]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmstat.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / mm / vmstat.c
CommitLineData
f6ac2354
CL
1/*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
2244b95a
CL
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
7cc36bbd 10 * Copyright (C) 2008-2014 Christoph Lameter
f6ac2354 11 */
8f32f7e5 12#include <linux/fs.h>
f6ac2354 13#include <linux/mm.h>
4e950f6f 14#include <linux/err.h>
2244b95a 15#include <linux/module.h>
5a0e3ad6 16#include <linux/slab.h>
df9ecaba 17#include <linux/cpu.h>
7cc36bbd 18#include <linux/cpumask.h>
c748e134 19#include <linux/vmstat.h>
3c486871
AM
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/debugfs.h>
e8edc6e0 23#include <linux/sched.h>
f1a5ab12 24#include <linux/math64.h>
79da826a 25#include <linux/writeback.h>
36deb0be 26#include <linux/compaction.h>
6e543d57 27#include <linux/mm_inline.h>
48c96a36
JK
28#include <linux/page_ext.h>
29#include <linux/page_owner.h>
6e543d57
LD
30
31#include "internal.h"
f6ac2354 32
f8891e5e
CL
33#ifdef CONFIG_VM_EVENT_COUNTERS
34DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35EXPORT_PER_CPU_SYMBOL(vm_event_states);
36
31f961a8 37static void sum_vm_events(unsigned long *ret)
f8891e5e 38{
9eccf2a8 39 int cpu;
f8891e5e
CL
40 int i;
41
42 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43
31f961a8 44 for_each_online_cpu(cpu) {
f8891e5e
CL
45 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46
f8891e5e
CL
47 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48 ret[i] += this->event[i];
49 }
50}
51
52/*
53 * Accumulate the vm event counters across all CPUs.
54 * The result is unavoidably approximate - it can change
55 * during and after execution of this function.
56*/
57void all_vm_events(unsigned long *ret)
58{
b5be1132 59 get_online_cpus();
31f961a8 60 sum_vm_events(ret);
b5be1132 61 put_online_cpus();
f8891e5e 62}
32dd66fc 63EXPORT_SYMBOL_GPL(all_vm_events);
f8891e5e 64
f8891e5e
CL
65/*
66 * Fold the foreign cpu events into our own.
67 *
68 * This is adding to the events on one processor
69 * but keeps the global counts constant.
70 */
71void vm_events_fold_cpu(int cpu)
72{
73 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74 int i;
75
76 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77 count_vm_events(i, fold_state->event[i]);
78 fold_state->event[i] = 0;
79 }
80}
f8891e5e
CL
81
82#endif /* CONFIG_VM_EVENT_COUNTERS */
83
2244b95a
CL
84/*
85 * Manage combined zone based / global counters
86 *
87 * vm_stat contains the global counters
88 */
75ef7184
MG
89atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
91EXPORT_SYMBOL(vm_zone_stat);
92EXPORT_SYMBOL(vm_node_stat);
2244b95a
CL
93
94#ifdef CONFIG_SMP
95
b44129b3 96int calculate_pressure_threshold(struct zone *zone)
88f5acf8
MG
97{
98 int threshold;
99 int watermark_distance;
100
101 /*
102 * As vmstats are not up to date, there is drift between the estimated
103 * and real values. For high thresholds and a high number of CPUs, it
104 * is possible for the min watermark to be breached while the estimated
105 * value looks fine. The pressure threshold is a reduced value such
106 * that even the maximum amount of drift will not accidentally breach
107 * the min watermark
108 */
109 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
110 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
111
112 /*
113 * Maximum threshold is 125
114 */
115 threshold = min(125, threshold);
116
117 return threshold;
118}
119
b44129b3 120int calculate_normal_threshold(struct zone *zone)
df9ecaba
CL
121{
122 int threshold;
123 int mem; /* memory in 128 MB units */
124
125 /*
126 * The threshold scales with the number of processors and the amount
127 * of memory per zone. More memory means that we can defer updates for
128 * longer, more processors could lead to more contention.
129 * fls() is used to have a cheap way of logarithmic scaling.
130 *
131 * Some sample thresholds:
132 *
133 * Threshold Processors (fls) Zonesize fls(mem+1)
134 * ------------------------------------------------------------------
135 * 8 1 1 0.9-1 GB 4
136 * 16 2 2 0.9-1 GB 4
137 * 20 2 2 1-2 GB 5
138 * 24 2 2 2-4 GB 6
139 * 28 2 2 4-8 GB 7
140 * 32 2 2 8-16 GB 8
141 * 4 2 2 <128M 1
142 * 30 4 3 2-4 GB 5
143 * 48 4 3 8-16 GB 8
144 * 32 8 4 1-2 GB 4
145 * 32 8 4 0.9-1GB 4
146 * 10 16 5 <128M 1
147 * 40 16 5 900M 4
148 * 70 64 7 2-4 GB 5
149 * 84 64 7 4-8 GB 6
150 * 108 512 9 4-8 GB 6
151 * 125 1024 10 8-16 GB 8
152 * 125 1024 10 16-32 GB 9
153 */
154
b40da049 155 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
df9ecaba
CL
156
157 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
158
159 /*
160 * Maximum threshold is 125
161 */
162 threshold = min(125, threshold);
163
164 return threshold;
165}
2244b95a
CL
166
167/*
df9ecaba 168 * Refresh the thresholds for each zone.
2244b95a 169 */
a6cccdc3 170void refresh_zone_stat_thresholds(void)
2244b95a 171{
75ef7184 172 struct pglist_data *pgdat;
df9ecaba
CL
173 struct zone *zone;
174 int cpu;
175 int threshold;
176
75ef7184
MG
177 /* Zero current pgdat thresholds */
178 for_each_online_pgdat(pgdat) {
179 for_each_online_cpu(cpu) {
180 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
181 }
182 }
183
ee99c71c 184 for_each_populated_zone(zone) {
75ef7184 185 struct pglist_data *pgdat = zone->zone_pgdat;
aa454840
CL
186 unsigned long max_drift, tolerate_drift;
187
b44129b3 188 threshold = calculate_normal_threshold(zone);
df9ecaba 189
75ef7184
MG
190 for_each_online_cpu(cpu) {
191 int pgdat_threshold;
192
99dcc3e5
CL
193 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
194 = threshold;
aa454840 195
75ef7184
MG
196 /* Base nodestat threshold on the largest populated zone. */
197 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
198 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
199 = max(threshold, pgdat_threshold);
200 }
201
aa454840
CL
202 /*
203 * Only set percpu_drift_mark if there is a danger that
204 * NR_FREE_PAGES reports the low watermark is ok when in fact
205 * the min watermark could be breached by an allocation
206 */
207 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
208 max_drift = num_online_cpus() * threshold;
209 if (max_drift > tolerate_drift)
210 zone->percpu_drift_mark = high_wmark_pages(zone) +
211 max_drift;
df9ecaba 212 }
2244b95a
CL
213}
214
b44129b3
MG
215void set_pgdat_percpu_threshold(pg_data_t *pgdat,
216 int (*calculate_pressure)(struct zone *))
88f5acf8
MG
217{
218 struct zone *zone;
219 int cpu;
220 int threshold;
221 int i;
222
88f5acf8
MG
223 for (i = 0; i < pgdat->nr_zones; i++) {
224 zone = &pgdat->node_zones[i];
225 if (!zone->percpu_drift_mark)
226 continue;
227
b44129b3 228 threshold = (*calculate_pressure)(zone);
bb0b6dff 229 for_each_online_cpu(cpu)
88f5acf8
MG
230 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
231 = threshold;
232 }
88f5acf8
MG
233}
234
2244b95a 235/*
bea04b07
JZ
236 * For use when we know that interrupts are disabled,
237 * or when we know that preemption is disabled and that
238 * particular counter cannot be updated from interrupt context.
2244b95a
CL
239 */
240void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
6cdb18ad 241 long delta)
2244b95a 242{
12938a92
CL
243 struct per_cpu_pageset __percpu *pcp = zone->pageset;
244 s8 __percpu *p = pcp->vm_stat_diff + item;
2244b95a 245 long x;
12938a92
CL
246 long t;
247
248 x = delta + __this_cpu_read(*p);
2244b95a 249
12938a92 250 t = __this_cpu_read(pcp->stat_threshold);
2244b95a 251
12938a92 252 if (unlikely(x > t || x < -t)) {
2244b95a
CL
253 zone_page_state_add(x, zone, item);
254 x = 0;
255 }
12938a92 256 __this_cpu_write(*p, x);
2244b95a
CL
257}
258EXPORT_SYMBOL(__mod_zone_page_state);
259
75ef7184
MG
260void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
261 long delta)
262{
263 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
264 s8 __percpu *p = pcp->vm_node_stat_diff + item;
265 long x;
266 long t;
267
268 x = delta + __this_cpu_read(*p);
269
270 t = __this_cpu_read(pcp->stat_threshold);
271
272 if (unlikely(x > t || x < -t)) {
273 node_page_state_add(x, pgdat, item);
274 x = 0;
275 }
276 __this_cpu_write(*p, x);
277}
278EXPORT_SYMBOL(__mod_node_page_state);
279
2244b95a
CL
280/*
281 * Optimized increment and decrement functions.
282 *
283 * These are only for a single page and therefore can take a struct page *
284 * argument instead of struct zone *. This allows the inclusion of the code
285 * generated for page_zone(page) into the optimized functions.
286 *
287 * No overflow check is necessary and therefore the differential can be
288 * incremented or decremented in place which may allow the compilers to
289 * generate better code.
2244b95a
CL
290 * The increment or decrement is known and therefore one boundary check can
291 * be omitted.
292 *
df9ecaba
CL
293 * NOTE: These functions are very performance sensitive. Change only
294 * with care.
295 *
2244b95a
CL
296 * Some processors have inc/dec instructions that are atomic vs an interrupt.
297 * However, the code must first determine the differential location in a zone
298 * based on the processor number and then inc/dec the counter. There is no
299 * guarantee without disabling preemption that the processor will not change
300 * in between and therefore the atomicity vs. interrupt cannot be exploited
301 * in a useful way here.
302 */
c8785385 303void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 304{
12938a92
CL
305 struct per_cpu_pageset __percpu *pcp = zone->pageset;
306 s8 __percpu *p = pcp->vm_stat_diff + item;
307 s8 v, t;
2244b95a 308
908ee0f1 309 v = __this_cpu_inc_return(*p);
12938a92
CL
310 t = __this_cpu_read(pcp->stat_threshold);
311 if (unlikely(v > t)) {
312 s8 overstep = t >> 1;
df9ecaba 313
12938a92
CL
314 zone_page_state_add(v + overstep, zone, item);
315 __this_cpu_write(*p, -overstep);
2244b95a
CL
316 }
317}
ca889e6c 318
75ef7184
MG
319void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
320{
321 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
322 s8 __percpu *p = pcp->vm_node_stat_diff + item;
323 s8 v, t;
324
325 v = __this_cpu_inc_return(*p);
326 t = __this_cpu_read(pcp->stat_threshold);
327 if (unlikely(v > t)) {
328 s8 overstep = t >> 1;
329
330 node_page_state_add(v + overstep, pgdat, item);
331 __this_cpu_write(*p, -overstep);
332 }
333}
334
ca889e6c
CL
335void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
336{
337 __inc_zone_state(page_zone(page), item);
338}
2244b95a
CL
339EXPORT_SYMBOL(__inc_zone_page_state);
340
75ef7184
MG
341void __inc_node_page_state(struct page *page, enum node_stat_item item)
342{
343 __inc_node_state(page_pgdat(page), item);
344}
345EXPORT_SYMBOL(__inc_node_page_state);
346
c8785385 347void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 348{
12938a92
CL
349 struct per_cpu_pageset __percpu *pcp = zone->pageset;
350 s8 __percpu *p = pcp->vm_stat_diff + item;
351 s8 v, t;
2244b95a 352
908ee0f1 353 v = __this_cpu_dec_return(*p);
12938a92
CL
354 t = __this_cpu_read(pcp->stat_threshold);
355 if (unlikely(v < - t)) {
356 s8 overstep = t >> 1;
2244b95a 357
12938a92
CL
358 zone_page_state_add(v - overstep, zone, item);
359 __this_cpu_write(*p, overstep);
2244b95a
CL
360 }
361}
c8785385 362
75ef7184
MG
363void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
364{
365 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
366 s8 __percpu *p = pcp->vm_node_stat_diff + item;
367 s8 v, t;
368
369 v = __this_cpu_dec_return(*p);
370 t = __this_cpu_read(pcp->stat_threshold);
371 if (unlikely(v < - t)) {
372 s8 overstep = t >> 1;
373
374 node_page_state_add(v - overstep, pgdat, item);
375 __this_cpu_write(*p, overstep);
376 }
377}
378
c8785385
CL
379void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
380{
381 __dec_zone_state(page_zone(page), item);
382}
2244b95a
CL
383EXPORT_SYMBOL(__dec_zone_page_state);
384
75ef7184
MG
385void __dec_node_page_state(struct page *page, enum node_stat_item item)
386{
387 __dec_node_state(page_pgdat(page), item);
388}
389EXPORT_SYMBOL(__dec_node_page_state);
390
4156153c 391#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
7c839120
CL
392/*
393 * If we have cmpxchg_local support then we do not need to incur the overhead
394 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
395 *
396 * mod_state() modifies the zone counter state through atomic per cpu
397 * operations.
398 *
399 * Overstep mode specifies how overstep should handled:
400 * 0 No overstepping
401 * 1 Overstepping half of threshold
402 * -1 Overstepping minus half of threshold
403*/
75ef7184
MG
404static inline void mod_zone_state(struct zone *zone,
405 enum zone_stat_item item, long delta, int overstep_mode)
7c839120
CL
406{
407 struct per_cpu_pageset __percpu *pcp = zone->pageset;
408 s8 __percpu *p = pcp->vm_stat_diff + item;
409 long o, n, t, z;
410
411 do {
412 z = 0; /* overflow to zone counters */
413
414 /*
415 * The fetching of the stat_threshold is racy. We may apply
416 * a counter threshold to the wrong the cpu if we get
d3bc2367
CL
417 * rescheduled while executing here. However, the next
418 * counter update will apply the threshold again and
419 * therefore bring the counter under the threshold again.
420 *
421 * Most of the time the thresholds are the same anyways
422 * for all cpus in a zone.
7c839120
CL
423 */
424 t = this_cpu_read(pcp->stat_threshold);
425
426 o = this_cpu_read(*p);
427 n = delta + o;
428
429 if (n > t || n < -t) {
430 int os = overstep_mode * (t >> 1) ;
431
432 /* Overflow must be added to zone counters */
433 z = n + os;
434 n = -os;
435 }
436 } while (this_cpu_cmpxchg(*p, o, n) != o);
437
438 if (z)
439 zone_page_state_add(z, zone, item);
440}
441
442void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
6cdb18ad 443 long delta)
7c839120 444{
75ef7184 445 mod_zone_state(zone, item, delta, 0);
7c839120
CL
446}
447EXPORT_SYMBOL(mod_zone_page_state);
448
7c839120
CL
449void inc_zone_page_state(struct page *page, enum zone_stat_item item)
450{
75ef7184 451 mod_zone_state(page_zone(page), item, 1, 1);
7c839120
CL
452}
453EXPORT_SYMBOL(inc_zone_page_state);
454
455void dec_zone_page_state(struct page *page, enum zone_stat_item item)
456{
75ef7184 457 mod_zone_state(page_zone(page), item, -1, -1);
7c839120
CL
458}
459EXPORT_SYMBOL(dec_zone_page_state);
75ef7184
MG
460
461static inline void mod_node_state(struct pglist_data *pgdat,
462 enum node_stat_item item, int delta, int overstep_mode)
463{
464 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
465 s8 __percpu *p = pcp->vm_node_stat_diff + item;
466 long o, n, t, z;
467
468 do {
469 z = 0; /* overflow to node counters */
470
471 /*
472 * The fetching of the stat_threshold is racy. We may apply
473 * a counter threshold to the wrong the cpu if we get
474 * rescheduled while executing here. However, the next
475 * counter update will apply the threshold again and
476 * therefore bring the counter under the threshold again.
477 *
478 * Most of the time the thresholds are the same anyways
479 * for all cpus in a node.
480 */
481 t = this_cpu_read(pcp->stat_threshold);
482
483 o = this_cpu_read(*p);
484 n = delta + o;
485
486 if (n > t || n < -t) {
487 int os = overstep_mode * (t >> 1) ;
488
489 /* Overflow must be added to node counters */
490 z = n + os;
491 n = -os;
492 }
493 } while (this_cpu_cmpxchg(*p, o, n) != o);
494
495 if (z)
496 node_page_state_add(z, pgdat, item);
497}
498
499void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
500 long delta)
501{
502 mod_node_state(pgdat, item, delta, 0);
503}
504EXPORT_SYMBOL(mod_node_page_state);
505
506void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
507{
508 mod_node_state(pgdat, item, 1, 1);
509}
510
511void inc_node_page_state(struct page *page, enum node_stat_item item)
512{
513 mod_node_state(page_pgdat(page), item, 1, 1);
514}
515EXPORT_SYMBOL(inc_node_page_state);
516
517void dec_node_page_state(struct page *page, enum node_stat_item item)
518{
519 mod_node_state(page_pgdat(page), item, -1, -1);
520}
521EXPORT_SYMBOL(dec_node_page_state);
7c839120
CL
522#else
523/*
524 * Use interrupt disable to serialize counter updates
525 */
526void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
6cdb18ad 527 long delta)
7c839120
CL
528{
529 unsigned long flags;
530
531 local_irq_save(flags);
532 __mod_zone_page_state(zone, item, delta);
533 local_irq_restore(flags);
534}
535EXPORT_SYMBOL(mod_zone_page_state);
536
2244b95a
CL
537void inc_zone_page_state(struct page *page, enum zone_stat_item item)
538{
539 unsigned long flags;
540 struct zone *zone;
2244b95a
CL
541
542 zone = page_zone(page);
543 local_irq_save(flags);
ca889e6c 544 __inc_zone_state(zone, item);
2244b95a
CL
545 local_irq_restore(flags);
546}
547EXPORT_SYMBOL(inc_zone_page_state);
548
549void dec_zone_page_state(struct page *page, enum zone_stat_item item)
550{
551 unsigned long flags;
2244b95a 552
2244b95a 553 local_irq_save(flags);
a302eb4e 554 __dec_zone_page_state(page, item);
2244b95a
CL
555 local_irq_restore(flags);
556}
557EXPORT_SYMBOL(dec_zone_page_state);
558
75ef7184
MG
559void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
560{
561 unsigned long flags;
562
563 local_irq_save(flags);
564 __inc_node_state(pgdat, item);
565 local_irq_restore(flags);
566}
567EXPORT_SYMBOL(inc_node_state);
568
569void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
570 long delta)
571{
572 unsigned long flags;
573
574 local_irq_save(flags);
575 __mod_node_page_state(pgdat, item, delta);
576 local_irq_restore(flags);
577}
578EXPORT_SYMBOL(mod_node_page_state);
579
580void inc_node_page_state(struct page *page, enum node_stat_item item)
581{
582 unsigned long flags;
583 struct pglist_data *pgdat;
584
585 pgdat = page_pgdat(page);
586 local_irq_save(flags);
587 __inc_node_state(pgdat, item);
588 local_irq_restore(flags);
589}
590EXPORT_SYMBOL(inc_node_page_state);
591
592void dec_node_page_state(struct page *page, enum node_stat_item item)
593{
594 unsigned long flags;
595
596 local_irq_save(flags);
597 __dec_node_page_state(page, item);
598 local_irq_restore(flags);
599}
600EXPORT_SYMBOL(dec_node_page_state);
601#endif
7cc36bbd
CL
602
603/*
604 * Fold a differential into the global counters.
605 * Returns the number of counters updated.
606 */
75ef7184 607static int fold_diff(int *zone_diff, int *node_diff)
4edb0748
CL
608{
609 int i;
7cc36bbd 610 int changes = 0;
4edb0748
CL
611
612 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
75ef7184
MG
613 if (zone_diff[i]) {
614 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
615 changes++;
616 }
617
618 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
619 if (node_diff[i]) {
620 atomic_long_add(node_diff[i], &vm_node_stat[i]);
7cc36bbd
CL
621 changes++;
622 }
623 return changes;
4edb0748
CL
624}
625
2244b95a 626/*
2bb921e5 627 * Update the zone counters for the current cpu.
a7f75e25 628 *
4037d452
CL
629 * Note that refresh_cpu_vm_stats strives to only access
630 * node local memory. The per cpu pagesets on remote zones are placed
631 * in the memory local to the processor using that pageset. So the
632 * loop over all zones will access a series of cachelines local to
633 * the processor.
634 *
635 * The call to zone_page_state_add updates the cachelines with the
636 * statistics in the remote zone struct as well as the global cachelines
637 * with the global counters. These could cause remote node cache line
638 * bouncing and will have to be only done when necessary.
7cc36bbd
CL
639 *
640 * The function returns the number of global counters updated.
2244b95a 641 */
0eb77e98 642static int refresh_cpu_vm_stats(bool do_pagesets)
2244b95a 643{
75ef7184 644 struct pglist_data *pgdat;
2244b95a
CL
645 struct zone *zone;
646 int i;
75ef7184
MG
647 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
648 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
7cc36bbd 649 int changes = 0;
2244b95a 650
ee99c71c 651 for_each_populated_zone(zone) {
fbc2edb0 652 struct per_cpu_pageset __percpu *p = zone->pageset;
2244b95a 653
fbc2edb0
CL
654 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
655 int v;
2244b95a 656
fbc2edb0
CL
657 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
658 if (v) {
a7f75e25 659
a7f75e25 660 atomic_long_add(v, &zone->vm_stat[i]);
75ef7184 661 global_zone_diff[i] += v;
4037d452
CL
662#ifdef CONFIG_NUMA
663 /* 3 seconds idle till flush */
fbc2edb0 664 __this_cpu_write(p->expire, 3);
4037d452 665#endif
2244b95a 666 }
fbc2edb0 667 }
4037d452 668#ifdef CONFIG_NUMA
0eb77e98
CL
669 if (do_pagesets) {
670 cond_resched();
671 /*
672 * Deal with draining the remote pageset of this
673 * processor
674 *
675 * Check if there are pages remaining in this pageset
676 * if not then there is nothing to expire.
677 */
678 if (!__this_cpu_read(p->expire) ||
fbc2edb0 679 !__this_cpu_read(p->pcp.count))
0eb77e98 680 continue;
4037d452 681
0eb77e98
CL
682 /*
683 * We never drain zones local to this processor.
684 */
685 if (zone_to_nid(zone) == numa_node_id()) {
686 __this_cpu_write(p->expire, 0);
687 continue;
688 }
4037d452 689
0eb77e98
CL
690 if (__this_cpu_dec_return(p->expire))
691 continue;
4037d452 692
0eb77e98
CL
693 if (__this_cpu_read(p->pcp.count)) {
694 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
695 changes++;
696 }
7cc36bbd 697 }
4037d452 698#endif
2244b95a 699 }
75ef7184
MG
700
701 for_each_online_pgdat(pgdat) {
702 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
703
704 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
705 int v;
706
707 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
708 if (v) {
709 atomic_long_add(v, &pgdat->vm_stat[i]);
710 global_node_diff[i] += v;
711 }
712 }
713 }
714
715 changes += fold_diff(global_zone_diff, global_node_diff);
7cc36bbd 716 return changes;
2244b95a
CL
717}
718
2bb921e5
CL
719/*
720 * Fold the data for an offline cpu into the global array.
721 * There cannot be any access by the offline cpu and therefore
722 * synchronization is simplified.
723 */
724void cpu_vm_stats_fold(int cpu)
725{
75ef7184 726 struct pglist_data *pgdat;
2bb921e5
CL
727 struct zone *zone;
728 int i;
75ef7184
MG
729 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
730 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
2bb921e5
CL
731
732 for_each_populated_zone(zone) {
733 struct per_cpu_pageset *p;
734
735 p = per_cpu_ptr(zone->pageset, cpu);
736
737 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
738 if (p->vm_stat_diff[i]) {
739 int v;
740
741 v = p->vm_stat_diff[i];
742 p->vm_stat_diff[i] = 0;
743 atomic_long_add(v, &zone->vm_stat[i]);
75ef7184 744 global_zone_diff[i] += v;
2bb921e5
CL
745 }
746 }
747
75ef7184
MG
748 for_each_online_pgdat(pgdat) {
749 struct per_cpu_nodestat *p;
750
751 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
752
753 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
754 if (p->vm_node_stat_diff[i]) {
755 int v;
756
757 v = p->vm_node_stat_diff[i];
758 p->vm_node_stat_diff[i] = 0;
759 atomic_long_add(v, &pgdat->vm_stat[i]);
760 global_node_diff[i] += v;
761 }
762 }
763
764 fold_diff(global_zone_diff, global_node_diff);
2bb921e5
CL
765}
766
40f4b1ea
CS
767/*
768 * this is only called if !populated_zone(zone), which implies no other users of
769 * pset->vm_stat_diff[] exsist.
770 */
5a883813
MK
771void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
772{
773 int i;
774
775 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
776 if (pset->vm_stat_diff[i]) {
777 int v = pset->vm_stat_diff[i];
778 pset->vm_stat_diff[i] = 0;
779 atomic_long_add(v, &zone->vm_stat[i]);
75ef7184 780 atomic_long_add(v, &vm_zone_stat[i]);
5a883813
MK
781 }
782}
2244b95a
CL
783#endif
784
ca889e6c 785#ifdef CONFIG_NUMA
c2d42c16 786/*
75ef7184
MG
787 * Determine the per node value of a stat item. This function
788 * is called frequently in a NUMA machine, so try to be as
789 * frugal as possible.
c2d42c16 790 */
75ef7184
MG
791unsigned long sum_zone_node_page_state(int node,
792 enum zone_stat_item item)
c2d42c16
AM
793{
794 struct zone *zones = NODE_DATA(node)->node_zones;
e87d59f7
JK
795 int i;
796 unsigned long count = 0;
c2d42c16 797
e87d59f7
JK
798 for (i = 0; i < MAX_NR_ZONES; i++)
799 count += zone_page_state(zones + i, item);
800
801 return count;
c2d42c16
AM
802}
803
75ef7184
MG
804/*
805 * Determine the per node value of a stat item.
806 */
807unsigned long node_page_state(struct pglist_data *pgdat,
808 enum node_stat_item item)
809{
810 long x = atomic_long_read(&pgdat->vm_stat[item]);
811#ifdef CONFIG_SMP
812 if (x < 0)
813 x = 0;
814#endif
815 return x;
816}
ca889e6c
CL
817#endif
818
d7a5752c 819#ifdef CONFIG_COMPACTION
36deb0be 820
d7a5752c
MG
821struct contig_page_info {
822 unsigned long free_pages;
823 unsigned long free_blocks_total;
824 unsigned long free_blocks_suitable;
825};
826
827/*
828 * Calculate the number of free pages in a zone, how many contiguous
829 * pages are free and how many are large enough to satisfy an allocation of
830 * the target size. Note that this function makes no attempt to estimate
831 * how many suitable free blocks there *might* be if MOVABLE pages were
832 * migrated. Calculating that is possible, but expensive and can be
833 * figured out from userspace
834 */
835static void fill_contig_page_info(struct zone *zone,
836 unsigned int suitable_order,
837 struct contig_page_info *info)
838{
839 unsigned int order;
840
841 info->free_pages = 0;
842 info->free_blocks_total = 0;
843 info->free_blocks_suitable = 0;
844
845 for (order = 0; order < MAX_ORDER; order++) {
846 unsigned long blocks;
847
848 /* Count number of free blocks */
849 blocks = zone->free_area[order].nr_free;
850 info->free_blocks_total += blocks;
851
852 /* Count free base pages */
853 info->free_pages += blocks << order;
854
855 /* Count the suitable free blocks */
856 if (order >= suitable_order)
857 info->free_blocks_suitable += blocks <<
858 (order - suitable_order);
859 }
860}
f1a5ab12
MG
861
862/*
863 * A fragmentation index only makes sense if an allocation of a requested
864 * size would fail. If that is true, the fragmentation index indicates
865 * whether external fragmentation or a lack of memory was the problem.
866 * The value can be used to determine if page reclaim or compaction
867 * should be used
868 */
56de7263 869static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
f1a5ab12
MG
870{
871 unsigned long requested = 1UL << order;
872
873 if (!info->free_blocks_total)
874 return 0;
875
876 /* Fragmentation index only makes sense when a request would fail */
877 if (info->free_blocks_suitable)
878 return -1000;
879
880 /*
881 * Index is between 0 and 1 so return within 3 decimal places
882 *
883 * 0 => allocation would fail due to lack of memory
884 * 1 => allocation would fail due to fragmentation
885 */
886 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
887}
56de7263
MG
888
889/* Same as __fragmentation index but allocs contig_page_info on stack */
890int fragmentation_index(struct zone *zone, unsigned int order)
891{
892 struct contig_page_info info;
893
894 fill_contig_page_info(zone, order, &info);
895 return __fragmentation_index(order, &info);
896}
d7a5752c
MG
897#endif
898
0d6617c7 899#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
fa25c503
KM
900#ifdef CONFIG_ZONE_DMA
901#define TEXT_FOR_DMA(xx) xx "_dma",
902#else
903#define TEXT_FOR_DMA(xx)
904#endif
905
906#ifdef CONFIG_ZONE_DMA32
907#define TEXT_FOR_DMA32(xx) xx "_dma32",
908#else
909#define TEXT_FOR_DMA32(xx)
910#endif
911
912#ifdef CONFIG_HIGHMEM
913#define TEXT_FOR_HIGHMEM(xx) xx "_high",
914#else
915#define TEXT_FOR_HIGHMEM(xx)
916#endif
917
918#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
919 TEXT_FOR_HIGHMEM(xx) xx "_movable",
920
921const char * const vmstat_text[] = {
09316c09 922 /* enum zone_stat_item countes */
fa25c503 923 "nr_free_pages",
71c799f4
MK
924 "nr_zone_inactive_anon",
925 "nr_zone_active_anon",
926 "nr_zone_inactive_file",
927 "nr_zone_active_file",
928 "nr_zone_unevictable",
5a1c84b4 929 "nr_zone_write_pending",
fa25c503 930 "nr_mlock",
fa25c503
KM
931 "nr_slab_reclaimable",
932 "nr_slab_unreclaimable",
933 "nr_page_table_pages",
934 "nr_kernel_stack",
fa25c503 935 "nr_bounce",
91537fee
MK
936#if IS_ENABLED(CONFIG_ZSMALLOC)
937 "nr_zspages",
938#endif
fa25c503
KM
939#ifdef CONFIG_NUMA
940 "numa_hit",
941 "numa_miss",
942 "numa_foreign",
943 "numa_interleave",
944 "numa_local",
945 "numa_other",
946#endif
d1ce749a 947 "nr_free_cma",
09316c09 948
599d0c95
MG
949 /* Node-based counters */
950 "nr_inactive_anon",
951 "nr_active_anon",
952 "nr_inactive_file",
953 "nr_active_file",
954 "nr_unevictable",
955 "nr_isolated_anon",
956 "nr_isolated_file",
957 "nr_pages_scanned",
1e6b1085
MG
958 "workingset_refault",
959 "workingset_activate",
960 "workingset_nodereclaim",
50658e2e
MG
961 "nr_anon_pages",
962 "nr_mapped",
11fb9989
MG
963 "nr_file_pages",
964 "nr_dirty",
965 "nr_writeback",
966 "nr_writeback_temp",
967 "nr_shmem",
968 "nr_shmem_hugepages",
969 "nr_shmem_pmdmapped",
970 "nr_anon_transparent_hugepages",
971 "nr_unstable",
c4a25635
MG
972 "nr_vmscan_write",
973 "nr_vmscan_immediate_reclaim",
974 "nr_dirtied",
975 "nr_written",
599d0c95 976
09316c09 977 /* enum writeback_stat_item counters */
fa25c503
KM
978 "nr_dirty_threshold",
979 "nr_dirty_background_threshold",
980
981#ifdef CONFIG_VM_EVENT_COUNTERS
09316c09 982 /* enum vm_event_item counters */
fa25c503
KM
983 "pgpgin",
984 "pgpgout",
985 "pswpin",
986 "pswpout",
987
988 TEXTS_FOR_ZONES("pgalloc")
7cc30fcf
MG
989 TEXTS_FOR_ZONES("allocstall")
990 TEXTS_FOR_ZONES("pgskip")
fa25c503
KM
991
992 "pgfree",
993 "pgactivate",
994 "pgdeactivate",
995
996 "pgfault",
997 "pgmajfault",
854e9ed0 998 "pglazyfreed",
fa25c503 999
599d0c95
MG
1000 "pgrefill",
1001 "pgsteal_kswapd",
1002 "pgsteal_direct",
1003 "pgscan_kswapd",
1004 "pgscan_direct",
68243e76 1005 "pgscan_direct_throttle",
fa25c503
KM
1006
1007#ifdef CONFIG_NUMA
1008 "zone_reclaim_failed",
1009#endif
1010 "pginodesteal",
1011 "slabs_scanned",
fa25c503
KM
1012 "kswapd_inodesteal",
1013 "kswapd_low_wmark_hit_quickly",
1014 "kswapd_high_wmark_hit_quickly",
fa25c503 1015 "pageoutrun",
fa25c503
KM
1016
1017 "pgrotated",
1018
5509a5d2
DH
1019 "drop_pagecache",
1020 "drop_slab",
1021
03c5a6e1
MG
1022#ifdef CONFIG_NUMA_BALANCING
1023 "numa_pte_updates",
72403b4a 1024 "numa_huge_pte_updates",
03c5a6e1
MG
1025 "numa_hint_faults",
1026 "numa_hint_faults_local",
1027 "numa_pages_migrated",
1028#endif
5647bc29
MG
1029#ifdef CONFIG_MIGRATION
1030 "pgmigrate_success",
1031 "pgmigrate_fail",
1032#endif
fa25c503 1033#ifdef CONFIG_COMPACTION
397487db
MG
1034 "compact_migrate_scanned",
1035 "compact_free_scanned",
1036 "compact_isolated",
fa25c503
KM
1037 "compact_stall",
1038 "compact_fail",
1039 "compact_success",
698b1b30 1040 "compact_daemon_wake",
fa25c503
KM
1041#endif
1042
1043#ifdef CONFIG_HUGETLB_PAGE
1044 "htlb_buddy_alloc_success",
1045 "htlb_buddy_alloc_fail",
1046#endif
1047 "unevictable_pgs_culled",
1048 "unevictable_pgs_scanned",
1049 "unevictable_pgs_rescued",
1050 "unevictable_pgs_mlocked",
1051 "unevictable_pgs_munlocked",
1052 "unevictable_pgs_cleared",
1053 "unevictable_pgs_stranded",
fa25c503
KM
1054
1055#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1056 "thp_fault_alloc",
1057 "thp_fault_fallback",
1058 "thp_collapse_alloc",
1059 "thp_collapse_alloc_failed",
95ecedcd
KS
1060 "thp_file_alloc",
1061 "thp_file_mapped",
122afea9
KS
1062 "thp_split_page",
1063 "thp_split_page_failed",
f9719a03 1064 "thp_deferred_split_page",
122afea9 1065 "thp_split_pmd",
d8a8e1f0
KS
1066 "thp_zero_page_alloc",
1067 "thp_zero_page_alloc_failed",
fa25c503 1068#endif
09316c09
KK
1069#ifdef CONFIG_MEMORY_BALLOON
1070 "balloon_inflate",
1071 "balloon_deflate",
1072#ifdef CONFIG_BALLOON_COMPACTION
1073 "balloon_migrate",
1074#endif
1075#endif /* CONFIG_MEMORY_BALLOON */
ec659934 1076#ifdef CONFIG_DEBUG_TLBFLUSH
6df46865 1077#ifdef CONFIG_SMP
9824cf97
DH
1078 "nr_tlb_remote_flush",
1079 "nr_tlb_remote_flush_received",
ec659934 1080#endif /* CONFIG_SMP */
9824cf97
DH
1081 "nr_tlb_local_flush_all",
1082 "nr_tlb_local_flush_one",
ec659934 1083#endif /* CONFIG_DEBUG_TLBFLUSH */
fa25c503 1084
4f115147
DB
1085#ifdef CONFIG_DEBUG_VM_VMACACHE
1086 "vmacache_find_calls",
1087 "vmacache_find_hits",
f5f302e2 1088 "vmacache_full_flushes",
4f115147 1089#endif
fa25c503
KM
1090#endif /* CONFIG_VM_EVENTS_COUNTERS */
1091};
0d6617c7 1092#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
fa25c503
KM
1093
1094
3c486871
AM
1095#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1096 defined(CONFIG_PROC_FS)
1097static void *frag_start(struct seq_file *m, loff_t *pos)
1098{
1099 pg_data_t *pgdat;
1100 loff_t node = *pos;
1101
1102 for (pgdat = first_online_pgdat();
1103 pgdat && node;
1104 pgdat = next_online_pgdat(pgdat))
1105 --node;
1106
1107 return pgdat;
1108}
1109
1110static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1111{
1112 pg_data_t *pgdat = (pg_data_t *)arg;
1113
1114 (*pos)++;
1115 return next_online_pgdat(pgdat);
1116}
1117
1118static void frag_stop(struct seq_file *m, void *arg)
1119{
1120}
1121
1122/* Walk all the zones in a node and print using a callback */
1123static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1124 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1125{
1126 struct zone *zone;
1127 struct zone *node_zones = pgdat->node_zones;
1128 unsigned long flags;
1129
1130 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1131 if (!populated_zone(zone))
1132 continue;
1133
1134 spin_lock_irqsave(&zone->lock, flags);
1135 print(m, pgdat, zone);
1136 spin_unlock_irqrestore(&zone->lock, flags);
1137 }
1138}
1139#endif
1140
d7a5752c 1141#ifdef CONFIG_PROC_FS
467c996c
MG
1142static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1143 struct zone *zone)
1144{
1145 int order;
1146
1147 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1148 for (order = 0; order < MAX_ORDER; ++order)
1149 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1150 seq_putc(m, '\n');
1151}
1152
1153/*
1154 * This walks the free areas for each zone.
1155 */
1156static int frag_show(struct seq_file *m, void *arg)
1157{
1158 pg_data_t *pgdat = (pg_data_t *)arg;
1159 walk_zones_in_node(m, pgdat, frag_show_print);
1160 return 0;
1161}
1162
1163static void pagetypeinfo_showfree_print(struct seq_file *m,
1164 pg_data_t *pgdat, struct zone *zone)
1165{
1166 int order, mtype;
1167
1168 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1169 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1170 pgdat->node_id,
1171 zone->name,
1172 migratetype_names[mtype]);
1173 for (order = 0; order < MAX_ORDER; ++order) {
1174 unsigned long freecount = 0;
1175 struct free_area *area;
1176 struct list_head *curr;
1177
1178 area = &(zone->free_area[order]);
1179
1180 list_for_each(curr, &area->free_list[mtype])
1181 freecount++;
1182 seq_printf(m, "%6lu ", freecount);
1183 }
f6ac2354
CL
1184 seq_putc(m, '\n');
1185 }
467c996c
MG
1186}
1187
1188/* Print out the free pages at each order for each migatetype */
1189static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1190{
1191 int order;
1192 pg_data_t *pgdat = (pg_data_t *)arg;
1193
1194 /* Print header */
1195 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1196 for (order = 0; order < MAX_ORDER; ++order)
1197 seq_printf(m, "%6d ", order);
1198 seq_putc(m, '\n');
1199
1200 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
1201
1202 return 0;
1203}
1204
1205static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1206 pg_data_t *pgdat, struct zone *zone)
1207{
1208 int mtype;
1209 unsigned long pfn;
1210 unsigned long start_pfn = zone->zone_start_pfn;
108bcc96 1211 unsigned long end_pfn = zone_end_pfn(zone);
467c996c
MG
1212 unsigned long count[MIGRATE_TYPES] = { 0, };
1213
1214 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1215 struct page *page;
1216
1217 if (!pfn_valid(pfn))
1218 continue;
1219
1220 page = pfn_to_page(pfn);
eb33575c
MG
1221
1222 /* Watch for unexpected holes punched in the memmap */
1223 if (!memmap_valid_within(pfn, page, zone))
e80d6a24 1224 continue;
eb33575c 1225
a91c43c7
JK
1226 if (page_zone(page) != zone)
1227 continue;
1228
467c996c
MG
1229 mtype = get_pageblock_migratetype(page);
1230
e80d6a24
MG
1231 if (mtype < MIGRATE_TYPES)
1232 count[mtype]++;
467c996c
MG
1233 }
1234
1235 /* Print counts */
1236 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1237 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1238 seq_printf(m, "%12lu ", count[mtype]);
1239 seq_putc(m, '\n');
1240}
1241
1242/* Print out the free pages at each order for each migratetype */
1243static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1244{
1245 int mtype;
1246 pg_data_t *pgdat = (pg_data_t *)arg;
1247
1248 seq_printf(m, "\n%-23s", "Number of blocks type ");
1249 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1250 seq_printf(m, "%12s ", migratetype_names[mtype]);
1251 seq_putc(m, '\n');
1252 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1253
1254 return 0;
1255}
1256
48c96a36
JK
1257/*
1258 * Print out the number of pageblocks for each migratetype that contain pages
1259 * of other types. This gives an indication of how well fallbacks are being
1260 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1261 * to determine what is going on
1262 */
1263static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1264{
1265#ifdef CONFIG_PAGE_OWNER
1266 int mtype;
1267
7dd80b8a 1268 if (!static_branch_unlikely(&page_owner_inited))
48c96a36
JK
1269 return;
1270
1271 drain_all_pages(NULL);
1272
1273 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1274 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1275 seq_printf(m, "%12s ", migratetype_names[mtype]);
1276 seq_putc(m, '\n');
1277
1278 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1279#endif /* CONFIG_PAGE_OWNER */
1280}
1281
467c996c
MG
1282/*
1283 * This prints out statistics in relation to grouping pages by mobility.
1284 * It is expensive to collect so do not constantly read the file.
1285 */
1286static int pagetypeinfo_show(struct seq_file *m, void *arg)
1287{
1288 pg_data_t *pgdat = (pg_data_t *)arg;
1289
41b25a37 1290 /* check memoryless node */
a47b53c5 1291 if (!node_state(pgdat->node_id, N_MEMORY))
41b25a37
KM
1292 return 0;
1293
467c996c
MG
1294 seq_printf(m, "Page block order: %d\n", pageblock_order);
1295 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1296 seq_putc(m, '\n');
1297 pagetypeinfo_showfree(m, pgdat);
1298 pagetypeinfo_showblockcount(m, pgdat);
48c96a36 1299 pagetypeinfo_showmixedcount(m, pgdat);
467c996c 1300
f6ac2354
CL
1301 return 0;
1302}
1303
8f32f7e5 1304static const struct seq_operations fragmentation_op = {
f6ac2354
CL
1305 .start = frag_start,
1306 .next = frag_next,
1307 .stop = frag_stop,
1308 .show = frag_show,
1309};
1310
8f32f7e5
AD
1311static int fragmentation_open(struct inode *inode, struct file *file)
1312{
1313 return seq_open(file, &fragmentation_op);
1314}
1315
1316static const struct file_operations fragmentation_file_operations = {
1317 .open = fragmentation_open,
1318 .read = seq_read,
1319 .llseek = seq_lseek,
1320 .release = seq_release,
1321};
1322
74e2e8e8 1323static const struct seq_operations pagetypeinfo_op = {
467c996c
MG
1324 .start = frag_start,
1325 .next = frag_next,
1326 .stop = frag_stop,
1327 .show = pagetypeinfo_show,
1328};
1329
74e2e8e8
AD
1330static int pagetypeinfo_open(struct inode *inode, struct file *file)
1331{
1332 return seq_open(file, &pagetypeinfo_op);
1333}
1334
1335static const struct file_operations pagetypeinfo_file_ops = {
1336 .open = pagetypeinfo_open,
1337 .read = seq_read,
1338 .llseek = seq_lseek,
1339 .release = seq_release,
1340};
1341
e2ecc8a7
MG
1342static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1343{
1344 int zid;
1345
1346 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1347 struct zone *compare = &pgdat->node_zones[zid];
1348
1349 if (populated_zone(compare))
1350 return zone == compare;
1351 }
1352
1353 /* The zone must be somewhere! */
1354 WARN_ON_ONCE(1);
1355 return false;
1356}
1357
467c996c
MG
1358static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1359 struct zone *zone)
f6ac2354 1360{
467c996c
MG
1361 int i;
1362 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
e2ecc8a7
MG
1363 if (is_zone_first_populated(pgdat, zone)) {
1364 seq_printf(m, "\n per-node stats");
1365 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1366 seq_printf(m, "\n %-12s %lu",
1367 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
1368 node_page_state(pgdat, i));
1369 }
1370 }
467c996c
MG
1371 seq_printf(m,
1372 "\n pages free %lu"
1373 "\n min %lu"
1374 "\n low %lu"
1375 "\n high %lu"
599d0c95 1376 "\n node_scanned %lu"
467c996c 1377 "\n spanned %lu"
9feedc9d
JL
1378 "\n present %lu"
1379 "\n managed %lu",
88f5acf8 1380 zone_page_state(zone, NR_FREE_PAGES),
41858966
MG
1381 min_wmark_pages(zone),
1382 low_wmark_pages(zone),
1383 high_wmark_pages(zone),
599d0c95 1384 node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED),
467c996c 1385 zone->spanned_pages,
9feedc9d
JL
1386 zone->present_pages,
1387 zone->managed_pages);
467c996c
MG
1388
1389 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
599d0c95 1390 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
467c996c
MG
1391 zone_page_state(zone, i));
1392
1393 seq_printf(m,
3484b2de 1394 "\n protection: (%ld",
467c996c
MG
1395 zone->lowmem_reserve[0]);
1396 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
3484b2de 1397 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
467c996c
MG
1398 seq_printf(m,
1399 ")"
1400 "\n pagesets");
1401 for_each_online_cpu(i) {
1402 struct per_cpu_pageset *pageset;
467c996c 1403
99dcc3e5 1404 pageset = per_cpu_ptr(zone->pageset, i);
3dfa5721
CL
1405 seq_printf(m,
1406 "\n cpu: %i"
1407 "\n count: %i"
1408 "\n high: %i"
1409 "\n batch: %i",
1410 i,
1411 pageset->pcp.count,
1412 pageset->pcp.high,
1413 pageset->pcp.batch);
df9ecaba 1414#ifdef CONFIG_SMP
467c996c
MG
1415 seq_printf(m, "\n vm stats threshold: %d",
1416 pageset->stat_threshold);
df9ecaba 1417#endif
f6ac2354 1418 }
467c996c 1419 seq_printf(m,
599d0c95
MG
1420 "\n node_unreclaimable: %u"
1421 "\n start_pfn: %lu"
1422 "\n node_inactive_ratio: %u",
1423 !pgdat_reclaimable(zone->zone_pgdat),
556adecb 1424 zone->zone_start_pfn,
599d0c95 1425 zone->zone_pgdat->inactive_ratio);
467c996c
MG
1426 seq_putc(m, '\n');
1427}
1428
1429/*
1430 * Output information about zones in @pgdat.
1431 */
1432static int zoneinfo_show(struct seq_file *m, void *arg)
1433{
1434 pg_data_t *pgdat = (pg_data_t *)arg;
1435 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
f6ac2354
CL
1436 return 0;
1437}
1438
5c9fe628 1439static const struct seq_operations zoneinfo_op = {
f6ac2354
CL
1440 .start = frag_start, /* iterate over all zones. The same as in
1441 * fragmentation. */
1442 .next = frag_next,
1443 .stop = frag_stop,
1444 .show = zoneinfo_show,
1445};
1446
5c9fe628
AD
1447static int zoneinfo_open(struct inode *inode, struct file *file)
1448{
1449 return seq_open(file, &zoneinfo_op);
1450}
1451
1452static const struct file_operations proc_zoneinfo_file_operations = {
1453 .open = zoneinfo_open,
1454 .read = seq_read,
1455 .llseek = seq_lseek,
1456 .release = seq_release,
1457};
1458
79da826a
MR
1459enum writeback_stat_item {
1460 NR_DIRTY_THRESHOLD,
1461 NR_DIRTY_BG_THRESHOLD,
1462 NR_VM_WRITEBACK_STAT_ITEMS,
1463};
1464
f6ac2354
CL
1465static void *vmstat_start(struct seq_file *m, loff_t *pos)
1466{
2244b95a 1467 unsigned long *v;
79da826a 1468 int i, stat_items_size;
f6ac2354
CL
1469
1470 if (*pos >= ARRAY_SIZE(vmstat_text))
1471 return NULL;
79da826a 1472 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
75ef7184 1473 NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) +
79da826a 1474 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
f6ac2354 1475
f8891e5e 1476#ifdef CONFIG_VM_EVENT_COUNTERS
79da826a 1477 stat_items_size += sizeof(struct vm_event_state);
f8891e5e 1478#endif
79da826a
MR
1479
1480 v = kmalloc(stat_items_size, GFP_KERNEL);
2244b95a
CL
1481 m->private = v;
1482 if (!v)
f6ac2354 1483 return ERR_PTR(-ENOMEM);
2244b95a
CL
1484 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1485 v[i] = global_page_state(i);
79da826a
MR
1486 v += NR_VM_ZONE_STAT_ITEMS;
1487
75ef7184
MG
1488 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1489 v[i] = global_node_page_state(i);
1490 v += NR_VM_NODE_STAT_ITEMS;
1491
79da826a
MR
1492 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1493 v + NR_DIRTY_THRESHOLD);
1494 v += NR_VM_WRITEBACK_STAT_ITEMS;
1495
f8891e5e 1496#ifdef CONFIG_VM_EVENT_COUNTERS
79da826a
MR
1497 all_vm_events(v);
1498 v[PGPGIN] /= 2; /* sectors -> kbytes */
1499 v[PGPGOUT] /= 2;
f8891e5e 1500#endif
ff8b16d7 1501 return (unsigned long *)m->private + *pos;
f6ac2354
CL
1502}
1503
1504static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1505{
1506 (*pos)++;
1507 if (*pos >= ARRAY_SIZE(vmstat_text))
1508 return NULL;
1509 return (unsigned long *)m->private + *pos;
1510}
1511
1512static int vmstat_show(struct seq_file *m, void *arg)
1513{
1514 unsigned long *l = arg;
1515 unsigned long off = l - (unsigned long *)m->private;
68ba0326
AD
1516
1517 seq_puts(m, vmstat_text[off]);
75ba1d07 1518 seq_put_decimal_ull(m, " ", *l);
68ba0326 1519 seq_putc(m, '\n');
f6ac2354
CL
1520 return 0;
1521}
1522
1523static void vmstat_stop(struct seq_file *m, void *arg)
1524{
1525 kfree(m->private);
1526 m->private = NULL;
1527}
1528
b6aa44ab 1529static const struct seq_operations vmstat_op = {
f6ac2354
CL
1530 .start = vmstat_start,
1531 .next = vmstat_next,
1532 .stop = vmstat_stop,
1533 .show = vmstat_show,
1534};
1535
b6aa44ab
AD
1536static int vmstat_open(struct inode *inode, struct file *file)
1537{
1538 return seq_open(file, &vmstat_op);
1539}
1540
1541static const struct file_operations proc_vmstat_file_operations = {
1542 .open = vmstat_open,
1543 .read = seq_read,
1544 .llseek = seq_lseek,
1545 .release = seq_release,
1546};
f6ac2354
CL
1547#endif /* CONFIG_PROC_FS */
1548
df9ecaba 1549#ifdef CONFIG_SMP
373ccbe5 1550static struct workqueue_struct *vmstat_wq;
d1187ed2 1551static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
77461ab3 1552int sysctl_stat_interval __read_mostly = HZ;
d1187ed2 1553
52b6f46b
HD
1554#ifdef CONFIG_PROC_FS
1555static void refresh_vm_stats(struct work_struct *work)
1556{
1557 refresh_cpu_vm_stats(true);
1558}
1559
1560int vmstat_refresh(struct ctl_table *table, int write,
1561 void __user *buffer, size_t *lenp, loff_t *ppos)
1562{
1563 long val;
1564 int err;
1565 int i;
1566
1567 /*
1568 * The regular update, every sysctl_stat_interval, may come later
1569 * than expected: leaving a significant amount in per_cpu buckets.
1570 * This is particularly misleading when checking a quantity of HUGE
1571 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1572 * which can equally be echo'ed to or cat'ted from (by root),
1573 * can be used to update the stats just before reading them.
1574 *
1575 * Oh, and since global_page_state() etc. are so careful to hide
1576 * transiently negative values, report an error here if any of
1577 * the stats is negative, so we know to go looking for imbalance.
1578 */
1579 err = schedule_on_each_cpu(refresh_vm_stats);
1580 if (err)
1581 return err;
1582 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
75ef7184 1583 val = atomic_long_read(&vm_zone_stat[i]);
52b6f46b
HD
1584 if (val < 0) {
1585 switch (i) {
52b6f46b
HD
1586 case NR_PAGES_SCANNED:
1587 /*
e6cbd7f2 1588 * This is often seen to go negative in
52b6f46b
HD
1589 * recent kernels, but not to go permanently
1590 * negative. Whilst it would be nicer not to
1591 * have exceptions, rooting them out would be
1592 * another task, of rather low priority.
1593 */
1594 break;
1595 default:
1596 pr_warn("%s: %s %ld\n",
1597 __func__, vmstat_text[i], val);
1598 err = -EINVAL;
1599 break;
1600 }
1601 }
1602 }
1603 if (err)
1604 return err;
1605 if (write)
1606 *ppos += *lenp;
1607 else
1608 *lenp = 0;
1609 return 0;
1610}
1611#endif /* CONFIG_PROC_FS */
1612
d1187ed2
CL
1613static void vmstat_update(struct work_struct *w)
1614{
0eb77e98 1615 if (refresh_cpu_vm_stats(true)) {
7cc36bbd
CL
1616 /*
1617 * Counters were updated so we expect more updates
1618 * to occur in the future. Keep on running the
1619 * update worker thread.
1620 */
7b8da4c7 1621 queue_delayed_work_on(smp_processor_id(), vmstat_wq,
f01f17d3
MH
1622 this_cpu_ptr(&vmstat_work),
1623 round_jiffies_relative(sysctl_stat_interval));
7cc36bbd
CL
1624 }
1625}
1626
0eb77e98
CL
1627/*
1628 * Switch off vmstat processing and then fold all the remaining differentials
1629 * until the diffs stay at zero. The function is used by NOHZ and can only be
1630 * invoked when tick processing is not active.
1631 */
7cc36bbd
CL
1632/*
1633 * Check if the diffs for a certain cpu indicate that
1634 * an update is needed.
1635 */
1636static bool need_update(int cpu)
1637{
1638 struct zone *zone;
1639
1640 for_each_populated_zone(zone) {
1641 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1642
1643 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1644 /*
1645 * The fast way of checking if there are any vmstat diffs.
1646 * This works because the diffs are byte sized items.
1647 */
1648 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1649 return true;
1650
1651 }
1652 return false;
1653}
1654
7b8da4c7
CL
1655/*
1656 * Switch off vmstat processing and then fold all the remaining differentials
1657 * until the diffs stay at zero. The function is used by NOHZ and can only be
1658 * invoked when tick processing is not active.
1659 */
f01f17d3
MH
1660void quiet_vmstat(void)
1661{
1662 if (system_state != SYSTEM_RUNNING)
1663 return;
1664
7b8da4c7 1665 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
f01f17d3
MH
1666 return;
1667
1668 if (!need_update(smp_processor_id()))
1669 return;
1670
1671 /*
1672 * Just refresh counters and do not care about the pending delayed
1673 * vmstat_update. It doesn't fire that often to matter and canceling
1674 * it would be too expensive from this path.
1675 * vmstat_shepherd will take care about that for us.
1676 */
1677 refresh_cpu_vm_stats(false);
1678}
1679
7cc36bbd
CL
1680/*
1681 * Shepherd worker thread that checks the
1682 * differentials of processors that have their worker
1683 * threads for vm statistics updates disabled because of
1684 * inactivity.
1685 */
1686static void vmstat_shepherd(struct work_struct *w);
1687
0eb77e98 1688static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
7cc36bbd
CL
1689
1690static void vmstat_shepherd(struct work_struct *w)
1691{
1692 int cpu;
1693
1694 get_online_cpus();
1695 /* Check processors whose vmstat worker threads have been disabled */
7b8da4c7 1696 for_each_online_cpu(cpu) {
f01f17d3 1697 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
7cc36bbd 1698
7b8da4c7
CL
1699 if (!delayed_work_pending(dw) && need_update(cpu))
1700 queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
f01f17d3 1701 }
7cc36bbd
CL
1702 put_online_cpus();
1703
1704 schedule_delayed_work(&shepherd,
98f4ebb2 1705 round_jiffies_relative(sysctl_stat_interval));
d1187ed2
CL
1706}
1707
7cc36bbd 1708static void __init start_shepherd_timer(void)
d1187ed2 1709{
7cc36bbd
CL
1710 int cpu;
1711
1712 for_each_possible_cpu(cpu)
ccde8bd4 1713 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
7cc36bbd
CL
1714 vmstat_update);
1715
751e5f5c 1716 vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
7cc36bbd
CL
1717 schedule_delayed_work(&shepherd,
1718 round_jiffies_relative(sysctl_stat_interval));
d1187ed2
CL
1719}
1720
03e86dba
TC
1721static void __init init_cpu_node_state(void)
1722{
4c501327 1723 int node;
03e86dba 1724
4c501327
SAS
1725 for_each_online_node(node) {
1726 if (cpumask_weight(cpumask_of_node(node)) > 0)
1727 node_set_state(node, N_CPU);
1728 }
03e86dba
TC
1729}
1730
5438da97
SAS
1731static int vmstat_cpu_online(unsigned int cpu)
1732{
1733 refresh_zone_stat_thresholds();
1734 node_set_state(cpu_to_node(cpu), N_CPU);
1735 return 0;
1736}
1737
1738static int vmstat_cpu_down_prep(unsigned int cpu)
1739{
1740 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1741 return 0;
1742}
1743
1744static int vmstat_cpu_dead(unsigned int cpu)
807a1bd2 1745{
4c501327 1746 const struct cpumask *node_cpus;
5438da97 1747 int node;
807a1bd2 1748
5438da97
SAS
1749 node = cpu_to_node(cpu);
1750
1751 refresh_zone_stat_thresholds();
4c501327
SAS
1752 node_cpus = cpumask_of_node(node);
1753 if (cpumask_weight(node_cpus) > 0)
5438da97 1754 return 0;
807a1bd2
TK
1755
1756 node_clear_state(node, N_CPU);
5438da97 1757 return 0;
807a1bd2
TK
1758}
1759
8f32f7e5 1760#endif
df9ecaba 1761
e2fc88d0 1762static int __init setup_vmstat(void)
df9ecaba 1763{
8f32f7e5 1764#ifdef CONFIG_SMP
5438da97
SAS
1765 int ret;
1766
1767 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
1768 NULL, vmstat_cpu_dead);
1769 if (ret < 0)
1770 pr_err("vmstat: failed to register 'dead' hotplug state\n");
1771
1772 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
1773 vmstat_cpu_online,
1774 vmstat_cpu_down_prep);
1775 if (ret < 0)
1776 pr_err("vmstat: failed to register 'online' hotplug state\n");
1777
1778 get_online_cpus();
03e86dba 1779 init_cpu_node_state();
5438da97 1780 put_online_cpus();
d1187ed2 1781
7cc36bbd 1782 start_shepherd_timer();
8f32f7e5
AD
1783#endif
1784#ifdef CONFIG_PROC_FS
1785 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
74e2e8e8 1786 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
b6aa44ab 1787 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
5c9fe628 1788 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
8f32f7e5 1789#endif
df9ecaba
CL
1790 return 0;
1791}
1792module_init(setup_vmstat)
d7a5752c
MG
1793
1794#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
d7a5752c
MG
1795
1796/*
1797 * Return an index indicating how much of the available free memory is
1798 * unusable for an allocation of the requested size.
1799 */
1800static int unusable_free_index(unsigned int order,
1801 struct contig_page_info *info)
1802{
1803 /* No free memory is interpreted as all free memory is unusable */
1804 if (info->free_pages == 0)
1805 return 1000;
1806
1807 /*
1808 * Index should be a value between 0 and 1. Return a value to 3
1809 * decimal places.
1810 *
1811 * 0 => no fragmentation
1812 * 1 => high fragmentation
1813 */
1814 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1815
1816}
1817
1818static void unusable_show_print(struct seq_file *m,
1819 pg_data_t *pgdat, struct zone *zone)
1820{
1821 unsigned int order;
1822 int index;
1823 struct contig_page_info info;
1824
1825 seq_printf(m, "Node %d, zone %8s ",
1826 pgdat->node_id,
1827 zone->name);
1828 for (order = 0; order < MAX_ORDER; ++order) {
1829 fill_contig_page_info(zone, order, &info);
1830 index = unusable_free_index(order, &info);
1831 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1832 }
1833
1834 seq_putc(m, '\n');
1835}
1836
1837/*
1838 * Display unusable free space index
1839 *
1840 * The unusable free space index measures how much of the available free
1841 * memory cannot be used to satisfy an allocation of a given size and is a
1842 * value between 0 and 1. The higher the value, the more of free memory is
1843 * unusable and by implication, the worse the external fragmentation is. This
1844 * can be expressed as a percentage by multiplying by 100.
1845 */
1846static int unusable_show(struct seq_file *m, void *arg)
1847{
1848 pg_data_t *pgdat = (pg_data_t *)arg;
1849
1850 /* check memoryless node */
a47b53c5 1851 if (!node_state(pgdat->node_id, N_MEMORY))
d7a5752c
MG
1852 return 0;
1853
1854 walk_zones_in_node(m, pgdat, unusable_show_print);
1855
1856 return 0;
1857}
1858
1859static const struct seq_operations unusable_op = {
1860 .start = frag_start,
1861 .next = frag_next,
1862 .stop = frag_stop,
1863 .show = unusable_show,
1864};
1865
1866static int unusable_open(struct inode *inode, struct file *file)
1867{
1868 return seq_open(file, &unusable_op);
1869}
1870
1871static const struct file_operations unusable_file_ops = {
1872 .open = unusable_open,
1873 .read = seq_read,
1874 .llseek = seq_lseek,
1875 .release = seq_release,
1876};
1877
f1a5ab12
MG
1878static void extfrag_show_print(struct seq_file *m,
1879 pg_data_t *pgdat, struct zone *zone)
1880{
1881 unsigned int order;
1882 int index;
1883
1884 /* Alloc on stack as interrupts are disabled for zone walk */
1885 struct contig_page_info info;
1886
1887 seq_printf(m, "Node %d, zone %8s ",
1888 pgdat->node_id,
1889 zone->name);
1890 for (order = 0; order < MAX_ORDER; ++order) {
1891 fill_contig_page_info(zone, order, &info);
56de7263 1892 index = __fragmentation_index(order, &info);
f1a5ab12
MG
1893 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1894 }
1895
1896 seq_putc(m, '\n');
1897}
1898
1899/*
1900 * Display fragmentation index for orders that allocations would fail for
1901 */
1902static int extfrag_show(struct seq_file *m, void *arg)
1903{
1904 pg_data_t *pgdat = (pg_data_t *)arg;
1905
1906 walk_zones_in_node(m, pgdat, extfrag_show_print);
1907
1908 return 0;
1909}
1910
1911static const struct seq_operations extfrag_op = {
1912 .start = frag_start,
1913 .next = frag_next,
1914 .stop = frag_stop,
1915 .show = extfrag_show,
1916};
1917
1918static int extfrag_open(struct inode *inode, struct file *file)
1919{
1920 return seq_open(file, &extfrag_op);
1921}
1922
1923static const struct file_operations extfrag_file_ops = {
1924 .open = extfrag_open,
1925 .read = seq_read,
1926 .llseek = seq_lseek,
1927 .release = seq_release,
1928};
1929
d7a5752c
MG
1930static int __init extfrag_debug_init(void)
1931{
bde8bd8a
S
1932 struct dentry *extfrag_debug_root;
1933
d7a5752c
MG
1934 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1935 if (!extfrag_debug_root)
1936 return -ENOMEM;
1937
1938 if (!debugfs_create_file("unusable_index", 0444,
1939 extfrag_debug_root, NULL, &unusable_file_ops))
bde8bd8a 1940 goto fail;
d7a5752c 1941
f1a5ab12
MG
1942 if (!debugfs_create_file("extfrag_index", 0444,
1943 extfrag_debug_root, NULL, &extfrag_file_ops))
bde8bd8a 1944 goto fail;
f1a5ab12 1945
d7a5752c 1946 return 0;
bde8bd8a
S
1947fail:
1948 debugfs_remove_recursive(extfrag_debug_root);
1949 return -ENOMEM;
d7a5752c
MG
1950}
1951
1952module_init(extfrag_debug_init);
1953#endif