]>
Commit | Line | Data |
---|---|---|
cf556c6a LE |
1 | /** @file\r |
2 | An OrderedCollectionLib instance that provides a red-black tree\r | |
3 | implementation, and allocates and releases tree nodes with\r | |
4 | MemoryAllocationLib.\r | |
5 | \r | |
6 | This library instance is useful when a fast associative container is needed.\r | |
7 | Worst case time complexity is O(log n) for Find(), Next(), Prev(), Min(),\r | |
8 | Max(), Insert(), and Delete(), where "n" is the number of elements in the\r | |
9 | tree. Complete ordered traversal takes O(n) time.\r | |
10 | \r | |
11 | The implementation is also useful as a fast priority queue.\r | |
12 | \r | |
13 | Copyright (C) 2014, Red Hat, Inc.\r | |
64fabae5 | 14 | Copyright (c) 2014, Intel Corporation. All rights reserved.<BR>\r |
cf556c6a LE |
15 | \r |
16 | This program and the accompanying materials are licensed and made available\r | |
17 | under the terms and conditions of the BSD License that accompanies this\r | |
18 | distribution. The full text of the license may be found at\r | |
19 | http://opensource.org/licenses/bsd-license.php.\r | |
20 | \r | |
21 | THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT\r | |
22 | WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r | |
23 | **/\r | |
24 | \r | |
25 | #include <Library/OrderedCollectionLib.h>\r | |
26 | #include <Library/DebugLib.h>\r | |
27 | #include <Library/MemoryAllocationLib.h>\r | |
28 | \r | |
29 | typedef enum {\r | |
30 | RedBlackTreeRed,\r | |
31 | RedBlackTreeBlack\r | |
32 | } RED_BLACK_TREE_COLOR;\r | |
33 | \r | |
34 | //\r | |
35 | // Incomplete types and convenience typedefs are present in the library class\r | |
36 | // header. Beside completing the types, we introduce typedefs here that reflect\r | |
37 | // the implementation closely.\r | |
38 | //\r | |
39 | typedef ORDERED_COLLECTION RED_BLACK_TREE;\r | |
40 | typedef ORDERED_COLLECTION_ENTRY RED_BLACK_TREE_NODE;\r | |
41 | typedef ORDERED_COLLECTION_USER_COMPARE RED_BLACK_TREE_USER_COMPARE;\r | |
42 | typedef ORDERED_COLLECTION_KEY_COMPARE RED_BLACK_TREE_KEY_COMPARE;\r | |
43 | \r | |
44 | struct ORDERED_COLLECTION {\r | |
45 | RED_BLACK_TREE_NODE *Root;\r | |
46 | RED_BLACK_TREE_USER_COMPARE UserStructCompare;\r | |
47 | RED_BLACK_TREE_KEY_COMPARE KeyCompare;\r | |
48 | };\r | |
49 | \r | |
50 | struct ORDERED_COLLECTION_ENTRY {\r | |
51 | VOID *UserStruct;\r | |
52 | RED_BLACK_TREE_NODE *Parent;\r | |
53 | RED_BLACK_TREE_NODE *Left;\r | |
54 | RED_BLACK_TREE_NODE *Right;\r | |
55 | RED_BLACK_TREE_COLOR Color;\r | |
56 | };\r | |
57 | \r | |
58 | \r | |
59 | /**\r | |
60 | Retrieve the user structure linked by the specified tree node.\r | |
61 | \r | |
62 | Read-only operation.\r | |
63 | \r | |
64 | @param[in] Node Pointer to the tree node whose associated user structure we\r | |
65 | want to retrieve. The caller is responsible for passing a\r | |
66 | non-NULL argument.\r | |
67 | \r | |
68 | @return Pointer to user structure linked by Node.\r | |
69 | **/\r | |
70 | VOID *\r | |
71 | EFIAPI\r | |
72 | OrderedCollectionUserStruct (\r | |
73 | IN CONST RED_BLACK_TREE_NODE *Node\r | |
74 | )\r | |
75 | {\r | |
76 | return Node->UserStruct;\r | |
77 | }\r | |
78 | \r | |
64fabae5 ED |
79 | /**\r |
80 | A slow function that asserts that the tree is a valid red-black tree, and\r | |
81 | that it orders user structures correctly.\r | |
cf556c6a | 82 | \r |
64fabae5 ED |
83 | Read-only operation.\r |
84 | \r | |
85 | This function uses the stack for recursion and is not recommended for\r | |
86 | "production use".\r | |
87 | \r | |
88 | @param[in] Tree The tree to validate.\r | |
89 | **/\r | |
cf556c6a LE |
90 | VOID\r |
91 | RedBlackTreeValidate (\r | |
92 | IN CONST RED_BLACK_TREE *Tree\r | |
93 | );\r | |
94 | \r | |
95 | \r | |
96 | /**\r | |
97 | Allocate and initialize the RED_BLACK_TREE structure.\r | |
98 | \r | |
99 | Allocation occurs via MemoryAllocationLib's AllocatePool() function.\r | |
100 | \r | |
101 | @param[in] UserStructCompare This caller-provided function will be used to\r | |
102 | order two user structures linked into the\r | |
103 | tree, during the insertion procedure.\r | |
104 | \r | |
105 | @param[in] KeyCompare This caller-provided function will be used to\r | |
106 | order the standalone search key against user\r | |
107 | structures linked into the tree, during the\r | |
108 | lookup procedure.\r | |
109 | \r | |
110 | @retval NULL If allocation failed.\r | |
111 | \r | |
112 | @return Pointer to the allocated, initialized RED_BLACK_TREE structure,\r | |
113 | otherwise.\r | |
114 | **/\r | |
115 | RED_BLACK_TREE *\r | |
116 | EFIAPI\r | |
117 | OrderedCollectionInit (\r | |
118 | IN RED_BLACK_TREE_USER_COMPARE UserStructCompare,\r | |
119 | IN RED_BLACK_TREE_KEY_COMPARE KeyCompare\r | |
120 | )\r | |
121 | {\r | |
122 | RED_BLACK_TREE *Tree;\r | |
123 | \r | |
124 | Tree = AllocatePool (sizeof *Tree);\r | |
125 | if (Tree == NULL) {\r | |
126 | return NULL;\r | |
127 | }\r | |
128 | \r | |
129 | Tree->Root = NULL;\r | |
130 | Tree->UserStructCompare = UserStructCompare;\r | |
131 | Tree->KeyCompare = KeyCompare;\r | |
132 | \r | |
133 | if (FeaturePcdGet (PcdValidateOrderedCollection)) {\r | |
134 | RedBlackTreeValidate (Tree);\r | |
135 | }\r | |
136 | return Tree;\r | |
137 | }\r | |
138 | \r | |
139 | \r | |
140 | /**\r | |
141 | Check whether the tree is empty (has no nodes).\r | |
142 | \r | |
143 | Read-only operation.\r | |
144 | \r | |
145 | @param[in] Tree The tree to check for emptiness.\r | |
146 | \r | |
147 | @retval TRUE The tree is empty.\r | |
148 | \r | |
149 | @retval FALSE The tree is not empty.\r | |
150 | **/\r | |
151 | BOOLEAN\r | |
152 | EFIAPI\r | |
153 | OrderedCollectionIsEmpty (\r | |
154 | IN CONST RED_BLACK_TREE *Tree\r | |
155 | )\r | |
156 | {\r | |
6a650d1f | 157 | return (BOOLEAN)(Tree->Root == NULL);\r |
cf556c6a LE |
158 | }\r |
159 | \r | |
160 | \r | |
161 | /**\r | |
162 | Uninitialize and release an empty RED_BLACK_TREE structure.\r | |
163 | \r | |
164 | Read-write operation.\r | |
165 | \r | |
166 | Release occurs via MemoryAllocationLib's FreePool() function.\r | |
167 | \r | |
168 | It is the caller's responsibility to delete all nodes from the tree before\r | |
169 | calling this function.\r | |
170 | \r | |
171 | @param[in] Tree The empty tree to uninitialize and release.\r | |
172 | **/\r | |
173 | VOID\r | |
174 | EFIAPI\r | |
175 | OrderedCollectionUninit (\r | |
176 | IN RED_BLACK_TREE *Tree\r | |
177 | )\r | |
178 | {\r | |
179 | ASSERT (OrderedCollectionIsEmpty (Tree));\r | |
180 | FreePool (Tree);\r | |
181 | }\r | |
182 | \r | |
183 | \r | |
184 | /**\r | |
185 | Look up the tree node that links the user structure that matches the\r | |
186 | specified standalone key.\r | |
187 | \r | |
188 | Read-only operation.\r | |
189 | \r | |
190 | @param[in] Tree The tree to search for StandaloneKey.\r | |
191 | \r | |
192 | @param[in] StandaloneKey The key to locate among the user structures linked\r | |
193 | into Tree. StandaloneKey will be passed to\r | |
194 | Tree->KeyCompare().\r | |
195 | \r | |
196 | @retval NULL StandaloneKey could not be found.\r | |
197 | \r | |
198 | @return The tree node that links to the user structure matching\r | |
199 | StandaloneKey, otherwise.\r | |
200 | **/\r | |
201 | RED_BLACK_TREE_NODE *\r | |
202 | EFIAPI\r | |
203 | OrderedCollectionFind (\r | |
204 | IN CONST RED_BLACK_TREE *Tree,\r | |
205 | IN CONST VOID *StandaloneKey\r | |
206 | )\r | |
207 | {\r | |
208 | RED_BLACK_TREE_NODE *Node;\r | |
209 | \r | |
210 | Node = Tree->Root;\r | |
211 | while (Node != NULL) {\r | |
212 | INTN Result;\r | |
213 | \r | |
214 | Result = Tree->KeyCompare (StandaloneKey, Node->UserStruct);\r | |
215 | if (Result == 0) {\r | |
216 | break;\r | |
217 | }\r | |
218 | Node = (Result < 0) ? Node->Left : Node->Right;\r | |
219 | }\r | |
220 | return Node;\r | |
221 | }\r | |
222 | \r | |
223 | \r | |
224 | /**\r | |
225 | Find the tree node of the minimum user structure stored in the tree.\r | |
226 | \r | |
227 | Read-only operation.\r | |
228 | \r | |
229 | @param[in] Tree The tree to return the minimum node of. The user structure\r | |
230 | linked by the minimum node compares less than all other user\r | |
231 | structures in the tree.\r | |
232 | \r | |
233 | @retval NULL If Tree is empty.\r | |
234 | \r | |
235 | @return The tree node that links the minimum user structure, otherwise.\r | |
236 | **/\r | |
237 | RED_BLACK_TREE_NODE *\r | |
238 | EFIAPI\r | |
239 | OrderedCollectionMin (\r | |
240 | IN CONST RED_BLACK_TREE *Tree\r | |
241 | )\r | |
242 | {\r | |
243 | RED_BLACK_TREE_NODE *Node;\r | |
244 | \r | |
245 | Node = Tree->Root;\r | |
246 | if (Node == NULL) {\r | |
247 | return NULL;\r | |
248 | }\r | |
249 | while (Node->Left != NULL) {\r | |
250 | Node = Node->Left;\r | |
251 | }\r | |
252 | return Node;\r | |
253 | }\r | |
254 | \r | |
255 | \r | |
256 | /**\r | |
257 | Find the tree node of the maximum user structure stored in the tree.\r | |
258 | \r | |
259 | Read-only operation.\r | |
260 | \r | |
261 | @param[in] Tree The tree to return the maximum node of. The user structure\r | |
262 | linked by the maximum node compares greater than all other\r | |
263 | user structures in the tree.\r | |
264 | \r | |
265 | @retval NULL If Tree is empty.\r | |
266 | \r | |
267 | @return The tree node that links the maximum user structure, otherwise.\r | |
268 | **/\r | |
269 | RED_BLACK_TREE_NODE *\r | |
270 | EFIAPI\r | |
271 | OrderedCollectionMax (\r | |
272 | IN CONST RED_BLACK_TREE *Tree\r | |
273 | )\r | |
274 | {\r | |
275 | RED_BLACK_TREE_NODE *Node;\r | |
276 | \r | |
277 | Node = Tree->Root;\r | |
278 | if (Node == NULL) {\r | |
279 | return NULL;\r | |
280 | }\r | |
281 | while (Node->Right != NULL) {\r | |
282 | Node = Node->Right;\r | |
283 | }\r | |
284 | return Node;\r | |
285 | }\r | |
286 | \r | |
287 | \r | |
288 | /**\r | |
289 | Get the tree node of the least user structure that is greater than the one\r | |
290 | linked by Node.\r | |
291 | \r | |
292 | Read-only operation.\r | |
293 | \r | |
294 | @param[in] Node The node to get the successor node of.\r | |
295 | \r | |
296 | @retval NULL If Node is NULL, or Node is the maximum node of its containing\r | |
297 | tree (ie. Node has no successor node).\r | |
298 | \r | |
299 | @return The tree node linking the least user structure that is greater\r | |
300 | than the one linked by Node, otherwise.\r | |
301 | **/\r | |
302 | RED_BLACK_TREE_NODE *\r | |
303 | EFIAPI\r | |
304 | OrderedCollectionNext (\r | |
305 | IN CONST RED_BLACK_TREE_NODE *Node\r | |
306 | )\r | |
307 | {\r | |
308 | RED_BLACK_TREE_NODE *Walk;\r | |
309 | CONST RED_BLACK_TREE_NODE *Child;\r | |
310 | \r | |
311 | if (Node == NULL) {\r | |
312 | return NULL;\r | |
313 | }\r | |
314 | \r | |
315 | //\r | |
316 | // If Node has a right subtree, then the successor is the minimum node of\r | |
317 | // that subtree.\r | |
318 | //\r | |
319 | Walk = Node->Right;\r | |
320 | if (Walk != NULL) {\r | |
321 | while (Walk->Left != NULL) {\r | |
322 | Walk = Walk->Left;\r | |
323 | }\r | |
324 | return Walk;\r | |
325 | }\r | |
326 | \r | |
327 | //\r | |
328 | // Otherwise we have to ascend as long as we're our parent's right child (ie.\r | |
329 | // ascending to the left).\r | |
330 | //\r | |
331 | Child = Node;\r | |
332 | Walk = Child->Parent;\r | |
333 | while (Walk != NULL && Child == Walk->Right) {\r | |
334 | Child = Walk;\r | |
335 | Walk = Child->Parent;\r | |
336 | }\r | |
337 | return Walk;\r | |
338 | }\r | |
339 | \r | |
340 | \r | |
341 | /**\r | |
342 | Get the tree node of the greatest user structure that is less than the one\r | |
343 | linked by Node.\r | |
344 | \r | |
345 | Read-only operation.\r | |
346 | \r | |
347 | @param[in] Node The node to get the predecessor node of.\r | |
348 | \r | |
349 | @retval NULL If Node is NULL, or Node is the minimum node of its containing\r | |
350 | tree (ie. Node has no predecessor node).\r | |
351 | \r | |
352 | @return The tree node linking the greatest user structure that is less\r | |
353 | than the one linked by Node, otherwise.\r | |
354 | **/\r | |
355 | RED_BLACK_TREE_NODE *\r | |
356 | EFIAPI\r | |
357 | OrderedCollectionPrev (\r | |
358 | IN CONST RED_BLACK_TREE_NODE *Node\r | |
359 | )\r | |
360 | {\r | |
361 | RED_BLACK_TREE_NODE *Walk;\r | |
362 | CONST RED_BLACK_TREE_NODE *Child;\r | |
363 | \r | |
364 | if (Node == NULL) {\r | |
365 | return NULL;\r | |
366 | }\r | |
367 | \r | |
368 | //\r | |
369 | // If Node has a left subtree, then the predecessor is the maximum node of\r | |
370 | // that subtree.\r | |
371 | //\r | |
372 | Walk = Node->Left;\r | |
373 | if (Walk != NULL) {\r | |
374 | while (Walk->Right != NULL) {\r | |
375 | Walk = Walk->Right;\r | |
376 | }\r | |
377 | return Walk;\r | |
378 | }\r | |
379 | \r | |
380 | //\r | |
381 | // Otherwise we have to ascend as long as we're our parent's left child (ie.\r | |
382 | // ascending to the right).\r | |
383 | //\r | |
384 | Child = Node;\r | |
385 | Walk = Child->Parent;\r | |
386 | while (Walk != NULL && Child == Walk->Left) {\r | |
387 | Child = Walk;\r | |
388 | Walk = Child->Parent;\r | |
389 | }\r | |
390 | return Walk;\r | |
391 | }\r | |
392 | \r | |
393 | \r | |
394 | /**\r | |
395 | Rotate tree nodes around Pivot to the right.\r | |
396 | \r | |
397 | Parent Parent\r | |
398 | | |\r | |
399 | Pivot LeftChild\r | |
400 | / . . \_\r | |
401 | LeftChild Node1 ---> Node2 Pivot\r | |
402 | . \ / .\r | |
403 | Node2 LeftRightChild LeftRightChild Node1\r | |
404 | \r | |
405 | The ordering Node2 < LeftChild < LeftRightChild < Pivot < Node1 is kept\r | |
406 | intact. Parent (if any) is either at the left extreme or the right extreme of\r | |
407 | this ordering, and that relation is also kept intact.\r | |
408 | \r | |
409 | Edges marked with a dot (".") don't change during rotation.\r | |
410 | \r | |
411 | Internal read-write operation.\r | |
412 | \r | |
413 | @param[in,out] Pivot The tree node to rotate other nodes right around. It\r | |
414 | is the caller's responsibility to ensure that\r | |
415 | Pivot->Left is not NULL.\r | |
416 | \r | |
417 | @param[out] NewRoot If Pivot has a parent node on input, then the\r | |
418 | function updates Pivot's original parent on output\r | |
419 | according to the rotation, and NewRoot is not\r | |
420 | accessed.\r | |
421 | \r | |
422 | If Pivot has no parent node on input (ie. Pivot is\r | |
423 | the root of the tree), then the function stores the\r | |
424 | new root node of the tree in NewRoot.\r | |
425 | **/\r | |
cf556c6a LE |
426 | VOID\r |
427 | RedBlackTreeRotateRight (\r | |
428 | IN OUT RED_BLACK_TREE_NODE *Pivot,\r | |
429 | OUT RED_BLACK_TREE_NODE **NewRoot\r | |
430 | )\r | |
431 | {\r | |
64fabae5 ED |
432 | RED_BLACK_TREE_NODE *Parent;\r |
433 | RED_BLACK_TREE_NODE *LeftChild;\r | |
434 | RED_BLACK_TREE_NODE *LeftRightChild;\r | |
cf556c6a LE |
435 | \r |
436 | Parent = Pivot->Parent;\r | |
437 | LeftChild = Pivot->Left;\r | |
438 | LeftRightChild = LeftChild->Right;\r | |
439 | \r | |
440 | Pivot->Left = LeftRightChild;\r | |
441 | if (LeftRightChild != NULL) {\r | |
442 | LeftRightChild->Parent = Pivot;\r | |
443 | }\r | |
444 | LeftChild->Parent = Parent;\r | |
445 | if (Parent == NULL) {\r | |
446 | *NewRoot = LeftChild;\r | |
447 | } else {\r | |
448 | if (Pivot == Parent->Left) {\r | |
449 | Parent->Left = LeftChild;\r | |
450 | } else {\r | |
451 | Parent->Right = LeftChild;\r | |
452 | }\r | |
453 | }\r | |
454 | LeftChild->Right = Pivot;\r | |
455 | Pivot->Parent = LeftChild;\r | |
456 | }\r | |
457 | \r | |
458 | \r | |
459 | /**\r | |
460 | Rotate tree nodes around Pivot to the left.\r | |
461 | \r | |
462 | Parent Parent\r | |
463 | | |\r | |
464 | Pivot RightChild\r | |
465 | . \ / .\r | |
466 | Node1 RightChild ---> Pivot Node2\r | |
467 | /. . \_\r | |
468 | RightLeftChild Node2 Node1 RightLeftChild\r | |
469 | \r | |
470 | The ordering Node1 < Pivot < RightLeftChild < RightChild < Node2 is kept\r | |
471 | intact. Parent (if any) is either at the left extreme or the right extreme of\r | |
472 | this ordering, and that relation is also kept intact.\r | |
473 | \r | |
474 | Edges marked with a dot (".") don't change during rotation.\r | |
475 | \r | |
476 | Internal read-write operation.\r | |
477 | \r | |
478 | @param[in,out] Pivot The tree node to rotate other nodes left around. It\r | |
479 | is the caller's responsibility to ensure that\r | |
480 | Pivot->Right is not NULL.\r | |
481 | \r | |
482 | @param[out] NewRoot If Pivot has a parent node on input, then the\r | |
483 | function updates Pivot's original parent on output\r | |
484 | according to the rotation, and NewRoot is not\r | |
485 | accessed.\r | |
486 | \r | |
487 | If Pivot has no parent node on input (ie. Pivot is\r | |
488 | the root of the tree), then the function stores the\r | |
489 | new root node of the tree in NewRoot.\r | |
490 | **/\r | |
cf556c6a LE |
491 | VOID\r |
492 | RedBlackTreeRotateLeft (\r | |
493 | IN OUT RED_BLACK_TREE_NODE *Pivot,\r | |
494 | OUT RED_BLACK_TREE_NODE **NewRoot\r | |
495 | )\r | |
496 | {\r | |
64fabae5 ED |
497 | RED_BLACK_TREE_NODE *Parent;\r |
498 | RED_BLACK_TREE_NODE *RightChild;\r | |
499 | RED_BLACK_TREE_NODE *RightLeftChild;\r | |
cf556c6a LE |
500 | \r |
501 | Parent = Pivot->Parent;\r | |
502 | RightChild = Pivot->Right;\r | |
503 | RightLeftChild = RightChild->Left;\r | |
504 | \r | |
505 | Pivot->Right = RightLeftChild;\r | |
506 | if (RightLeftChild != NULL) {\r | |
507 | RightLeftChild->Parent = Pivot;\r | |
508 | }\r | |
509 | RightChild->Parent = Parent;\r | |
510 | if (Parent == NULL) {\r | |
511 | *NewRoot = RightChild;\r | |
512 | } else {\r | |
513 | if (Pivot == Parent->Left) {\r | |
514 | Parent->Left = RightChild;\r | |
515 | } else {\r | |
516 | Parent->Right = RightChild;\r | |
517 | }\r | |
518 | }\r | |
519 | RightChild->Left = Pivot;\r | |
520 | Pivot->Parent = RightChild;\r | |
521 | }\r | |
522 | \r | |
523 | \r | |
524 | /**\r | |
525 | Insert (link) a user structure into the tree.\r | |
526 | \r | |
527 | Read-write operation.\r | |
528 | \r | |
529 | This function allocates the new tree node with MemoryAllocationLib's\r | |
530 | AllocatePool() function.\r | |
531 | \r | |
532 | @param[in,out] Tree The tree to insert UserStruct into.\r | |
533 | \r | |
534 | @param[out] Node The meaning of this optional, output-only\r | |
535 | parameter depends on the return value of the\r | |
536 | function.\r | |
537 | \r | |
538 | When insertion is successful (RETURN_SUCCESS),\r | |
539 | Node is set on output to the new tree node that\r | |
540 | now links UserStruct.\r | |
541 | \r | |
542 | When insertion fails due to lack of memory\r | |
543 | (RETURN_OUT_OF_RESOURCES), Node is not changed.\r | |
544 | \r | |
545 | When insertion fails due to key collision (ie.\r | |
546 | another user structure is already in the tree that\r | |
547 | compares equal to UserStruct), with return value\r | |
548 | RETURN_ALREADY_STARTED, then Node is set on output\r | |
549 | to the node that links the colliding user\r | |
550 | structure. This enables "find-or-insert" in one\r | |
551 | function call, or helps with later removal of the\r | |
552 | colliding element.\r | |
553 | \r | |
554 | @param[in] UserStruct The user structure to link into the tree.\r | |
555 | UserStruct is ordered against in-tree user\r | |
556 | structures with the Tree->UserStructCompare()\r | |
557 | function.\r | |
558 | \r | |
559 | @retval RETURN_SUCCESS Insertion successful. A new tree node has\r | |
560 | been allocated, linking UserStruct. The new\r | |
561 | tree node is reported back in Node (if the\r | |
562 | caller requested it).\r | |
563 | \r | |
564 | Existing RED_BLACK_TREE_NODE pointers into\r | |
565 | Tree remain valid. For example, on-going\r | |
566 | iterations in the caller can continue with\r | |
567 | OrderedCollectionNext() /\r | |
568 | OrderedCollectionPrev(), and they will\r | |
569 | return the new node at some point if user\r | |
570 | structure order dictates it.\r | |
571 | \r | |
572 | @retval RETURN_OUT_OF_RESOURCES AllocatePool() failed to allocate memory for\r | |
573 | the new tree node. The tree has not been\r | |
574 | changed. Existing RED_BLACK_TREE_NODE\r | |
575 | pointers into Tree remain valid.\r | |
576 | \r | |
577 | @retval RETURN_ALREADY_STARTED A user structure has been found in the tree\r | |
578 | that compares equal to UserStruct. The node\r | |
579 | linking the colliding user structure is\r | |
580 | reported back in Node (if the caller\r | |
581 | requested it). The tree has not been\r | |
582 | changed. Existing RED_BLACK_TREE_NODE\r | |
583 | pointers into Tree remain valid.\r | |
584 | **/\r | |
585 | RETURN_STATUS\r | |
586 | EFIAPI\r | |
587 | OrderedCollectionInsert (\r | |
588 | IN OUT RED_BLACK_TREE *Tree,\r | |
589 | OUT RED_BLACK_TREE_NODE **Node OPTIONAL,\r | |
590 | IN VOID *UserStruct\r | |
591 | )\r | |
592 | {\r | |
64fabae5 ED |
593 | RED_BLACK_TREE_NODE *Tmp;\r |
594 | RED_BLACK_TREE_NODE *Parent;\r | |
cf556c6a LE |
595 | INTN Result;\r |
596 | RETURN_STATUS Status;\r | |
597 | RED_BLACK_TREE_NODE *NewRoot;\r | |
598 | \r | |
599 | Tmp = Tree->Root;\r | |
600 | Parent = NULL;\r | |
75955444 | 601 | Result = 0;\r |
cf556c6a LE |
602 | \r |
603 | //\r | |
604 | // First look for a collision, saving the last examined node for the case\r | |
605 | // when there's no collision.\r | |
606 | //\r | |
607 | while (Tmp != NULL) {\r | |
608 | Result = Tree->UserStructCompare (UserStruct, Tmp->UserStruct);\r | |
609 | if (Result == 0) {\r | |
610 | break;\r | |
611 | }\r | |
612 | Parent = Tmp;\r | |
613 | Tmp = (Result < 0) ? Tmp->Left : Tmp->Right;\r | |
614 | }\r | |
615 | \r | |
616 | if (Tmp != NULL) {\r | |
617 | if (Node != NULL) {\r | |
618 | *Node = Tmp;\r | |
619 | }\r | |
620 | Status = RETURN_ALREADY_STARTED;\r | |
621 | goto Done;\r | |
622 | }\r | |
623 | \r | |
624 | //\r | |
625 | // no collision, allocate a new node\r | |
626 | //\r | |
627 | Tmp = AllocatePool (sizeof *Tmp);\r | |
628 | if (Tmp == NULL) {\r | |
629 | Status = RETURN_OUT_OF_RESOURCES;\r | |
630 | goto Done;\r | |
631 | }\r | |
632 | if (Node != NULL) {\r | |
633 | *Node = Tmp;\r | |
634 | }\r | |
635 | \r | |
636 | //\r | |
637 | // reference the user structure from the node\r | |
638 | //\r | |
639 | Tmp->UserStruct = UserStruct;\r | |
640 | \r | |
641 | //\r | |
642 | // Link the node as a child to the correct side of the parent.\r | |
643 | // If there's no parent, the new node is the root node in the tree.\r | |
644 | //\r | |
645 | Tmp->Parent = Parent;\r | |
646 | Tmp->Left = NULL;\r | |
647 | Tmp->Right = NULL;\r | |
648 | if (Parent == NULL) {\r | |
649 | Tree->Root = Tmp;\r | |
650 | Tmp->Color = RedBlackTreeBlack;\r | |
651 | Status = RETURN_SUCCESS;\r | |
652 | goto Done;\r | |
653 | }\r | |
654 | if (Result < 0) {\r | |
655 | Parent->Left = Tmp;\r | |
656 | } else {\r | |
657 | Parent->Right = Tmp;\r | |
658 | }\r | |
659 | Tmp->Color = RedBlackTreeRed;\r | |
660 | \r | |
661 | //\r | |
662 | // Red-black tree properties:\r | |
663 | //\r | |
664 | // #1 Each node is either red or black (RED_BLACK_TREE_NODE.Color).\r | |
665 | //\r | |
666 | // #2 Each leaf (ie. a pseudo-node pointed-to by a NULL valued\r | |
667 | // RED_BLACK_TREE_NODE.Left or RED_BLACK_TREE_NODE.Right field) is black.\r | |
668 | //\r | |
669 | // #3 Each red node has two black children.\r | |
670 | //\r | |
671 | // #4 For any node N, and for any leaves L1 and L2 reachable from N, the\r | |
672 | // paths N..L1 and N..L2 contain the same number of black nodes.\r | |
673 | //\r | |
674 | // #5 The root node is black.\r | |
675 | //\r | |
676 | // By replacing a leaf with a red node above, only property #3 may have been\r | |
677 | // broken. (Note that this is the only edge across which property #3 might\r | |
678 | // not hold in the entire tree.) Restore property #3.\r | |
679 | //\r | |
680 | \r | |
681 | NewRoot = Tree->Root;\r | |
682 | while (Tmp != NewRoot && Parent->Color == RedBlackTreeRed) {\r | |
64fabae5 ED |
683 | RED_BLACK_TREE_NODE *GrandParent;\r |
684 | RED_BLACK_TREE_NODE *Uncle;\r | |
cf556c6a LE |
685 | \r |
686 | //\r | |
687 | // Tmp is not the root node. Tmp is red. Tmp's parent is red. (Breaking\r | |
688 | // property #3.)\r | |
689 | //\r | |
690 | // Due to property #5, Tmp's parent cannot be the root node, hence Tmp's\r | |
691 | // grandparent exists.\r | |
692 | //\r | |
693 | // Tmp's grandparent is black, because property #3 is only broken between\r | |
694 | // Tmp and Tmp's parent.\r | |
695 | //\r | |
696 | GrandParent = Parent->Parent;\r | |
697 | \r | |
698 | if (Parent == GrandParent->Left) {\r | |
699 | Uncle = GrandParent->Right;\r | |
700 | if (Uncle != NULL && Uncle->Color == RedBlackTreeRed) {\r | |
701 | //\r | |
702 | // GrandParent (black)\r | |
703 | // / \_\r | |
704 | // Parent (red) Uncle (red)\r | |
705 | // |\r | |
706 | // Tmp (red)\r | |
707 | //\r | |
708 | \r | |
709 | Parent->Color = RedBlackTreeBlack;\r | |
710 | Uncle->Color = RedBlackTreeBlack;\r | |
711 | GrandParent->Color = RedBlackTreeRed;\r | |
712 | \r | |
713 | //\r | |
714 | // GrandParent (red)\r | |
715 | // / \_\r | |
716 | // Parent (black) Uncle (black)\r | |
717 | // |\r | |
718 | // Tmp (red)\r | |
719 | //\r | |
720 | // We restored property #3 between Tmp and Tmp's parent, without\r | |
721 | // breaking property #4. However, we may have broken property #3\r | |
722 | // between Tmp's grandparent and Tmp's great-grandparent (if any), so\r | |
723 | // repeat the loop for Tmp's grandparent.\r | |
724 | //\r | |
725 | // If Tmp's grandparent has no parent, then the loop will terminate,\r | |
726 | // and we will have broken property #5, by coloring the root red. We'll\r | |
727 | // restore property #5 after the loop, without breaking any others.\r | |
728 | //\r | |
729 | Tmp = GrandParent;\r | |
730 | Parent = Tmp->Parent;\r | |
731 | } else {\r | |
732 | //\r | |
733 | // Tmp's uncle is black (satisfied by the case too when Tmp's uncle is\r | |
734 | // NULL, see property #2).\r | |
735 | //\r | |
736 | \r | |
737 | if (Tmp == Parent->Right) {\r | |
738 | //\r | |
739 | // GrandParent (black): D\r | |
740 | // / \_\r | |
741 | // Parent (red): A Uncle (black): E\r | |
742 | // \_\r | |
743 | // Tmp (red): B\r | |
744 | // \_\r | |
745 | // black: C\r | |
746 | //\r | |
747 | // Rotate left, pivoting on node A. This keeps the breakage of\r | |
748 | // property #3 in the same spot, and keeps other properties intact\r | |
749 | // (because both Tmp and its parent are red).\r | |
750 | //\r | |
751 | Tmp = Parent;\r | |
752 | RedBlackTreeRotateLeft (Tmp, &NewRoot);\r | |
753 | Parent = Tmp->Parent;\r | |
754 | \r | |
755 | //\r | |
756 | // With the rotation we reached the same configuration as if Tmp had\r | |
757 | // been a left child to begin with.\r | |
758 | //\r | |
759 | // GrandParent (black): D\r | |
760 | // / \_\r | |
761 | // Parent (red): B Uncle (black): E\r | |
762 | // / \_\r | |
763 | // Tmp (red): A black: C\r | |
764 | //\r | |
765 | ASSERT (GrandParent == Parent->Parent);\r | |
766 | }\r | |
767 | \r | |
768 | Parent->Color = RedBlackTreeBlack;\r | |
769 | GrandParent->Color = RedBlackTreeRed;\r | |
770 | \r | |
771 | //\r | |
772 | // Property #3 is now restored, but we've broken property #4. Namely,\r | |
773 | // paths going through node E now see a decrease in black count, while\r | |
774 | // paths going through node B don't.\r | |
775 | //\r | |
776 | // GrandParent (red): D\r | |
777 | // / \_\r | |
778 | // Parent (black): B Uncle (black): E\r | |
779 | // / \_\r | |
780 | // Tmp (red): A black: C\r | |
781 | //\r | |
782 | \r | |
783 | RedBlackTreeRotateRight (GrandParent, &NewRoot);\r | |
784 | \r | |
785 | //\r | |
786 | // Property #4 has been restored for node E, and preserved for others.\r | |
787 | //\r | |
788 | // Parent (black): B\r | |
789 | // / \_\r | |
790 | // Tmp (red): A [GrandParent] (red): D\r | |
791 | // / \_\r | |
792 | // black: C [Uncle] (black): E\r | |
793 | //\r | |
794 | // This configuration terminates the loop because Tmp's parent is now\r | |
795 | // black.\r | |
796 | //\r | |
797 | }\r | |
798 | } else {\r | |
799 | //\r | |
800 | // Symmetrical to the other branch.\r | |
801 | //\r | |
802 | Uncle = GrandParent->Left;\r | |
803 | if (Uncle != NULL && Uncle->Color == RedBlackTreeRed) {\r | |
804 | Parent->Color = RedBlackTreeBlack;\r | |
805 | Uncle->Color = RedBlackTreeBlack;\r | |
806 | GrandParent->Color = RedBlackTreeRed;\r | |
807 | Tmp = GrandParent;\r | |
808 | Parent = Tmp->Parent;\r | |
809 | } else {\r | |
810 | if (Tmp == Parent->Left) {\r | |
811 | Tmp = Parent;\r | |
812 | RedBlackTreeRotateRight (Tmp, &NewRoot);\r | |
813 | Parent = Tmp->Parent;\r | |
814 | ASSERT (GrandParent == Parent->Parent);\r | |
815 | }\r | |
816 | Parent->Color = RedBlackTreeBlack;\r | |
817 | GrandParent->Color = RedBlackTreeRed;\r | |
818 | RedBlackTreeRotateLeft (GrandParent, &NewRoot);\r | |
819 | }\r | |
820 | }\r | |
821 | }\r | |
822 | \r | |
823 | NewRoot->Color = RedBlackTreeBlack;\r | |
824 | Tree->Root = NewRoot;\r | |
825 | Status = RETURN_SUCCESS;\r | |
826 | \r | |
827 | Done:\r | |
828 | if (FeaturePcdGet (PcdValidateOrderedCollection)) {\r | |
829 | RedBlackTreeValidate (Tree);\r | |
830 | }\r | |
831 | return Status;\r | |
832 | }\r | |
833 | \r | |
834 | \r | |
835 | /**\r | |
836 | Check if a node is black, allowing for leaf nodes (see property #2).\r | |
837 | \r | |
838 | This is a convenience shorthand.\r | |
839 | \r | |
840 | param[in] Node The node to check. Node may be NULL, corresponding to a leaf.\r | |
841 | \r | |
842 | @return If Node is NULL or colored black.\r | |
843 | **/\r | |
cf556c6a LE |
844 | BOOLEAN\r |
845 | NodeIsNullOrBlack (\r | |
846 | IN CONST RED_BLACK_TREE_NODE *Node\r | |
847 | )\r | |
848 | {\r | |
6a650d1f | 849 | return (BOOLEAN)(Node == NULL || Node->Color == RedBlackTreeBlack);\r |
cf556c6a LE |
850 | }\r |
851 | \r | |
852 | \r | |
853 | /**\r | |
854 | Delete a node from the tree, unlinking the associated user structure.\r | |
855 | \r | |
856 | Read-write operation.\r | |
857 | \r | |
858 | @param[in,out] Tree The tree to delete Node from.\r | |
859 | \r | |
860 | @param[in] Node The tree node to delete from Tree. The caller is\r | |
861 | responsible for ensuring that Node belongs to\r | |
862 | Tree, and that Node is non-NULL and valid. Node is\r | |
863 | typically an earlier return value, or output\r | |
864 | parameter, of:\r | |
865 | \r | |
866 | - OrderedCollectionFind(), for deleting a node by\r | |
867 | user structure key,\r | |
868 | \r | |
869 | - OrderedCollectionMin() / OrderedCollectionMax(),\r | |
870 | for deleting the minimum / maximum node,\r | |
871 | \r | |
872 | - OrderedCollectionNext() /\r | |
873 | OrderedCollectionPrev(), for deleting a node\r | |
874 | found during an iteration,\r | |
875 | \r | |
876 | - OrderedCollectionInsert() with return value\r | |
877 | RETURN_ALREADY_STARTED, for deleting a node\r | |
878 | whose linked user structure caused collision\r | |
879 | during insertion.\r | |
880 | \r | |
881 | Given a non-empty Tree, Tree->Root is also a valid\r | |
882 | Node argument (typically used for simplicity in\r | |
883 | loops that empty the tree completely).\r | |
884 | \r | |
885 | Node is released with MemoryAllocationLib's\r | |
886 | FreePool() function.\r | |
887 | \r | |
888 | Existing RED_BLACK_TREE_NODE pointers (ie.\r | |
889 | iterators) *different* from Node remain valid. For\r | |
890 | example:\r | |
891 | \r | |
892 | - OrderedCollectionNext() /\r | |
893 | OrderedCollectionPrev() iterations in the caller\r | |
894 | can be continued from Node, if\r | |
895 | OrderedCollectionNext() or\r | |
896 | OrderedCollectionPrev() is called on Node\r | |
897 | *before* OrderedCollectionDelete() is. That is,\r | |
898 | fetch the successor / predecessor node first,\r | |
899 | then delete Node.\r | |
900 | \r | |
901 | - On-going iterations in the caller that would\r | |
902 | have otherwise returned Node at some point, as\r | |
903 | dictated by user structure order, will correctly\r | |
904 | reflect the absence of Node after\r | |
905 | OrderedCollectionDelete() is called\r | |
906 | mid-iteration.\r | |
907 | \r | |
908 | @param[out] UserStruct If the caller provides this optional output-only\r | |
909 | parameter, then on output it is set to the user\r | |
910 | structure originally linked by Node (which is now\r | |
911 | freed).\r | |
912 | \r | |
913 | This is a convenience that may save the caller a\r | |
914 | OrderedCollectionUserStruct() invocation before\r | |
915 | calling OrderedCollectionDelete(), in order to\r | |
916 | retrieve the user structure being unlinked.\r | |
917 | **/\r | |
918 | VOID\r | |
919 | EFIAPI\r | |
920 | OrderedCollectionDelete (\r | |
921 | IN OUT RED_BLACK_TREE *Tree,\r | |
922 | IN RED_BLACK_TREE_NODE *Node,\r | |
923 | OUT VOID **UserStruct OPTIONAL\r | |
924 | )\r | |
925 | {\r | |
926 | RED_BLACK_TREE_NODE *NewRoot;\r | |
64fabae5 ED |
927 | RED_BLACK_TREE_NODE *OrigLeftChild;\r |
928 | RED_BLACK_TREE_NODE *OrigRightChild;\r | |
929 | RED_BLACK_TREE_NODE *OrigParent;\r | |
930 | RED_BLACK_TREE_NODE *Child;\r | |
931 | RED_BLACK_TREE_NODE *Parent;\r | |
cf556c6a LE |
932 | RED_BLACK_TREE_COLOR ColorOfUnlinked;\r |
933 | \r | |
934 | NewRoot = Tree->Root;\r | |
935 | OrigLeftChild = Node->Left,\r | |
936 | OrigRightChild = Node->Right,\r | |
937 | OrigParent = Node->Parent;\r | |
938 | \r | |
939 | if (UserStruct != NULL) {\r | |
940 | *UserStruct = Node->UserStruct;\r | |
941 | }\r | |
942 | \r | |
943 | //\r | |
944 | // After this block, no matter which branch we take:\r | |
945 | // - Child will point to the unique (or NULL) original child of the node that\r | |
946 | // we will have unlinked,\r | |
947 | // - Parent will point to the *position* of the original parent of the node\r | |
948 | // that we will have unlinked.\r | |
949 | //\r | |
950 | if (OrigLeftChild == NULL || OrigRightChild == NULL) {\r | |
951 | //\r | |
952 | // Node has at most one child. We can connect that child (if any) with\r | |
953 | // Node's parent (if any), unlinking Node. This will preserve ordering\r | |
954 | // because the subtree rooted in Node's child (if any) remains on the same\r | |
955 | // side of Node's parent (if any) that Node was before.\r | |
956 | //\r | |
957 | Parent = OrigParent;\r | |
958 | Child = (OrigLeftChild != NULL) ? OrigLeftChild : OrigRightChild;\r | |
959 | ColorOfUnlinked = Node->Color;\r | |
960 | \r | |
961 | if (Child != NULL) {\r | |
962 | Child->Parent = Parent;\r | |
963 | }\r | |
964 | if (OrigParent == NULL) {\r | |
965 | NewRoot = Child;\r | |
966 | } else {\r | |
967 | if (Node == OrigParent->Left) {\r | |
968 | OrigParent->Left = Child;\r | |
969 | } else {\r | |
970 | OrigParent->Right = Child;\r | |
971 | }\r | |
972 | }\r | |
973 | } else {\r | |
974 | //\r | |
975 | // Node has two children. We unlink Node's successor, and then link it into\r | |
976 | // Node's place, keeping Node's original color. This preserves ordering\r | |
977 | // because:\r | |
978 | // - Node's left subtree is less than Node, hence less than Node's\r | |
979 | // successor.\r | |
980 | // - Node's right subtree is greater than Node. Node's successor is the\r | |
981 | // minimum of that subtree, hence Node's successor is less than Node's\r | |
982 | // right subtree with its minimum removed.\r | |
983 | // - Node's successor is in Node's subtree, hence it falls on the same side\r | |
984 | // of Node's parent as Node itself. The relinking doesn't change this\r | |
985 | // relation.\r | |
986 | //\r | |
987 | RED_BLACK_TREE_NODE *ToRelink;\r | |
988 | \r | |
989 | ToRelink = OrigRightChild;\r | |
990 | if (ToRelink->Left == NULL) {\r | |
991 | //\r | |
992 | // OrigRightChild itself is Node's successor, it has no left child:\r | |
993 | //\r | |
994 | // OrigParent\r | |
995 | // |\r | |
996 | // Node: B\r | |
997 | // / \_\r | |
998 | // OrigLeftChild: A OrigRightChild: E <--- Parent, ToRelink\r | |
999 | // \_\r | |
1000 | // F <--- Child\r | |
1001 | //\r | |
1002 | Parent = OrigRightChild;\r | |
1003 | Child = OrigRightChild->Right;\r | |
1004 | } else {\r | |
1005 | do {\r | |
1006 | ToRelink = ToRelink->Left;\r | |
1007 | } while (ToRelink->Left != NULL);\r | |
1008 | \r | |
1009 | //\r | |
1010 | // Node's successor is the minimum of OrigRightChild's proper subtree:\r | |
1011 | //\r | |
1012 | // OrigParent\r | |
1013 | // |\r | |
1014 | // Node: B\r | |
1015 | // / \_\r | |
1016 | // OrigLeftChild: A OrigRightChild: E <--- Parent\r | |
1017 | // /\r | |
1018 | // C <--- ToRelink\r | |
1019 | // \_\r | |
1020 | // D <--- Child\r | |
1021 | Parent = ToRelink->Parent;\r | |
1022 | Child = ToRelink->Right;\r | |
1023 | \r | |
1024 | //\r | |
1025 | // Unlink Node's successor (ie. ToRelink):\r | |
1026 | //\r | |
1027 | // OrigParent\r | |
1028 | // |\r | |
1029 | // Node: B\r | |
1030 | // / \_\r | |
1031 | // OrigLeftChild: A OrigRightChild: E <--- Parent\r | |
1032 | // /\r | |
1033 | // D <--- Child\r | |
1034 | //\r | |
1035 | // C <--- ToRelink\r | |
1036 | //\r | |
1037 | Parent->Left = Child;\r | |
64fabae5 | 1038 | if (Child != NULL) {\r |
cf556c6a LE |
1039 | Child->Parent = Parent;\r |
1040 | }\r | |
1041 | \r | |
1042 | //\r | |
1043 | // We start to link Node's unlinked successor into Node's place:\r | |
1044 | //\r | |
1045 | // OrigParent\r | |
1046 | // |\r | |
1047 | // Node: B C <--- ToRelink\r | |
1048 | // / \_\r | |
1049 | // OrigLeftChild: A OrigRightChild: E <--- Parent\r | |
1050 | // /\r | |
1051 | // D <--- Child\r | |
1052 | //\r | |
1053 | //\r | |
1054 | //\r | |
1055 | ToRelink->Right = OrigRightChild;\r | |
1056 | OrigRightChild->Parent = ToRelink;\r | |
1057 | }\r | |
1058 | \r | |
1059 | //\r | |
1060 | // The rest handles both cases, attaching ToRelink (Node's original\r | |
1061 | // successor) to OrigLeftChild and OrigParent.\r | |
1062 | //\r | |
1063 | // Parent,\r | |
1064 | // OrigParent ToRelink OrigParent\r | |
1065 | // | | |\r | |
1066 | // Node: B | Node: B Parent\r | |
1067 | // v |\r | |
1068 | // OrigRightChild: E C <--- ToRelink |\r | |
1069 | // / \ / \ v\r | |
1070 | // OrigLeftChild: A F OrigLeftChild: A OrigRightChild: E\r | |
1071 | // ^ /\r | |
1072 | // | D <--- Child\r | |
1073 | // Child\r | |
1074 | //\r | |
1075 | ToRelink->Left = OrigLeftChild;\r | |
1076 | OrigLeftChild->Parent = ToRelink;\r | |
1077 | \r | |
1078 | //\r | |
1079 | // Node's color must be preserved in Node's original place.\r | |
1080 | //\r | |
1081 | ColorOfUnlinked = ToRelink->Color;\r | |
1082 | ToRelink->Color = Node->Color;\r | |
1083 | \r | |
1084 | //\r | |
1085 | // Finish linking Node's unlinked successor into Node's place.\r | |
1086 | //\r | |
1087 | // Parent,\r | |
1088 | // Node: B ToRelink Node: B\r | |
1089 | // |\r | |
1090 | // OrigParent | OrigParent Parent\r | |
1091 | // | v | |\r | |
1092 | // OrigRightChild: E C <--- ToRelink |\r | |
1093 | // / \ / \ v\r | |
1094 | // OrigLeftChild: A F OrigLeftChild: A OrigRightChild: E\r | |
1095 | // ^ /\r | |
1096 | // | D <--- Child\r | |
1097 | // Child\r | |
1098 | //\r | |
1099 | ToRelink->Parent = OrigParent;\r | |
1100 | if (OrigParent == NULL) {\r | |
1101 | NewRoot = ToRelink;\r | |
1102 | } else {\r | |
1103 | if (Node == OrigParent->Left) {\r | |
1104 | OrigParent->Left = ToRelink;\r | |
1105 | } else {\r | |
1106 | OrigParent->Right = ToRelink;\r | |
1107 | }\r | |
1108 | }\r | |
1109 | }\r | |
1110 | \r | |
1111 | FreePool (Node);\r | |
1112 | \r | |
1113 | //\r | |
1114 | // If the node that we unlinked from its original spot (ie. Node itself, or\r | |
1115 | // Node's successor), was red, then we broke neither property #3 nor property\r | |
1116 | // #4: we didn't create any red-red edge between Child and Parent, and we\r | |
1117 | // didn't change the black count on any path.\r | |
1118 | //\r | |
1119 | if (ColorOfUnlinked == RedBlackTreeBlack) {\r | |
1120 | //\r | |
1121 | // However, if the unlinked node was black, then we have to transfer its\r | |
1122 | // "black-increment" to its unique child (pointed-to by Child), lest we\r | |
1123 | // break property #4 for its ancestors.\r | |
1124 | //\r | |
1125 | // If Child is red, we can simply color it black. If Child is black\r | |
1126 | // already, we can't technically transfer a black-increment to it, due to\r | |
1127 | // property #1.\r | |
1128 | //\r | |
1129 | // In the following loop we ascend searching for a red node to color black,\r | |
1130 | // or until we reach the root (in which case we can drop the\r | |
1131 | // black-increment). Inside the loop body, Child has a black value of 2,\r | |
1132 | // transitorily breaking property #1 locally, but maintaining property #4\r | |
1133 | // globally.\r | |
1134 | //\r | |
1135 | // Rotations in the loop preserve property #4.\r | |
1136 | //\r | |
1137 | while (Child != NewRoot && NodeIsNullOrBlack (Child)) {\r | |
64fabae5 ED |
1138 | RED_BLACK_TREE_NODE *Sibling;\r |
1139 | RED_BLACK_TREE_NODE *LeftNephew;\r | |
1140 | RED_BLACK_TREE_NODE *RightNephew;\r | |
cf556c6a LE |
1141 | \r |
1142 | if (Child == Parent->Left) {\r | |
1143 | Sibling = Parent->Right;\r | |
1144 | //\r | |
1145 | // Sibling can never be NULL (ie. a leaf).\r | |
1146 | //\r | |
1147 | // If Sibling was NULL, then the black count on the path from Parent to\r | |
1148 | // Sibling would equal Parent's black value, plus 1 (due to property\r | |
1149 | // #2). Whereas the black count on the path from Parent to any leaf via\r | |
1150 | // Child would be at least Parent's black value, plus 2 (due to Child's\r | |
1151 | // black value of 2). This would clash with property #4.\r | |
1152 | //\r | |
1153 | // (Sibling can be black of course, but it has to be an internal node.\r | |
1154 | // Internality allows Sibling to have children, bumping the black\r | |
1155 | // counts of paths that go through it.)\r | |
1156 | //\r | |
1157 | ASSERT (Sibling != NULL);\r | |
1158 | if (Sibling->Color == RedBlackTreeRed) {\r | |
1159 | //\r | |
1160 | // Sibling's red color implies its children (if any), node C and node\r | |
1161 | // E, are black (property #3). It also implies that Parent is black.\r | |
1162 | //\r | |
1163 | // grandparent grandparent\r | |
1164 | // | |\r | |
1165 | // Parent,b:B b:D\r | |
1166 | // / \ / \_\r | |
1167 | // Child,2b:A Sibling,r:D ---> Parent,r:B b:E\r | |
1168 | // /\ /\_\r | |
1169 | // b:C b:E Child,2b:A Sibling,b:C\r | |
1170 | //\r | |
1171 | Sibling->Color = RedBlackTreeBlack;\r | |
1172 | Parent->Color = RedBlackTreeRed;\r | |
1173 | RedBlackTreeRotateLeft (Parent, &NewRoot);\r | |
1174 | Sibling = Parent->Right;\r | |
1175 | //\r | |
1176 | // Same reasoning as above.\r | |
1177 | //\r | |
1178 | ASSERT (Sibling != NULL);\r | |
1179 | }\r | |
1180 | \r | |
1181 | //\r | |
1182 | // Sibling is black, and not NULL. (Ie. Sibling is a black internal\r | |
1183 | // node.)\r | |
1184 | //\r | |
1185 | ASSERT (Sibling->Color == RedBlackTreeBlack);\r | |
1186 | LeftNephew = Sibling->Left;\r | |
1187 | RightNephew = Sibling->Right;\r | |
1188 | if (NodeIsNullOrBlack (LeftNephew) &&\r | |
1189 | NodeIsNullOrBlack (RightNephew)) {\r | |
1190 | //\r | |
1191 | // In this case we can "steal" one black value from Child and Sibling\r | |
1192 | // each, and pass it to Parent. "Stealing" means that Sibling (black\r | |
1193 | // value 1) becomes red, Child (black value 2) becomes singly-black,\r | |
1194 | // and Parent will have to be examined if it can eat the\r | |
1195 | // black-increment.\r | |
1196 | //\r | |
1197 | // Sibling is allowed to become red because both of its children are\r | |
1198 | // black (property #3).\r | |
1199 | //\r | |
1200 | // grandparent Parent\r | |
1201 | // | |\r | |
1202 | // Parent,x:B Child,x:B\r | |
1203 | // / \ / \_\r | |
1204 | // Child,2b:A Sibling,b:D ---> b:A r:D\r | |
1205 | // /\ /\_\r | |
1206 | // LeftNephew,b:C RightNephew,b:E b:C b:E\r | |
1207 | //\r | |
1208 | Sibling->Color = RedBlackTreeRed;\r | |
1209 | Child = Parent;\r | |
1210 | Parent = Parent->Parent;\r | |
1211 | //\r | |
1212 | // Continue ascending.\r | |
1213 | //\r | |
1214 | } else {\r | |
1215 | //\r | |
1216 | // At least one nephew is red.\r | |
1217 | //\r | |
1218 | if (NodeIsNullOrBlack (RightNephew)) {\r | |
1219 | //\r | |
1220 | // Since the right nephew is black, the left nephew is red. Due to\r | |
1221 | // property #3, LeftNephew has two black children, hence node E is\r | |
1222 | // black.\r | |
1223 | //\r | |
1224 | // Together with the rotation, this enables us to color node F red\r | |
1225 | // (because property #3 will be satisfied). We flip node D to black\r | |
1226 | // to maintain property #4.\r | |
1227 | //\r | |
1228 | // grandparent grandparent\r | |
1229 | // | |\r | |
1230 | // Parent,x:B Parent,x:B\r | |
1231 | // /\ /\_\r | |
1232 | // Child,2b:A Sibling,b:F ---> Child,2b:A Sibling,b:D\r | |
1233 | // /\ / \_\r | |
1234 | // LeftNephew,r:D RightNephew,b:G b:C RightNephew,r:F\r | |
1235 | // /\ /\_\r | |
1236 | // b:C b:E b:E b:G\r | |
1237 | //\r | |
1238 | LeftNephew->Color = RedBlackTreeBlack;\r | |
1239 | Sibling->Color = RedBlackTreeRed;\r | |
1240 | RedBlackTreeRotateRight (Sibling, &NewRoot);\r | |
1241 | Sibling = Parent->Right;\r | |
1242 | RightNephew = Sibling->Right;\r | |
1243 | //\r | |
1244 | // These operations ensure that...\r | |
1245 | //\r | |
1246 | }\r | |
1247 | //\r | |
1248 | // ... RightNephew is definitely red here, plus Sibling is (still)\r | |
1249 | // black and non-NULL.\r | |
1250 | //\r | |
1251 | ASSERT (RightNephew != NULL);\r | |
1252 | ASSERT (RightNephew->Color == RedBlackTreeRed);\r | |
1253 | ASSERT (Sibling != NULL);\r | |
1254 | ASSERT (Sibling->Color == RedBlackTreeBlack);\r | |
1255 | //\r | |
1256 | // In this case we can flush the extra black-increment immediately,\r | |
1257 | // restoring property #1 for Child (node A): we color RightNephew\r | |
1258 | // (node E) from red to black.\r | |
1259 | //\r | |
1260 | // In order to maintain property #4, we exchange colors between\r | |
1261 | // Parent and Sibling (nodes B and D), and rotate left around Parent\r | |
1262 | // (node B). The transformation doesn't change the black count\r | |
1263 | // increase incurred by each partial path, eg.\r | |
1264 | // - ascending from node A: 2 + x == 1 + 1 + x\r | |
1265 | // - ascending from node C: y + 1 + x == y + 1 + x\r | |
1266 | // - ascending from node E: 0 + 1 + x == 1 + x\r | |
1267 | //\r | |
1268 | // The color exchange is valid, because even if x stands for red,\r | |
1269 | // both children of node D are black after the transformation\r | |
1270 | // (preserving property #3).\r | |
1271 | //\r | |
1272 | // grandparent grandparent\r | |
1273 | // | |\r | |
1274 | // Parent,x:B x:D\r | |
1275 | // / \ / \_\r | |
1276 | // Child,2b:A Sibling,b:D ---> b:B b:E\r | |
1277 | // / \ / \_\r | |
1278 | // y:C RightNephew,r:E b:A y:C\r | |
1279 | //\r | |
1280 | //\r | |
1281 | Sibling->Color = Parent->Color;\r | |
1282 | Parent->Color = RedBlackTreeBlack;\r | |
1283 | RightNephew->Color = RedBlackTreeBlack;\r | |
1284 | RedBlackTreeRotateLeft (Parent, &NewRoot);\r | |
1285 | Child = NewRoot;\r | |
1286 | //\r | |
1287 | // This terminates the loop.\r | |
1288 | //\r | |
1289 | }\r | |
1290 | } else {\r | |
1291 | //\r | |
1292 | // Mirrors the other branch.\r | |
1293 | //\r | |
1294 | Sibling = Parent->Left;\r | |
1295 | ASSERT (Sibling != NULL);\r | |
1296 | if (Sibling->Color == RedBlackTreeRed) {\r | |
1297 | Sibling->Color = RedBlackTreeBlack;\r | |
1298 | Parent->Color = RedBlackTreeRed;\r | |
1299 | RedBlackTreeRotateRight (Parent, &NewRoot);\r | |
1300 | Sibling = Parent->Left;\r | |
1301 | ASSERT (Sibling != NULL);\r | |
1302 | }\r | |
1303 | \r | |
1304 | ASSERT (Sibling->Color == RedBlackTreeBlack);\r | |
1305 | RightNephew = Sibling->Right;\r | |
1306 | LeftNephew = Sibling->Left;\r | |
1307 | if (NodeIsNullOrBlack (RightNephew) &&\r | |
1308 | NodeIsNullOrBlack (LeftNephew)) {\r | |
1309 | Sibling->Color = RedBlackTreeRed;\r | |
1310 | Child = Parent;\r | |
1311 | Parent = Parent->Parent;\r | |
1312 | } else {\r | |
1313 | if (NodeIsNullOrBlack (LeftNephew)) {\r | |
1314 | RightNephew->Color = RedBlackTreeBlack;\r | |
1315 | Sibling->Color = RedBlackTreeRed;\r | |
1316 | RedBlackTreeRotateLeft (Sibling, &NewRoot);\r | |
1317 | Sibling = Parent->Left;\r | |
1318 | LeftNephew = Sibling->Left;\r | |
1319 | }\r | |
1320 | ASSERT (LeftNephew != NULL);\r | |
1321 | ASSERT (LeftNephew->Color == RedBlackTreeRed);\r | |
1322 | ASSERT (Sibling != NULL);\r | |
1323 | ASSERT (Sibling->Color == RedBlackTreeBlack);\r | |
1324 | Sibling->Color = Parent->Color;\r | |
1325 | Parent->Color = RedBlackTreeBlack;\r | |
1326 | LeftNephew->Color = RedBlackTreeBlack;\r | |
1327 | RedBlackTreeRotateRight (Parent, &NewRoot);\r | |
1328 | Child = NewRoot;\r | |
1329 | }\r | |
1330 | }\r | |
1331 | }\r | |
1332 | \r | |
1333 | if (Child != NULL) {\r | |
1334 | Child->Color = RedBlackTreeBlack;\r | |
1335 | }\r | |
1336 | }\r | |
1337 | \r | |
1338 | Tree->Root = NewRoot;\r | |
1339 | \r | |
1340 | if (FeaturePcdGet (PcdValidateOrderedCollection)) {\r | |
1341 | RedBlackTreeValidate (Tree);\r | |
1342 | }\r | |
1343 | }\r | |
1344 | \r | |
1345 | \r | |
1346 | /**\r | |
1347 | Recursively check the red-black tree properties #1 to #4 on a node.\r | |
1348 | \r | |
1349 | @param[in] Node The root of the subtree to validate.\r | |
1350 | \r | |
1351 | @retval The black-height of Node's parent.\r | |
1352 | **/\r | |
cf556c6a LE |
1353 | UINT32\r |
1354 | RedBlackTreeRecursiveCheck (\r | |
1355 | IN CONST RED_BLACK_TREE_NODE *Node\r | |
1356 | )\r | |
1357 | {\r | |
64fabae5 ED |
1358 | UINT32 LeftHeight;\r |
1359 | UINT32 RightHeight;\r | |
cf556c6a LE |
1360 | \r |
1361 | //\r | |
1362 | // property #2\r | |
1363 | //\r | |
1364 | if (Node == NULL) {\r | |
1365 | return 1;\r | |
1366 | }\r | |
1367 | \r | |
1368 | //\r | |
1369 | // property #1\r | |
1370 | //\r | |
1371 | ASSERT (Node->Color == RedBlackTreeRed || Node->Color == RedBlackTreeBlack);\r | |
1372 | \r | |
1373 | //\r | |
1374 | // property #3\r | |
1375 | //\r | |
1376 | if (Node->Color == RedBlackTreeRed) {\r | |
1377 | ASSERT (NodeIsNullOrBlack (Node->Left));\r | |
1378 | ASSERT (NodeIsNullOrBlack (Node->Right));\r | |
1379 | }\r | |
1380 | \r | |
1381 | //\r | |
1382 | // property #4\r | |
1383 | //\r | |
1384 | LeftHeight = RedBlackTreeRecursiveCheck (Node->Left);\r | |
1385 | RightHeight = RedBlackTreeRecursiveCheck (Node->Right);\r | |
1386 | ASSERT (LeftHeight == RightHeight);\r | |
1387 | \r | |
1388 | return (Node->Color == RedBlackTreeBlack) + LeftHeight;\r | |
1389 | }\r | |
1390 | \r | |
1391 | \r | |
1392 | /**\r | |
1393 | A slow function that asserts that the tree is a valid red-black tree, and\r | |
1394 | that it orders user structures correctly.\r | |
1395 | \r | |
1396 | Read-only operation.\r | |
1397 | \r | |
1398 | This function uses the stack for recursion and is not recommended for\r | |
1399 | "production use".\r | |
1400 | \r | |
1401 | @param[in] Tree The tree to validate.\r | |
1402 | **/\r | |
cf556c6a LE |
1403 | VOID\r |
1404 | RedBlackTreeValidate (\r | |
1405 | IN CONST RED_BLACK_TREE *Tree\r | |
1406 | )\r | |
1407 | {\r | |
1408 | UINT32 BlackHeight;\r | |
64fabae5 ED |
1409 | UINT32 ForwardCount;\r |
1410 | UINT32 BackwardCount;\r | |
1411 | CONST RED_BLACK_TREE_NODE *Last;\r | |
1412 | CONST RED_BLACK_TREE_NODE *Node;\r | |
cf556c6a LE |
1413 | \r |
1414 | DEBUG ((DEBUG_VERBOSE, "%a: Tree=%p\n", __FUNCTION__, Tree));\r | |
1415 | \r | |
1416 | //\r | |
1417 | // property #5\r | |
1418 | //\r | |
1419 | ASSERT (NodeIsNullOrBlack (Tree->Root));\r | |
1420 | \r | |
1421 | //\r | |
1422 | // check the other properties\r | |
1423 | //\r | |
1424 | BlackHeight = RedBlackTreeRecursiveCheck (Tree->Root) - 1;\r | |
1425 | \r | |
1426 | //\r | |
1427 | // forward ordering\r | |
1428 | //\r | |
1429 | Last = OrderedCollectionMin (Tree);\r | |
1430 | ForwardCount = (Last != NULL);\r | |
1431 | for (Node = OrderedCollectionNext (Last); Node != NULL;\r | |
1432 | Node = OrderedCollectionNext (Last)) {\r | |
1433 | ASSERT (Tree->UserStructCompare (Last->UserStruct, Node->UserStruct) < 0);\r | |
1434 | Last = Node;\r | |
1435 | ++ForwardCount;\r | |
1436 | }\r | |
1437 | \r | |
1438 | //\r | |
1439 | // backward ordering\r | |
1440 | //\r | |
1441 | Last = OrderedCollectionMax (Tree);\r | |
1442 | BackwardCount = (Last != NULL);\r | |
1443 | for (Node = OrderedCollectionPrev (Last); Node != NULL;\r | |
1444 | Node = OrderedCollectionPrev (Last)) {\r | |
1445 | ASSERT (Tree->UserStructCompare (Last->UserStruct, Node->UserStruct) > 0);\r | |
1446 | Last = Node;\r | |
1447 | ++BackwardCount;\r | |
1448 | }\r | |
1449 | \r | |
1450 | ASSERT (ForwardCount == BackwardCount);\r | |
1451 | \r | |
1452 | DEBUG ((DEBUG_VERBOSE, "%a: Tree=%p BlackHeight=%Ld Count=%Ld\n",\r | |
1453 | __FUNCTION__, Tree, (INT64)BlackHeight, (INT64)ForwardCount));\r | |
1454 | }\r |