]> git.proxmox.com Git - mirror_edk2.git/blame - StdLib/LibC/Math/e_pow.c
ArmPkg: ArmLib: purge incorrect ArmDrainWriteBuffer () alias
[mirror_edk2.git] / StdLib / LibC / Math / e_pow.c
CommitLineData
2aa62f2b 1/** @file\r
2 Compute the base 10 logrithm of x.\r
3\r
4 Copyright (c) 2010 - 2011, Intel Corporation. All rights reserved.<BR>\r
5 This program and the accompanying materials are licensed and made available under\r
6 the terms and conditions of the BSD License that accompanies this distribution.\r
7 The full text of the license may be found at\r
8 http://opensource.org/licenses/bsd-license.\r
9\r
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
13 * ====================================================\r
14 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.\r
15 *\r
16 * Developed at SunPro, a Sun Microsystems, Inc. business.\r
17 * Permission to use, copy, modify, and distribute this\r
18 * software is freely granted, provided that this notice\r
19 * is preserved.\r
20 * ====================================================\r
21\r
22 e_pow.c 5.1 93/09/24\r
23 NetBSD: e_pow.c,v 1.13 2004/06/30 18:43:15 drochner Exp\r
24**/\r
25#include <LibConfig.h>\r
26#include <sys/EfiCdefs.h>\r
27\r
28#if defined(_MSC_VER) /* Handle Microsoft VC++ compiler specifics. */\r
29 // C4723: potential divide by zero.\r
30 #pragma warning ( disable : 4723 )\r
31 // C4756: overflow in constant arithmetic\r
32 #pragma warning ( disable : 4756 )\r
33#endif\r
34\r
35/* __ieee754_pow(x,y) return x**y\r
36 *\r
37 * n\r
38 * Method: Let x = 2 * (1+f)\r
39 * 1. Compute and return log2(x) in two pieces:\r
40 * log2(x) = w1 + w2,\r
41 * where w1 has 53-24 = 29 bit trailing zeros.\r
42 * 2. Perform y*log2(x) = n+y' by simulating multi-precision\r
43 * arithmetic, where |y'|<=0.5.\r
44 * 3. Return x**y = 2**n*exp(y'*log2)\r
45 *\r
46 * Special cases:\r
47 * 1. (anything) ** 0 is 1\r
48 * 2. (anything) ** 1 is itself\r
49 * 3. (anything) ** NAN is NAN\r
50 * 4. NAN ** (anything except 0) is NAN\r
51 * 5. +-(|x| > 1) ** +INF is +INF\r
52 * 6. +-(|x| > 1) ** -INF is +0\r
53 * 7. +-(|x| < 1) ** +INF is +0\r
54 * 8. +-(|x| < 1) ** -INF is +INF\r
55 * 9. +-1 ** +-INF is NAN\r
56 * 10. +0 ** (+anything except 0, NAN) is +0\r
57 * 11. -0 ** (+anything except 0, NAN, odd integer) is +0\r
58 * 12. +0 ** (-anything except 0, NAN) is +INF\r
59 * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF\r
60 * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )\r
61 * 15. +INF ** (+anything except 0,NAN) is +INF\r
62 * 16. +INF ** (-anything except 0,NAN) is +0\r
63 * 17. -INF ** (anything) = -0 ** (-anything)\r
64 * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)\r
65 * 19. (-anything except 0 and inf) ** (non-integer) is NAN\r
66 *\r
67 * Accuracy:\r
68 * pow(x,y) returns x**y nearly rounded. In particular\r
69 * pow(integer,integer)\r
70 * always returns the correct integer provided it is\r
71 * representable.\r
72 *\r
73 * Constants :\r
74 * The hexadecimal values are the intended ones for the following\r
75 * constants. The decimal values may be used, provided that the\r
76 * compiler will convert from decimal to binary accurately enough\r
77 * to produce the hexadecimal values shown.\r
78 */\r
79\r
80#include "math.h"\r
81#include "math_private.h"\r
82#include <errno.h>\r
83\r
84static const double\r
85bp[] = {1.0, 1.5,},\r
86dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */\r
87dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */\r
88zero = 0.0,\r
89one = 1.0,\r
90two = 2.0,\r
91two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */\r
92huge = 1.0e300,\r
93tiny = 1.0e-300,\r
94 /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */\r
95L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */\r
96L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */\r
97L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */\r
98L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */\r
99L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */\r
100L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */\r
101P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */\r
102P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */\r
103P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */\r
104P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */\r
105P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */\r
106lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */\r
107lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */\r
108lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */\r
109ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */\r
110cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */\r
111cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */\r
112cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/\r
113ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */\r
114ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/\r
115ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/\r
116\r
117double\r
118__ieee754_pow(double x, double y)\r
119{\r
120 double z,ax,z_h,z_l,p_h,p_l;\r
121 double y1,t1,t2,r,s,t,u,v,w;\r
122 int32_t i,j,k,yisint,n;\r
123 int32_t hx,hy,ix,iy;\r
124 u_int32_t lx,ly;\r
125\r
126 EXTRACT_WORDS(hx,lx,x);\r
127 EXTRACT_WORDS(hy,ly,y);\r
128 ix = hx&0x7fffffff; iy = hy&0x7fffffff;\r
129\r
130 /* y==zero: x**0 = 1 */\r
131 if((iy|ly)==0) return one;\r
132\r
133 /* +-NaN return x+y */\r
134 if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||\r
135 iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))\r
136 return x+y;\r
137\r
138 /* determine if y is an odd int when x < 0\r
139 * yisint = 0 ... y is not an integer\r
140 * yisint = 1 ... y is an odd int\r
141 * yisint = 2 ... y is an even int\r
142 */\r
143 yisint = 0;\r
144 if(hx<0) {\r
145 if(iy>=0x43400000) yisint = 2; /* even integer y */\r
146 else if(iy>=0x3ff00000) {\r
147 k = (iy>>20)-0x3ff; /* exponent */\r
148 if(k>20) {\r
149 j = ly>>(52-k);\r
150 if((u_int32_t)(j<<(52-k))==ly) yisint = 2-(j&1);\r
151 } else if(ly==0) {\r
152 j = iy>>(20-k);\r
153 if((j<<(20-k))==iy) yisint = 2-(j&1);\r
154 }\r
155 }\r
156 }\r
157\r
158 /* special value of y */\r
159 if(ly==0) {\r
160 if (iy==0x7ff00000) { /* y is +-inf */\r
161 if(((ix-0x3ff00000)|lx)==0)\r
162 return y - y; /* inf**+-1 is NaN */\r
163 else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */\r
164 return (hy>=0)? y: zero;\r
165 else /* (|x|<1)**-,+inf = inf,0 */\r
166 return (hy<0)?-y: zero;\r
167 }\r
168 if(iy==0x3ff00000) { /* y is +-1 */\r
169 if(hy<0) return one/x; else return x;\r
170 }\r
171 if(hy==0x40000000) return x*x; /* y is 2 */\r
172 if(hy==0x3fe00000) { /* y is 0.5 */\r
173 if(hx>=0) /* x >= +0 */\r
174 return __ieee754_sqrt(x);\r
175 }\r
176 }\r
177\r
178 ax = fabs(x);\r
179 /* special value of x */\r
180 if(lx==0) {\r
181 if(ix==0x7ff00000||ix==0||ix==0x3ff00000){\r
182 z = ax; /*x is +-0,+-inf,+-1*/\r
183 if(hy<0) z = one/z; /* z = (1/|x|) */\r
184 if(hx<0) {\r
185 if(((ix-0x3ff00000)|yisint)==0) {\r
186 z = (z-z)/(z-z); /* (-1)**non-int is NaN */\r
187 } else if(yisint==1)\r
188 z = -z; /* (x<0)**odd = -(|x|**odd) */\r
189 }\r
190 return z;\r
191 }\r
192 }\r
193\r
194 n = (hx>>31)+1;\r
195\r
196 /* (x<0)**(non-int) is NaN */\r
197 if((n|yisint)==0) {\r
198 errno = EDOM;\r
199 return (x-x)/(x-x);\r
200 }\r
201\r
202 s = one; /* s (sign of result -ve**odd) = -1 else = 1 */\r
203 if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */\r
204\r
205 /* |y| is huge */\r
206 if(iy>0x41e00000) { /* if |y| > 2**31 */\r
207 if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */\r
208 if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;\r
209 if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;\r
210 }\r
211 /* over/underflow if x is not close to one */\r
212 if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;\r
213 if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;\r
214 /* now |1-x| is tiny <= 2**-20, suffice to compute\r
215 log(x) by x-x^2/2+x^3/3-x^4/4 */\r
216 t = ax-one; /* t has 20 trailing zeros */\r
217 w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));\r
218 u = ivln2_h*t; /* ivln2_h has 21 sig. bits */\r
219 v = t*ivln2_l-w*ivln2;\r
220 t1 = u+v;\r
221 SET_LOW_WORD(t1,0);\r
222 t2 = v-(t1-u);\r
223 } else {\r
224 double ss,s2,s_h,s_l,t_h,t_l;\r
225 n = 0;\r
226 /* take care subnormal number */\r
227 if(ix<0x00100000)\r
228 {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }\r
229 n += ((ix)>>20)-0x3ff;\r
230 j = ix&0x000fffff;\r
231 /* determine interval */\r
232 ix = j|0x3ff00000; /* normalize ix */\r
233 if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */\r
234 else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */\r
235 else {k=0;n+=1;ix -= 0x00100000;}\r
236 SET_HIGH_WORD(ax,ix);\r
237\r
238 /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */\r
239 u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */\r
240 v = one/(ax+bp[k]);\r
241 ss = u*v;\r
242 s_h = ss;\r
243 SET_LOW_WORD(s_h,0);\r
244 /* t_h=ax+bp[k] High */\r
245 t_h = zero;\r
246 SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));\r
247 t_l = ax - (t_h-bp[k]);\r
248 s_l = v*((u-s_h*t_h)-s_h*t_l);\r
249 /* compute log(ax) */\r
250 s2 = ss*ss;\r
251 r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));\r
252 r += s_l*(s_h+ss);\r
253 s2 = s_h*s_h;\r
254 t_h = 3.0+s2+r;\r
255 SET_LOW_WORD(t_h,0);\r
256 t_l = r-((t_h-3.0)-s2);\r
257 /* u+v = ss*(1+...) */\r
258 u = s_h*t_h;\r
259 v = s_l*t_h+t_l*ss;\r
260 /* 2/(3log2)*(ss+...) */\r
261 p_h = u+v;\r
262 SET_LOW_WORD(p_h,0);\r
263 p_l = v-(p_h-u);\r
264 z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */\r
265 z_l = cp_l*p_h+p_l*cp+dp_l[k];\r
266 /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */\r
267 t = (double)n;\r
268 t1 = (((z_h+z_l)+dp_h[k])+t);\r
269 SET_LOW_WORD(t1,0);\r
270 t2 = z_l-(((t1-t)-dp_h[k])-z_h);\r
271 }\r
272\r
273 /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */\r
274 y1 = y;\r
275 SET_LOW_WORD(y1,0);\r
276 p_l = (y-y1)*t1+y*t2;\r
277 p_h = y1*t1;\r
278 z = p_l+p_h;\r
279 EXTRACT_WORDS(j,i,z);\r
280 if (j>=0x40900000) { /* z >= 1024 */\r
281 if(((j-0x40900000)|i)!=0) /* if z > 1024 */\r
282 return s*huge*huge; /* overflow */\r
283 else {\r
284 if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */\r
285 }\r
286 } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */\r
287 if(((j-0xc090cc00)|i)!=0) /* z < -1075 */\r
288 return s*tiny*tiny; /* underflow */\r
289 else {\r
290 if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */\r
291 }\r
292 }\r
293 /*\r
294 * compute 2**(p_h+p_l)\r
295 */\r
296 i = j&0x7fffffff;\r
297 k = (i>>20)-0x3ff;\r
298 n = 0;\r
299 if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */\r
300 n = j+(0x00100000>>(k+1));\r
301 k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */\r
302 t = zero;\r
303 SET_HIGH_WORD(t,n&~(0x000fffff>>k));\r
304 n = ((n&0x000fffff)|0x00100000)>>(20-k);\r
305 if(j<0) n = -n;\r
306 p_h -= t;\r
307 }\r
308 t = p_l+p_h;\r
309 SET_LOW_WORD(t,0);\r
310 u = t*lg2_h;\r
311 v = (p_l-(t-p_h))*lg2+t*lg2_l;\r
312 z = u+v;\r
313 w = v-(z-u);\r
314 t = z*z;\r
315 t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));\r
316 r = (z*t1)/(t1-two)-(w+z*w);\r
317 z = one-(r-z);\r
318 GET_HIGH_WORD(j,z);\r
319 j += (n<<20);\r
320 if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */\r
321 else SET_HIGH_WORD(z,j);\r
322 return s*z;\r
323}\r