]>
Commit | Line | Data |
---|---|---|
2aa62f2b | 1 | /** @file\r |
2 | Compute the logrithm of x.\r | |
3 | \r | |
4 | Copyright (c) 2010 - 2011, Intel Corporation. All rights reserved.<BR>\r | |
5 | This program and the accompanying materials are licensed and made available under\r | |
6 | the terms and conditions of the BSD License that accompanies this distribution.\r | |
7 | The full text of the license may be found at\r | |
8 | http://opensource.org/licenses/bsd-license.\r | |
9 | \r | |
10 | THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r | |
11 | WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r | |
12 | \r | |
13 | * ====================================================\r | |
14 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.\r | |
15 | *\r | |
16 | * Developed at SunPro, a Sun Microsystems, Inc. business.\r | |
17 | * Permission to use, copy, modify, and distribute this\r | |
18 | * software is freely granted, provided that this notice\r | |
19 | * is preserved.\r | |
20 | * ====================================================\r | |
21 | \r | |
22 | e_log.c 5.1 93/09/24\r | |
23 | NetBSD: e_log.c,v 1.12 2002/05/26 22:01:51 wiz Exp\r | |
24 | **/\r | |
25 | #include <LibConfig.h>\r | |
26 | #include <sys/EfiCdefs.h>\r | |
27 | \r | |
28 | #if defined(_MSC_VER) /* Handle Microsoft VC++ compiler specifics. */\r | |
29 | // potential divide by 0 -- near line 118, (x-x)/zero is on purpose\r | |
30 | #pragma warning ( disable : 4723 )\r | |
31 | #endif\r | |
32 | \r | |
33 | /* __ieee754_log(x)\r | |
34 | * Return the logrithm of x\r | |
35 | *\r | |
36 | * Method :\r | |
37 | * 1. Argument Reduction: find k and f such that\r | |
38 | * x = 2^k * (1+f),\r | |
39 | * where sqrt(2)/2 < 1+f < sqrt(2) .\r | |
40 | *\r | |
41 | * 2. Approximation of log(1+f).\r | |
42 | * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)\r | |
43 | * = 2s + 2/3 s**3 + 2/5 s**5 + .....,\r | |
44 | * = 2s + s*R\r | |
45 | * We use a special Reme algorithm on [0,0.1716] to generate\r | |
46 | * a polynomial of degree 14 to approximate R The maximum error\r | |
47 | * of this polynomial approximation is bounded by 2**-58.45. In\r | |
48 | * other words,\r | |
49 | * 2 4 6 8 10 12 14\r | |
50 | * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s\r | |
51 | * (the values of Lg1 to Lg7 are listed in the program)\r | |
52 | * and\r | |
53 | * | 2 14 | -58.45\r | |
54 | * | Lg1*s +...+Lg7*s - R(z) | <= 2\r | |
55 | * | |\r | |
56 | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.\r | |
57 | * In order to guarantee error in log below 1ulp, we compute log\r | |
58 | * by\r | |
59 | * log(1+f) = f - s*(f - R) (if f is not too large)\r | |
60 | * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)\r | |
61 | *\r | |
62 | * 3. Finally, log(x) = k*ln2 + log(1+f).\r | |
63 | * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))\r | |
64 | * Here ln2 is split into two floating point number:\r | |
65 | * ln2_hi + ln2_lo,\r | |
66 | * where n*ln2_hi is always exact for |n| < 2000.\r | |
67 | *\r | |
68 | * Special cases:\r | |
69 | * log(x) is NaN with signal if x < 0 (including -INF) ;\r | |
70 | * log(+INF) is +INF; log(0) is -INF with signal;\r | |
71 | * log(NaN) is that NaN with no signal.\r | |
72 | *\r | |
73 | * Accuracy:\r | |
74 | * according to an error analysis, the error is always less than\r | |
75 | * 1 ulp (unit in the last place).\r | |
76 | *\r | |
77 | * Constants:\r | |
78 | * The hexadecimal values are the intended ones for the following\r | |
79 | * constants. The decimal values may be used, provided that the\r | |
80 | * compiler will convert from decimal to binary accurately enough\r | |
81 | * to produce the hexadecimal values shown.\r | |
82 | */\r | |
83 | \r | |
84 | #include "math.h"\r | |
85 | #include "math_private.h"\r | |
86 | #include <errno.h>\r | |
87 | \r | |
88 | static const double\r | |
89 | ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */\r | |
90 | ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */\r | |
91 | two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */\r | |
92 | Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */\r | |
93 | Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */\r | |
94 | Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */\r | |
95 | Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */\r | |
96 | Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */\r | |
97 | Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */\r | |
98 | Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */\r | |
99 | \r | |
100 | static const double zero = 0.0;\r | |
101 | \r | |
102 | double\r | |
103 | __ieee754_log(double x)\r | |
104 | {\r | |
105 | double hfsq,f,s,z,R,w,t1,t2,dk;\r | |
106 | int32_t k,hx,i,j;\r | |
107 | u_int32_t lx;\r | |
108 | \r | |
109 | EXTRACT_WORDS(hx,lx,x);\r | |
110 | \r | |
111 | k=0;\r | |
112 | if (hx < 0x00100000) { /* x < 2**-1022 */\r | |
113 | if (((hx&0x7fffffff)|lx)==0)\r | |
114 | return -two54/zero; /* log(+-0)=-inf */\r | |
115 | if (hx<0) {\r | |
116 | errno = EDOM;\r | |
117 | return (x-x)/zero; /* log(-#) = NaN */\r | |
118 | }\r | |
119 | k -= 54; x *= two54; /* subnormal number, scale up x */\r | |
120 | GET_HIGH_WORD(hx,x);\r | |
121 | }\r | |
122 | if (hx >= 0x7ff00000) return x+x;\r | |
123 | k += (hx>>20)-1023;\r | |
124 | hx &= 0x000fffff;\r | |
125 | i = (hx+0x95f64)&0x100000;\r | |
126 | SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */\r | |
127 | k += (i>>20);\r | |
128 | f = x-1.0;\r | |
129 | if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */\r | |
130 | if(f==zero) { if(k==0) return zero; else {dk=(double)k;\r | |
131 | return dk*ln2_hi+dk*ln2_lo;}\r | |
132 | }\r | |
133 | R = f*f*(0.5-0.33333333333333333*f);\r | |
134 | if(k==0) return f-R; else {dk=(double)k;\r | |
135 | return dk*ln2_hi-((R-dk*ln2_lo)-f);}\r | |
136 | }\r | |
137 | s = f/(2.0+f);\r | |
138 | dk = (double)k;\r | |
139 | z = s*s;\r | |
140 | i = hx-0x6147a;\r | |
141 | w = z*z;\r | |
142 | j = 0x6b851-hx;\r | |
143 | t1= w*(Lg2+w*(Lg4+w*Lg6));\r | |
144 | t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));\r | |
145 | i |= j;\r | |
146 | R = t2+t1;\r | |
147 | if(i>0) {\r | |
148 | hfsq=0.5*f*f;\r | |
149 | if(k==0) return f-(hfsq-s*(hfsq+R)); else\r | |
150 | return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);\r | |
151 | } else {\r | |
152 | if(k==0) return f-s*(f-R); else\r | |
153 | return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);\r | |
154 | }\r | |
155 | }\r |