]> git.proxmox.com Git - mirror_edk2.git/blame - StdLib/LibC/Math/e_sqrt.c
ArmPkg: ArmLib: purge incorrect ArmDrainWriteBuffer () alias
[mirror_edk2.git] / StdLib / LibC / Math / e_sqrt.c
CommitLineData
2aa62f2b 1/** @file\r
2 Compute the logrithm of x.\r
3\r
4 Copyright (c) 2010 - 2011, Intel Corporation. All rights reserved.<BR>\r
5 This program and the accompanying materials are licensed and made available under\r
6 the terms and conditions of the BSD License that accompanies this distribution.\r
7 The full text of the license may be found at\r
8 http://opensource.org/licenses/bsd-license.\r
9\r
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
13 * ====================================================\r
14 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.\r
15 *\r
16 * Developed at SunPro, a Sun Microsystems, Inc. business.\r
17 * Permission to use, copy, modify, and distribute this\r
18 * software is freely granted, provided that this notice\r
19 * is preserved.\r
20 * ====================================================\r
21\r
22 e_sqrt.c 5.1 93/09/24\r
23 NetBSD: e_sqrt.c,v 1.12 2002/05/26 22:01:52 wiz Exp\r
24**/\r
25#include <LibConfig.h>\r
26#include <sys/EfiCdefs.h>\r
27\r
28#include <errno.h>\r
29#include "math.h"\r
30#include "math_private.h"\r
31\r
32#if defined(_MSC_VER) /* Handle Microsoft VC++ compiler specifics. */\r
33// potential divide by 0 -- near line 129, (x-x)/(x-x) is on purpose\r
34#pragma warning ( disable : 4723 )\r
35#endif\r
36\r
37/* __ieee754_sqrt(x)\r
38 * Return correctly rounded sqrt.\r
39 * ------------------------------------------\r
40 * | Use the hardware sqrt if you have one |\r
41 * ------------------------------------------\r
42 * Method:\r
43 * Bit by bit method using integer arithmetic. (Slow, but portable)\r
44 * 1. Normalization\r
45 * Scale x to y in [1,4) with even powers of 2:\r
46 * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then\r
47 * sqrt(x) = 2^k * sqrt(y)\r
48 * 2. Bit by bit computation\r
49 * Let q = sqrt(y) truncated to i bit after binary point (q = 1),\r
50 * i 0\r
51 * i+1 2\r
52 * s = 2*q , and y = 2 * ( y - q ). (1)\r
53 * i i i i\r
54 *\r
55 * To compute q from q , one checks whether\r
56 * i+1 i\r
57 *\r
58 * -(i+1) 2\r
59 * (q + 2 ) <= y. (2)\r
60 * i\r
61 * -(i+1)\r
62 * If (2) is false, then q = q ; otherwise q = q + 2 .\r
63 * i+1 i i+1 i\r
64 *\r
65 * With some algebric manipulation, it is not difficult to see\r
66 * that (2) is equivalent to\r
67 * -(i+1)\r
68 * s + 2 <= y (3)\r
69 * i i\r
70 *\r
71 * The advantage of (3) is that s and y can be computed by\r
72 * i i\r
73 * the following recurrence formula:\r
74 * if (3) is false\r
75 *\r
76 * s = s , y = y ; (4)\r
77 * i+1 i i+1 i\r
78 *\r
79 * otherwise,\r
80 * -i -(i+1)\r
81 * s = s + 2 , y = y - s - 2 (5)\r
82 * i+1 i i+1 i i\r
83 *\r
84 * One may easily use induction to prove (4) and (5).\r
85 * Note. Since the left hand side of (3) contain only i+2 bits,\r
86 * it does not necessary to do a full (53-bit) comparison\r
87 * in (3).\r
88 * 3. Final rounding\r
89 * After generating the 53 bits result, we compute one more bit.\r
90 * Together with the remainder, we can decide whether the\r
91 * result is exact, bigger than 1/2ulp, or less than 1/2ulp\r
92 * (it will never equal to 1/2ulp).\r
93 * The rounding mode can be detected by checking whether\r
94 * huge + tiny is equal to huge, and whether huge - tiny is\r
95 * equal to huge for some floating point number "huge" and "tiny".\r
96 *\r
97 * Special cases:\r
98 * sqrt(+-0) = +-0 ... exact\r
99 * sqrt(inf) = inf\r
100 * sqrt(-ve) = NaN ... with invalid signal\r
101 * sqrt(NaN) = NaN ... with invalid signal for signaling NaN\r
102 *\r
103 * Other methods : see the appended file at the end of the program below.\r
104 *---------------\r
105 */\r
106\r
107static const double one = 1.0, tiny=1.0e-300;\r
108\r
109double\r
110__ieee754_sqrt(double x)\r
111{\r
112 double z;\r
113 int32_t sign = (int)0x80000000;\r
114 int32_t ix0,s0,q,m,t,i;\r
115 u_int32_t r,t1,s1,ix1,q1;\r
116\r
117 EXTRACT_WORDS(ix0,ix1,x);\r
118\r
119 /* take care of Inf and NaN */\r
120 if((ix0&0x7ff00000)==0x7ff00000) {\r
121 return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf\r
122 sqrt(-inf)=sNaN */\r
123 }\r
124 /* take care of zero */\r
125 if(ix0<=0) {\r
126 if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */\r
127 else if(ix0<0) {\r
128 errno = EDOM;\r
129 return (x-x)/(x-x); /* sqrt(-ve) = sNaN */\r
130 }\r
131 }\r
132 /* normalize x */\r
133 m = (ix0>>20);\r
134 if(m==0) { /* subnormal x */\r
135 while(ix0==0) {\r
136 m -= 21;\r
137 ix0 |= (ix1>>11); ix1 <<= 21;\r
138 }\r
139 for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;\r
140 m -= i-1;\r
141 ix0 |= (ix1>>(32-i));\r
142 ix1 <<= i;\r
143 }\r
144 m -= 1023; /* unbias exponent */\r
145 ix0 = (ix0&0x000fffff)|0x00100000;\r
146 if(m&1){ /* odd m, double x to make it even */\r
147 ix0 += ix0 + ((ix1&sign)>>31);\r
148 ix1 += ix1;\r
149 }\r
150 m >>= 1; /* m = [m/2] */\r
151\r
152 /* generate sqrt(x) bit by bit */\r
153 ix0 += ix0 + ((ix1&sign)>>31);\r
154 ix1 += ix1;\r
155 q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */\r
156 r = 0x00200000; /* r = moving bit from right to left */\r
157\r
158 while(r!=0) {\r
159 t = s0+r;\r
160 if(t<=ix0) {\r
161 s0 = t+r;\r
162 ix0 -= t;\r
163 q += r;\r
164 }\r
165 ix0 += ix0 + ((ix1&sign)>>31);\r
166 ix1 += ix1;\r
167 r>>=1;\r
168 }\r
169\r
170 r = sign;\r
171 while(r!=0) {\r
172 t1 = s1+r;\r
173 t = s0;\r
174 if((t<ix0)||((t==ix0)&&(t1<=ix1))) {\r
175 s1 = t1+r;\r
176 if(((t1&sign)==(u_int32_t)sign)&&(s1&sign)==0) s0 += 1;\r
177 ix0 -= t;\r
178 if (ix1 < t1) ix0 -= 1;\r
179 ix1 -= t1;\r
180 q1 += r;\r
181 }\r
182 ix0 += ix0 + ((ix1&sign)>>31);\r
183 ix1 += ix1;\r
184 r>>=1;\r
185 }\r
186\r
187 /* use floating add to find out rounding direction */\r
188 if((ix0|ix1)!=0) {\r
189 z = one-tiny; /* trigger inexact flag */\r
190 if (z>=one) {\r
191 z = one+tiny;\r
192 if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}\r
193 else if (z>one) {\r
194 if (q1==(u_int32_t)0xfffffffe) q+=1;\r
195 q1+=2;\r
196 } else\r
197 q1 += (q1&1);\r
198 }\r
199 }\r
200 ix0 = (q>>1)+0x3fe00000;\r
201 ix1 = q1>>1;\r
202 if ((q&1)==1) ix1 |= sign;\r
203 ix0 += (m <<20);\r
204 INSERT_WORDS(z,ix0,ix1);\r
205 return z;\r
206}\r
207\r
208/*\r
209Other methods (use floating-point arithmetic)\r
210-------------\r
211(This is a copy of a drafted paper by Prof W. Kahan\r
212and K.C. Ng, written in May, 1986)\r
213\r
214 Two algorithms are given here to implement sqrt(x)\r
215 (IEEE double precision arithmetic) in software.\r
216 Both supply sqrt(x) correctly rounded. The first algorithm (in\r
217 Section A) uses newton iterations and involves four divisions.\r
218 The second one uses reciproot iterations to avoid division, but\r
219 requires more multiplications. Both algorithms need the ability\r
220 to chop results of arithmetic operations instead of round them,\r
221 and the INEXACT flag to indicate when an arithmetic operation\r
222 is executed exactly with no roundoff error, all part of the\r
223 standard (IEEE 754-1985). The ability to perform shift, add,\r
224 subtract and logical AND operations upon 32-bit words is needed\r
225 too, though not part of the standard.\r
226\r
227A. sqrt(x) by Newton Iteration\r
228\r
229 (1) Initial approximation\r
230\r
231 Let x0 and x1 be the leading and the trailing 32-bit words of\r
232 a floating point number x (in IEEE double format) respectively\r
233\r
234 1 11 52 ...widths\r
235 ------------------------------------------------------\r
236 x: |s| e | f |\r
237 ------------------------------------------------------\r
238 msb lsb msb lsb ...order\r
239\r
240\r
241 ------------------------ ------------------------\r
242 x0: |s| e | f1 | x1: | f2 |\r
243 ------------------------ ------------------------\r
244\r
245 By performing shifts and subtracts on x0 and x1 (both regarded\r
246 as integers), we obtain an 8-bit approximation of sqrt(x) as\r
247 follows.\r
248\r
249 k := (x0>>1) + 0x1ff80000;\r
250 y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits\r
251 Here k is a 32-bit integer and T1[] is an integer array containing\r
252 correction terms. Now magically the floating value of y (y's\r
253 leading 32-bit word is y0, the value of its trailing word is 0)\r
254 approximates sqrt(x) to almost 8-bit.\r
255\r
256 Value of T1:\r
257 static int T1[32]= {\r
258 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,\r
259 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,\r
260 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,\r
261 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};\r
262\r
263 (2) Iterative refinement\r
264\r
265 Apply Heron's rule three times to y, we have y approximates\r
266 sqrt(x) to within 1 ulp (Unit in the Last Place):\r
267\r
268 y := (y+x/y)/2 ... almost 17 sig. bits\r
269 y := (y+x/y)/2 ... almost 35 sig. bits\r
270 y := y-(y-x/y)/2 ... within 1 ulp\r
271\r
272\r
273 Remark 1.\r
274 Another way to improve y to within 1 ulp is:\r
275\r
276 y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)\r
277 y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)\r
278\r
279 2\r
280 (x-y )*y\r
281 y := y + 2* ---------- ...within 1 ulp\r
282 2\r
283 3y + x\r
284\r
285\r
286 This formula has one division fewer than the one above; however,\r
287 it requires more multiplications and additions. Also x must be\r
288 scaled in advance to avoid spurious overflow in evaluating the\r
289 expression 3y*y+x. Hence it is not recommended uless division\r
290 is slow. If division is very slow, then one should use the\r
291 reciproot algorithm given in section B.\r
292\r
293 (3) Final adjustment\r
294\r
295 By twiddling y's last bit it is possible to force y to be\r
296 correctly rounded according to the prevailing rounding mode\r
297 as follows. Let r and i be copies of the rounding mode and\r
298 inexact flag before entering the square root program. Also we\r
299 use the expression y+-ulp for the next representable floating\r
300 numbers (up and down) of y. Note that y+-ulp = either fixed\r
301 point y+-1, or multiply y by nextafter(1,+-inf) in chopped\r
302 mode.\r
303\r
304 I := FALSE; ... reset INEXACT flag I\r
305 R := RZ; ... set rounding mode to round-toward-zero\r
306 z := x/y; ... chopped quotient, possibly inexact\r
307 If(not I) then { ... if the quotient is exact\r
308 if(z=y) {\r
309 I := i; ... restore inexact flag\r
310 R := r; ... restore rounded mode\r
311 return sqrt(x):=y.\r
312 } else {\r
313 z := z - ulp; ... special rounding\r
314 }\r
315 }\r
316 i := TRUE; ... sqrt(x) is inexact\r
317 If (r=RN) then z=z+ulp ... rounded-to-nearest\r
318 If (r=RP) then { ... round-toward-+inf\r
319 y = y+ulp; z=z+ulp;\r
320 }\r
321 y := y+z; ... chopped sum\r
322 y0:=y0-0x00100000; ... y := y/2 is correctly rounded.\r
323 I := i; ... restore inexact flag\r
324 R := r; ... restore rounded mode\r
325 return sqrt(x):=y.\r
326\r
327 (4) Special cases\r
328\r
329 Square root of +inf, +-0, or NaN is itself;\r
330 Square root of a negative number is NaN with invalid signal.\r
331\r
332\r
333B. sqrt(x) by Reciproot Iteration\r
334\r
335 (1) Initial approximation\r
336\r
337 Let x0 and x1 be the leading and the trailing 32-bit words of\r
338 a floating point number x (in IEEE double format) respectively\r
339 (see section A). By performing shifs and subtracts on x0 and y0,\r
340 we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.\r
341\r
342 k := 0x5fe80000 - (x0>>1);\r
343 y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits\r
344\r
345 Here k is a 32-bit integer and T2[] is an integer array\r
346 containing correction terms. Now magically the floating\r
347 value of y (y's leading 32-bit word is y0, the value of\r
348 its trailing word y1 is set to zero) approximates 1/sqrt(x)\r
349 to almost 7.8-bit.\r
350\r
351 Value of T2:\r
352 static int T2[64]= {\r
353 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,\r
354 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,\r
355 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,\r
356 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,\r
357 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,\r
358 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,\r
359 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,\r
360 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};\r
361\r
362 (2) Iterative refinement\r
363\r
364 Apply Reciproot iteration three times to y and multiply the\r
365 result by x to get an approximation z that matches sqrt(x)\r
366 to about 1 ulp. To be exact, we will have\r
367 -1ulp < sqrt(x)-z<1.0625ulp.\r
368\r
369 ... set rounding mode to Round-to-nearest\r
370 y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)\r
371 y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)\r
372 ... special arrangement for better accuracy\r
373 z := x*y ... 29 bits to sqrt(x), with z*y<1\r
374 z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)\r
375\r
376 Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that\r
377 (a) the term z*y in the final iteration is always less than 1;\r
378 (b) the error in the final result is biased upward so that\r
379 -1 ulp < sqrt(x) - z < 1.0625 ulp\r
380 instead of |sqrt(x)-z|<1.03125ulp.\r
381\r
382 (3) Final adjustment\r
383\r
384 By twiddling y's last bit it is possible to force y to be\r
385 correctly rounded according to the prevailing rounding mode\r
386 as follows. Let r and i be copies of the rounding mode and\r
387 inexact flag before entering the square root program. Also we\r
388 use the expression y+-ulp for the next representable floating\r
389 numbers (up and down) of y. Note that y+-ulp = either fixed\r
390 point y+-1, or multiply y by nextafter(1,+-inf) in chopped\r
391 mode.\r
392\r
393 R := RZ; ... set rounding mode to round-toward-zero\r
394 switch(r) {\r
395 case RN: ... round-to-nearest\r
396 if(x<= z*(z-ulp)...chopped) z = z - ulp; else\r
397 if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;\r
398 break;\r
399 case RZ:case RM: ... round-to-zero or round-to--inf\r
400 R:=RP; ... reset rounding mod to round-to-+inf\r
401 if(x<z*z ... rounded up) z = z - ulp; else\r
402 if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;\r
403 break;\r
404 case RP: ... round-to-+inf\r
405 if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else\r
406 if(x>z*z ...chopped) z = z+ulp;\r
407 break;\r
408 }\r
409\r
410 Remark 3. The above comparisons can be done in fixed point. For\r
411 example, to compare x and w=z*z chopped, it suffices to compare\r
412 x1 and w1 (the trailing parts of x and w), regarding them as\r
413 two's complement integers.\r
414\r
415 ...Is z an exact square root?\r
416 To determine whether z is an exact square root of x, let z1 be the\r
417 trailing part of z, and also let x0 and x1 be the leading and\r
418 trailing parts of x.\r
419\r
420 If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0\r
421 I := 1; ... Raise Inexact flag: z is not exact\r
422 else {\r
423 j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2\r
424 k := z1 >> 26; ... get z's 25-th and 26-th\r
425 fraction bits\r
426 I := i or (k&j) or ((k&(j+j+1))!=(x1&3));\r
427 }\r
428 R:= r ... restore rounded mode\r
429 return sqrt(x):=z.\r
430\r
431 If multiplication is cheaper than the foregoing red tape, the\r
432 Inexact flag can be evaluated by\r
433\r
434 I := i;\r
435 I := (z*z!=x) or I.\r
436\r
437 Note that z*z can overwrite I; this value must be sensed if it is\r
438 True.\r
439\r
440 Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be\r
441 zero.\r
442\r
443 --------------------\r
444 z1: | f2 |\r
445 --------------------\r
446 bit 31 bit 0\r
447\r
448 Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd\r
449 or even of logb(x) have the following relations:\r
450\r
451 -------------------------------------------------\r
452 bit 27,26 of z1 bit 1,0 of x1 logb(x)\r
453 -------------------------------------------------\r
454 00 00 odd and even\r
455 01 01 even\r
456 10 10 odd\r
457 10 00 even\r
458 11 01 even\r
459 -------------------------------------------------\r
460\r
461 (4) Special cases (see (4) of Section A).\r
462\r
463 */\r
464\r