]>
Commit | Line | Data |
---|---|---|
2aa62f2b | 1 | /* @(#)k_tan.c 5.1 93/09/24 */\r |
2 | /*\r | |
3 | * ====================================================\r | |
4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.\r | |
5 | *\r | |
6 | * Developed at SunPro, a Sun Microsystems, Inc. business.\r | |
7 | * Permission to use, copy, modify, and distribute this\r | |
8 | * software is freely granted, provided that this notice\r | |
9 | * is preserved.\r | |
10 | * ====================================================\r | |
11 | */\r | |
12 | #include <LibConfig.h>\r | |
13 | #include <sys/EfiCdefs.h>\r | |
14 | #if defined(LIBM_SCCS) && !defined(lint)\r | |
15 | __RCSID("$NetBSD: k_tan.c,v 1.12 2004/07/22 18:24:09 drochner Exp $");\r | |
16 | #endif\r | |
17 | \r | |
18 | /* __kernel_tan( x, y, k )\r | |
19 | * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854\r | |
20 | * Input x is assumed to be bounded by ~pi/4 in magnitude.\r | |
21 | * Input y is the tail of x.\r | |
22 | * Input k indicates whether tan (if k=1) or\r | |
23 | * -1/tan (if k= -1) is returned.\r | |
24 | *\r | |
25 | * Algorithm\r | |
26 | * 1. Since tan(-x) = -tan(x), we need only to consider positive x.\r | |
27 | * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.\r | |
28 | * 3. tan(x) is approximated by a odd polynomial of degree 27 on\r | |
29 | * [0,0.67434]\r | |
30 | * 3 27\r | |
31 | * tan(x) ~ x + T1*x + ... + T13*x\r | |
32 | * where\r | |
33 | *\r | |
34 | * |tan(x) 2 4 26 | -59.2\r | |
35 | * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2\r | |
36 | * | x |\r | |
37 | *\r | |
38 | * Note: tan(x+y) = tan(x) + tan'(x)*y\r | |
39 | * ~ tan(x) + (1+x*x)*y\r | |
40 | * Therefore, for better accuracy in computing tan(x+y), let\r | |
41 | * 3 2 2 2 2\r | |
42 | * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))\r | |
43 | * then\r | |
44 | * 3 2\r | |
45 | * tan(x+y) = x + (T1*x + (x *(r+y)+y))\r | |
46 | *\r | |
47 | * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then\r | |
48 | * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))\r | |
49 | * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))\r | |
50 | */\r | |
51 | \r | |
52 | #include "math.h"\r | |
53 | #include "math_private.h"\r | |
54 | \r | |
55 | static const double xxx[] = {\r | |
56 | 3.33333333333334091986e-01, /* 3FD55555, 55555563 */\r | |
57 | 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */\r | |
58 | 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */\r | |
59 | 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */\r | |
60 | 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */\r | |
61 | 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */\r | |
62 | 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */\r | |
63 | 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */\r | |
64 | 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */\r | |
65 | 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */\r | |
66 | 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */\r | |
67 | -1.85586374855275456654e-05, /* BEF375CB, DB605373 */\r | |
68 | 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */\r | |
69 | /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */\r | |
70 | /* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */\r | |
71 | /* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */\r | |
72 | };\r | |
73 | #define one xxx[13]\r | |
74 | #define pio4 xxx[14]\r | |
75 | #define pio4lo xxx[15]\r | |
76 | #define T xxx\r | |
77 | \r | |
78 | double\r | |
79 | __kernel_tan(double x, double y, int iy)\r | |
80 | {\r | |
81 | double z, r, v, w, s;\r | |
82 | int32_t ix, hx;\r | |
83 | \r | |
84 | GET_HIGH_WORD(hx, x); /* high word of x */\r | |
85 | ix = hx & 0x7fffffff; /* high word of |x| */\r | |
86 | if (ix < 0x3e300000) { /* x < 2**-28 */\r | |
87 | if ((int) x == 0) { /* generate inexact */\r | |
88 | u_int32_t low;\r | |
89 | GET_LOW_WORD(low, x);\r | |
90 | if(((ix | low) | (iy + 1)) == 0)\r | |
91 | return one / fabs(x);\r | |
92 | else {\r | |
93 | if (iy == 1)\r | |
94 | return x;\r | |
95 | else { /* compute -1 / (x+y) carefully */\r | |
96 | double a, t;\r | |
97 | \r | |
98 | z = w = x + y;\r | |
99 | SET_LOW_WORD(z, 0);\r | |
100 | v = y - (z - x);\r | |
101 | t = a = -one / w;\r | |
102 | SET_LOW_WORD(t, 0);\r | |
103 | s = one + t * z;\r | |
104 | return t + a * (s + t * v);\r | |
105 | }\r | |
106 | }\r | |
107 | }\r | |
108 | }\r | |
109 | if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */\r | |
110 | if (hx < 0) {\r | |
111 | x = -x;\r | |
112 | y = -y;\r | |
113 | }\r | |
114 | z = pio4 - x;\r | |
115 | w = pio4lo - y;\r | |
116 | x = z + w;\r | |
117 | y = 0.0;\r | |
118 | }\r | |
119 | z = x * x;\r | |
120 | w = z * z;\r | |
121 | /*\r | |
122 | * Break x^5*(T[1]+x^2*T[2]+...) into\r | |
123 | * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +\r | |
124 | * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))\r | |
125 | */\r | |
126 | r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +\r | |
127 | w * T[11]))));\r | |
128 | v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +\r | |
129 | w * T[12])))));\r | |
130 | s = z * x;\r | |
131 | r = y + z * (s * (r + v) + y);\r | |
132 | r += T[0] * s;\r | |
133 | w = x + r;\r | |
134 | if (ix >= 0x3FE59428) {\r | |
135 | v = (double) iy;\r | |
136 | return (double) (1 - ((hx >> 30) & 2)) *\r | |
137 | (v - 2.0 * (x - (w * w / (w + v) - r)));\r | |
138 | }\r | |
139 | if (iy == 1)\r | |
140 | return w;\r | |
141 | else {\r | |
142 | /*\r | |
143 | * if allow error up to 2 ulp, simply return\r | |
144 | * -1.0 / (x+r) here\r | |
145 | */\r | |
146 | /* compute -1.0 / (x+r) accurately */\r | |
147 | double a, t;\r | |
148 | z = w;\r | |
149 | SET_LOW_WORD(z, 0);\r | |
150 | v = r - (z - x); /* z+v = r+x */\r | |
151 | t = a = -1.0 / w; /* a = -1.0/w */\r | |
152 | SET_LOW_WORD(t, 0);\r | |
153 | s = 1.0 + t * z;\r | |
154 | return t + a * (s + t * v);\r | |
155 | }\r | |
156 | }\r |