2320 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2321 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2322 return -EINVAL;
915d4d7b
CEB
2323 if (page_nr < maxpages) {
2324 swap_map[page_nr] = SWAP_MAP_BAD;
2325 nr_good_pages--;
2a8f9449
SL
2326 /*
2327 * Haven't marked the cluster free yet, no list
2328 * operation involved
2329 */
2330 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2331 }
2332 }
2333
2a8f9449
SL
2334 /* Haven't marked the cluster free yet, no list operation involved */
2335 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2336 inc_cluster_info_page(p, cluster_info, i);
2337
915d4d7b
CEB
2338 if (nr_good_pages) {
2339 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2340 /*
2341 * Not mark the cluster free yet, no list
2342 * operation involved
2343 */
2344 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2345 p->max = maxpages;
2346 p->pages = nr_good_pages;
2347 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2348 if (nr_extents < 0)
2349 return nr_extents;
915d4d7b
CEB
2350 nr_good_pages = p->pages;
2351 }
2352 if (!nr_good_pages) {
465c47fd 2353 pr_warn("Empty swap-file\n");
bdb8e3f6 2354 return -EINVAL;
915d4d7b
CEB
2355 }
2356
2a8f9449
SL
2357 if (!cluster_info)
2358 return nr_extents;
2359
2360 for (i = 0; i < nr_clusters; i++) {
2361 if (!cluster_count(&cluster_info[idx])) {
2362 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
2363 cluster_list_add_tail(&p->free_clusters, cluster_info,
2364 idx);
2a8f9449
SL
2365 }
2366 idx++;
2367 if (idx == nr_clusters)
2368 idx = 0;
2369 }
915d4d7b 2370 return nr_extents;
915d4d7b
CEB
2371}
2372
dcf6b7dd
RA
2373/*
2374 * Helper to sys_swapon determining if a given swap
2375 * backing device queue supports DISCARD operations.
2376 */
2377static bool swap_discardable(struct swap_info_struct *si)
2378{
2379 struct request_queue *q = bdev_get_queue(si->bdev);
2380
2381 if (!q || !blk_queue_discard(q))
2382 return false;
2383
2384 return true;
2385}
2386
53cbb243
CEB
2387SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2388{
2389 struct swap_info_struct *p;
91a27b2a 2390 struct filename *name;
53cbb243
CEB
2391 struct file *swap_file = NULL;
2392 struct address_space *mapping;
40531542 2393 int prio;
53cbb243
CEB
2394 int error;
2395 union swap_header *swap_header;
915d4d7b 2396 int nr_extents;
53cbb243
CEB
2397 sector_t span;
2398 unsigned long maxpages;
53cbb243 2399 unsigned char *swap_map = NULL;
2a8f9449 2400 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 2401 unsigned long *frontswap_map = NULL;
53cbb243
CEB
2402 struct page *page = NULL;
2403 struct inode *inode = NULL;
53cbb243 2404
d15cab97
HD
2405 if (swap_flags & ~SWAP_FLAGS_VALID)
2406 return -EINVAL;
2407
53cbb243
CEB
2408 if (!capable(CAP_SYS_ADMIN))
2409 return -EPERM;
2410
2411 p = alloc_swap_info();
2542e513
CEB
2412 if (IS_ERR(p))
2413 return PTR_ERR(p);
53cbb243 2414
815c2c54
SL
2415 INIT_WORK(&p->discard_work, swap_discard_work);
2416
1da177e4 2417 name = getname(specialfile);
1da177e4 2418 if (IS_ERR(name)) {
7de7fb6b 2419 error = PTR_ERR(name);
1da177e4 2420 name = NULL;
bd69010b 2421 goto bad_swap;
1da177e4 2422 }
669abf4e 2423 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 2424 if (IS_ERR(swap_file)) {
7de7fb6b 2425 error = PTR_ERR(swap_file);
1da177e4 2426 swap_file = NULL;
bd69010b 2427 goto bad_swap;
1da177e4
LT
2428 }
2429
2430 p->swap_file = swap_file;
2431 mapping = swap_file->f_mapping;
2130781e 2432 inode = mapping->host;
6f179af8 2433
5955102c 2434 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
4d0e1e10
CEB
2435 error = claim_swapfile(p, inode);
2436 if (unlikely(error))
1da177e4 2437 goto bad_swap;
1da177e4 2438
1da177e4
LT
2439 /*
2440 * Read the swap header.
2441 */
2442 if (!mapping->a_ops->readpage) {
2443 error = -EINVAL;
2444 goto bad_swap;
2445 }
090d2b18 2446 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
2447 if (IS_ERR(page)) {
2448 error = PTR_ERR(page);
2449 goto bad_swap;
2450 }
81e33971 2451 swap_header = kmap(page);
1da177e4 2452
ca8bd38b
CEB
2453 maxpages = read_swap_header(p, swap_header, inode);
2454 if (unlikely(!maxpages)) {
1da177e4
LT
2455 error = -EINVAL;
2456 goto bad_swap;
2457 }
886bb7e9 2458
81e33971 2459 /* OK, set up the swap map and apply the bad block list */
803d0c83 2460 swap_map = vzalloc(maxpages);
81e33971
HD
2461 if (!swap_map) {
2462 error = -ENOMEM;
2463 goto bad_swap;
2464 }
f0571429
MK
2465
2466 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2467 p->flags |= SWP_STABLE_WRITES;
2468
2a8f9449 2469 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8
HD
2470 int cpu;
2471
2a8f9449
SL
2472 p->flags |= SWP_SOLIDSTATE;
2473 /*
2474 * select a random position to start with to help wear leveling
2475 * SSD
2476 */
2477 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2478
2479 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2480 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2481 if (!cluster_info) {
2482 error = -ENOMEM;
2483 goto bad_swap;
2484 }
ebc2a1a6
SL
2485 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2486 if (!p->percpu_cluster) {
2487 error = -ENOMEM;
2488 goto bad_swap;
2489 }
6f179af8 2490 for_each_possible_cpu(cpu) {
ebc2a1a6 2491 struct percpu_cluster *cluster;
6f179af8 2492 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
2493 cluster_set_null(&cluster->index);
2494 }
2a8f9449 2495 }
1da177e4 2496
1421ef3c
CEB
2497 error = swap_cgroup_swapon(p->type, maxpages);
2498 if (error)
2499 goto bad_swap;
2500
915d4d7b 2501 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 2502 cluster_info, maxpages, &span);
915d4d7b
CEB
2503 if (unlikely(nr_extents < 0)) {
2504 error = nr_extents;
1da177e4
LT
2505 goto bad_swap;
2506 }
38b5faf4 2507 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 2508 if (IS_ENABLED(CONFIG_FRONTSWAP))
7b57976d 2509 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
1da177e4 2510
2a8f9449
SL
2511 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2512 /*
2513 * When discard is enabled for swap with no particular
2514 * policy flagged, we set all swap discard flags here in
2515 * order to sustain backward compatibility with older
2516 * swapon(8) releases.
2517 */
2518 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2519 SWP_PAGE_DISCARD);
dcf6b7dd 2520
2a8f9449
SL
2521 /*
2522 * By flagging sys_swapon, a sysadmin can tell us to
2523 * either do single-time area discards only, or to just
2524 * perform discards for released swap page-clusters.
2525 * Now it's time to adjust the p->flags accordingly.
2526 */
2527 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2528 p->flags &= ~SWP_PAGE_DISCARD;
2529 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2530 p->flags &= ~SWP_AREA_DISCARD;
2531
2532 /* issue a swapon-time discard if it's still required */
2533 if (p->flags & SWP_AREA_DISCARD) {
2534 int err = discard_swap(p);
2535 if (unlikely(err))
2536 pr_err("swapon: discard_swap(%p): %d\n",
2537 p, err);
dcf6b7dd 2538 }
20137a49 2539 }
6a6ba831 2540
fc0abb14 2541 mutex_lock(&swapon_mutex);
40531542 2542 prio = -1;
78ecba08 2543 if (swap_flags & SWAP_FLAG_PREFER)
40531542 2544 prio =
78ecba08 2545 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 2546 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 2547
756a025f 2548 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 2549 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
2550 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2551 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 2552 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
2553 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2554 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 2555 (frontswap_map) ? "FS" : "");
c69dbfb8 2556
fc0abb14 2557 mutex_unlock(&swapon_mutex);
66d7dd51
KS
2558 atomic_inc(&proc_poll_event);
2559 wake_up_interruptible(&proc_poll_wait);
2560
9b01c350
CEB
2561 if (S_ISREG(inode->i_mode))
2562 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
2563 error = 0;
2564 goto out;
2565bad_swap:
ebc2a1a6
SL
2566 free_percpu(p->percpu_cluster);
2567 p->percpu_cluster = NULL;
bd69010b 2568 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
2569 set_blocksize(p->bdev, p->old_block_size);
2570 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2571 }
4cd3bb10 2572 destroy_swap_extents(p);
e8e6c2ec 2573 swap_cgroup_swapoff(p->type);
5d337b91 2574 spin_lock(&swap_lock);
1da177e4 2575 p->swap_file = NULL;
1da177e4 2576 p->flags = 0;
5d337b91 2577 spin_unlock(&swap_lock);
1da177e4 2578 vfree(swap_map);
2a8f9449 2579 vfree(cluster_info);
52c50567 2580 if (swap_file) {
2130781e 2581 if (inode && S_ISREG(inode->i_mode)) {
5955102c 2582 inode_unlock(inode);
2130781e
CEB
2583 inode = NULL;
2584 }
1da177e4 2585 filp_close(swap_file, NULL);
52c50567 2586 }
1da177e4
LT
2587out:
2588 if (page && !IS_ERR(page)) {
2589 kunmap(page);
09cbfeaf 2590 put_page(page);
1da177e4
LT
2591 }
2592 if (name)
2593 putname(name);
9b01c350 2594 if (inode && S_ISREG(inode->i_mode))
5955102c 2595 inode_unlock(inode);
1da177e4
LT
2596 return error;
2597}
2598
2599void si_swapinfo(struct sysinfo *val)
2600{
efa90a98 2601 unsigned int type;
1da177e4
LT
2602 unsigned long nr_to_be_unused = 0;
2603
5d337b91 2604 spin_lock(&swap_lock);
efa90a98
HD
2605 for (type = 0; type < nr_swapfiles; type++) {
2606 struct swap_info_struct *si = swap_info[type];
2607
2608 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2609 nr_to_be_unused += si->inuse_pages;
1da177e4 2610 }
ec8acf20 2611 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 2612 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2613 spin_unlock(&swap_lock);
1da177e4
LT
2614}
2615
2616/*
2617 * Verify that a swap entry is valid and increment its swap map count.
2618 *
355cfa73
KH
2619 * Returns error code in following case.
2620 * - success -> 0
2621 * - swp_entry is invalid -> EINVAL
2622 * - swp_entry is migration entry -> EINVAL
2623 * - swap-cache reference is requested but there is already one. -> EEXIST
2624 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2625 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2626 */
8d69aaee 2627static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2628{
73c34b6a 2629 struct swap_info_struct *p;
1da177e4 2630 unsigned long offset, type;
8d69aaee
HD
2631 unsigned char count;
2632 unsigned char has_cache;
253d553b 2633 int err = -EINVAL;
1da177e4 2634
a7420aa5 2635 if (non_swap_entry(entry))
253d553b 2636 goto out;
0697212a 2637
1da177e4
LT
2638 type = swp_type(entry);
2639 if (type >= nr_swapfiles)
2640 goto bad_file;
efa90a98 2641 p = swap_info[type];
1da177e4
LT
2642 offset = swp_offset(entry);
2643
ec8acf20 2644 spin_lock(&p->lock);
355cfa73
KH
2645 if (unlikely(offset >= p->max))
2646 goto unlock_out;
2647
253d553b 2648 count = p->swap_map[offset];
edfe23da
SL
2649
2650 /*
2651 * swapin_readahead() doesn't check if a swap entry is valid, so the
2652 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2653 */
2654 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2655 err = -ENOENT;
2656 goto unlock_out;
2657 }
2658
253d553b
HD
2659 has_cache = count & SWAP_HAS_CACHE;
2660 count &= ~SWAP_HAS_CACHE;
2661 err = 0;
355cfa73 2662
253d553b 2663 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2664
2665 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2666 if (!has_cache && count)
2667 has_cache = SWAP_HAS_CACHE;
2668 else if (has_cache) /* someone else added cache */
2669 err = -EEXIST;
2670 else /* no users remaining */
2671 err = -ENOENT;
355cfa73
KH
2672
2673 } else if (count || has_cache) {
253d553b 2674
570a335b
HD
2675 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2676 count += usage;
2677 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2678 err = -EINVAL;
570a335b
HD
2679 else if (swap_count_continued(p, offset, count))
2680 count = COUNT_CONTINUED;
2681 else
2682 err = -ENOMEM;
355cfa73 2683 } else
253d553b
HD
2684 err = -ENOENT; /* unused swap entry */
2685
2686 p->swap_map[offset] = count | has_cache;
2687
355cfa73 2688unlock_out:
ec8acf20 2689 spin_unlock(&p->lock);
1da177e4 2690out:
253d553b 2691 return err;
1da177e4
LT
2692
2693bad_file:
465c47fd 2694 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
2695 goto out;
2696}
253d553b 2697
aaa46865
HD
2698/*
2699 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2700 * (in which case its reference count is never incremented).
2701 */
2702void swap_shmem_alloc(swp_entry_t entry)
2703{
2704 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2705}
2706
355cfa73 2707/*
08259d58
HD
2708 * Increase reference count of swap entry by 1.
2709 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2710 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2711 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2712 * might occur if a page table entry has got corrupted.
355cfa73 2713 */
570a335b 2714int swap_duplicate(swp_entry_t entry)
355cfa73 2715{
570a335b
HD
2716 int err = 0;
2717
2718 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2719 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2720 return err;
355cfa73 2721}
1da177e4 2722
cb4b86ba 2723/*
355cfa73
KH
2724 * @entry: swap entry for which we allocate swap cache.
2725 *
73c34b6a 2726 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2727 * This can return error codes. Returns 0 at success.
2728 * -EBUSY means there is a swap cache.
2729 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2730 */
2731int swapcache_prepare(swp_entry_t entry)
2732{
253d553b 2733 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2734}
2735
f981c595
MG
2736struct swap_info_struct *page_swap_info(struct page *page)
2737{
2738 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
2739 return swap_info[swp_type(swap)];
2740}
2741
2742/*
2743 * out-of-line __page_file_ methods to avoid include hell.
2744 */
2745struct address_space *__page_file_mapping(struct page *page)
2746{
309381fe 2747 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2748 return page_swap_info(page)->swap_file->f_mapping;
2749}
2750EXPORT_SYMBOL_GPL(__page_file_mapping);
2751
2752pgoff_t __page_file_index(struct page *page)
2753{
2754 swp_entry_t swap = { .val = page_private(page) };
309381fe 2755 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2756 return swp_offset(swap);
2757}
2758EXPORT_SYMBOL_GPL(__page_file_index);
2759
570a335b
HD
2760/*
2761 * add_swap_count_continuation - called when a swap count is duplicated
2762 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2763 * page of the original vmalloc'ed swap_map, to hold the continuation count
2764 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2765 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2766 *
2767 * These continuation pages are seldom referenced: the common paths all work
2768 * on the original swap_map, only referring to a continuation page when the
2769 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2770 *
2771 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2772 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2773 * can be called after dropping locks.
2774 */
2775int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2776{
2777 struct swap_info_struct *si;
2778 struct page *head;
2779 struct page *page;
2780 struct page *list_page;
2781 pgoff_t offset;
2782 unsigned char count;
2783
2784 /*
2785 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2786 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2787 */
2788 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2789
2790 si = swap_info_get(entry);
2791 if (!si) {
2792 /*
2793 * An acceptable race has occurred since the failing
2794 * __swap_duplicate(): the swap entry has been freed,
2795 * perhaps even the whole swap_map cleared for swapoff.
2796 */
2797 goto outer;
2798 }
2799
2800 offset = swp_offset(entry);
2801 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2802
2803 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2804 /*
2805 * The higher the swap count, the more likely it is that tasks
2806 * will race to add swap count continuation: we need to avoid
2807 * over-provisioning.
2808 */
2809 goto out;
2810 }
2811
2812 if (!page) {
ec8acf20 2813 spin_unlock(&si->lock);
570a335b
HD
2814 return -ENOMEM;
2815 }
2816
2817 /*
2818 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
2819 * no architecture is using highmem pages for kernel page tables: so it
2820 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
2821 */
2822 head = vmalloc_to_page(si->swap_map + offset);
2823 offset &= ~PAGE_MASK;
2824
2825 /*
2826 * Page allocation does not initialize the page's lru field,
2827 * but it does always reset its private field.
2828 */
2829 if (!page_private(head)) {
2830 BUG_ON(count & COUNT_CONTINUED);
2831 INIT_LIST_HEAD(&head->lru);
2832 set_page_private(head, SWP_CONTINUED);
2833 si->flags |= SWP_CONTINUED;
2834 }
2835
2836 list_for_each_entry(list_page, &head->lru, lru) {
2837 unsigned char *map;
2838
2839 /*
2840 * If the previous map said no continuation, but we've found
2841 * a continuation page, free our allocation and use this one.
2842 */
2843 if (!(count & COUNT_CONTINUED))
2844 goto out;
2845
9b04c5fe 2846 map = kmap_atomic(list_page) + offset;
570a335b 2847 count = *map;
9b04c5fe 2848 kunmap_atomic(map);
570a335b
HD
2849
2850 /*
2851 * If this continuation count now has some space in it,
2852 * free our allocation and use this one.
2853 */
2854 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2855 goto out;
2856 }
2857
2858 list_add_tail(&page->lru, &head->lru);
2859 page = NULL; /* now it's attached, don't free it */
2860out:
ec8acf20 2861 spin_unlock(&si->lock);
570a335b
HD
2862outer:
2863 if (page)
2864 __free_page(page);
2865 return 0;
2866}
2867
2868/*
2869 * swap_count_continued - when the original swap_map count is incremented
2870 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2871 * into, carry if so, or else fail until a new continuation page is allocated;
2872 * when the original swap_map count is decremented from 0 with continuation,
2873 * borrow from the continuation and report whether it still holds more.
2874 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2875 */
2876static bool swap_count_continued(struct swap_info_struct *si,
2877 pgoff_t offset, unsigned char count)
2878{
2879 struct page *head;
2880 struct page *page;
2881 unsigned char *map;
2882
2883 head = vmalloc_to_page(si->swap_map + offset);
2884 if (page_private(head) != SWP_CONTINUED) {
2885 BUG_ON(count & COUNT_CONTINUED);
2886 return false; /* need to add count continuation */
2887 }
2888
2889 offset &= ~PAGE_MASK;
2890 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 2891 map = kmap_atomic(page) + offset;
570a335b
HD
2892
2893 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2894 goto init_map; /* jump over SWAP_CONT_MAX checks */
2895
2896 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2897 /*
2898 * Think of how you add 1 to 999
2899 */
2900 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 2901 kunmap_atomic(map);
570a335b
HD
2902 page = list_entry(page->lru.next, struct page, lru);
2903 BUG_ON(page == head);
9b04c5fe 2904 map = kmap_atomic(page) + offset;
570a335b
HD
2905 }
2906 if (*map == SWAP_CONT_MAX) {
9b04c5fe 2907 kunmap_atomic(map);
570a335b
HD
2908 page = list_entry(page->lru.next, struct page, lru);
2909 if (page == head)
2910 return false; /* add count continuation */
9b04c5fe 2911 map = kmap_atomic(page) + offset;
570a335b
HD
2912init_map: *map = 0; /* we didn't zero the page */
2913 }
2914 *map += 1;
9b04c5fe 2915 kunmap_atomic(map);
570a335b
HD
2916 page = list_entry(page->lru.prev, struct page, lru);
2917 while (page != head) {
9b04c5fe 2918 map = kmap_atomic(page) + offset;
570a335b 2919 *map = COUNT_CONTINUED;
9b04c5fe 2920 kunmap_atomic(map);
570a335b
HD
2921 page = list_entry(page->lru.prev, struct page, lru);
2922 }
2923 return true; /* incremented */
2924
2925 } else { /* decrementing */
2926 /*
2927 * Think of how you subtract 1 from 1000
2928 */
2929 BUG_ON(count != COUNT_CONTINUED);
2930 while (*map == COUNT_CONTINUED) {
9b04c5fe 2931 kunmap_atomic(map);
570a335b
HD
2932 page = list_entry(page->lru.next, struct page, lru);
2933 BUG_ON(page == head);
9b04c5fe 2934 map = kmap_atomic(page) + offset;
570a335b
HD
2935 }
2936 BUG_ON(*map == 0);
2937 *map -= 1;
2938 if (*map == 0)
2939 count = 0;
9b04c5fe 2940 kunmap_atomic(map);
570a335b
HD
2941 page = list_entry(page->lru.prev, struct page, lru);
2942 while (page != head) {
9b04c5fe 2943 map = kmap_atomic(page) + offset;
570a335b
HD
2944 *map = SWAP_CONT_MAX | count;
2945 count = COUNT_CONTINUED;
9b04c5fe 2946 kunmap_atomic(map);
570a335b
HD
2947 page = list_entry(page->lru.prev, struct page, lru);
2948 }
2949 return count == COUNT_CONTINUED;
2950 }
2951}
2952
2953/*
2954 * free_swap_count_continuations - swapoff free all the continuation pages
2955 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2956 */
2957static void free_swap_count_continuations(struct swap_info_struct *si)
2958{
2959 pgoff_t offset;
2960
2961 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2962 struct page *head;
2963 head = vmalloc_to_page(si->swap_map + offset);
2964 if (page_private(head)) {
0d576d20
GT
2965 struct page *page, *next;
2966
2967 list_for_each_entry_safe(page, next, &head->lru, lru) {
2968 list_del(&page->lru);
570a335b
HD
2969 __free_page(page);
2970 }
2971 }
2972 }
2973}