]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_hir_analysis/src/impl_wf_check/min_specialization.rs
Update upstream source from tag 'upstream/1.70.0+dfsg1'
[rustc.git] / compiler / rustc_hir_analysis / src / impl_wf_check / min_specialization.rs
CommitLineData
ba9703b0
XL
1//! # Minimal Specialization
2//!
3//! This module contains the checks for sound specialization used when the
4//! `min_specialization` feature is enabled. This requires that the impl is
5//! *always applicable*.
6//!
7//! If `impl1` specializes `impl2` then `impl1` is always applicable if we know
8//! that all the bounds of `impl2` are satisfied, and all of the bounds of
9//! `impl1` are satisfied for some choice of lifetimes then we know that
10//! `impl1` applies for any choice of lifetimes.
11//!
12//! ## Basic approach
13//!
14//! To enforce this requirement on specializations we take the following
15//! approach:
16//!
17//! 1. Match up the substs for `impl2` so that the implemented trait and
18//! self-type match those for `impl1`.
19//! 2. Check for any direct use of `'static` in the substs of `impl2`.
20//! 3. Check that all of the generic parameters of `impl1` occur at most once
21//! in the *unconstrained* substs for `impl2`. A parameter is constrained if
22//! its value is completely determined by an associated type projection
23//! predicate.
24//! 4. Check that all predicates on `impl1` either exist on `impl2` (after
25//! matching substs), or are well-formed predicates for the trait's type
26//! arguments.
27//!
28//! ## Example
29//!
30//! Suppose we have the following always applicable impl:
31//!
04454e1e 32//! ```ignore (illustrative)
ba9703b0
XL
33//! impl<T> SpecExtend<T> for std::vec::IntoIter<T> { /* specialized impl */ }
34//! impl<T, I: Iterator<Item=T>> SpecExtend<T> for I { /* default impl */ }
35//! ```
36//!
37//! We get that the subst for `impl2` are `[T, std::vec::IntoIter<T>]`. `T` is
38//! constrained to be `<I as Iterator>::Item`, so we check only
39//! `std::vec::IntoIter<T>` for repeated parameters, which it doesn't have. The
40//! predicates of `impl1` are only `T: Sized`, which is also a predicate of
41//! `impl2`. So this specialization is sound.
42//!
43//! ## Extensions
44//!
45//! Unfortunately not all specializations in the standard library are allowed
46//! by this. So there are two extensions to these rules that allow specializing
47//! on some traits: that is, using them as bounds on the specializing impl,
48//! even when they don't occur in the base impl.
49//!
50//! ### rustc_specialization_trait
51//!
52//! If a trait is always applicable, then it's sound to specialize on it. We
53//! check trait is always applicable in the same way as impls, except that step
54//! 4 is now "all predicates on `impl1` are always applicable". We require that
55//! `specialization` or `min_specialization` is enabled to implement these
56//! traits.
57//!
58//! ### rustc_unsafe_specialization_marker
59//!
60//! There are also some specialization on traits with no methods, including the
61//! stable `FusedIterator` trait. We allow marking marker traits with an
62//! unstable attribute that means we ignore them in point 3 of the checks
63//! above. This is unsound, in the sense that the specialized impl may be used
64//! when it doesn't apply, but we allow it in the short term since it can't
65//! cause use after frees with purely safe code in the same way as specializing
66//! on traits with methods can.
67
68use crate::constrained_generic_params as cgp;
04454e1e 69use crate::errors::SubstsOnOverriddenImpl;
ba9703b0
XL
70
71use rustc_data_structures::fx::FxHashSet;
487cf647 72use rustc_hir as hir;
f9f354fc 73use rustc_hir::def_id::{DefId, LocalDefId};
ba9703b0 74use rustc_infer::infer::outlives::env::OutlivesEnvironment;
f2b60f7d 75use rustc_infer::infer::TyCtxtInferExt;
ba9703b0 76use rustc_infer::traits::specialization_graph::Node;
ba9703b0
XL
77use rustc_middle::ty::subst::{GenericArg, InternalSubsts, SubstsRef};
78use rustc_middle::ty::trait_def::TraitSpecializationKind;
9ffffee4 79use rustc_middle::ty::{self, TyCtxt, TypeVisitableExt};
ba9703b0 80use rustc_span::Span;
2b03887a 81use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt;
f2b60f7d
FG
82use rustc_trait_selection::traits::outlives_bounds::InferCtxtExt as _;
83use rustc_trait_selection::traits::{self, translate_substs, wf, ObligationCtxt};
ba9703b0 84
064997fb 85pub(super) fn check_min_specialization(tcx: TyCtxt<'_>, impl_def_id: LocalDefId) {
ba9703b0 86 if let Some(node) = parent_specialization_node(tcx, impl_def_id) {
f2b60f7d 87 check_always_applicable(tcx, impl_def_id, node);
ba9703b0
XL
88 }
89}
90
064997fb 91fn parent_specialization_node(tcx: TyCtxt<'_>, impl1_def_id: LocalDefId) -> Option<Node> {
ba9703b0 92 let trait_ref = tcx.impl_trait_ref(impl1_def_id)?;
9c376795 93 let trait_def = tcx.trait_def(trait_ref.skip_binder().def_id);
ba9703b0 94
064997fb 95 let impl2_node = trait_def.ancestors(tcx, impl1_def_id.to_def_id()).ok()?.nth(1)?;
ba9703b0
XL
96
97 let always_applicable_trait =
98 matches!(trait_def.specialization_kind, TraitSpecializationKind::AlwaysApplicable);
99 if impl2_node.is_from_trait() && !always_applicable_trait {
100 // Implementing a normal trait isn't a specialization.
101 return None;
102 }
103 Some(impl2_node)
104}
105
106/// Check that `impl1` is a sound specialization
487cf647 107#[instrument(level = "debug", skip(tcx))]
f2b60f7d
FG
108fn check_always_applicable(tcx: TyCtxt<'_>, impl1_def_id: LocalDefId, impl2_node: Node) {
109 if let Some((impl1_substs, impl2_substs)) = get_impl_substs(tcx, impl1_def_id, impl2_node) {
ba9703b0 110 let impl2_def_id = impl2_node.def_id();
487cf647 111 debug!(?impl2_def_id, ?impl2_substs);
ba9703b0 112
ba9703b0
XL
113 let parent_substs = if impl2_node.is_from_trait() {
114 impl2_substs.to_vec()
115 } else {
116 unconstrained_parent_impl_substs(tcx, impl2_def_id, impl2_substs)
117 };
118
064997fb 119 let span = tcx.def_span(impl1_def_id);
487cf647 120 check_constness(tcx, impl1_def_id, impl2_node, span);
ba9703b0
XL
121 check_static_lifetimes(tcx, &parent_substs, span);
122 check_duplicate_params(tcx, impl1_substs, &parent_substs, span);
f2b60f7d 123 check_predicates(tcx, impl1_def_id, impl1_substs, impl2_node, impl2_substs, span);
ba9703b0
XL
124 }
125}
126
487cf647
FG
127/// Check that the specializing impl `impl1` is at least as const as the base
128/// impl `impl2`
129fn check_constness(tcx: TyCtxt<'_>, impl1_def_id: LocalDefId, impl2_node: Node, span: Span) {
130 if impl2_node.is_from_trait() {
131 // This isn't a specialization
132 return;
133 }
134
135 let impl1_constness = tcx.constness(impl1_def_id.to_def_id());
136 let impl2_constness = tcx.constness(impl2_node.def_id());
137
138 if let hir::Constness::Const = impl2_constness {
139 if let hir::Constness::NotConst = impl1_constness {
140 tcx.sess
141 .struct_span_err(span, "cannot specialize on const impl with non-const impl")
142 .emit();
143 }
144 }
145}
146
ba9703b0
XL
147/// Given a specializing impl `impl1`, and the base impl `impl2`, returns two
148/// substitutions `(S1, S2)` that equate their trait references. The returned
149/// types are expressed in terms of the generics of `impl1`.
150///
151/// Example
152///
2b03887a 153/// ```ignore (illustrative)
ba9703b0
XL
154/// impl<A, B> Foo<A> for B { /* impl2 */ }
155/// impl<C> Foo<Vec<C>> for C { /* impl1 */ }
2b03887a 156/// ```
ba9703b0
XL
157///
158/// Would return `S1 = [C]` and `S2 = [Vec<C>, C]`.
9c376795
FG
159fn get_impl_substs(
160 tcx: TyCtxt<'_>,
064997fb 161 impl1_def_id: LocalDefId,
ba9703b0 162 impl2_node: Node,
9c376795 163) -> Option<(SubstsRef<'_>, SubstsRef<'_>)> {
2b03887a
FG
164 let infcx = &tcx.infer_ctxt().build();
165 let ocx = ObligationCtxt::new(infcx);
166 let param_env = tcx.param_env(impl1_def_id);
ba9703b0 167
2b03887a
FG
168 let assumed_wf_types =
169 ocx.assumed_wf_types(param_env, tcx.def_span(impl1_def_id), impl1_def_id);
ba9703b0 170
353b0b11 171 let impl1_substs = InternalSubsts::identity_for_item(tcx, impl1_def_id);
2b03887a
FG
172 let impl2_substs =
173 translate_substs(infcx, param_env, impl1_def_id.to_def_id(), impl1_substs, impl2_node);
f2b60f7d 174
2b03887a
FG
175 let errors = ocx.select_all_or_error();
176 if !errors.is_empty() {
353b0b11 177 ocx.infcx.err_ctxt().report_fulfillment_errors(&errors);
2b03887a
FG
178 return None;
179 }
f2b60f7d 180
9ffffee4 181 let implied_bounds = infcx.implied_bounds_tys(param_env, impl1_def_id, assumed_wf_types);
353b0b11
FG
182 let outlives_env = OutlivesEnvironment::with_bounds(param_env, implied_bounds);
183 let _ = ocx.resolve_regions_and_report_errors(impl1_def_id, &outlives_env);
2b03887a
FG
184 let Ok(impl2_substs) = infcx.fully_resolve(impl2_substs) else {
185 let span = tcx.def_span(impl1_def_id);
186 tcx.sess.emit_err(SubstsOnOverriddenImpl { span });
187 return None;
188 };
189 Some((impl1_substs, impl2_substs))
ba9703b0
XL
190}
191
192/// Returns a list of all of the unconstrained subst of the given impl.
193///
194/// For example given the impl:
195///
196/// impl<'a, T, I> ... where &'a I: IntoIterator<Item=&'a T>
197///
198/// This would return the substs corresponding to `['a, I]`, because knowing
199/// `'a` and `I` determines the value of `T`.
200fn unconstrained_parent_impl_substs<'tcx>(
201 tcx: TyCtxt<'tcx>,
202 impl_def_id: DefId,
203 impl_substs: SubstsRef<'tcx>,
204) -> Vec<GenericArg<'tcx>> {
205 let impl_generic_predicates = tcx.predicates_of(impl_def_id);
206 let mut unconstrained_parameters = FxHashSet::default();
207 let mut constrained_params = FxHashSet::default();
9c376795 208 let impl_trait_ref = tcx.impl_trait_ref(impl_def_id).map(ty::EarlyBinder::subst_identity);
ba9703b0
XL
209
210 // Unfortunately the functions in `constrained_generic_parameters` don't do
211 // what we want here. We want only a list of constrained parameters while
212 // the functions in `cgp` add the constrained parameters to a list of
213 // unconstrained parameters.
214 for (predicate, _) in impl_generic_predicates.predicates.iter() {
487cf647
FG
215 if let ty::PredicateKind::Clause(ty::Clause::Projection(proj)) =
216 predicate.kind().skip_binder()
217 {
3dfed10e 218 let projection_ty = proj.projection_ty;
5099ac24 219 let projected_ty = proj.term;
ba9703b0
XL
220
221 let unbound_trait_ref = projection_ty.trait_ref(tcx);
222 if Some(unbound_trait_ref) == impl_trait_ref {
223 continue;
224 }
225
5099ac24 226 unconstrained_parameters.extend(cgp::parameters_for(&projection_ty, true));
ba9703b0 227
5099ac24 228 for param in cgp::parameters_for(&projected_ty, false) {
ba9703b0
XL
229 if !unconstrained_parameters.contains(&param) {
230 constrained_params.insert(param.0);
231 }
232 }
233
5099ac24 234 unconstrained_parameters.extend(cgp::parameters_for(&projected_ty, true));
ba9703b0
XL
235 }
236 }
237
238 impl_substs
239 .iter()
240 .enumerate()
241 .filter(|&(idx, _)| !constrained_params.contains(&(idx as u32)))
f9f354fc 242 .map(|(_, arg)| arg)
ba9703b0
XL
243 .collect()
244}
245
246/// Check that parameters of the derived impl don't occur more than once in the
247/// equated substs of the base impl.
248///
249/// For example forbid the following:
250///
2b03887a 251/// ```ignore (illustrative)
ba9703b0
XL
252/// impl<A> Tr for A { }
253/// impl<B> Tr for (B, B) { }
2b03887a 254/// ```
ba9703b0
XL
255///
256/// Note that only consider the unconstrained parameters of the base impl:
257///
2b03887a 258/// ```ignore (illustrative)
ba9703b0
XL
259/// impl<S, I: IntoIterator<Item = S>> Tr<S> for I { }
260/// impl<T> Tr<T> for Vec<T> { }
2b03887a 261/// ```
ba9703b0
XL
262///
263/// The substs for the parent impl here are `[T, Vec<T>]`, which repeats `T`,
264/// but `S` is constrained in the parent impl, so `parent_substs` is only
265/// `[Vec<T>]`. This means we allow this impl.
266fn check_duplicate_params<'tcx>(
267 tcx: TyCtxt<'tcx>,
268 impl1_substs: SubstsRef<'tcx>,
269 parent_substs: &Vec<GenericArg<'tcx>>,
270 span: Span,
271) {
5099ac24 272 let mut base_params = cgp::parameters_for(parent_substs, true);
ba9703b0
XL
273 base_params.sort_by_key(|param| param.0);
274 if let (_, [duplicate, ..]) = base_params.partition_dedup() {
275 let param = impl1_substs[duplicate.0 as usize];
276 tcx.sess
277 .struct_span_err(span, &format!("specializing impl repeats parameter `{}`", param))
278 .emit();
279 }
280}
281
282/// Check that `'static` lifetimes are not introduced by the specializing impl.
283///
284/// For example forbid the following:
285///
2b03887a 286/// ```ignore (illustrative)
ba9703b0
XL
287/// impl<A> Tr for A { }
288/// impl Tr for &'static i32 { }
2b03887a 289/// ```
ba9703b0
XL
290fn check_static_lifetimes<'tcx>(
291 tcx: TyCtxt<'tcx>,
292 parent_substs: &Vec<GenericArg<'tcx>>,
293 span: Span,
294) {
5099ac24 295 if tcx.any_free_region_meets(parent_substs, |r| r.is_static()) {
ba9703b0
XL
296 tcx.sess.struct_span_err(span, "cannot specialize on `'static` lifetime").emit();
297 }
298}
299
300/// Check whether predicates on the specializing impl (`impl1`) are allowed.
301///
487cf647 302/// Each predicate `P` must be one of:
ba9703b0 303///
487cf647
FG
304/// * Global (not reference any parameters).
305/// * A `T: Tr` predicate where `Tr` is an always-applicable trait.
306/// * Present on the base impl `impl2`.
307/// * This check is done using the `trait_predicates_eq` function below.
308/// * A well-formed predicate of a type argument of the trait being implemented,
ba9703b0 309/// including the `Self`-type.
487cf647 310#[instrument(level = "debug", skip(tcx))]
ba9703b0 311fn check_predicates<'tcx>(
f2b60f7d 312 tcx: TyCtxt<'tcx>,
f9f354fc 313 impl1_def_id: LocalDefId,
ba9703b0
XL
314 impl1_substs: SubstsRef<'tcx>,
315 impl2_node: Node,
316 impl2_substs: SubstsRef<'tcx>,
317 span: Span,
318) {
064997fb 319 let instantiated = tcx.predicates_of(impl1_def_id).instantiate(tcx, impl1_substs);
353b0b11 320 let impl1_predicates: Vec<_> = traits::elaborate(tcx, instantiated.into_iter()).collect();
c295e0f8 321
ba9703b0
XL
322 let mut impl2_predicates = if impl2_node.is_from_trait() {
323 // Always applicable traits have to be always applicable without any
324 // assumptions.
c295e0f8 325 Vec::new()
ba9703b0 326 } else {
353b0b11 327 traits::elaborate(
c295e0f8
XL
328 tcx,
329 tcx.predicates_of(impl2_node.def_id())
330 .instantiate(tcx, impl2_substs)
331 .predicates
332 .into_iter(),
333 )
c295e0f8 334 .collect()
ba9703b0 335 };
487cf647 336 debug!(?impl1_predicates, ?impl2_predicates);
ba9703b0
XL
337
338 // Since impls of always applicable traits don't get to assume anything, we
339 // can also assume their supertraits apply.
340 //
341 // For example, we allow:
342 //
343 // #[rustc_specialization_trait]
344 // trait AlwaysApplicable: Debug { }
345 //
346 // impl<T> Tr for T { }
347 // impl<T: AlwaysApplicable> Tr for T { }
348 //
349 // Specializing on `AlwaysApplicable` allows also specializing on `Debug`
350 // which is sound because we forbid impls like the following
351 //
352 // impl<D: Debug> AlwaysApplicable for D { }
353b0b11
FG
353 let always_applicable_traits = impl1_predicates
354 .iter()
355 .copied()
356 .filter(|&(predicate, _)| {
357 matches!(
358 trait_predicate_kind(tcx, predicate),
359 Some(TraitSpecializationKind::AlwaysApplicable)
360 )
361 })
362 .map(|(pred, _span)| pred);
ba9703b0
XL
363
364 // Include the well-formed predicates of the type parameters of the impl.
9c376795 365 for arg in tcx.impl_trait_ref(impl1_def_id).unwrap().subst_identity().substs {
2b03887a 366 let infcx = &tcx.infer_ctxt().build();
9ffffee4
FG
367 let obligations =
368 wf::obligations(infcx, tcx.param_env(impl1_def_id), impl1_def_id, 0, arg, span)
369 .unwrap();
f2b60f7d 370
2b03887a 371 assert!(!obligations.needs_infer());
353b0b11
FG
372 impl2_predicates
373 .extend(traits::elaborate(tcx, obligations).map(|obligation| obligation.predicate))
ba9703b0 374 }
353b0b11 375 impl2_predicates.extend(traits::elaborate(tcx, always_applicable_traits));
ba9703b0 376
064997fb 377 for (predicate, span) in impl1_predicates {
487cf647 378 if !impl2_predicates.iter().any(|pred2| trait_predicates_eq(tcx, predicate, *pred2, span)) {
f9f354fc 379 check_specialization_on(tcx, predicate, span)
ba9703b0
XL
380 }
381 }
382}
383
487cf647
FG
384/// Checks if some predicate on the specializing impl (`predicate1`) is the same
385/// as some predicate on the base impl (`predicate2`).
386///
387/// This basically just checks syntactic equivalence, but is a little more
388/// forgiving since we want to equate `T: Tr` with `T: ~const Tr` so this can work:
389///
390/// ```ignore (illustrative)
391/// #[rustc_specialization_trait]
392/// trait Specialize { }
393///
394/// impl<T: Bound> Tr for T { }
395/// impl<T: ~const Bound + Specialize> const Tr for T { }
396/// ```
397///
398/// However, we *don't* want to allow the reverse, i.e., when the bound on the
399/// specializing impl is not as const as the bound on the base impl:
400///
401/// ```ignore (illustrative)
402/// impl<T: ~const Bound> const Tr for T { }
403/// impl<T: Bound + Specialize> const Tr for T { } // should be T: ~const Bound
404/// ```
405///
406/// So we make that check in this function and try to raise a helpful error message.
407fn trait_predicates_eq<'tcx>(
408 tcx: TyCtxt<'tcx>,
409 predicate1: ty::Predicate<'tcx>,
410 predicate2: ty::Predicate<'tcx>,
411 span: Span,
412) -> bool {
413 let pred1_kind = predicate1.kind().skip_binder();
414 let pred2_kind = predicate2.kind().skip_binder();
415 let (trait_pred1, trait_pred2) = match (pred1_kind, pred2_kind) {
416 (
417 ty::PredicateKind::Clause(ty::Clause::Trait(pred1)),
418 ty::PredicateKind::Clause(ty::Clause::Trait(pred2)),
419 ) => (pred1, pred2),
420 // Just use plain syntactic equivalence if either of the predicates aren't
421 // trait predicates or have bound vars.
422 _ => return predicate1 == predicate2,
423 };
424
425 let predicates_equal_modulo_constness = {
426 let pred1_unconsted =
427 ty::TraitPredicate { constness: ty::BoundConstness::NotConst, ..trait_pred1 };
428 let pred2_unconsted =
429 ty::TraitPredicate { constness: ty::BoundConstness::NotConst, ..trait_pred2 };
430 pred1_unconsted == pred2_unconsted
431 };
432
433 if !predicates_equal_modulo_constness {
434 return false;
435 }
436
437 // Check that the predicate on the specializing impl is at least as const as
438 // the one on the base.
439 match (trait_pred2.constness, trait_pred1.constness) {
440 (ty::BoundConstness::ConstIfConst, ty::BoundConstness::NotConst) => {
441 tcx.sess.struct_span_err(span, "missing `~const` qualifier for specialization").emit();
442 }
443 _ => {}
444 }
445
446 true
447}
448
449#[instrument(level = "debug", skip(tcx))]
f9f354fc 450fn check_specialization_on<'tcx>(tcx: TyCtxt<'tcx>, predicate: ty::Predicate<'tcx>, span: Span) {
5869c6ff 451 match predicate.kind().skip_binder() {
ba9703b0
XL
452 // Global predicates are either always true or always false, so we
453 // are fine to specialize on.
5099ac24 454 _ if predicate.is_global() => (),
ba9703b0
XL
455 // We allow specializing on explicitly marked traits with no associated
456 // items.
487cf647 457 ty::PredicateKind::Clause(ty::Clause::Trait(ty::TraitPredicate {
94222f64 458 trait_ref,
487cf647 459 constness: _,
3c0e092e 460 polarity: _,
487cf647 461 })) => {
ba9703b0
XL
462 if !matches!(
463 trait_predicate_kind(tcx, predicate),
464 Some(TraitSpecializationKind::Marker)
465 ) {
466 tcx.sess
467 .struct_span_err(
468 span,
469 &format!(
470 "cannot specialize on trait `{}`",
94222f64 471 tcx.def_path_str(trait_ref.def_id),
ba9703b0
XL
472 ),
473 )
5e7ed085 474 .emit();
ba9703b0
XL
475 }
476 }
487cf647
FG
477 ty::PredicateKind::Clause(ty::Clause::Projection(ty::ProjectionPredicate {
478 projection_ty,
479 term,
480 })) => {
064997fb
FG
481 tcx.sess
482 .struct_span_err(
483 span,
484 &format!("cannot specialize on associated type `{projection_ty} == {term}`",),
485 )
486 .emit();
487 }
9ffffee4
FG
488 ty::PredicateKind::Clause(ty::Clause::ConstArgHasType(..)) => {
489 // FIXME(min_specialization), FIXME(const_generics):
490 // It probably isn't right to allow _every_ `ConstArgHasType` but I am somewhat unsure
491 // about the actual rules that would be sound. Can't just always error here because otherwise
492 // std/core doesn't even compile as they have `const N: usize` in some specializing impls.
493 //
494 // While we do not support constructs like `<T, const N: T>` there is probably no risk of
495 // soundness bugs, but when we support generic const parameter types this will need to be
496 // revisited.
497 }
5e7ed085
FG
498 _ => {
499 tcx.sess
064997fb 500 .struct_span_err(span, &format!("cannot specialize on predicate `{}`", predicate))
5e7ed085
FG
501 .emit();
502 }
ba9703b0
XL
503 }
504}
505
506fn trait_predicate_kind<'tcx>(
507 tcx: TyCtxt<'tcx>,
f9f354fc 508 predicate: ty::Predicate<'tcx>,
ba9703b0 509) -> Option<TraitSpecializationKind> {
5869c6ff 510 match predicate.kind().skip_binder() {
487cf647
FG
511 ty::PredicateKind::Clause(ty::Clause::Trait(ty::TraitPredicate {
512 trait_ref,
513 constness: _,
514 polarity: _,
515 })) => Some(tcx.trait_def(trait_ref.def_id).specialization_kind),
516 ty::PredicateKind::Clause(ty::Clause::RegionOutlives(_))
517 | ty::PredicateKind::Clause(ty::Clause::TypeOutlives(_))
518 | ty::PredicateKind::Clause(ty::Clause::Projection(_))
9ffffee4 519 | ty::PredicateKind::Clause(ty::Clause::ConstArgHasType(..))
353b0b11 520 | ty::PredicateKind::AliasRelate(..)
5869c6ff
XL
521 | ty::PredicateKind::WellFormed(_)
522 | ty::PredicateKind::Subtype(_)
94222f64 523 | ty::PredicateKind::Coerce(_)
5869c6ff
XL
524 | ty::PredicateKind::ObjectSafe(_)
525 | ty::PredicateKind::ClosureKind(..)
526 | ty::PredicateKind::ConstEvaluatable(..)
527 | ty::PredicateKind::ConstEquate(..)
487cf647 528 | ty::PredicateKind::Ambiguous
5869c6ff 529 | ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
ba9703b0
XL
530 }
531}