]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/truncate.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / mm / truncate.c
CommitLineData
1da177e4
LT
1/*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
e1f8e874 6 * 10Sep2002 Andrew Morton
1da177e4
LT
7 * Initial version.
8 */
9
10#include <linux/kernel.h>
4af3c9cc 11#include <linux/backing-dev.h>
f9fe48be 12#include <linux/dax.h>
5a0e3ad6 13#include <linux/gfp.h>
1da177e4 14#include <linux/mm.h>
0fd0e6b0 15#include <linux/swap.h>
b95f1b31 16#include <linux/export.h>
1da177e4 17#include <linux/pagemap.h>
01f2705d 18#include <linux/highmem.h>
1da177e4 19#include <linux/pagevec.h>
e08748ce 20#include <linux/task_io_accounting_ops.h>
1da177e4 21#include <linux/buffer_head.h> /* grr. try_to_release_page,
aaa4059b 22 do_invalidatepage */
c515e1fd 23#include <linux/cleancache.h>
90a80202 24#include <linux/rmap.h>
ba470de4 25#include "internal.h"
1da177e4 26
c6dcf52c
JK
27static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
28 void *entry)
0cd6144a 29{
449dd698
JW
30 struct radix_tree_node *node;
31 void **slot;
32
ac401cc7
JK
33 spin_lock_irq(&mapping->tree_lock);
34 /*
35 * Regular page slots are stabilized by the page lock even
36 * without the tree itself locked. These unlocked entries
37 * need verification under the tree lock.
38 */
14b46879 39 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
ac401cc7
JK
40 goto unlock;
41 if (*slot != entry)
42 goto unlock;
14b46879
JW
43 __radix_tree_replace(&mapping->page_tree, node, slot, NULL,
44 workingset_update_node, mapping);
ac401cc7 45 mapping->nrexceptional--;
449dd698 46unlock:
0cd6144a
JW
47 spin_unlock_irq(&mapping->tree_lock);
48}
1da177e4 49
c6dcf52c
JK
50/*
51 * Unconditionally remove exceptional entry. Usually called from truncate path.
52 */
53static void truncate_exceptional_entry(struct address_space *mapping,
54 pgoff_t index, void *entry)
55{
56 /* Handled by shmem itself */
57 if (shmem_mapping(mapping))
58 return;
59
60 if (dax_mapping(mapping)) {
61 dax_delete_mapping_entry(mapping, index);
62 return;
63 }
64 clear_shadow_entry(mapping, index, entry);
65}
66
67/*
68 * Invalidate exceptional entry if easily possible. This handles exceptional
8b13a5f4 69 * entries for invalidate_inode_pages().
c6dcf52c
JK
70 */
71static int invalidate_exceptional_entry(struct address_space *mapping,
72 pgoff_t index, void *entry)
73{
8b13a5f4
RZ
74 /* Handled by shmem itself, or for DAX we do nothing. */
75 if (shmem_mapping(mapping) || dax_mapping(mapping))
c6dcf52c 76 return 1;
c6dcf52c
JK
77 clear_shadow_entry(mapping, index, entry);
78 return 1;
79}
80
81/*
82 * Invalidate exceptional entry if clean. This handles exceptional entries for
83 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
84 */
85static int invalidate_exceptional_entry2(struct address_space *mapping,
86 pgoff_t index, void *entry)
87{
88 /* Handled by shmem itself */
89 if (shmem_mapping(mapping))
90 return 1;
91 if (dax_mapping(mapping))
92 return dax_invalidate_mapping_entry_sync(mapping, index);
93 clear_shadow_entry(mapping, index, entry);
94 return 1;
95}
96
cf9a2ae8 97/**
28bc44d7 98 * do_invalidatepage - invalidate part or all of a page
cf9a2ae8 99 * @page: the page which is affected
d47992f8
LC
100 * @offset: start of the range to invalidate
101 * @length: length of the range to invalidate
cf9a2ae8
DH
102 *
103 * do_invalidatepage() is called when all or part of the page has become
104 * invalidated by a truncate operation.
105 *
106 * do_invalidatepage() does not have to release all buffers, but it must
107 * ensure that no dirty buffer is left outside @offset and that no I/O
108 * is underway against any of the blocks which are outside the truncation
109 * point. Because the caller is about to free (and possibly reuse) those
110 * blocks on-disk.
111 */
d47992f8
LC
112void do_invalidatepage(struct page *page, unsigned int offset,
113 unsigned int length)
cf9a2ae8 114{
d47992f8
LC
115 void (*invalidatepage)(struct page *, unsigned int, unsigned int);
116
cf9a2ae8 117 invalidatepage = page->mapping->a_ops->invalidatepage;
9361401e 118#ifdef CONFIG_BLOCK
cf9a2ae8
DH
119 if (!invalidatepage)
120 invalidatepage = block_invalidatepage;
9361401e 121#endif
cf9a2ae8 122 if (invalidatepage)
d47992f8 123 (*invalidatepage)(page, offset, length);
cf9a2ae8
DH
124}
125
1da177e4
LT
126/*
127 * If truncate cannot remove the fs-private metadata from the page, the page
62e1c553 128 * becomes orphaned. It will be left on the LRU and may even be mapped into
54cb8821 129 * user pagetables if we're racing with filemap_fault().
1da177e4
LT
130 *
131 * We need to bale out if page->mapping is no longer equal to the original
132 * mapping. This happens a) when the VM reclaimed the page while we waited on
fc0ecff6 133 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
1da177e4
LT
134 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
135 */
750b4987 136static int
1da177e4
LT
137truncate_complete_page(struct address_space *mapping, struct page *page)
138{
139 if (page->mapping != mapping)
750b4987 140 return -EIO;
1da177e4 141
266cf658 142 if (page_has_private(page))
09cbfeaf 143 do_invalidatepage(page, 0, PAGE_SIZE);
1da177e4 144
b9ea2515
KK
145 /*
146 * Some filesystems seem to re-dirty the page even after
147 * the VM has canceled the dirty bit (eg ext3 journaling).
148 * Hence dirty accounting check is placed after invalidation.
149 */
11f81bec 150 cancel_dirty_page(page);
1da177e4 151 ClearPageMappedToDisk(page);
5adc7b51 152 delete_from_page_cache(page);
750b4987 153 return 0;
1da177e4
LT
154}
155
156/*
fc0ecff6 157 * This is for invalidate_mapping_pages(). That function can be called at
1da177e4 158 * any time, and is not supposed to throw away dirty pages. But pages can
0fd0e6b0
NP
159 * be marked dirty at any time too, so use remove_mapping which safely
160 * discards clean, unused pages.
1da177e4
LT
161 *
162 * Returns non-zero if the page was successfully invalidated.
163 */
164static int
165invalidate_complete_page(struct address_space *mapping, struct page *page)
166{
0fd0e6b0
NP
167 int ret;
168
1da177e4
LT
169 if (page->mapping != mapping)
170 return 0;
171
266cf658 172 if (page_has_private(page) && !try_to_release_page(page, 0))
1da177e4
LT
173 return 0;
174
0fd0e6b0 175 ret = remove_mapping(mapping, page);
0fd0e6b0
NP
176
177 return ret;
1da177e4
LT
178}
179
750b4987
NP
180int truncate_inode_page(struct address_space *mapping, struct page *page)
181{
fc127da0
KS
182 loff_t holelen;
183 VM_BUG_ON_PAGE(PageTail(page), page);
184
185 holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE;
750b4987
NP
186 if (page_mapped(page)) {
187 unmap_mapping_range(mapping,
09cbfeaf 188 (loff_t)page->index << PAGE_SHIFT,
fc127da0 189 holelen, 0);
750b4987
NP
190 }
191 return truncate_complete_page(mapping, page);
192}
193
25718736
AK
194/*
195 * Used to get rid of pages on hardware memory corruption.
196 */
197int generic_error_remove_page(struct address_space *mapping, struct page *page)
198{
199 if (!mapping)
200 return -EINVAL;
201 /*
202 * Only punch for normal data pages for now.
203 * Handling other types like directories would need more auditing.
204 */
205 if (!S_ISREG(mapping->host->i_mode))
206 return -EIO;
207 return truncate_inode_page(mapping, page);
208}
209EXPORT_SYMBOL(generic_error_remove_page);
210
83f78668
WF
211/*
212 * Safely invalidate one page from its pagecache mapping.
213 * It only drops clean, unused pages. The page must be locked.
214 *
215 * Returns 1 if the page is successfully invalidated, otherwise 0.
216 */
217int invalidate_inode_page(struct page *page)
218{
219 struct address_space *mapping = page_mapping(page);
220 if (!mapping)
221 return 0;
222 if (PageDirty(page) || PageWriteback(page))
223 return 0;
224 if (page_mapped(page))
225 return 0;
226 return invalidate_complete_page(mapping, page);
227}
228
1da177e4 229/**
73c1e204 230 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
1da177e4
LT
231 * @mapping: mapping to truncate
232 * @lstart: offset from which to truncate
5a720394 233 * @lend: offset to which to truncate (inclusive)
1da177e4 234 *
d7339071 235 * Truncate the page cache, removing the pages that are between
5a720394
LC
236 * specified offsets (and zeroing out partial pages
237 * if lstart or lend + 1 is not page aligned).
1da177e4
LT
238 *
239 * Truncate takes two passes - the first pass is nonblocking. It will not
240 * block on page locks and it will not block on writeback. The second pass
241 * will wait. This is to prevent as much IO as possible in the affected region.
242 * The first pass will remove most pages, so the search cost of the second pass
243 * is low.
244 *
1da177e4
LT
245 * We pass down the cache-hot hint to the page freeing code. Even if the
246 * mapping is large, it is probably the case that the final pages are the most
247 * recently touched, and freeing happens in ascending file offset order.
5a720394
LC
248 *
249 * Note that since ->invalidatepage() accepts range to invalidate
250 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
251 * page aligned properly.
1da177e4 252 */
d7339071
HR
253void truncate_inode_pages_range(struct address_space *mapping,
254 loff_t lstart, loff_t lend)
1da177e4 255{
5a720394
LC
256 pgoff_t start; /* inclusive */
257 pgoff_t end; /* exclusive */
258 unsigned int partial_start; /* inclusive */
259 unsigned int partial_end; /* exclusive */
260 struct pagevec pvec;
0cd6144a 261 pgoff_t indices[PAGEVEC_SIZE];
5a720394
LC
262 pgoff_t index;
263 int i;
1da177e4 264
3167760f 265 cleancache_invalidate_inode(mapping);
f9fe48be 266 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
1da177e4
LT
267 return;
268
5a720394 269 /* Offsets within partial pages */
09cbfeaf
KS
270 partial_start = lstart & (PAGE_SIZE - 1);
271 partial_end = (lend + 1) & (PAGE_SIZE - 1);
5a720394
LC
272
273 /*
274 * 'start' and 'end' always covers the range of pages to be fully
275 * truncated. Partial pages are covered with 'partial_start' at the
276 * start of the range and 'partial_end' at the end of the range.
277 * Note that 'end' is exclusive while 'lend' is inclusive.
278 */
09cbfeaf 279 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
5a720394
LC
280 if (lend == -1)
281 /*
282 * lend == -1 indicates end-of-file so we have to set 'end'
283 * to the highest possible pgoff_t and since the type is
284 * unsigned we're using -1.
285 */
286 end = -1;
287 else
09cbfeaf 288 end = (lend + 1) >> PAGE_SHIFT;
d7339071 289
1da177e4 290 pagevec_init(&pvec, 0);
b85e0eff 291 index = start;
0cd6144a
JW
292 while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
293 min(end - index, (pgoff_t)PAGEVEC_SIZE),
294 indices)) {
1da177e4
LT
295 for (i = 0; i < pagevec_count(&pvec); i++) {
296 struct page *page = pvec.pages[i];
1da177e4 297
b85e0eff 298 /* We rely upon deletion not changing page->index */
0cd6144a 299 index = indices[i];
5a720394 300 if (index >= end)
d7339071 301 break;
d7339071 302
0cd6144a 303 if (radix_tree_exceptional_entry(page)) {
c6dcf52c
JK
304 truncate_exceptional_entry(mapping, index,
305 page);
0cd6144a
JW
306 continue;
307 }
308
529ae9aa 309 if (!trylock_page(page))
1da177e4 310 continue;
5cbc198a 311 WARN_ON(page_to_index(page) != index);
1da177e4
LT
312 if (PageWriteback(page)) {
313 unlock_page(page);
314 continue;
315 }
750b4987 316 truncate_inode_page(mapping, page);
1da177e4
LT
317 unlock_page(page);
318 }
0cd6144a 319 pagevec_remove_exceptionals(&pvec);
1da177e4
LT
320 pagevec_release(&pvec);
321 cond_resched();
b85e0eff 322 index++;
1da177e4
LT
323 }
324
5a720394 325 if (partial_start) {
1da177e4
LT
326 struct page *page = find_lock_page(mapping, start - 1);
327 if (page) {
09cbfeaf 328 unsigned int top = PAGE_SIZE;
5a720394
LC
329 if (start > end) {
330 /* Truncation within a single page */
331 top = partial_end;
332 partial_end = 0;
333 }
1da177e4 334 wait_on_page_writeback(page);
5a720394
LC
335 zero_user_segment(page, partial_start, top);
336 cleancache_invalidate_page(mapping, page);
337 if (page_has_private(page))
338 do_invalidatepage(page, partial_start,
339 top - partial_start);
1da177e4 340 unlock_page(page);
09cbfeaf 341 put_page(page);
1da177e4
LT
342 }
343 }
5a720394
LC
344 if (partial_end) {
345 struct page *page = find_lock_page(mapping, end);
346 if (page) {
347 wait_on_page_writeback(page);
348 zero_user_segment(page, 0, partial_end);
349 cleancache_invalidate_page(mapping, page);
350 if (page_has_private(page))
351 do_invalidatepage(page, 0,
352 partial_end);
353 unlock_page(page);
09cbfeaf 354 put_page(page);
5a720394
LC
355 }
356 }
357 /*
358 * If the truncation happened within a single page no pages
359 * will be released, just zeroed, so we can bail out now.
360 */
361 if (start >= end)
362 return;
1da177e4 363
b85e0eff 364 index = start;
1da177e4
LT
365 for ( ; ; ) {
366 cond_resched();
0cd6144a 367 if (!pagevec_lookup_entries(&pvec, mapping, index,
792ceaef
HD
368 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
369 /* If all gone from start onwards, we're done */
b85e0eff 370 if (index == start)
1da177e4 371 break;
792ceaef 372 /* Otherwise restart to make sure all gone */
b85e0eff 373 index = start;
1da177e4
LT
374 continue;
375 }
0cd6144a 376 if (index == start && indices[0] >= end) {
792ceaef 377 /* All gone out of hole to be punched, we're done */
0cd6144a 378 pagevec_remove_exceptionals(&pvec);
d7339071
HR
379 pagevec_release(&pvec);
380 break;
381 }
1da177e4
LT
382 for (i = 0; i < pagevec_count(&pvec); i++) {
383 struct page *page = pvec.pages[i];
384
b85e0eff 385 /* We rely upon deletion not changing page->index */
0cd6144a 386 index = indices[i];
792ceaef
HD
387 if (index >= end) {
388 /* Restart punch to make sure all gone */
389 index = start - 1;
d7339071 390 break;
792ceaef 391 }
b85e0eff 392
0cd6144a 393 if (radix_tree_exceptional_entry(page)) {
c6dcf52c
JK
394 truncate_exceptional_entry(mapping, index,
395 page);
0cd6144a
JW
396 continue;
397 }
398
1da177e4 399 lock_page(page);
5cbc198a 400 WARN_ON(page_to_index(page) != index);
1da177e4 401 wait_on_page_writeback(page);
750b4987 402 truncate_inode_page(mapping, page);
1da177e4
LT
403 unlock_page(page);
404 }
0cd6144a 405 pagevec_remove_exceptionals(&pvec);
1da177e4 406 pagevec_release(&pvec);
b85e0eff 407 index++;
1da177e4 408 }
3167760f 409 cleancache_invalidate_inode(mapping);
1da177e4 410}
d7339071 411EXPORT_SYMBOL(truncate_inode_pages_range);
1da177e4 412
d7339071
HR
413/**
414 * truncate_inode_pages - truncate *all* the pages from an offset
415 * @mapping: mapping to truncate
416 * @lstart: offset from which to truncate
417 *
1b1dcc1b 418 * Called under (and serialised by) inode->i_mutex.
08142579
JK
419 *
420 * Note: When this function returns, there can be a page in the process of
421 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
422 * mapping->nrpages can be non-zero when this function returns even after
423 * truncation of the whole mapping.
d7339071
HR
424 */
425void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
426{
427 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
428}
1da177e4
LT
429EXPORT_SYMBOL(truncate_inode_pages);
430
91b0abe3
JW
431/**
432 * truncate_inode_pages_final - truncate *all* pages before inode dies
433 * @mapping: mapping to truncate
434 *
435 * Called under (and serialized by) inode->i_mutex.
436 *
437 * Filesystems have to use this in the .evict_inode path to inform the
438 * VM that this is the final truncate and the inode is going away.
439 */
440void truncate_inode_pages_final(struct address_space *mapping)
441{
f9fe48be 442 unsigned long nrexceptional;
91b0abe3
JW
443 unsigned long nrpages;
444
445 /*
446 * Page reclaim can not participate in regular inode lifetime
447 * management (can't call iput()) and thus can race with the
448 * inode teardown. Tell it when the address space is exiting,
449 * so that it does not install eviction information after the
450 * final truncate has begun.
451 */
452 mapping_set_exiting(mapping);
453
454 /*
455 * When reclaim installs eviction entries, it increases
f9fe48be 456 * nrexceptional first, then decreases nrpages. Make sure we see
91b0abe3
JW
457 * this in the right order or we might miss an entry.
458 */
459 nrpages = mapping->nrpages;
460 smp_rmb();
f9fe48be 461 nrexceptional = mapping->nrexceptional;
91b0abe3 462
f9fe48be 463 if (nrpages || nrexceptional) {
91b0abe3
JW
464 /*
465 * As truncation uses a lockless tree lookup, cycle
466 * the tree lock to make sure any ongoing tree
467 * modification that does not see AS_EXITING is
468 * completed before starting the final truncate.
469 */
470 spin_lock_irq(&mapping->tree_lock);
471 spin_unlock_irq(&mapping->tree_lock);
472
473 truncate_inode_pages(mapping, 0);
474 }
475}
476EXPORT_SYMBOL(truncate_inode_pages_final);
477
28697355
MW
478/**
479 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
480 * @mapping: the address_space which holds the pages to invalidate
481 * @start: the offset 'from' which to invalidate
482 * @end: the offset 'to' which to invalidate (inclusive)
483 *
484 * This function only removes the unlocked pages, if you want to
485 * remove all the pages of one inode, you must call truncate_inode_pages.
486 *
487 * invalidate_mapping_pages() will not block on IO activity. It will not
488 * invalidate pages which are dirty, locked, under writeback or mapped into
489 * pagetables.
490 */
491unsigned long invalidate_mapping_pages(struct address_space *mapping,
31560180 492 pgoff_t start, pgoff_t end)
1da177e4 493{
0cd6144a 494 pgoff_t indices[PAGEVEC_SIZE];
1da177e4 495 struct pagevec pvec;
b85e0eff 496 pgoff_t index = start;
31560180
MK
497 unsigned long ret;
498 unsigned long count = 0;
1da177e4
LT
499 int i;
500
501 pagevec_init(&pvec, 0);
0cd6144a
JW
502 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
503 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
504 indices)) {
1da177e4
LT
505 for (i = 0; i < pagevec_count(&pvec); i++) {
506 struct page *page = pvec.pages[i];
e0f23603 507
b85e0eff 508 /* We rely upon deletion not changing page->index */
0cd6144a 509 index = indices[i];
b85e0eff
HD
510 if (index > end)
511 break;
e0f23603 512
0cd6144a 513 if (radix_tree_exceptional_entry(page)) {
c6dcf52c
JK
514 invalidate_exceptional_entry(mapping, index,
515 page);
0cd6144a
JW
516 continue;
517 }
518
b85e0eff
HD
519 if (!trylock_page(page))
520 continue;
fc127da0 521
5cbc198a 522 WARN_ON(page_to_index(page) != index);
fc127da0
KS
523
524 /* Middle of THP: skip */
525 if (PageTransTail(page)) {
526 unlock_page(page);
527 continue;
528 } else if (PageTransHuge(page)) {
529 index += HPAGE_PMD_NR - 1;
530 i += HPAGE_PMD_NR - 1;
531 /* 'end' is in the middle of THP */
532 if (index == round_down(end, HPAGE_PMD_NR))
533 continue;
534 }
535
31560180 536 ret = invalidate_inode_page(page);
1da177e4 537 unlock_page(page);
31560180
MK
538 /*
539 * Invalidation is a hint that the page is no longer
540 * of interest and try to speed up its reclaim.
541 */
542 if (!ret)
cc5993bd 543 deactivate_file_page(page);
31560180 544 count += ret;
1da177e4 545 }
0cd6144a 546 pagevec_remove_exceptionals(&pvec);
1da177e4 547 pagevec_release(&pvec);
28697355 548 cond_resched();
b85e0eff 549 index++;
1da177e4 550 }
31560180 551 return count;
1da177e4 552}
54bc4855 553EXPORT_SYMBOL(invalidate_mapping_pages);
1da177e4 554
bd4c8ce4
AM
555/*
556 * This is like invalidate_complete_page(), except it ignores the page's
557 * refcount. We do this because invalidate_inode_pages2() needs stronger
558 * invalidation guarantees, and cannot afford to leave pages behind because
2706a1b8
AB
559 * shrink_page_list() has a temp ref on them, or because they're transiently
560 * sitting in the lru_cache_add() pagevecs.
bd4c8ce4
AM
561 */
562static int
563invalidate_complete_page2(struct address_space *mapping, struct page *page)
564{
c4843a75
GT
565 unsigned long flags;
566
bd4c8ce4
AM
567 if (page->mapping != mapping)
568 return 0;
569
266cf658 570 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
bd4c8ce4
AM
571 return 0;
572
c4843a75 573 spin_lock_irqsave(&mapping->tree_lock, flags);
bd4c8ce4
AM
574 if (PageDirty(page))
575 goto failed;
576
266cf658 577 BUG_ON(page_has_private(page));
62cccb8c 578 __delete_from_page_cache(page, NULL);
c4843a75 579 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
580
581 if (mapping->a_ops->freepage)
582 mapping->a_ops->freepage(page);
583
09cbfeaf 584 put_page(page); /* pagecache ref */
bd4c8ce4
AM
585 return 1;
586failed:
c4843a75 587 spin_unlock_irqrestore(&mapping->tree_lock, flags);
bd4c8ce4
AM
588 return 0;
589}
590
e3db7691
TM
591static int do_launder_page(struct address_space *mapping, struct page *page)
592{
593 if (!PageDirty(page))
594 return 0;
595 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
596 return 0;
597 return mapping->a_ops->launder_page(page);
598}
599
1da177e4
LT
600/**
601 * invalidate_inode_pages2_range - remove range of pages from an address_space
67be2dd1 602 * @mapping: the address_space
1da177e4
LT
603 * @start: the page offset 'from' which to invalidate
604 * @end: the page offset 'to' which to invalidate (inclusive)
605 *
606 * Any pages which are found to be mapped into pagetables are unmapped prior to
607 * invalidation.
608 *
6ccfa806 609 * Returns -EBUSY if any pages could not be invalidated.
1da177e4
LT
610 */
611int invalidate_inode_pages2_range(struct address_space *mapping,
612 pgoff_t start, pgoff_t end)
613{
0cd6144a 614 pgoff_t indices[PAGEVEC_SIZE];
1da177e4 615 struct pagevec pvec;
b85e0eff 616 pgoff_t index;
1da177e4
LT
617 int i;
618 int ret = 0;
0dd1334f 619 int ret2 = 0;
1da177e4 620 int did_range_unmap = 0;
1da177e4 621
3167760f 622 cleancache_invalidate_inode(mapping);
1da177e4 623 pagevec_init(&pvec, 0);
b85e0eff 624 index = start;
0cd6144a
JW
625 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
626 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
627 indices)) {
7b965e08 628 for (i = 0; i < pagevec_count(&pvec); i++) {
1da177e4 629 struct page *page = pvec.pages[i];
b85e0eff
HD
630
631 /* We rely upon deletion not changing page->index */
0cd6144a 632 index = indices[i];
b85e0eff
HD
633 if (index > end)
634 break;
1da177e4 635
0cd6144a 636 if (radix_tree_exceptional_entry(page)) {
c6dcf52c
JK
637 if (!invalidate_exceptional_entry2(mapping,
638 index, page))
639 ret = -EBUSY;
0cd6144a
JW
640 continue;
641 }
642
1da177e4 643 lock_page(page);
5cbc198a 644 WARN_ON(page_to_index(page) != index);
1da177e4
LT
645 if (page->mapping != mapping) {
646 unlock_page(page);
647 continue;
648 }
1da177e4 649 wait_on_page_writeback(page);
d00806b1 650 if (page_mapped(page)) {
1da177e4
LT
651 if (!did_range_unmap) {
652 /*
653 * Zap the rest of the file in one hit.
654 */
655 unmap_mapping_range(mapping,
09cbfeaf 656 (loff_t)index << PAGE_SHIFT,
b85e0eff 657 (loff_t)(1 + end - index)
09cbfeaf
KS
658 << PAGE_SHIFT,
659 0);
1da177e4
LT
660 did_range_unmap = 1;
661 } else {
662 /*
663 * Just zap this page
664 */
665 unmap_mapping_range(mapping,
09cbfeaf
KS
666 (loff_t)index << PAGE_SHIFT,
667 PAGE_SIZE, 0);
1da177e4
LT
668 }
669 }
d00806b1 670 BUG_ON(page_mapped(page));
0dd1334f
HH
671 ret2 = do_launder_page(mapping, page);
672 if (ret2 == 0) {
673 if (!invalidate_complete_page2(mapping, page))
6ccfa806 674 ret2 = -EBUSY;
0dd1334f
HH
675 }
676 if (ret2 < 0)
677 ret = ret2;
1da177e4
LT
678 unlock_page(page);
679 }
0cd6144a 680 pagevec_remove_exceptionals(&pvec);
1da177e4
LT
681 pagevec_release(&pvec);
682 cond_resched();
b85e0eff 683 index++;
1da177e4 684 }
32250644
JK
685 /*
686 * For DAX we invalidate page tables after invalidating radix tree. We
687 * could invalidate page tables while invalidating each entry however
688 * that would be expensive. And doing range unmapping before doesn't
689 * work as we have no cheap way to find whether radix tree entry didn't
690 * get remapped later.
691 */
692 if (dax_mapping(mapping)) {
693 unmap_mapping_range(mapping, (loff_t)start << PAGE_SHIFT,
694 (loff_t)(end - start + 1) << PAGE_SHIFT, 0);
695 }
3167760f 696 cleancache_invalidate_inode(mapping);
1da177e4
LT
697 return ret;
698}
699EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
700
701/**
702 * invalidate_inode_pages2 - remove all pages from an address_space
67be2dd1 703 * @mapping: the address_space
1da177e4
LT
704 *
705 * Any pages which are found to be mapped into pagetables are unmapped prior to
706 * invalidation.
707 *
e9de25dd 708 * Returns -EBUSY if any pages could not be invalidated.
1da177e4
LT
709 */
710int invalidate_inode_pages2(struct address_space *mapping)
711{
712 return invalidate_inode_pages2_range(mapping, 0, -1);
713}
714EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
25d9e2d1 715
716/**
717 * truncate_pagecache - unmap and remove pagecache that has been truncated
718 * @inode: inode
8a549bea 719 * @newsize: new file size
25d9e2d1 720 *
721 * inode's new i_size must already be written before truncate_pagecache
722 * is called.
723 *
724 * This function should typically be called before the filesystem
725 * releases resources associated with the freed range (eg. deallocates
726 * blocks). This way, pagecache will always stay logically coherent
727 * with on-disk format, and the filesystem would not have to deal with
728 * situations such as writepage being called for a page that has already
729 * had its underlying blocks deallocated.
730 */
7caef267 731void truncate_pagecache(struct inode *inode, loff_t newsize)
25d9e2d1 732{
cedabed4 733 struct address_space *mapping = inode->i_mapping;
8a549bea 734 loff_t holebegin = round_up(newsize, PAGE_SIZE);
cedabed4
OH
735
736 /*
737 * unmap_mapping_range is called twice, first simply for
738 * efficiency so that truncate_inode_pages does fewer
739 * single-page unmaps. However after this first call, and
740 * before truncate_inode_pages finishes, it is possible for
741 * private pages to be COWed, which remain after
742 * truncate_inode_pages finishes, hence the second
743 * unmap_mapping_range call must be made for correctness.
744 */
8a549bea
HD
745 unmap_mapping_range(mapping, holebegin, 0, 1);
746 truncate_inode_pages(mapping, newsize);
747 unmap_mapping_range(mapping, holebegin, 0, 1);
25d9e2d1 748}
749EXPORT_SYMBOL(truncate_pagecache);
750
2c27c65e
CH
751/**
752 * truncate_setsize - update inode and pagecache for a new file size
753 * @inode: inode
754 * @newsize: new file size
755 *
382e27da
JK
756 * truncate_setsize updates i_size and performs pagecache truncation (if
757 * necessary) to @newsize. It will be typically be called from the filesystem's
758 * setattr function when ATTR_SIZE is passed in.
2c27c65e 759 *
77783d06
JK
760 * Must be called with a lock serializing truncates and writes (generally
761 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
762 * specific block truncation has been performed.
2c27c65e
CH
763 */
764void truncate_setsize(struct inode *inode, loff_t newsize)
765{
90a80202
JK
766 loff_t oldsize = inode->i_size;
767
2c27c65e 768 i_size_write(inode, newsize);
90a80202
JK
769 if (newsize > oldsize)
770 pagecache_isize_extended(inode, oldsize, newsize);
7caef267 771 truncate_pagecache(inode, newsize);
2c27c65e
CH
772}
773EXPORT_SYMBOL(truncate_setsize);
774
90a80202
JK
775/**
776 * pagecache_isize_extended - update pagecache after extension of i_size
777 * @inode: inode for which i_size was extended
778 * @from: original inode size
779 * @to: new inode size
780 *
781 * Handle extension of inode size either caused by extending truncate or by
782 * write starting after current i_size. We mark the page straddling current
783 * i_size RO so that page_mkwrite() is called on the nearest write access to
784 * the page. This way filesystem can be sure that page_mkwrite() is called on
785 * the page before user writes to the page via mmap after the i_size has been
786 * changed.
787 *
788 * The function must be called after i_size is updated so that page fault
789 * coming after we unlock the page will already see the new i_size.
790 * The function must be called while we still hold i_mutex - this not only
791 * makes sure i_size is stable but also that userspace cannot observe new
792 * i_size value before we are prepared to store mmap writes at new inode size.
793 */
794void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
795{
796 int bsize = 1 << inode->i_blkbits;
797 loff_t rounded_from;
798 struct page *page;
799 pgoff_t index;
800
90a80202
JK
801 WARN_ON(to > inode->i_size);
802
09cbfeaf 803 if (from >= to || bsize == PAGE_SIZE)
90a80202
JK
804 return;
805 /* Page straddling @from will not have any hole block created? */
806 rounded_from = round_up(from, bsize);
09cbfeaf 807 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
90a80202
JK
808 return;
809
09cbfeaf 810 index = from >> PAGE_SHIFT;
90a80202
JK
811 page = find_lock_page(inode->i_mapping, index);
812 /* Page not cached? Nothing to do */
813 if (!page)
814 return;
815 /*
816 * See clear_page_dirty_for_io() for details why set_page_dirty()
817 * is needed.
818 */
819 if (page_mkclean(page))
820 set_page_dirty(page);
821 unlock_page(page);
09cbfeaf 822 put_page(page);
90a80202
JK
823}
824EXPORT_SYMBOL(pagecache_isize_extended);
825
623e3db9
HD
826/**
827 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
828 * @inode: inode
829 * @lstart: offset of beginning of hole
830 * @lend: offset of last byte of hole
831 *
832 * This function should typically be called before the filesystem
833 * releases resources associated with the freed range (eg. deallocates
834 * blocks). This way, pagecache will always stay logically coherent
835 * with on-disk format, and the filesystem would not have to deal with
836 * situations such as writepage being called for a page that has already
837 * had its underlying blocks deallocated.
838 */
839void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
840{
841 struct address_space *mapping = inode->i_mapping;
842 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
843 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
844 /*
845 * This rounding is currently just for example: unmap_mapping_range
846 * expands its hole outwards, whereas we want it to contract the hole
847 * inwards. However, existing callers of truncate_pagecache_range are
5a720394
LC
848 * doing their own page rounding first. Note that unmap_mapping_range
849 * allows holelen 0 for all, and we allow lend -1 for end of file.
623e3db9
HD
850 */
851
852 /*
853 * Unlike in truncate_pagecache, unmap_mapping_range is called only
854 * once (before truncating pagecache), and without "even_cows" flag:
855 * hole-punching should not remove private COWed pages from the hole.
856 */
857 if ((u64)unmap_end > (u64)unmap_start)
858 unmap_mapping_range(mapping, unmap_start,
859 1 + unmap_end - unmap_start, 0);
860 truncate_inode_pages_range(mapping, lstart, lend);
861}
862EXPORT_SYMBOL(truncate_pagecache_range);