]> git.proxmox.com Git - mirror_edk2.git/blame - StdLib/LibC/Math/e_log.c
ArmPkg: ArmLib: purge incorrect ArmDrainWriteBuffer () alias
[mirror_edk2.git] / StdLib / LibC / Math / e_log.c
CommitLineData
2aa62f2b 1/** @file\r
2 Compute the logrithm of x.\r
3\r
4 Copyright (c) 2010 - 2011, Intel Corporation. All rights reserved.<BR>\r
5 This program and the accompanying materials are licensed and made available under\r
6 the terms and conditions of the BSD License that accompanies this distribution.\r
7 The full text of the license may be found at\r
8 http://opensource.org/licenses/bsd-license.\r
9\r
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
13 * ====================================================\r
14 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.\r
15 *\r
16 * Developed at SunPro, a Sun Microsystems, Inc. business.\r
17 * Permission to use, copy, modify, and distribute this\r
18 * software is freely granted, provided that this notice\r
19 * is preserved.\r
20 * ====================================================\r
21\r
22 e_log.c 5.1 93/09/24\r
23 NetBSD: e_log.c,v 1.12 2002/05/26 22:01:51 wiz Exp\r
24**/\r
25#include <LibConfig.h>\r
26#include <sys/EfiCdefs.h>\r
27\r
28#if defined(_MSC_VER) /* Handle Microsoft VC++ compiler specifics. */\r
29 // potential divide by 0 -- near line 118, (x-x)/zero is on purpose\r
30 #pragma warning ( disable : 4723 )\r
31#endif\r
32\r
33/* __ieee754_log(x)\r
34 * Return the logrithm of x\r
35 *\r
36 * Method :\r
37 * 1. Argument Reduction: find k and f such that\r
38 * x = 2^k * (1+f),\r
39 * where sqrt(2)/2 < 1+f < sqrt(2) .\r
40 *\r
41 * 2. Approximation of log(1+f).\r
42 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)\r
43 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,\r
44 * = 2s + s*R\r
45 * We use a special Reme algorithm on [0,0.1716] to generate\r
46 * a polynomial of degree 14 to approximate R The maximum error\r
47 * of this polynomial approximation is bounded by 2**-58.45. In\r
48 * other words,\r
49 * 2 4 6 8 10 12 14\r
50 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s\r
51 * (the values of Lg1 to Lg7 are listed in the program)\r
52 * and\r
53 * | 2 14 | -58.45\r
54 * | Lg1*s +...+Lg7*s - R(z) | <= 2\r
55 * | |\r
56 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.\r
57 * In order to guarantee error in log below 1ulp, we compute log\r
58 * by\r
59 * log(1+f) = f - s*(f - R) (if f is not too large)\r
60 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)\r
61 *\r
62 * 3. Finally, log(x) = k*ln2 + log(1+f).\r
63 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))\r
64 * Here ln2 is split into two floating point number:\r
65 * ln2_hi + ln2_lo,\r
66 * where n*ln2_hi is always exact for |n| < 2000.\r
67 *\r
68 * Special cases:\r
69 * log(x) is NaN with signal if x < 0 (including -INF) ;\r
70 * log(+INF) is +INF; log(0) is -INF with signal;\r
71 * log(NaN) is that NaN with no signal.\r
72 *\r
73 * Accuracy:\r
74 * according to an error analysis, the error is always less than\r
75 * 1 ulp (unit in the last place).\r
76 *\r
77 * Constants:\r
78 * The hexadecimal values are the intended ones for the following\r
79 * constants. The decimal values may be used, provided that the\r
80 * compiler will convert from decimal to binary accurately enough\r
81 * to produce the hexadecimal values shown.\r
82 */\r
83\r
84#include "math.h"\r
85#include "math_private.h"\r
86#include <errno.h>\r
87\r
88static const double\r
89ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */\r
90ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */\r
91two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */\r
92Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */\r
93Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */\r
94Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */\r
95Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */\r
96Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */\r
97Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */\r
98Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */\r
99\r
100static const double zero = 0.0;\r
101\r
102double\r
103__ieee754_log(double x)\r
104{\r
105 double hfsq,f,s,z,R,w,t1,t2,dk;\r
106 int32_t k,hx,i,j;\r
107 u_int32_t lx;\r
108\r
109 EXTRACT_WORDS(hx,lx,x);\r
110\r
111 k=0;\r
112 if (hx < 0x00100000) { /* x < 2**-1022 */\r
113 if (((hx&0x7fffffff)|lx)==0)\r
114 return -two54/zero; /* log(+-0)=-inf */\r
115 if (hx<0) {\r
116 errno = EDOM;\r
117 return (x-x)/zero; /* log(-#) = NaN */\r
118 }\r
119 k -= 54; x *= two54; /* subnormal number, scale up x */\r
120 GET_HIGH_WORD(hx,x);\r
121 }\r
122 if (hx >= 0x7ff00000) return x+x;\r
123 k += (hx>>20)-1023;\r
124 hx &= 0x000fffff;\r
125 i = (hx+0x95f64)&0x100000;\r
126 SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */\r
127 k += (i>>20);\r
128 f = x-1.0;\r
129 if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */\r
130 if(f==zero) { if(k==0) return zero; else {dk=(double)k;\r
131 return dk*ln2_hi+dk*ln2_lo;}\r
132 }\r
133 R = f*f*(0.5-0.33333333333333333*f);\r
134 if(k==0) return f-R; else {dk=(double)k;\r
135 return dk*ln2_hi-((R-dk*ln2_lo)-f);}\r
136 }\r
137 s = f/(2.0+f);\r
138 dk = (double)k;\r
139 z = s*s;\r
140 i = hx-0x6147a;\r
141 w = z*z;\r
142 j = 0x6b851-hx;\r
143 t1= w*(Lg2+w*(Lg4+w*Lg6));\r
144 t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));\r
145 i |= j;\r
146 R = t2+t1;\r
147 if(i>0) {\r
148 hfsq=0.5*f*f;\r
149 if(k==0) return f-(hfsq-s*(hfsq+R)); else\r
150 return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);\r
151 } else {\r
152 if(k==0) return f-s*(f-R); else\r
153 return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);\r
154 }\r
155}\r