]> git.proxmox.com Git - mirror_edk2.git/blame - InOsEmuPkg/CpuRuntimeDxe/MpService.c
Update the comments to describe the purpose of Removable array.
[mirror_edk2.git] / InOsEmuPkg / CpuRuntimeDxe / MpService.c
CommitLineData
c4671a67 1/** @file\r
10d1be3e 2 Construct MP Services Protocol on top of the EMU Thread protocol.\r
3 This code makes APs show up in the emulator. PcdEmuApCount is the\r
4 number of APs the emulator should produce.\r
c4671a67 5\r
6 The MP Services Protocol provides a generalized way of performing following tasks:\r
7 - Retrieving information of multi-processor environment and MP-related status of\r
8 specific processors.\r
9 - Dispatching user-provided function to APs.\r
10 - Maintain MP-related processor status.\r
11\r
12 The MP Services Protocol must be produced on any system with more than one logical\r
13 processor.\r
14\r
15 The Protocol is available only during boot time.\r
16\r
17 MP Services Protocol is hardware-independent. Most of the logic of this protocol\r
18 is architecturally neutral. It abstracts the multi-processor environment and \r
19 status of processors, and provides interfaces to retrieve information, maintain, \r
20 and dispatch.\r
21\r
22 MP Services Protocol may be consumed by ACPI module. The ACPI module may use this \r
23 protocol to retrieve data that are needed for an MP platform and report them to OS.\r
24 MP Services Protocol may also be used to program and configure processors, such \r
25 as MTRR synchronization for memory space attributes setting in DXE Services.\r
26 MP Services Protocol may be used by non-CPU DXE drivers to speed up platform boot \r
27 by taking advantage of the processing capabilities of the APs, for example, using \r
28 APs to help test system memory in parallel with other device initialization.\r
29 Diagnostics applications may also use this protocol for multi-processor.\r
30\r
224e1333 31Copyright (c) 2006 - 2011, Intel Corporation. All rights reserved.<BR>\r
c4671a67 32Portitions Copyright (c) 2011, Apple Inc. All rights reserved.\r
224e1333 33This program and the accompanying materials are licensed and made available under\r
34the terms and conditions of the BSD License that accompanies this distribution.\r
c4671a67 35The full text of the license may be found at\r
224e1333 36http://opensource.org/licenses/bsd-license.php.\r
37\r
38THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
c4671a67 39WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
40\r
224e1333 41\r
c4671a67 42**/\r
43\r
44#include "CpuDriver.h"\r
45\r
46\r
47MP_SYSTEM_DATA gMPSystem;\r
10d1be3e 48EMU_THREAD_THUNK_PROTOCOL *gThread = NULL; \r
c4671a67 49EFI_EVENT gReadToBootEvent;\r
50BOOLEAN gReadToBoot = FALSE;\r
51UINTN gPollInterval;\r
52\r
53\r
54BOOLEAN\r
55IsBSP (\r
56 VOID\r
57 )\r
58{\r
59 EFI_STATUS Status;\r
60 UINTN ProcessorNumber;\r
61 \r
62 Status = CpuMpServicesWhoAmI (&mMpSercicesTemplate, &ProcessorNumber);\r
63 if (EFI_ERROR (Status)) {\r
64 return FALSE;\r
65 }\r
66 \r
67 return (gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0;\r
68}\r
69\r
70\r
71VOID\r
72SetApProcedure (\r
73 IN PROCESSOR_DATA_BLOCK *Processor,\r
74 IN EFI_AP_PROCEDURE Procedure,\r
75 IN VOID *ProcedureArgument\r
76 )\r
77{\r
10d1be3e 78 gThread->MutexLock (Processor->ProcedureLock);\r
c4671a67 79 Processor->Parameter = ProcedureArgument;\r
80 Processor->Procedure = Procedure;\r
10d1be3e 81 gThread->MutexUnlock (Processor->ProcedureLock);\r
c4671a67 82}\r
83\r
84\r
85EFI_STATUS\r
86GetNextBlockedNumber (\r
87 OUT UINTN *NextNumber\r
88 )\r
89{\r
90 UINTN Number;\r
91 PROCESSOR_STATE ProcessorState;\r
92 PROCESSOR_DATA_BLOCK *Data;\r
93\r
94 for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) {\r
95 Data = &gMPSystem.ProcessorData[Number];\r
96 if ((Data->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) {\r
97 // Skip BSP\r
98 continue;\r
99 }\r
100\r
10d1be3e 101 gThread->MutexLock (Data->StateLock);\r
c4671a67 102 ProcessorState = Data->State;\r
10d1be3e 103 gThread->MutexUnlock (Data->StateLock);\r
c4671a67 104\r
105 if (ProcessorState == CPU_STATE_BLOCKED) {\r
106 *NextNumber = Number;\r
107 return EFI_SUCCESS;\r
108 }\r
109 }\r
110\r
111 return EFI_NOT_FOUND;\r
112}\r
113\r
114\r
115\r
116\r
117/**\r
118 This service retrieves the number of logical processor in the platform\r
119 and the number of those logical processors that are enabled on this boot.\r
120 This service may only be called from the BSP.\r
121\r
122 This function is used to retrieve the following information:\r
123 - The number of logical processors that are present in the system.\r
124 - The number of enabled logical processors in the system at the instant \r
125 this call is made.\r
126\r
127 Because MP Service Protocol provides services to enable and disable processors \r
128 dynamically, the number of enabled logical processors may vary during the \r
129 course of a boot session.\r
130 \r
131 If this service is called from an AP, then EFI_DEVICE_ERROR is returned. \r
132 If NumberOfProcessors or NumberOfEnabledProcessors is NULL, then \r
133 EFI_INVALID_PARAMETER is returned. Otherwise, the total number of processors \r
134 is returned in NumberOfProcessors, the number of currently enabled processor \r
135 is returned in NumberOfEnabledProcessors, and EFI_SUCCESS is returned.\r
136\r
137 @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL\r
138 instance.\r
139 @param[out] NumberOfProcessors Pointer to the total number of logical\r
140 processors in the system, including the BSP\r
141 and disabled APs.\r
142 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical\r
143 processors that exist in system, including\r
144 the BSP.\r
145\r
146 @retval EFI_SUCCESS The number of logical processors and enabled \r
147 logical processors was retrieved.\r
148 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
149 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL.\r
150 @retval EFI_INVALID_PARAMETER NumberOfEnabledProcessors is NULL.\r
151\r
152**/\r
153EFI_STATUS\r
154EFIAPI\r
155CpuMpServicesGetNumberOfProcessors (\r
156 IN EFI_MP_SERVICES_PROTOCOL *This,\r
157 OUT UINTN *NumberOfProcessors,\r
158 OUT UINTN *NumberOfEnabledProcessors\r
159 )\r
160{\r
161 if ((NumberOfProcessors == NULL) || (NumberOfEnabledProcessors == NULL)) {\r
162 return EFI_INVALID_PARAMETER;\r
163 }\r
164 \r
165 if (!IsBSP ()) {\r
166 return EFI_DEVICE_ERROR;\r
167 }\r
168 \r
169 *NumberOfProcessors = gMPSystem.NumberOfProcessors;\r
170 *NumberOfEnabledProcessors = gMPSystem.NumberOfEnabledProcessors;\r
171 return EFI_SUCCESS;\r
172}\r
173\r
174\r
175\r
176/**\r
177 Gets detailed MP-related information on the requested processor at the\r
178 instant this call is made. This service may only be called from the BSP.\r
179\r
180 This service retrieves detailed MP-related information about any processor \r
181 on the platform. Note the following:\r
182 - The processor information may change during the course of a boot session.\r
183 - The information presented here is entirely MP related.\r
184 \r
185 Information regarding the number of caches and their sizes, frequency of operation,\r
186 slot numbers is all considered platform-related information and is not provided \r
187 by this service.\r
188\r
189 @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL\r
190 instance.\r
191 @param[in] ProcessorNumber The handle number of processor.\r
192 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for\r
193 the requested processor is deposited.\r
194\r
195 @retval EFI_SUCCESS Processor information was returned.\r
196 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
197 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.\r
198 @retval EFI_NOT_FOUND The processor with the handle specified by\r
199 ProcessorNumber does not exist in the platform.\r
200\r
201**/\r
202EFI_STATUS\r
203EFIAPI\r
204CpuMpServicesGetProcessorInfo (\r
205 IN EFI_MP_SERVICES_PROTOCOL *This,\r
206 IN UINTN ProcessorNumber,\r
207 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer\r
208 )\r
209{\r
210 if (ProcessorInfoBuffer == NULL) {\r
211 return EFI_INVALID_PARAMETER;\r
212 }\r
213 \r
214 if (!IsBSP ()) {\r
215 return EFI_DEVICE_ERROR;\r
216 }\r
217 \r
218 if (ProcessorNumber >= gMPSystem.NumberOfProcessors) {\r
219 return EFI_NOT_FOUND;\r
220 }\r
221 \r
222 CopyMem (ProcessorInfoBuffer, &gMPSystem.ProcessorData[ProcessorNumber], sizeof (EFI_PROCESSOR_INFORMATION));\r
223 return EFI_SUCCESS;\r
224}\r
225\r
226\r
227/**\r
228 This service executes a caller provided function on all enabled APs. APs can \r
229 run either simultaneously or one at a time in sequence. This service supports \r
230 both blocking and non-blocking requests. The non-blocking requests use EFI \r
231 events so the BSP can detect when the APs have finished. This service may only \r
232 be called from the BSP.\r
233\r
234 This function is used to dispatch all the enabled APs to the function specified \r
235 by Procedure. If any enabled AP is busy, then EFI_NOT_READY is returned \r
236 immediately and Procedure is not started on any AP.\r
237\r
238 If SingleThread is TRUE, all the enabled APs execute the function specified by \r
239 Procedure one by one, in ascending order of processor handle number. Otherwise, \r
240 all the enabled APs execute the function specified by Procedure simultaneously.\r
241\r
242 If WaitEvent is NULL, execution is in blocking mode. The BSP waits until all \r
243 APs finish or TimeoutInMicroseconds expires. Otherwise, execution is in non-blocking \r
244 mode, and the BSP returns from this service without waiting for APs. If a \r
245 non-blocking mode is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT \r
246 is signaled, then EFI_UNSUPPORTED must be returned.\r
247\r
248 If the timeout specified by TimeoutInMicroseconds expires before all APs return \r
249 from Procedure, then Procedure on the failed APs is terminated. All enabled APs \r
250 are always available for further calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()\r
251 and EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). If FailedCpuList is not NULL, its \r
252 content points to the list of processor handle numbers in which Procedure was \r
253 terminated.\r
254\r
255 Note: It is the responsibility of the consumer of the EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() \r
256 to make sure that the nature of the code that is executed on the BSP and the \r
257 dispatched APs is well controlled. The MP Services Protocol does not guarantee \r
258 that the Procedure function is MP-safe. Hence, the tasks that can be run in \r
259 parallel are limited to certain independent tasks and well-controlled exclusive \r
260 code. EFI services and protocols may not be called by APs unless otherwise \r
261 specified.\r
262\r
263 In blocking execution mode, BSP waits until all APs finish or \r
264 TimeoutInMicroseconds expires.\r
265\r
266 In non-blocking execution mode, BSP is freed to return to the caller and then \r
267 proceed to the next task without having to wait for APs. The following \r
268 sequence needs to occur in a non-blocking execution mode:\r
269\r
270 -# The caller that intends to use this MP Services Protocol in non-blocking \r
271 mode creates WaitEvent by calling the EFI CreateEvent() service. The caller \r
272 invokes EFI_MP_SERVICES_PROTOCOL.StartupAllAPs(). If the parameter WaitEvent \r
273 is not NULL, then StartupAllAPs() executes in non-blocking mode. It requests \r
274 the function specified by Procedure to be started on all the enabled APs, \r
275 and releases the BSP to continue with other tasks.\r
276 -# The caller can use the CheckEvent() and WaitForEvent() services to check \r
277 the state of the WaitEvent created in step 1.\r
278 -# When the APs complete their task or TimeoutInMicroSecondss expires, the MP \r
279 Service signals WaitEvent by calling the EFI SignalEvent() function. If \r
280 FailedCpuList is not NULL, its content is available when WaitEvent is \r
281 signaled. If all APs returned from Procedure prior to the timeout, then \r
282 FailedCpuList is set to NULL. If not all APs return from Procedure before \r
283 the timeout, then FailedCpuList is filled in with the list of the failed \r
284 APs. The buffer is allocated by MP Service Protocol using AllocatePool(). \r
285 It is the caller's responsibility to free the buffer with FreePool() service.\r
286 -# This invocation of SignalEvent() function informs the caller that invoked\r
287 EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() that either all the APs completed\r
288 the specified task or a timeout occurred. The contents of FailedCpuList \r
289 can be examined to determine which APs did not complete the specified task \r
290 prior to the timeout.\r
291\r
292 @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL\r
293 instance.\r
294 @param[in] Procedure A pointer to the function to be run on \r
295 enabled APs of the system. See type\r
296 EFI_AP_PROCEDURE.\r
297 @param[in] SingleThread If TRUE, then all the enabled APs execute \r
298 the function specified by Procedure one by \r
299 one, in ascending order of processor handle \r
300 number. If FALSE, then all the enabled APs \r
301 execute the function specified by Procedure\r
302 simultaneously.\r
303 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
304 service. If it is NULL, then execute in \r
305 blocking mode. BSP waits until all APs finish \r
306 or TimeoutInMicroseconds expires. If it's \r
307 not NULL, then execute in non-blocking mode. \r
308 BSP requests the function specified by \r
309 Procedure to be started on all the enabled \r
310 APs, and go on executing immediately. If \r
311 all return from Procedure, or TimeoutInMicroseconds\r
312 expires, this event is signaled. The BSP \r
313 can use the CheckEvent() or WaitForEvent() \r
314 services to check the state of event. Type \r
315 EFI_EVENT is defined in CreateEvent() in \r
316 the Unified Extensible Firmware Interface \r
317 Specification. \r
318 @param[in] TimeoutInMicrosecsond Indicates the time limit in microseconds for \r
319 APs to return from Procedure, either for \r
320 blocking or non-blocking mode. Zero means \r
321 infinity. If the timeout expires before \r
322 all APs return from Procedure, then Procedure\r
323 on the failed APs is terminated. All enabled \r
324 APs are available for next function assigned \r
325 by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() \r
326 or EFI_MP_SERVICES_PROTOCOL.StartupThisAP().\r
327 If the timeout expires in blocking mode, \r
328 BSP returns EFI_TIMEOUT. If the timeout \r
329 expires in non-blocking mode, WaitEvent \r
330 is signaled with SignalEvent().\r
331 @param[in] ProcedureArgument The parameter passed into Procedure for \r
332 all APs.\r
333 @param[out] FailedCpuList If NULL, this parameter is ignored. Otherwise, \r
334 if all APs finish successfully, then its \r
335 content is set to NULL. If not all APs \r
336 finish before timeout expires, then its \r
337 content is set to address of the buffer \r
338 holding handle numbers of the failed APs. \r
339 The buffer is allocated by MP Service Protocol, \r
340 and it's the caller's responsibility to \r
341 free the buffer with FreePool() service.\r
342 In blocking mode, it is ready for consumption \r
343 when the call returns. In non-blocking mode, \r
344 it is ready when WaitEvent is signaled. The \r
345 list of failed CPU is terminated by \r
346 END_OF_CPU_LIST.\r
347\r
348 @retval EFI_SUCCESS In blocking mode, all APs have finished before \r
349 the timeout expired.\r
350 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched \r
351 to all enabled APs.\r
352 @retval EFI_UNSUPPORTED A non-blocking mode request was made after the \r
353 UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was \r
354 signaled.\r
355 @retval EFI_DEVICE_ERROR Caller processor is AP.\r
356 @retval EFI_NOT_STARTED No enabled APs exist in the system.\r
357 @retval EFI_NOT_READY Any enabled APs are busy.\r
358 @retval EFI_TIMEOUT In blocking mode, the timeout expired before \r
359 all enabled APs have finished.\r
360 @retval EFI_INVALID_PARAMETER Procedure is NULL.\r
361\r
362**/\r
363EFI_STATUS\r
364EFIAPI\r
365CpuMpServicesStartupAllAps (\r
366 IN EFI_MP_SERVICES_PROTOCOL *This,\r
367 IN EFI_AP_PROCEDURE Procedure,\r
368 IN BOOLEAN SingleThread,\r
369 IN EFI_EVENT WaitEvent OPTIONAL,\r
370 IN UINTN TimeoutInMicroseconds,\r
371 IN VOID *ProcedureArgument OPTIONAL,\r
372 OUT UINTN **FailedCpuList OPTIONAL\r
373 )\r
374{\r
375 EFI_STATUS Status;\r
376 PROCESSOR_DATA_BLOCK *ProcessorData;\r
377 UINTN *FailledList;\r
378 UINTN FailedListIndex;\r
379 UINTN ListIndex;\r
380 UINTN Number;\r
381 UINTN NextNumber;\r
382 PROCESSOR_STATE APInitialState;\r
383 PROCESSOR_STATE ProcessorState;\r
384 INTN Timeout;\r
385\r
386\r
387 if (!IsBSP ()) {\r
388 return EFI_DEVICE_ERROR;\r
389 }\r
390 \r
391 if (gMPSystem.NumberOfProcessors == 1) {\r
392 return EFI_NOT_STARTED;\r
393 }\r
394\r
395 if (Procedure == NULL) {\r
396 return EFI_INVALID_PARAMETER;\r
397 }\r
398 \r
399 if ((WaitEvent != NULL) && gReadToBoot) {\r
400 return EFI_UNSUPPORTED;\r
401 }\r
402 \r
403 \r
404 if (FailedCpuList != NULL) {\r
8b6d0c05 405 gMPSystem.FailedList = AllocatePool ((gMPSystem.NumberOfProcessors + 1) * sizeof (UINTN));\r
406 if (gMPSystem.FailedList == NULL) {\r
407 return EFI_OUT_OF_RESOURCES;\r
408 }\r
409 SetMemN (gMPSystem.FailedList, (gMPSystem.NumberOfProcessors + 1) * sizeof (UINTN), END_OF_CPU_LIST);\r
410 gMPSystem.FailedListIndex = 0;\r
411 *FailedCpuList = gMPSystem.FailedList;\r
c4671a67 412 }\r
413\r
414 Timeout = TimeoutInMicroseconds;\r
415\r
416 ListIndex = 0;\r
8b6d0c05 417 ProcessorData = NULL;\r
c4671a67 418\r
8b6d0c05 419 gMPSystem.FinishCount = 0;\r
420 gMPSystem.StartCount = 0;\r
421 gMPSystem.SingleThread = SingleThread;\r
422 APInitialState = CPU_STATE_READY;\r
c4671a67 423\r
424 for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) {\r
425 ProcessorData = &gMPSystem.ProcessorData[Number];\r
426\r
427 if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {\r
428 // Skip BSP\r
429 continue;\r
430 }\r
431\r
8b6d0c05 432 if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {\r
433 // Skip Disabled processors\r
434 gMPSystem.FailedList[gMPSystem.FailedListIndex++] = Number;\r
435 continue;\r
436 }\r
437\r
c4671a67 438 //\r
439 // Get APs prepared, and put failing APs into FailedCpuList\r
440 // if "SingleThread", only 1 AP will put to ready state, other AP will be put to ready\r
441 // state 1 by 1, until the previous 1 finished its task\r
442 // if not "SingleThread", all APs are put to ready state from the beginning\r
443 //\r
444 if (ProcessorData->State == CPU_STATE_IDLE) {\r
445 gMPSystem.StartCount++;\r
446\r
10d1be3e 447 gThread->MutexLock (&ProcessorData->StateLock);\r
c4671a67 448 ProcessorData->State = APInitialState;\r
10d1be3e 449 gThread->MutexUnlock (&ProcessorData->StateLock);\r
c4671a67 450\r
451 if (SingleThread) {\r
452 APInitialState = CPU_STATE_BLOCKED;\r
453 }\r
8b6d0c05 454 } else {\r
455 return EFI_NOT_READY;\r
c4671a67 456 }\r
457 }\r
458 \r
8b6d0c05 459 if (WaitEvent != NULL) {\r
460 for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) {\r
461 ProcessorData = &gMPSystem.ProcessorData[Number]; \r
462 if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {\r
463 // Skip BSP\r
464 continue;\r
465 }\r
466\r
467 if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {\r
468 // Skip Disabled processors\r
469 continue;\r
470 }\r
471 \r
472 SetApProcedure (ProcessorData, Procedure, ProcedureArgument);\r
c4671a67 473 }\r
8b6d0c05 474\r
475 //\r
476 // Save data into private data structure, and create timer to poll AP state before exiting\r
477 //\r
478 gMPSystem.Procedure = Procedure;\r
479 gMPSystem.ProcedureArgument = ProcedureArgument;\r
480 gMPSystem.WaitEvent = WaitEvent;\r
481 gMPSystem.Timeout = TimeoutInMicroseconds;\r
482 gMPSystem.TimeoutActive = (BOOLEAN)(TimeoutInMicroseconds != 0);\r
483 Status = gBS->SetTimer (\r
484 gMPSystem.CheckAllAPsEvent,\r
485 TimerPeriodic,\r
486 gPollInterval\r
487 );\r
488 return Status;\r
489\r
c4671a67 490 }\r
491\r
492 while (TRUE) {\r
493 for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) {\r
494 ProcessorData = &gMPSystem.ProcessorData[Number]; \r
495 if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {\r
496 // Skip BSP\r
497 continue;\r
498 }\r
499\r
8b6d0c05 500 if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {\r
501 // Skip Disabled processors\r
502 continue;\r
503 }\r
504\r
10d1be3e 505 gThread->MutexLock (ProcessorData->StateLock);\r
c4671a67 506 ProcessorState = ProcessorData->State;\r
10d1be3e 507 gThread->MutexUnlock (ProcessorData->StateLock);\r
c4671a67 508\r
509 switch (ProcessorState) {\r
510 case CPU_STATE_READY:\r
511 SetApProcedure (ProcessorData, Procedure, ProcedureArgument);\r
512 break;\r
513\r
514 case CPU_STATE_FINISHED:\r
515 gMPSystem.FinishCount++;\r
516 if (SingleThread) {\r
517 Status = GetNextBlockedNumber (&NextNumber);\r
518 if (!EFI_ERROR (Status)) {\r
519 gMPSystem.ProcessorData[NextNumber].State = CPU_STATE_READY;\r
520 }\r
521 }\r
522\r
523 ProcessorData->State = CPU_STATE_IDLE;\r
524 break;\r
525\r
526 default:\r
527 break;\r
528 }\r
529 }\r
530\r
531 if (gMPSystem.FinishCount == gMPSystem.StartCount) {\r
8b6d0c05 532 Status = EFI_SUCCESS;\r
533 goto Done;\r
c4671a67 534 }\r
535\r
536 if ((TimeoutInMicroseconds != 0) && (Timeout < 0)) {\r
8b6d0c05 537 Status = EFI_TIMEOUT;\r
538 goto Done;\r
c4671a67 539 }\r
540\r
541 gBS->Stall (gPollInterval);\r
542 Timeout -= gPollInterval;\r
543 }\r
544\r
8b6d0c05 545Done:\r
546 if (FailedCpuList != NULL) {\r
547 if (gMPSystem.FailedListIndex == 0) {\r
548 FreePool (*FailedCpuList);\r
549 *FailedCpuList = NULL;\r
550 }\r
551 }\r
552\r
c4671a67 553 return EFI_SUCCESS;\r
554}\r
555\r
556\r
557/**\r
558 This service lets the caller get one enabled AP to execute a caller-provided \r
559 function. The caller can request the BSP to either wait for the completion \r
560 of the AP or just proceed with the next task by using the EFI event mechanism. \r
561 See EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() for more details on non-blocking \r
562 execution support. This service may only be called from the BSP.\r
563\r
564 This function is used to dispatch one enabled AP to the function specified by \r
565 Procedure passing in the argument specified by ProcedureArgument. If WaitEvent \r
566 is NULL, execution is in blocking mode. The BSP waits until the AP finishes or \r
567 TimeoutInMicroSecondss expires. Otherwise, execution is in non-blocking mode. \r
568 BSP proceeds to the next task without waiting for the AP. If a non-blocking mode \r
569 is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled, \r
570 then EFI_UNSUPPORTED must be returned.\r
571 \r
572 If the timeout specified by TimeoutInMicroseconds expires before the AP returns \r
573 from Procedure, then execution of Procedure by the AP is terminated. The AP is \r
574 available for subsequent calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and \r
575 EFI_MP_SERVICES_PROTOCOL.StartupThisAP().\r
576\r
577 @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL\r
578 instance.\r
579 @param[in] Procedure A pointer to the function to be run on \r
580 enabled APs of the system. See type\r
581 EFI_AP_PROCEDURE.\r
582 @param[in] ProcessorNumber The handle number of the AP. The range is \r
583 from 0 to the total number of logical\r
584 processors minus 1. The total number of \r
585 logical processors can be retrieved by\r
586 EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().\r
587 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
588 service. If it is NULL, then execute in \r
589 blocking mode. BSP waits until all APs finish \r
590 or TimeoutInMicroseconds expires. If it's \r
591 not NULL, then execute in non-blocking mode. \r
592 BSP requests the function specified by \r
593 Procedure to be started on all the enabled \r
594 APs, and go on executing immediately. If \r
595 all return from Procedure or TimeoutInMicroseconds\r
596 expires, this event is signaled. The BSP \r
597 can use the CheckEvent() or WaitForEvent() \r
598 services to check the state of event. Type \r
599 EFI_EVENT is defined in CreateEvent() in \r
600 the Unified Extensible Firmware Interface \r
601 Specification. \r
602 @param[in] TimeoutInMicrosecsond Indicates the time limit in microseconds for \r
603 APs to return from Procedure, either for \r
604 blocking or non-blocking mode. Zero means \r
605 infinity. If the timeout expires before \r
606 all APs return from Procedure, then Procedure\r
607 on the failed APs is terminated. All enabled \r
608 APs are available for next function assigned \r
609 by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() \r
610 or EFI_MP_SERVICES_PROTOCOL.StartupThisAP().\r
611 If the timeout expires in blocking mode, \r
612 BSP returns EFI_TIMEOUT. If the timeout \r
613 expires in non-blocking mode, WaitEvent \r
614 is signaled with SignalEvent().\r
615 @param[in] ProcedureArgument The parameter passed into Procedure for \r
616 all APs.\r
617 @param[out] Finished If NULL, this parameter is ignored. In \r
618 blocking mode, this parameter is ignored.\r
619 In non-blocking mode, if AP returns from \r
620 Procedure before the timeout expires, its\r
621 content is set to TRUE. Otherwise, the \r
622 value is set to FALSE. The caller can\r
623 determine if the AP returned from Procedure \r
624 by evaluating this value.\r
625\r
626 @retval EFI_SUCCESS In blocking mode, specified AP finished before \r
627 the timeout expires.\r
628 @retval EFI_SUCCESS In non-blocking mode, the function has been \r
629 dispatched to specified AP.\r
630 @retval EFI_UNSUPPORTED A non-blocking mode request was made after the \r
631 UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was \r
632 signaled.\r
633 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
634 @retval EFI_TIMEOUT In blocking mode, the timeout expired before \r
635 the specified AP has finished.\r
636 @retval EFI_NOT_READY The specified AP is busy.\r
637 @retval EFI_NOT_FOUND The processor with the handle specified by \r
638 ProcessorNumber does not exist.\r
639 @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP.\r
640 @retval EFI_INVALID_PARAMETER Procedure is NULL.\r
641\r
642**/\r
643EFI_STATUS\r
644EFIAPI\r
645CpuMpServicesStartupThisAP (\r
646 IN EFI_MP_SERVICES_PROTOCOL *This,\r
647 IN EFI_AP_PROCEDURE Procedure,\r
648 IN UINTN ProcessorNumber,\r
649 IN EFI_EVENT WaitEvent OPTIONAL,\r
650 IN UINTN TimeoutInMicroseconds,\r
651 IN VOID *ProcedureArgument OPTIONAL,\r
652 OUT BOOLEAN *Finished OPTIONAL\r
653 )\r
654{\r
655 EFI_STATUS Status;\r
656 INTN Timeout;\r
657 \r
658 if (!IsBSP ()) {\r
659 return EFI_DEVICE_ERROR;\r
660 }\r
661 \r
662 if (Procedure == NULL) {\r
663 return EFI_INVALID_PARAMETER;\r
664 }\r
665 \r
666 if (ProcessorNumber >= gMPSystem.NumberOfProcessors) {\r
667 return EFI_NOT_FOUND;\r
668 }\r
669 \r
670 if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) {\r
671 return EFI_INVALID_PARAMETER;\r
672 }\r
673\r
674 if (gMPSystem.ProcessorData[ProcessorNumber].State != CPU_STATE_IDLE) {\r
675 return EFI_NOT_READY;\r
676 }\r
677\r
678 if ((WaitEvent != NULL) && gReadToBoot) {\r
679 return EFI_UNSUPPORTED;\r
680 }\r
681\r
682 Timeout = TimeoutInMicroseconds;\r
683\r
684 gMPSystem.StartCount = 1;\r
685 gMPSystem.FinishCount = 0;\r
686\r
687 SetApProcedure (&gMPSystem.ProcessorData[ProcessorNumber], Procedure, ProcedureArgument);\r
688\r
8b6d0c05 689 if (WaitEvent != NULL) {\r
690 // Non Blocking\r
691 gMPSystem.WaitEvent = WaitEvent;\r
692 Status = gBS->SetTimer (\r
693 gMPSystem.ProcessorData[ProcessorNumber].CheckThisAPEvent,\r
694 TimerPeriodic,\r
695 gPollInterval\r
696 );\r
697 return EFI_SUCCESS;\r
698 }\r
699\r
700 // Blocking\r
c4671a67 701 while (TRUE) {\r
10d1be3e 702 gThread->MutexLock (&gMPSystem.ProcessorData[ProcessorNumber].StateLock);\r
c4671a67 703 if (gMPSystem.ProcessorData[ProcessorNumber].State == CPU_STATE_FINISHED) {\r
704 gMPSystem.ProcessorData[ProcessorNumber].State = CPU_STATE_IDLE;\r
10d1be3e 705 gThread->MutexUnlock (&gMPSystem.ProcessorData[ProcessorNumber].StateLock);\r
c4671a67 706 break;\r
707 }\r
708\r
10d1be3e 709 gThread->MutexUnlock (&gMPSystem.ProcessorData[ProcessorNumber].StateLock);\r
c4671a67 710\r
711 if ((TimeoutInMicroseconds != 0) && (Timeout < 0)) {\r
c4671a67 712 return EFI_TIMEOUT;\r
713 }\r
714\r
715 gBS->Stall (gPollInterval);\r
716 Timeout -= gPollInterval;\r
717 }\r
718\r
719 return EFI_SUCCESS;\r
720\r
721}\r
722\r
723\r
724/**\r
725 This service switches the requested AP to be the BSP from that point onward. \r
726 This service changes the BSP for all purposes. This call can only be performed \r
727 by the current BSP.\r
728\r
729 This service switches the requested AP to be the BSP from that point onward. \r
730 This service changes the BSP for all purposes. The new BSP can take over the \r
731 execution of the old BSP and continue seamlessly from where the old one left \r
732 off. This service may not be supported after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT \r
733 is signaled.\r
734\r
735 If the BSP cannot be switched prior to the return from this service, then \r
736 EFI_UNSUPPORTED must be returned.\r
737\r
738 @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.\r
739 @param[in] ProcessorNumber The handle number of AP that is to become the new \r
740 BSP. The range is from 0 to the total number of \r
741 logical processors minus 1. The total number of \r
742 logical processors can be retrieved by\r
743 EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().\r
744 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an \r
745 enabled AP. Otherwise, it will be disabled.\r
746\r
747 @retval EFI_SUCCESS BSP successfully switched.\r
748 @retval EFI_UNSUPPORTED Switching the BSP cannot be completed prior to \r
749 this service returning.\r
750 @retval EFI_UNSUPPORTED Switching the BSP is not supported.\r
751 @retval EFI_SUCCESS The calling processor is an AP.\r
752 @retval EFI_NOT_FOUND The processor with the handle specified by\r
753 ProcessorNumber does not exist.\r
754 @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or \r
755 a disabled AP.\r
756 @retval EFI_NOT_READY The specified AP is busy.\r
757\r
758**/\r
759EFI_STATUS\r
760EFIAPI\r
761CpuMpServicesSwitchBSP (\r
762 IN EFI_MP_SERVICES_PROTOCOL *This,\r
763 IN UINTN ProcessorNumber,\r
764 IN BOOLEAN EnableOldBSP\r
765 )\r
766{\r
767 UINTN Index;\r
768 \r
769 if (!IsBSP ()) {\r
770 return EFI_DEVICE_ERROR;\r
771 }\r
772 \r
773 if (ProcessorNumber >= gMPSystem.NumberOfProcessors) {\r
774 return EFI_NOT_FOUND;\r
775 }\r
776 \r
777 if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {\r
778 return EFI_INVALID_PARAMETER;\r
779 }\r
780\r
781 if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) {\r
782 return EFI_INVALID_PARAMETER;\r
783 }\r
784 \r
785 for (Index = 0; Index < gMPSystem.NumberOfProcessors; Index++) {\r
786 if ((gMPSystem.ProcessorData[Index].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) {\r
787 break;\r
788 }\r
789 }\r
790 ASSERT (Index != gMPSystem.NumberOfProcessors);\r
791 \r
792 if (gMPSystem.ProcessorData[ProcessorNumber].State != CPU_STATE_IDLE) {\r
793 return EFI_NOT_READY;\r
794 }\r
795 \r
796 // Skip for now as we need switch a bunch of stack stuff around and it's complex\r
797 // May not be worth it?\r
798 return EFI_NOT_READY;\r
799}\r
800\r
801\r
802/**\r
803 This service lets the caller enable or disable an AP from this point onward. \r
804 This service may only be called from the BSP.\r
805\r
806 This service allows the caller enable or disable an AP from this point onward. \r
807 The caller can optionally specify the health status of the AP by Health. If \r
808 an AP is being disabled, then the state of the disabled AP is implementation \r
809 dependent. If an AP is enabled, then the implementation must guarantee that a \r
810 complete initialization sequence is performed on the AP, so the AP is in a state \r
811 that is compatible with an MP operating system. This service may not be supported \r
812 after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled.\r
813\r
814 If the enable or disable AP operation cannot be completed prior to the return \r
815 from this service, then EFI_UNSUPPORTED must be returned.\r
816\r
817 @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.\r
818 @param[in] ProcessorNumber The handle number of AP that is to become the new \r
819 BSP. The range is from 0 to the total number of \r
820 logical processors minus 1. The total number of \r
821 logical processors can be retrieved by\r
822 EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().\r
823 @param[in] EnableAP Specifies the new state for the processor for \r
824 enabled, FALSE for disabled.\r
825 @param[in] HealthFlag If not NULL, a pointer to a value that specifies \r
826 the new health status of the AP. This flag \r
827 corresponds to StatusFlag defined in \r
828 EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only \r
829 the PROCESSOR_HEALTH_STATUS_BIT is used. All other \r
830 bits are ignored. If it is NULL, this parameter \r
831 is ignored.\r
832\r
833 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.\r
834 @retval EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed \r
835 prior to this service returning.\r
836 @retval EFI_UNSUPPORTED Enabling or disabling an AP is not supported.\r
837 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
838 @retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber\r
839 does not exist.\r
840 @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP.\r
841\r
842**/\r
843EFI_STATUS\r
844EFIAPI\r
845CpuMpServicesEnableDisableAP (\r
846 IN EFI_MP_SERVICES_PROTOCOL *This,\r
847 IN UINTN ProcessorNumber,\r
848 IN BOOLEAN EnableAP,\r
849 IN UINT32 *HealthFlag OPTIONAL\r
850 )\r
851{\r
852 if (!IsBSP ()) {\r
853 return EFI_DEVICE_ERROR;\r
854 }\r
855 \r
856 if (ProcessorNumber >= gMPSystem.NumberOfProcessors) {\r
857 return EFI_NOT_FOUND;\r
858 }\r
859 \r
860 if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) {\r
861 return EFI_INVALID_PARAMETER;\r
862 } \r
863\r
864 if (gMPSystem.ProcessorData[ProcessorNumber].State != CPU_STATE_IDLE) {\r
865 return EFI_UNSUPPORTED;\r
866 }\r
867\r
10d1be3e 868 gThread->MutexLock (&gMPSystem.ProcessorData[ProcessorNumber].StateLock);\r
c4671a67 869 \r
870 if (EnableAP) {\r
871 if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0 ) {\r
872 gMPSystem.NumberOfEnabledProcessors++;\r
873 }\r
874 gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag |= PROCESSOR_ENABLED_BIT;\r
875 } else {\r
876 if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == PROCESSOR_ENABLED_BIT ) {\r
877 gMPSystem.NumberOfEnabledProcessors--;\r
878 }\r
879 gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag &= ~PROCESSOR_ENABLED_BIT;\r
880 }\r
881 \r
882 if (HealthFlag != NULL) {\r
883 gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag &= ~PROCESSOR_HEALTH_STATUS_BIT;\r
884 gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag |= (*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT);\r
885 }\r
886 \r
10d1be3e 887 gThread->MutexUnlock (&gMPSystem.ProcessorData[ProcessorNumber].StateLock);\r
c4671a67 888 \r
889 return EFI_SUCCESS;\r
890}\r
891\r
892\r
893/**\r
894 This return the handle number for the calling processor. This service may be \r
895 called from the BSP and APs.\r
896\r
897 This service returns the processor handle number for the calling processor. \r
898 The returned value is in the range from 0 to the total number of logical \r
899 processors minus 1. The total number of logical processors can be retrieved \r
900 with EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). This service may be \r
901 called from the BSP and APs. If ProcessorNumber is NULL, then EFI_INVALID_PARAMETER \r
902 is returned. Otherwise, the current processors handle number is returned in \r
903 ProcessorNumber, and EFI_SUCCESS is returned.\r
904\r
905 @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.\r
906 @param[in] ProcessorNumber The handle number of AP that is to become the new \r
907 BSP. The range is from 0 to the total number of \r
908 logical processors minus 1. The total number of \r
909 logical processors can be retrieved by\r
910 EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().\r
911\r
912 @retval EFI_SUCCESS The current processor handle number was returned \r
913 in ProcessorNumber.\r
914 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.\r
915\r
916**/\r
917EFI_STATUS\r
918EFIAPI\r
919CpuMpServicesWhoAmI (\r
920 IN EFI_MP_SERVICES_PROTOCOL *This,\r
921 OUT UINTN *ProcessorNumber\r
922 )\r
923{\r
924 UINTN Index;\r
925 UINT64 ProcessorId;\r
926 \r
927 if (ProcessorNumber == NULL) {\r
928 return EFI_INVALID_PARAMETER;\r
929 }\r
930 \r
10d1be3e 931 ProcessorId = gThread->Self ();\r
c4671a67 932 for (Index = 0; Index < gMPSystem.NumberOfProcessors; Index++) {\r
933 if (gMPSystem.ProcessorData[Index].Info.ProcessorId == ProcessorId) {\r
934 break;\r
935 }\r
936 }\r
937\r
938 *ProcessorNumber = Index;\r
939 return EFI_SUCCESS;\r
940}\r
941\r
942\r
943\r
944EFI_MP_SERVICES_PROTOCOL mMpSercicesTemplate = {\r
945 CpuMpServicesGetNumberOfProcessors,\r
946 CpuMpServicesGetProcessorInfo,\r
947 CpuMpServicesStartupAllAps,\r
948 CpuMpServicesStartupThisAP,\r
949 CpuMpServicesSwitchBSP,\r
950 CpuMpServicesEnableDisableAP,\r
951 CpuMpServicesWhoAmI\r
952};\r
953\r
954\r
955\r
956/*++\r
957 If timeout occurs in StartupAllAps(), a timer is set, which invokes this\r
958 procedure periodically to check whether all APs have finished.\r
959\r
960\r
961--*/\r
962VOID\r
963EFIAPI\r
964CpuCheckAllAPsStatus (\r
965 IN EFI_EVENT Event,\r
966 IN VOID *Context\r
967 )\r
968{\r
969 UINTN ProcessorNumber;\r
970 UINTN NextNumber;\r
971 PROCESSOR_DATA_BLOCK *ProcessorData;\r
972 PROCESSOR_DATA_BLOCK *NextData;\r
973 EFI_STATUS Status;\r
974 PROCESSOR_STATE ProcessorState;\r
8b6d0c05 975 UINTN Cpu;\r
976 BOOLEAN Found;\r
c4671a67 977\r
8b6d0c05 978 if (gMPSystem.TimeoutActive) {\r
979 gMPSystem.Timeout -= gPollInterval;\r
980 }\r
981 \r
224e1333 982 ProcessorData = (PROCESSOR_DATA_BLOCK *) Context;\r
983\r
c4671a67 984 for (ProcessorNumber = 0; ProcessorNumber < gMPSystem.NumberOfProcessors; ProcessorNumber++) {\r
985 if ((ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {\r
986 // Skip BSP\r
987 continue;\r
988 }\r
989\r
8b6d0c05 990 if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {\r
991 // Skip Disabled processors\r
992 continue;\r
993 }\r
994\r
c4671a67 995 // This is an Interrupt Service routine.\r
996 // This can grab a lock that is held in a non-interrupt\r
997 // context. Meaning deadlock. Which is a bad thing.\r
998 // So, try lock it. If we can get it, cool, do our thing.\r
999 // otherwise, just dump out & try again on the next iteration.\r
10d1be3e 1000 Status = gThread->MutexTryLock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);\r
c4671a67 1001 if (EFI_ERROR(Status)) {\r
1002 return;\r
1003 }\r
1004 ProcessorState = gMPSystem.ProcessorData[ProcessorNumber].State;\r
10d1be3e 1005 gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);\r
c4671a67 1006\r
1007 switch (ProcessorState) {\r
1008 case CPU_STATE_READY:\r
1009 SetApProcedure (ProcessorData, gMPSystem.Procedure, gMPSystem.ProcedureArgument);\r
1010 break;\r
1011\r
1012 case CPU_STATE_FINISHED:\r
1013 if (gMPSystem.SingleThread) {\r
1014 Status = GetNextBlockedNumber (&NextNumber);\r
1015 if (!EFI_ERROR (Status)) {\r
1016 NextData = &gMPSystem.ProcessorData[NextNumber];\r
1017\r
10d1be3e 1018 gThread->MutexLock (&NextData->ProcedureLock);\r
c4671a67 1019 NextData->State = CPU_STATE_READY;\r
10d1be3e 1020 gThread->MutexUnlock (&NextData->ProcedureLock);\r
c4671a67 1021\r
1022 SetApProcedure (NextData, gMPSystem.Procedure, gMPSystem.ProcedureArgument);\r
1023 }\r
1024 }\r
1025\r
1026 gMPSystem.ProcessorData[ProcessorNumber].State = CPU_STATE_IDLE;\r
1027 gMPSystem.FinishCount++;\r
1028 break;\r
1029\r
1030 default:\r
1031 break;\r
1032 }\r
1033 }\r
8b6d0c05 1034 \r
1035 if (gMPSystem.TimeoutActive && gMPSystem.Timeout < 0) {\r
1036 //\r
1037 // Timeout\r
1038 //\r
1039 if (gMPSystem.FailedList != NULL) {\r
1040 for (ProcessorNumber = 0; ProcessorNumber < gMPSystem.NumberOfProcessors; ProcessorNumber++) {\r
1041 if ((ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {\r
1042 // Skip BSP\r
1043 continue;\r
1044 }\r
c4671a67 1045\r
8b6d0c05 1046 if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {\r
1047 // Skip Disabled processors\r
1048 continue;\r
1049 }\r
1050 \r
1051 // Mark the \r
1052 Status = gThread->MutexTryLock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);\r
1053 if (EFI_ERROR(Status)) {\r
1054 return;\r
1055 }\r
1056 ProcessorState = gMPSystem.ProcessorData[ProcessorNumber].State;\r
1057 gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);\r
1058 \r
1059 if (ProcessorState != CPU_STATE_IDLE) {\r
1060 // If we are retrying make sure we don't double count\r
1061 for (Cpu = 0, Found = FALSE; Cpu < gMPSystem.NumberOfProcessors; Cpu++) {\r
1062 if (gMPSystem.FailedList[Cpu] == END_OF_CPU_LIST) {\r
1063 break;\r
1064 }\r
1065 if (gMPSystem.FailedList[ProcessorNumber] == Cpu) {\r
1066 Found = TRUE;\r
1067 break;\r
1068 }\r
1069 }\r
1070 if (!Found) {\r
1071 gMPSystem.FailedList[gMPSystem.FailedListIndex++] = Cpu;\r
1072 }\r
1073 }\r
1074 }\r
1075 }\r
1076 // Force terminal exit\r
1077 gMPSystem.FinishCount = gMPSystem.StartCount;\r
1078 }\r
1079\r
1080 if (gMPSystem.FinishCount != gMPSystem.StartCount) {\r
1081 return;\r
c4671a67 1082 }\r
8b6d0c05 1083 \r
1084 gBS->SetTimer (\r
1085 gMPSystem.CheckAllAPsEvent,\r
1086 TimerCancel,\r
1087 0\r
1088 );\r
1089\r
1090 if (gMPSystem.FailedListIndex == 0) {\r
1091 if (gMPSystem.FailedList != NULL) {\r
1092 FreePool (gMPSystem.FailedList);\r
1093 gMPSystem.FailedList = NULL;\r
1094 }\r
1095 }\r
1096\r
1097 Status = gBS->SignalEvent (gMPSystem.WaitEvent);\r
c4671a67 1098\r
1099 return ;\r
1100}\r
1101\r
1102VOID\r
1103EFIAPI\r
1104CpuCheckThisAPStatus (\r
1105 IN EFI_EVENT Event,\r
1106 IN VOID *Context\r
1107 )\r
1108{\r
1109 EFI_STATUS Status;\r
1110 PROCESSOR_DATA_BLOCK *ProcessorData;\r
1111 PROCESSOR_STATE ProcessorState;\r
1112\r
1113 ProcessorData = (PROCESSOR_DATA_BLOCK *) Context;\r
1114\r
1115 //\r
8b6d0c05 1116 // This is an Interrupt Service routine.\r
1117 // that can grab a lock that is held in a non-interrupt\r
c4671a67 1118 // context. Meaning deadlock. Which is a badddd thing.\r
1119 // So, try lock it. If we can get it, cool, do our thing.\r
1120 // otherwise, just dump out & try again on the next iteration.\r
1121 //\r
10d1be3e 1122 Status = gThread->MutexTryLock (ProcessorData->StateLock);\r
c4671a67 1123 if (EFI_ERROR(Status)) {\r
1124 return;\r
1125 }\r
1126 ProcessorState = ProcessorData->State;\r
10d1be3e 1127 gThread->MutexUnlock (ProcessorData->StateLock);\r
c4671a67 1128\r
1129 if (ProcessorState == CPU_STATE_FINISHED) {\r
1130 Status = gBS->SetTimer (ProcessorData->CheckThisAPEvent, TimerCancel, 0);\r
1131 ASSERT_EFI_ERROR (Status);\r
1132 \r
1133 Status = gBS->SignalEvent (gMPSystem.WaitEvent);\r
1134 ASSERT_EFI_ERROR (Status);\r
1135 \r
10d1be3e 1136 gThread->MutexLock (ProcessorData->StateLock);\r
c4671a67 1137 ProcessorData->State = CPU_STATE_IDLE;\r
10d1be3e 1138 gThread->MutexUnlock (ProcessorData->StateLock);\r
c4671a67 1139 }\r
1140\r
1141 return ;\r
1142}\r
1143\r
1144\r
1145/*++\r
1146 This function is called by all processors (both BSP and AP) once and collects MP related data\r
1147\r
1148 MPSystemData - Pointer to the data structure containing MP related data\r
1149 BSP - TRUE if the CPU is BSP\r
1150\r
1151 EFI_SUCCESS - Data for the processor collected and filled in\r
1152\r
1153--*/\r
1154EFI_STATUS\r
1155FillInProcessorInformation (\r
1156 IN BOOLEAN BSP,\r
1157 IN UINTN ProcessorNumber\r
1158 )\r
1159{\r
1160 PROCESSOR_DATA_BLOCK *ProcessorData;\r
1161\r
1162 ProcessorData = &gMPSystem.ProcessorData[ProcessorNumber];\r
1163 \r
10d1be3e 1164 gMPSystem.ProcessorData[ProcessorNumber].Info.ProcessorId = gThread->Self ();\r
c4671a67 1165 gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag = PROCESSOR_ENABLED_BIT | PROCESSOR_HEALTH_STATUS_BIT;\r
1166 if (BSP) {\r
1167 gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag |= PROCESSOR_AS_BSP_BIT;\r
1168 }\r
1169 \r
1170 gMPSystem.ProcessorData[ProcessorNumber].Info.Location.Package = ProcessorNumber;\r
1171 gMPSystem.ProcessorData[ProcessorNumber].Info.Location.Core = 0;\r
1172 gMPSystem.ProcessorData[ProcessorNumber].Info.Location.Thread = 0;\r
1173 gMPSystem.ProcessorData[ProcessorNumber].State = BSP ? CPU_STATE_BUSY : CPU_STATE_IDLE;\r
1174 \r
1175 gMPSystem.ProcessorData[ProcessorNumber].Procedure = NULL;\r
1176 gMPSystem.ProcessorData[ProcessorNumber].Parameter = NULL;\r
10d1be3e 1177 gMPSystem.ProcessorData[ProcessorNumber].StateLock = gThread->MutexInit ();\r
1178 gMPSystem.ProcessorData[ProcessorNumber].ProcedureLock = gThread->MutexInit ();\r
c4671a67 1179\r
1180 return EFI_SUCCESS;\r
1181}\r
1182\r
1183VOID *\r
1184EFIAPI\r
1185CpuDriverApIdolLoop (\r
1186 VOID *Context\r
1187 )\r
1188{\r
1189 EFI_AP_PROCEDURE Procedure;\r
1190 VOID *Parameter;\r
1191 UINTN ProcessorNumber;\r
1192 PROCESSOR_DATA_BLOCK *ProcessorData;\r
1193 \r
1194 ProcessorNumber = (UINTN)Context;\r
1195 ProcessorData = &gMPSystem.ProcessorData[ProcessorNumber];\r
1196 \r
10d1be3e 1197 ProcessorData->Info.ProcessorId = gThread->Self ();\r
c4671a67 1198 \r
1199 while (TRUE) {\r
1200 //\r
1201 // Make a local copy on the stack to be extra safe\r
1202 //\r
10d1be3e 1203 gThread->MutexLock (ProcessorData->ProcedureLock);\r
c4671a67 1204 Procedure = ProcessorData->Procedure;\r
1205 Parameter = ProcessorData->Parameter;\r
10d1be3e 1206 gThread->MutexUnlock (ProcessorData->ProcedureLock);\r
c4671a67 1207 \r
1208 if (Procedure != NULL) {\r
10d1be3e 1209 gThread->MutexLock (ProcessorData->StateLock);\r
c4671a67 1210 ProcessorData->State = CPU_STATE_BUSY;\r
10d1be3e 1211 gThread->MutexUnlock (ProcessorData->StateLock);\r
c4671a67 1212 \r
1213 Procedure (Parameter);\r
1214 \r
10d1be3e 1215 gThread->MutexLock (ProcessorData->ProcedureLock);\r
c4671a67 1216 ProcessorData->Procedure = NULL;\r
10d1be3e 1217 gThread->MutexUnlock (ProcessorData->ProcedureLock);\r
c4671a67 1218 \r
10d1be3e 1219 gThread->MutexLock (ProcessorData->StateLock);\r
c4671a67 1220 ProcessorData->State = CPU_STATE_FINISHED;\r
10d1be3e 1221 gThread->MutexUnlock (ProcessorData->StateLock); \r
c4671a67 1222 }\r
1223 \r
1224 // Poll 5 times a seconds, 200ms\r
1225 // Don't want to burn too many system resources doing nothing.\r
1226 gEmuThunk->Sleep (200);\r
1227 }\r
1228 \r
1229 return 0;\r
1230}\r
1231\r
1232\r
1233EFI_STATUS\r
1234InitializeMpSystemData (\r
1235 IN UINTN NumberOfProcessors\r
1236 )\r
1237{\r
1238 EFI_STATUS Status;\r
1239 UINTN Index;\r
1240\r
1241 \r
1242 //\r
1243 // Clear the data structure area first.\r
1244 //\r
1245 ZeroMem (&gMPSystem, sizeof (MP_SYSTEM_DATA));\r
1246\r
1247 //\r
1248 // First BSP fills and inits all known values, including it's own records.\r
1249 //\r
1250 gMPSystem.NumberOfProcessors = NumberOfProcessors;\r
1251 gMPSystem.NumberOfEnabledProcessors = NumberOfProcessors;\r
1252 \r
1253 gMPSystem.ProcessorData = AllocateZeroPool (gMPSystem.NumberOfProcessors * sizeof (PROCESSOR_DATA_BLOCK));\r
1254 ASSERT (gMPSystem.ProcessorData != NULL);\r
1255\r
1256 FillInProcessorInformation (TRUE, 0);\r
1257 \r
1258 Status = gBS->CreateEvent (\r
1259 EVT_TIMER | EVT_NOTIFY_SIGNAL,\r
1260 TPL_CALLBACK,\r
1261 CpuCheckAllAPsStatus,\r
1262 NULL,\r
1263 &gMPSystem.CheckAllAPsEvent\r
1264 );\r
1265 ASSERT_EFI_ERROR (Status);\r
1266 \r
1267\r
1268 for (Index = 0; Index < gMPSystem.NumberOfProcessors; Index++) {\r
1269 if ((gMPSystem.ProcessorData[Index].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {\r
1270 // Skip BSP\r
1271 continue;\r
1272 }\r
1273 \r
1274 FillInProcessorInformation (FALSE, Index);\r
1275 \r
10d1be3e 1276 Status = gThread->CreateThread (\r
c4671a67 1277 (VOID *)&gMPSystem.ProcessorData[Index].Info.ProcessorId, \r
1278 NULL,\r
1279 CpuDriverApIdolLoop,\r
1280 (VOID *)Index\r
1281 );\r
1282 \r
1283 \r
1284 Status = gBS->CreateEvent (\r
1285 EVT_TIMER | EVT_NOTIFY_SIGNAL,\r
1286 TPL_CALLBACK,\r
1287 CpuCheckThisAPStatus,\r
1288 (VOID *) &gMPSystem.ProcessorData[Index],\r
1289 &gMPSystem.ProcessorData[Index].CheckThisAPEvent\r
1290 );\r
1291 }\r
1292\r
1293 return EFI_SUCCESS;\r
1294}\r
1295\r
1296\r
1297\r
1298/**\r
1299 Invoke a notification event\r
1300\r
1301 @param Event Event whose notification function is being invoked.\r
1302 @param Context The pointer to the notification function's context,\r
1303 which is implementation-dependent.\r
1304\r
1305**/\r
1306VOID\r
1307EFIAPI\r
1308CpuReadToBootFunction (\r
1309 IN EFI_EVENT Event,\r
1310 IN VOID *Context\r
1311 )\r
1312{\r
1313 gReadToBoot = TRUE;\r
1314}\r
1315\r
1316\r
1317\r
1318EFI_STATUS\r
1319CpuMpServicesInit (\r
1320 VOID\r
1321 )\r
1322{\r
1323 EFI_STATUS Status;\r
1324 EFI_HANDLE Handle;\r
1325 EMU_IO_THUNK_PROTOCOL *IoThunk;\r
1326 UINTN MaxCpus;\r
c4671a67 1327\r
1328 MaxCpus = 1; // BSP\r
1329 \r
10d1be3e 1330 IoThunk = GetIoThunkInstance (&gEmuThreadThunkProtocolGuid, 0);\r
c4671a67 1331 if (IoThunk != NULL) {\r
1332 Status = IoThunk->Open (IoThunk);\r
1333 if (!EFI_ERROR (Status)) {\r
1334 if (IoThunk->ConfigString != NULL) {\r
1335 MaxCpus += StrDecimalToUintn (IoThunk->ConfigString);\r
10d1be3e 1336 gThread = IoThunk->Interface;\r
c4671a67 1337 }\r
1338 }\r
1339 }\r
1340\r
1341 if (MaxCpus == 1) {\r
1342 // We are not MP so nothing to do\r
1343 return EFI_SUCCESS;\r
1344 }\r
1345\r
1346 gPollInterval = PcdGet64 (PcdEmuMpServicesPollingInterval);\r
1347\r
1348 Status = InitializeMpSystemData (MaxCpus);\r
1349 if (EFI_ERROR (Status)) {\r
1350 return Status;\r
1351 }\r
1352\r
1353 Status = EfiCreateEventReadyToBootEx (TPL_CALLBACK, CpuReadToBootFunction, NULL, &gReadToBootEvent);\r
1354 ASSERT_EFI_ERROR (Status);\r
1355\r
1356 //\r
1357 // Now install the MP services protocol.\r
1358 //\r
1359 Handle = NULL;\r
1360 Status = gBS->InstallMultipleProtocolInterfaces (\r
1361 &Handle,\r
1362 &gEfiMpServiceProtocolGuid, &mMpSercicesTemplate,\r
1363 NULL\r
1364 );\r
1365 return Status;\r
1366}\r
1367\r
1368\r