]>
Commit | Line | Data |
---|---|---|
2aa62f2b | 1 | /** @file\r |
2 | Compute acos(x) using ieee FP math.\r | |
3 | \r | |
4 | Copyright (c) 2010 - 2011, Intel Corporation. All rights reserved.<BR>\r | |
5 | This program and the accompanying materials are licensed and made available under\r | |
6 | the terms and conditions of the BSD License that accompanies this distribution.\r | |
7 | The full text of the license may be found at\r | |
8 | http://opensource.org/licenses/bsd-license.\r | |
9 | \r | |
10 | THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r | |
11 | WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r | |
12 | \r | |
13 | * ====================================================\r | |
14 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.\r | |
15 | *\r | |
16 | * Developed at SunPro, a Sun Microsystems, Inc. business.\r | |
17 | * Permission to use, copy, modify, and distribute this\r | |
18 | * software is freely granted, provided that this notice\r | |
19 | * is preserved.\r | |
20 | * ====================================================\r | |
21 | \r | |
22 | e_acos.c 5.1 93/09/24\r | |
23 | NetBSD: e_acos.c,v 1.12 2002/05/26 22:01:47 wiz Exp\r | |
24 | */\r | |
25 | #if defined(_MSC_VER) /* Handle Microsoft VC++ compiler specifics. */\r | |
26 | // Keep older compilers quiet about floating-point divide-by-zero\r | |
27 | #pragma warning ( disable : 4723 )\r | |
28 | #endif\r | |
29 | \r | |
30 | #include <LibConfig.h>\r | |
31 | #include <sys/EfiCdefs.h>\r | |
32 | \r | |
33 | /* __ieee754_acos(x)\r | |
34 | * Method :\r | |
35 | * acos(x) = pi/2 - asin(x)\r | |
36 | * acos(-x) = pi/2 + asin(x)\r | |
37 | * For |x|<=0.5\r | |
38 | * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)\r | |
39 | * For x>0.5\r | |
40 | * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))\r | |
41 | * = 2asin(sqrt((1-x)/2))\r | |
42 | * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)\r | |
43 | * = 2f + (2c + 2s*z*R(z))\r | |
44 | * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term\r | |
45 | * for f so that f+c ~ sqrt(z).\r | |
46 | * For x<-0.5\r | |
47 | * acos(x) = pi - 2asin(sqrt((1-|x|)/2))\r | |
48 | * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)\r | |
49 | *\r | |
50 | * Special cases:\r | |
51 | * if x is NaN, return x itself;\r | |
52 | * if |x|>1, return NaN with invalid signal.\r | |
53 | *\r | |
54 | * Function needed: __ieee754_sqrt\r | |
55 | */\r | |
56 | \r | |
57 | #include "math.h"\r | |
58 | #include "math_private.h"\r | |
59 | \r | |
60 | static const double\r | |
61 | one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */\r | |
62 | pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */\r | |
63 | pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */\r | |
64 | pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */\r | |
65 | pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */\r | |
66 | pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */\r | |
67 | pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */\r | |
68 | pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */\r | |
69 | pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */\r | |
70 | pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */\r | |
71 | qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */\r | |
72 | qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */\r | |
73 | qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */\r | |
74 | qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */\r | |
75 | \r | |
76 | double\r | |
77 | __ieee754_acos(double x)\r | |
78 | {\r | |
79 | double z,p,q,r,w,s,c,df;\r | |
80 | int32_t hx,ix;\r | |
81 | GET_HIGH_WORD(hx,x);\r | |
82 | ix = hx&0x7fffffff;\r | |
83 | if(ix>=0x3ff00000) { /* |x| >= 1 */\r | |
84 | u_int32_t lx;\r | |
85 | \r | |
86 | GET_LOW_WORD(lx,x);\r | |
87 | if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */\r | |
88 | if(hx>0) return 0.0; /* acos(1) = 0 */\r | |
89 | else return pi+2.0*pio2_lo; /* acos(-1)= pi */\r | |
90 | }\r | |
91 | return (x-x)/(x-x); /* acos(|x|>1) is NaN */\r | |
92 | }\r | |
93 | if(ix<0x3fe00000) { /* |x| < 0.5 */\r | |
94 | if(ix<=0x3c600000) return pio2_hi+pio2_lo; /*if|x|<2**-57*/\r | |
95 | z = x*x;\r | |
96 | p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));\r | |
97 | q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));\r | |
98 | r = p/q;\r | |
99 | return pio2_hi - (x - (pio2_lo-x*r));\r | |
100 | }\r | |
101 | else if (hx<0) { /* x < -0.5 */\r | |
102 | z = (one+x)*0.5;\r | |
103 | p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));\r | |
104 | q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));\r | |
105 | s = __ieee754_sqrt(z);\r | |
106 | r = p/q;\r | |
107 | w = r*s-pio2_lo;\r | |
108 | return pi - 2.0*(s+w);\r | |
109 | }\r | |
110 | else { /* x > 0.5 */\r | |
111 | z = (one-x)*0.5;\r | |
112 | s = __ieee754_sqrt(z);\r | |
113 | df = s;\r | |
114 | SET_LOW_WORD(df,0);\r | |
115 | c = (z-df*df)/(s+df);\r | |
116 | p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));\r | |
117 | q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));\r | |
118 | r = p/q;\r | |
119 | w = r*s+c;\r | |
120 | return 2.0*(df+w);\r | |
121 | }\r | |
122 | }\r |