]> git.proxmox.com Git - mirror_edk2.git/blame - StdLib/LibC/Math/s_atan.c
ArmPkg: ArmLib: purge incorrect ArmDrainWriteBuffer () alias
[mirror_edk2.git] / StdLib / LibC / Math / s_atan.c
CommitLineData
2aa62f2b 1/* @(#)s_atan.c 5.1 93/09/24 */\r
2/*\r
3 * ====================================================\r
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.\r
5 *\r
6 * Developed at SunPro, a Sun Microsystems, Inc. business.\r
7 * Permission to use, copy, modify, and distribute this\r
8 * software is freely granted, provided that this notice\r
9 * is preserved.\r
10 * ====================================================\r
11 */\r
12#include <LibConfig.h>\r
13#include <sys/EfiCdefs.h>\r
14#if defined(LIBM_SCCS) && !defined(lint)\r
15__RCSID("$NetBSD: s_atan.c,v 1.11 2002/05/26 22:01:54 wiz Exp $");\r
16#endif\r
17\r
18/* atan(x)\r
19 * Method\r
20 * 1. Reduce x to positive by atan(x) = -atan(-x).\r
21 * 2. According to the integer k=4t+0.25 chopped, t=x, the argument\r
22 * is further reduced to one of the following intervals and the\r
23 * arctangent of t is evaluated by the corresponding formula:\r
24 *\r
25 * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)\r
26 * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )\r
27 * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )\r
28 * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )\r
29 * [39/16,INF] atan(x) = atan(INF) + atan( -1/t )\r
30 *\r
31 * Constants:\r
32 * The hexadecimal values are the intended ones for the following\r
33 * constants. The decimal values may be used, provided that the\r
34 * compiler will convert from decimal to binary accurately enough\r
35 * to produce the hexadecimal values shown.\r
36 */\r
37\r
38#include "math.h"\r
39#include "math_private.h"\r
40\r
41static const double atanhi[] = {\r
42 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */\r
43 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */\r
44 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */\r
45 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */\r
46};\r
47\r
48static const double atanlo[] = {\r
49 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */\r
50 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */\r
51 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */\r
52 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */\r
53};\r
54\r
55static const double aT[] = {\r
56 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */\r
57 -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */\r
58 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */\r
59 -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */\r
60 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */\r
61 -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */\r
62 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */\r
63 -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */\r
64 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */\r
65 -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */\r
66 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */\r
67};\r
68\r
69 static const double\r
70one = 1.0,\r
71huge = 1.0e300;\r
72\r
73double\r
74atan(double x)\r
75{\r
76 double w,s1,s2,z;\r
77 int32_t ix,hx,id;\r
78\r
79 GET_HIGH_WORD(hx,x);\r
80 ix = hx&0x7fffffff;\r
81 if(ix>=0x44100000) { /* if |x| >= 2^66 */\r
82 u_int32_t low;\r
83 GET_LOW_WORD(low,x);\r
84 if(ix>0x7ff00000||\r
85 (ix==0x7ff00000&&(low!=0)))\r
86 return x+x; /* NaN */\r
87 if(hx>0) return atanhi[3]+atanlo[3];\r
88 else return -atanhi[3]-atanlo[3];\r
89 } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */\r
90 if (ix < 0x3e200000) { /* |x| < 2^-29 */\r
91 if(huge+x>one) return x; /* raise inexact */\r
92 }\r
93 id = -1;\r
94 } else {\r
95 x = fabs(x);\r
96 if (ix < 0x3ff30000) { /* |x| < 1.1875 */\r
97 if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */\r
98 id = 0; x = (2.0*x-one)/(2.0+x);\r
99 } else { /* 11/16<=|x|< 19/16 */\r
100 id = 1; x = (x-one)/(x+one);\r
101 }\r
102 } else {\r
103 if (ix < 0x40038000) { /* |x| < 2.4375 */\r
104 id = 2; x = (x-1.5)/(one+1.5*x);\r
105 } else { /* 2.4375 <= |x| < 2^66 */\r
106 id = 3; x = -1.0/x;\r
107 }\r
108 }}\r
109 /* end of argument reduction */\r
110 z = x*x;\r
111 w = z*z;\r
112 /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */\r
113 s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));\r
114 s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));\r
115 if (id<0) return x - x*(s1+s2);\r
116 else {\r
117 z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);\r
118 return (hx<0)? -z:z;\r
119 }\r
120}\r