]> git.proxmox.com Git - qemu.git/blame - alpha-dis.c
fixed popf TF flag bug (should never hapen in user code except in test-i386!)
[qemu.git] / alpha-dis.c
CommitLineData
a993ba85
FB
1/* alpha-dis.c -- Disassemble Alpha AXP instructions
2 Copyright 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Richard Henderson <rth@tamu.edu>,
4 patterned after the PPC opcode handling written by Ian Lance Taylor.
5
6This file is part of GDB, GAS, and the GNU binutils.
7
8GDB, GAS, and the GNU binutils are free software; you can redistribute
9them and/or modify them under the terms of the GNU General Public
10License as published by the Free Software Foundation; either version
112, or (at your option) any later version.
12
13GDB, GAS, and the GNU binutils are distributed in the hope that they
14will be useful, but WITHOUT ANY WARRANTY; without even the implied
15warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
16the GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with this file; see the file COPYING. If not, write to the Free
20Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2102111-1307, USA. */
22
23#include <stdio.h>
24#include "dis-asm.h"
25
26#define ATTRIBUTE_UNUSED __attribute__((unused))
27#define _(x) x
28
29/* The opcode table is an array of struct alpha_opcode. */
30
31struct alpha_opcode
32{
33 /* The opcode name. */
34 const char *name;
35
36 /* The opcode itself. Those bits which will be filled in with
37 operands are zeroes. */
38 unsigned opcode;
39
40 /* The opcode mask. This is used by the disassembler. This is a
41 mask containing ones indicating those bits which must match the
42 opcode field, and zeroes indicating those bits which need not
43 match (and are presumably filled in by operands). */
44 unsigned mask;
45
46 /* One bit flags for the opcode. These are primarily used to
47 indicate specific processors and environments support the
48 instructions. The defined values are listed below. */
49 unsigned flags;
50
51 /* An array of operand codes. Each code is an index into the
52 operand table. They appear in the order which the operands must
53 appear in assembly code, and are terminated by a zero. */
54 unsigned char operands[4];
55};
56
57/* The table itself is sorted by major opcode number, and is otherwise
58 in the order in which the disassembler should consider
59 instructions. */
60extern const struct alpha_opcode alpha_opcodes[];
61extern const unsigned alpha_num_opcodes;
62
63/* Values defined for the flags field of a struct alpha_opcode. */
64
65/* CPU Availability */
66#define AXP_OPCODE_BASE 0x0001 /* Base architecture -- all cpus. */
67#define AXP_OPCODE_EV4 0x0002 /* EV4 specific PALcode insns. */
68#define AXP_OPCODE_EV5 0x0004 /* EV5 specific PALcode insns. */
69#define AXP_OPCODE_EV6 0x0008 /* EV6 specific PALcode insns. */
70#define AXP_OPCODE_BWX 0x0100 /* Byte/word extension (amask bit 0). */
71#define AXP_OPCODE_CIX 0x0200 /* "Count" extension (amask bit 1). */
72#define AXP_OPCODE_MAX 0x0400 /* Multimedia extension (amask bit 8). */
73
74#define AXP_OPCODE_NOPAL (~(AXP_OPCODE_EV4|AXP_OPCODE_EV5|AXP_OPCODE_EV6))
75
76/* A macro to extract the major opcode from an instruction. */
77#define AXP_OP(i) (((i) >> 26) & 0x3F)
78
79/* The total number of major opcodes. */
80#define AXP_NOPS 0x40
81
82\f
83/* The operands table is an array of struct alpha_operand. */
84
85struct alpha_operand
86{
87 /* The number of bits in the operand. */
88 unsigned int bits : 5;
89
90 /* How far the operand is left shifted in the instruction. */
91 unsigned int shift : 5;
92
93 /* The default relocation type for this operand. */
94 signed int default_reloc : 16;
95
96 /* One bit syntax flags. */
97 unsigned int flags : 16;
98
99 /* Insertion function. This is used by the assembler. To insert an
100 operand value into an instruction, check this field.
101
102 If it is NULL, execute
103 i |= (op & ((1 << o->bits) - 1)) << o->shift;
104 (i is the instruction which we are filling in, o is a pointer to
105 this structure, and op is the opcode value; this assumes twos
106 complement arithmetic).
107
108 If this field is not NULL, then simply call it with the
109 instruction and the operand value. It will return the new value
110 of the instruction. If the ERRMSG argument is not NULL, then if
111 the operand value is illegal, *ERRMSG will be set to a warning
112 string (the operand will be inserted in any case). If the
113 operand value is legal, *ERRMSG will be unchanged (most operands
114 can accept any value). */
115 unsigned (*insert) PARAMS ((unsigned instruction, int op,
116 const char **errmsg));
117
118 /* Extraction function. This is used by the disassembler. To
119 extract this operand type from an instruction, check this field.
120
121 If it is NULL, compute
122 op = ((i) >> o->shift) & ((1 << o->bits) - 1);
123 if ((o->flags & AXP_OPERAND_SIGNED) != 0
124 && (op & (1 << (o->bits - 1))) != 0)
125 op -= 1 << o->bits;
126 (i is the instruction, o is a pointer to this structure, and op
127 is the result; this assumes twos complement arithmetic).
128
129 If this field is not NULL, then simply call it with the
130 instruction value. It will return the value of the operand. If
131 the INVALID argument is not NULL, *INVALID will be set to
132 non-zero if this operand type can not actually be extracted from
133 this operand (i.e., the instruction does not match). If the
134 operand is valid, *INVALID will not be changed. */
135 int (*extract) PARAMS ((unsigned instruction, int *invalid));
136};
137
138/* Elements in the table are retrieved by indexing with values from
139 the operands field of the alpha_opcodes table. */
140
141extern const struct alpha_operand alpha_operands[];
142extern const unsigned alpha_num_operands;
143
144/* Values defined for the flags field of a struct alpha_operand. */
145
146/* Mask for selecting the type for typecheck purposes */
147#define AXP_OPERAND_TYPECHECK_MASK \
148 (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA | AXP_OPERAND_IR | \
149 AXP_OPERAND_FPR | AXP_OPERAND_RELATIVE | AXP_OPERAND_SIGNED | \
150 AXP_OPERAND_UNSIGNED)
151
152/* This operand does not actually exist in the assembler input. This
153 is used to support extended mnemonics, for which two operands fields
154 are identical. The assembler should call the insert function with
155 any op value. The disassembler should call the extract function,
156 ignore the return value, and check the value placed in the invalid
157 argument. */
158#define AXP_OPERAND_FAKE 01
159
160/* The operand should be wrapped in parentheses rather than separated
161 from the previous by a comma. This is used for the load and store
162 instructions which want their operands to look like "Ra,disp(Rb)". */
163#define AXP_OPERAND_PARENS 02
164
165/* Used in combination with PARENS, this supresses the supression of
166 the comma. This is used for "jmp Ra,(Rb),hint". */
167#define AXP_OPERAND_COMMA 04
168
169/* This operand names an integer register. */
170#define AXP_OPERAND_IR 010
171
172/* This operand names a floating point register. */
173#define AXP_OPERAND_FPR 020
174
175/* This operand is a relative branch displacement. The disassembler
176 prints these symbolically if possible. */
177#define AXP_OPERAND_RELATIVE 040
178
179/* This operand takes signed values. */
180#define AXP_OPERAND_SIGNED 0100
181
182/* This operand takes unsigned values. This exists primarily so that
183 a flags value of 0 can be treated as end-of-arguments. */
184#define AXP_OPERAND_UNSIGNED 0200
185
186/* Supress overflow detection on this field. This is used for hints. */
187#define AXP_OPERAND_NOOVERFLOW 0400
188
189/* Mask for optional argument default value. */
190#define AXP_OPERAND_OPTIONAL_MASK 07000
191
192/* This operand defaults to zero. This is used for jump hints. */
193#define AXP_OPERAND_DEFAULT_ZERO 01000
194
195/* This operand should default to the first (real) operand and is used
196 in conjunction with AXP_OPERAND_OPTIONAL. This allows
197 "and $0,3,$0" to be written as "and $0,3", etc. I don't like
198 it, but it's what DEC does. */
199#define AXP_OPERAND_DEFAULT_FIRST 02000
200
201/* Similarly, this operand should default to the second (real) operand.
202 This allows "negl $0" instead of "negl $0,$0". */
203#define AXP_OPERAND_DEFAULT_SECOND 04000
204
205\f
206/* Register common names */
207
208#define AXP_REG_V0 0
209#define AXP_REG_T0 1
210#define AXP_REG_T1 2
211#define AXP_REG_T2 3
212#define AXP_REG_T3 4
213#define AXP_REG_T4 5
214#define AXP_REG_T5 6
215#define AXP_REG_T6 7
216#define AXP_REG_T7 8
217#define AXP_REG_S0 9
218#define AXP_REG_S1 10
219#define AXP_REG_S2 11
220#define AXP_REG_S3 12
221#define AXP_REG_S4 13
222#define AXP_REG_S5 14
223#define AXP_REG_FP 15
224#define AXP_REG_A0 16
225#define AXP_REG_A1 17
226#define AXP_REG_A2 18
227#define AXP_REG_A3 19
228#define AXP_REG_A4 20
229#define AXP_REG_A5 21
230#define AXP_REG_T8 22
231#define AXP_REG_T9 23
232#define AXP_REG_T10 24
233#define AXP_REG_T11 25
234#define AXP_REG_RA 26
235#define AXP_REG_PV 27
236#define AXP_REG_T12 27
237#define AXP_REG_AT 28
238#define AXP_REG_GP 29
239#define AXP_REG_SP 30
240#define AXP_REG_ZERO 31
241
242#define bfd_mach_alpha_ev4 0x10
243#define bfd_mach_alpha_ev5 0x20
244#define bfd_mach_alpha_ev6 0x30
245
246enum bfd_reloc_code_real {
247 BFD_RELOC_23_PCREL_S2,
248 BFD_RELOC_ALPHA_HINT
249};
250
251bfd_vma
252bfd_getl32 (addr)
253 register const bfd_byte *addr;
254{
255 unsigned long v;
256
257 v = (unsigned long) addr[0];
258 v |= (unsigned long) addr[1] << 8;
259 v |= (unsigned long) addr[2] << 16;
260 v |= (unsigned long) addr[3] << 24;
261 return (bfd_vma) v;
262}
263
264/* This file holds the Alpha AXP opcode table. The opcode table includes
265 almost all of the extended instruction mnemonics. This permits the
266 disassembler to use them, and simplifies the assembler logic, at the
267 cost of increasing the table size. The table is strictly constant
268 data, so the compiler should be able to put it in the text segment.
269
270 This file also holds the operand table. All knowledge about inserting
271 and extracting operands from instructions is kept in this file.
272
273 The information for the base instruction set was compiled from the
274 _Alpha Architecture Handbook_, Digital Order Number EC-QD2KB-TE,
275 version 2.
276
277 The information for the post-ev5 architecture extensions BWX, CIX and
278 MAX came from version 3 of this same document, which is also available
279 on-line at http://ftp.digital.com/pub/Digital/info/semiconductor
280 /literature/alphahb2.pdf
281
282 The information for the EV4 PALcode instructions was compiled from
283 _DECchip 21064 and DECchip 21064A Alpha AXP Microprocessors Hardware
284 Reference Manual_, Digital Order Number EC-Q9ZUA-TE, preliminary
285 revision dated June 1994.
286
287 The information for the EV5 PALcode instructions was compiled from
288 _Alpha 21164 Microprocessor Hardware Reference Manual_, Digital
289 Order Number EC-QAEQB-TE, preliminary revision dated April 1995. */
290\f
291/* Local insertion and extraction functions */
292
293static unsigned insert_rba PARAMS((unsigned, int, const char **));
294static unsigned insert_rca PARAMS((unsigned, int, const char **));
295static unsigned insert_za PARAMS((unsigned, int, const char **));
296static unsigned insert_zb PARAMS((unsigned, int, const char **));
297static unsigned insert_zc PARAMS((unsigned, int, const char **));
298static unsigned insert_bdisp PARAMS((unsigned, int, const char **));
299static unsigned insert_jhint PARAMS((unsigned, int, const char **));
300static unsigned insert_ev6hwjhint PARAMS((unsigned, int, const char **));
301
302static int extract_rba PARAMS((unsigned, int *));
303static int extract_rca PARAMS((unsigned, int *));
304static int extract_za PARAMS((unsigned, int *));
305static int extract_zb PARAMS((unsigned, int *));
306static int extract_zc PARAMS((unsigned, int *));
307static int extract_bdisp PARAMS((unsigned, int *));
308static int extract_jhint PARAMS((unsigned, int *));
309static int extract_ev6hwjhint PARAMS((unsigned, int *));
310
311\f
312/* The operands table */
313
314const struct alpha_operand alpha_operands[] =
315{
316 /* The fields are bits, shift, insert, extract, flags */
317 /* The zero index is used to indicate end-of-list */
318#define UNUSED 0
319 { 0, 0, 0, 0, 0, 0 },
320
321 /* The plain integer register fields */
322#define RA (UNUSED + 1)
323 { 5, 21, 0, AXP_OPERAND_IR, 0, 0 },
324#define RB (RA + 1)
325 { 5, 16, 0, AXP_OPERAND_IR, 0, 0 },
326#define RC (RB + 1)
327 { 5, 0, 0, AXP_OPERAND_IR, 0, 0 },
328
329 /* The plain fp register fields */
330#define FA (RC + 1)
331 { 5, 21, 0, AXP_OPERAND_FPR, 0, 0 },
332#define FB (FA + 1)
333 { 5, 16, 0, AXP_OPERAND_FPR, 0, 0 },
334#define FC (FB + 1)
335 { 5, 0, 0, AXP_OPERAND_FPR, 0, 0 },
336
337 /* The integer registers when they are ZERO */
338#define ZA (FC + 1)
339 { 5, 21, 0, AXP_OPERAND_FAKE, insert_za, extract_za },
340#define ZB (ZA + 1)
341 { 5, 16, 0, AXP_OPERAND_FAKE, insert_zb, extract_zb },
342#define ZC (ZB + 1)
343 { 5, 0, 0, AXP_OPERAND_FAKE, insert_zc, extract_zc },
344
345 /* The RB field when it needs parentheses */
346#define PRB (ZC + 1)
347 { 5, 16, 0, AXP_OPERAND_IR|AXP_OPERAND_PARENS, 0, 0 },
348
349 /* The RB field when it needs parentheses _and_ a preceding comma */
350#define CPRB (PRB + 1)
351 { 5, 16, 0,
352 AXP_OPERAND_IR|AXP_OPERAND_PARENS|AXP_OPERAND_COMMA, 0, 0 },
353
354 /* The RB field when it must be the same as the RA field */
355#define RBA (CPRB + 1)
356 { 5, 16, 0, AXP_OPERAND_FAKE, insert_rba, extract_rba },
357
358 /* The RC field when it must be the same as the RB field */
359#define RCA (RBA + 1)
360 { 5, 0, 0, AXP_OPERAND_FAKE, insert_rca, extract_rca },
361
362 /* The RC field when it can *default* to RA */
363#define DRC1 (RCA + 1)
364 { 5, 0, 0,
365 AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
366
367 /* The RC field when it can *default* to RB */
368#define DRC2 (DRC1 + 1)
369 { 5, 0, 0,
370 AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
371
372 /* The FC field when it can *default* to RA */
373#define DFC1 (DRC2 + 1)
374 { 5, 0, 0,
375 AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
376
377 /* The FC field when it can *default* to RB */
378#define DFC2 (DFC1 + 1)
379 { 5, 0, 0,
380 AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
381
382 /* The unsigned 8-bit literal of Operate format insns */
383#define LIT (DFC2 + 1)
384 { 8, 13, -LIT, AXP_OPERAND_UNSIGNED, 0, 0 },
385
386 /* The signed 16-bit displacement of Memory format insns. From here
387 we can't tell what relocation should be used, so don't use a default. */
388#define MDISP (LIT + 1)
389 { 16, 0, -MDISP, AXP_OPERAND_SIGNED, 0, 0 },
390
391 /* The signed "23-bit" aligned displacement of Branch format insns */
392#define BDISP (MDISP + 1)
393 { 21, 0, BFD_RELOC_23_PCREL_S2,
394 AXP_OPERAND_RELATIVE, insert_bdisp, extract_bdisp },
395
396 /* The 26-bit PALcode function */
397#define PALFN (BDISP + 1)
398 { 26, 0, -PALFN, AXP_OPERAND_UNSIGNED, 0, 0 },
399
400 /* The optional signed "16-bit" aligned displacement of the JMP/JSR hint */
401#define JMPHINT (PALFN + 1)
402 { 14, 0, BFD_RELOC_ALPHA_HINT,
403 AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
404 insert_jhint, extract_jhint },
405
406 /* The optional hint to RET/JSR_COROUTINE */
407#define RETHINT (JMPHINT + 1)
408 { 14, 0, -RETHINT,
409 AXP_OPERAND_UNSIGNED|AXP_OPERAND_DEFAULT_ZERO, 0, 0 },
410
411 /* The 12-bit displacement for the ev[46] hw_{ld,st} (pal1b/pal1f) insns */
412#define EV4HWDISP (RETHINT + 1)
413#define EV6HWDISP (EV4HWDISP)
414 { 12, 0, -EV4HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
415
416 /* The 5-bit index for the ev4 hw_m[ft]pr (pal19/pal1d) insns */
417#define EV4HWINDEX (EV4HWDISP + 1)
418 { 5, 0, -EV4HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
419
420 /* The 8-bit index for the oddly unqualified hw_m[tf]pr insns
421 that occur in DEC PALcode. */
422#define EV4EXTHWINDEX (EV4HWINDEX + 1)
423 { 8, 0, -EV4EXTHWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
424
425 /* The 10-bit displacement for the ev5 hw_{ld,st} (pal1b/pal1f) insns */
426#define EV5HWDISP (EV4EXTHWINDEX + 1)
427 { 10, 0, -EV5HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
428
429 /* The 16-bit index for the ev5 hw_m[ft]pr (pal19/pal1d) insns */
430#define EV5HWINDEX (EV5HWDISP + 1)
431 { 16, 0, -EV5HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
432
433 /* The 16-bit combined index/scoreboard mask for the ev6
434 hw_m[ft]pr (pal19/pal1d) insns */
435#define EV6HWINDEX (EV5HWINDEX + 1)
436 { 16, 0, -EV6HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
437
438 /* The 13-bit branch hint for the ev6 hw_jmp/jsr (pal1e) insn */
439#define EV6HWJMPHINT (EV6HWINDEX+ 1)
440 { 8, 0, -EV6HWJMPHINT,
441 AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
442 insert_ev6hwjhint, extract_ev6hwjhint }
443};
444
445const unsigned alpha_num_operands = sizeof(alpha_operands)/sizeof(*alpha_operands);
446
447/* The RB field when it is the same as the RA field in the same insn.
448 This operand is marked fake. The insertion function just copies
449 the RA field into the RB field, and the extraction function just
450 checks that the fields are the same. */
451
452/*ARGSUSED*/
453static unsigned
454insert_rba(insn, value, errmsg)
455 unsigned insn;
456 int value ATTRIBUTE_UNUSED;
457 const char **errmsg ATTRIBUTE_UNUSED;
458{
459 return insn | (((insn >> 21) & 0x1f) << 16);
460}
461
462static int
463extract_rba(insn, invalid)
464 unsigned insn;
465 int *invalid;
466{
467 if (invalid != (int *) NULL
468 && ((insn >> 21) & 0x1f) != ((insn >> 16) & 0x1f))
469 *invalid = 1;
470 return 0;
471}
472
473
474/* The same for the RC field */
475
476/*ARGSUSED*/
477static unsigned
478insert_rca(insn, value, errmsg)
479 unsigned insn;
480 int value ATTRIBUTE_UNUSED;
481 const char **errmsg ATTRIBUTE_UNUSED;
482{
483 return insn | ((insn >> 21) & 0x1f);
484}
485
486static int
487extract_rca(insn, invalid)
488 unsigned insn;
489 int *invalid;
490{
491 if (invalid != (int *) NULL
492 && ((insn >> 21) & 0x1f) != (insn & 0x1f))
493 *invalid = 1;
494 return 0;
495}
496
497
498/* Fake arguments in which the registers must be set to ZERO */
499
500/*ARGSUSED*/
501static unsigned
502insert_za(insn, value, errmsg)
503 unsigned insn;
504 int value ATTRIBUTE_UNUSED;
505 const char **errmsg ATTRIBUTE_UNUSED;
506{
507 return insn | (31 << 21);
508}
509
510static int
511extract_za(insn, invalid)
512 unsigned insn;
513 int *invalid;
514{
515 if (invalid != (int *) NULL && ((insn >> 21) & 0x1f) != 31)
516 *invalid = 1;
517 return 0;
518}
519
520/*ARGSUSED*/
521static unsigned
522insert_zb(insn, value, errmsg)
523 unsigned insn;
524 int value ATTRIBUTE_UNUSED;
525 const char **errmsg ATTRIBUTE_UNUSED;
526{
527 return insn | (31 << 16);
528}
529
530static int
531extract_zb(insn, invalid)
532 unsigned insn;
533 int *invalid;
534{
535 if (invalid != (int *) NULL && ((insn >> 16) & 0x1f) != 31)
536 *invalid = 1;
537 return 0;
538}
539
540/*ARGSUSED*/
541static unsigned
542insert_zc(insn, value, errmsg)
543 unsigned insn;
544 int value ATTRIBUTE_UNUSED;
545 const char **errmsg ATTRIBUTE_UNUSED;
546{
547 return insn | 31;
548}
549
550static int
551extract_zc(insn, invalid)
552 unsigned insn;
553 int *invalid;
554{
555 if (invalid != (int *) NULL && (insn & 0x1f) != 31)
556 *invalid = 1;
557 return 0;
558}
559
560
561/* The displacement field of a Branch format insn. */
562
563static unsigned
564insert_bdisp(insn, value, errmsg)
565 unsigned insn;
566 int value;
567 const char **errmsg;
568{
569 if (errmsg != (const char **)NULL && (value & 3))
570 *errmsg = _("branch operand unaligned");
571 return insn | ((value / 4) & 0x1FFFFF);
572}
573
574/*ARGSUSED*/
575static int
576extract_bdisp(insn, invalid)
577 unsigned insn;
578 int *invalid ATTRIBUTE_UNUSED;
579{
580 return 4 * (((insn & 0x1FFFFF) ^ 0x100000) - 0x100000);
581}
582
583
584/* The hint field of a JMP/JSR insn. */
585
586static unsigned
587insert_jhint(insn, value, errmsg)
588 unsigned insn;
589 int value;
590 const char **errmsg;
591{
592 if (errmsg != (const char **)NULL && (value & 3))
593 *errmsg = _("jump hint unaligned");
594 return insn | ((value / 4) & 0x3FFF);
595}
596
597/*ARGSUSED*/
598static int
599extract_jhint(insn, invalid)
600 unsigned insn;
601 int *invalid ATTRIBUTE_UNUSED;
602{
603 return 4 * (((insn & 0x3FFF) ^ 0x2000) - 0x2000);
604}
605
606/* The hint field of an EV6 HW_JMP/JSR insn. */
607
608static unsigned
609insert_ev6hwjhint(insn, value, errmsg)
610 unsigned insn;
611 int value;
612 const char **errmsg;
613{
614 if (errmsg != (const char **)NULL && (value & 3))
615 *errmsg = _("jump hint unaligned");
616 return insn | ((value / 4) & 0x1FFF);
617}
618
619/*ARGSUSED*/
620static int
621extract_ev6hwjhint(insn, invalid)
622 unsigned insn;
623 int *invalid ATTRIBUTE_UNUSED;
624{
625 return 4 * (((insn & 0x1FFF) ^ 0x1000) - 0x1000);
626}
627
628\f
629/* Macros used to form opcodes */
630
631/* The main opcode */
632#define OP(x) (((x) & 0x3F) << 26)
633#define OP_MASK 0xFC000000
634
635/* Branch format instructions */
636#define BRA_(oo) OP(oo)
637#define BRA_MASK OP_MASK
638#define BRA(oo) BRA_(oo), BRA_MASK
639
640/* Floating point format instructions */
641#define FP_(oo,fff) (OP(oo) | (((fff) & 0x7FF) << 5))
642#define FP_MASK (OP_MASK | 0xFFE0)
643#define FP(oo,fff) FP_(oo,fff), FP_MASK
644
645/* Memory format instructions */
646#define MEM_(oo) OP(oo)
647#define MEM_MASK OP_MASK
648#define MEM(oo) MEM_(oo), MEM_MASK
649
650/* Memory/Func Code format instructions */
651#define MFC_(oo,ffff) (OP(oo) | ((ffff) & 0xFFFF))
652#define MFC_MASK (OP_MASK | 0xFFFF)
653#define MFC(oo,ffff) MFC_(oo,ffff), MFC_MASK
654
655/* Memory/Branch format instructions */
656#define MBR_(oo,h) (OP(oo) | (((h) & 3) << 14))
657#define MBR_MASK (OP_MASK | 0xC000)
658#define MBR(oo,h) MBR_(oo,h), MBR_MASK
659
660/* Operate format instructions. The OPRL variant specifies a
661 literal second argument. */
662#define OPR_(oo,ff) (OP(oo) | (((ff) & 0x7F) << 5))
663#define OPRL_(oo,ff) (OPR_((oo),(ff)) | 0x1000)
664#define OPR_MASK (OP_MASK | 0x1FE0)
665#define OPR(oo,ff) OPR_(oo,ff), OPR_MASK
666#define OPRL(oo,ff) OPRL_(oo,ff), OPR_MASK
667
668/* Generic PALcode format instructions */
669#define PCD_(oo) OP(oo)
670#define PCD_MASK OP_MASK
671#define PCD(oo) PCD_(oo), PCD_MASK
672
673/* Specific PALcode instructions */
674#define SPCD_(oo,ffff) (OP(oo) | ((ffff) & 0x3FFFFFF))
675#define SPCD_MASK 0xFFFFFFFF
676#define SPCD(oo,ffff) SPCD_(oo,ffff), SPCD_MASK
677
678/* Hardware memory (hw_{ld,st}) instructions */
679#define EV4HWMEM_(oo,f) (OP(oo) | (((f) & 0xF) << 12))
680#define EV4HWMEM_MASK (OP_MASK | 0xF000)
681#define EV4HWMEM(oo,f) EV4HWMEM_(oo,f), EV4HWMEM_MASK
682
683#define EV5HWMEM_(oo,f) (OP(oo) | (((f) & 0x3F) << 10))
684#define EV5HWMEM_MASK (OP_MASK | 0xF800)
685#define EV5HWMEM(oo,f) EV5HWMEM_(oo,f), EV5HWMEM_MASK
686
687#define EV6HWMEM_(oo,f) (OP(oo) | (((f) & 0xF) << 12))
688#define EV6HWMEM_MASK (OP_MASK | 0xF000)
689#define EV6HWMEM(oo,f) EV6HWMEM_(oo,f), EV6HWMEM_MASK
690
691#define EV6HWMBR_(oo,h) (OP(oo) | (((h) & 7) << 13))
692#define EV6HWMBR_MASK (OP_MASK | 0xE000)
693#define EV6HWMBR(oo,h) EV6HWMBR_(oo,h), EV6HWMBR_MASK
694
695/* Abbreviations for instruction subsets. */
696#define BASE AXP_OPCODE_BASE
697#define EV4 AXP_OPCODE_EV4
698#define EV5 AXP_OPCODE_EV5
699#define EV6 AXP_OPCODE_EV6
700#define BWX AXP_OPCODE_BWX
701#define CIX AXP_OPCODE_CIX
702#define MAX AXP_OPCODE_MAX
703
704/* Common combinations of arguments */
705#define ARG_NONE { 0 }
706#define ARG_BRA { RA, BDISP }
707#define ARG_FBRA { FA, BDISP }
708#define ARG_FP { FA, FB, DFC1 }
709#define ARG_FPZ1 { ZA, FB, DFC1 }
710#define ARG_MEM { RA, MDISP, PRB }
711#define ARG_FMEM { FA, MDISP, PRB }
712#define ARG_OPR { RA, RB, DRC1 }
713#define ARG_OPRL { RA, LIT, DRC1 }
714#define ARG_OPRZ1 { ZA, RB, DRC1 }
715#define ARG_OPRLZ1 { ZA, LIT, RC }
716#define ARG_PCD { PALFN }
717#define ARG_EV4HWMEM { RA, EV4HWDISP, PRB }
718#define ARG_EV4HWMPR { RA, RBA, EV4HWINDEX }
719#define ARG_EV5HWMEM { RA, EV5HWDISP, PRB }
720#define ARG_EV6HWMEM { RA, EV6HWDISP, PRB }
721\f
722/* The opcode table.
723
724 The format of the opcode table is:
725
726 NAME OPCODE MASK { OPERANDS }
727
728 NAME is the name of the instruction.
729
730 OPCODE is the instruction opcode.
731
732 MASK is the opcode mask; this is used to tell the disassembler
733 which bits in the actual opcode must match OPCODE.
734
735 OPERANDS is the list of operands.
736
737 The preceding macros merge the text of the OPCODE and MASK fields.
738
739 The disassembler reads the table in order and prints the first
740 instruction which matches, so this table is sorted to put more
741 specific instructions before more general instructions.
742
743 Otherwise, it is sorted by major opcode and minor function code.
744
745 There are three classes of not-really-instructions in this table:
746
747 ALIAS is another name for another instruction. Some of
748 these come from the Architecture Handbook, some
749 come from the original gas opcode tables. In all
750 cases, the functionality of the opcode is unchanged.
751
752 PSEUDO a stylized code form endorsed by Chapter A.4 of the
753 Architecture Handbook.
754
755 EXTRA a stylized code form found in the original gas tables.
756
757 And two annotations:
758
759 EV56 BUT opcodes that are officially introduced as of the ev56,
760 but with defined results on previous implementations.
761
762 EV56 UNA opcodes that were introduced as of the ev56 with
763 presumably undefined results on previous implementations
764 that were not assigned to a particular extension.
765*/
766
767const struct alpha_opcode alpha_opcodes[] = {
768 { "halt", SPCD(0x00,0x0000), BASE, ARG_NONE },
769 { "draina", SPCD(0x00,0x0002), BASE, ARG_NONE },
770 { "bpt", SPCD(0x00,0x0080), BASE, ARG_NONE },
771 { "bugchk", SPCD(0x00,0x0081), BASE, ARG_NONE },
772 { "callsys", SPCD(0x00,0x0083), BASE, ARG_NONE },
773 { "chmk", SPCD(0x00,0x0083), BASE, ARG_NONE },
774 { "imb", SPCD(0x00,0x0086), BASE, ARG_NONE },
775 { "rduniq", SPCD(0x00,0x009e), BASE, ARG_NONE },
776 { "wruniq", SPCD(0x00,0x009f), BASE, ARG_NONE },
777 { "gentrap", SPCD(0x00,0x00aa), BASE, ARG_NONE },
778 { "call_pal", PCD(0x00), BASE, ARG_PCD },
779 { "pal", PCD(0x00), BASE, ARG_PCD }, /* alias */
780
781 { "lda", MEM(0x08), BASE, { RA, MDISP, ZB } }, /* pseudo */
782 { "lda", MEM(0x08), BASE, ARG_MEM },
783 { "ldah", MEM(0x09), BASE, { RA, MDISP, ZB } }, /* pseudo */
784 { "ldah", MEM(0x09), BASE, ARG_MEM },
785 { "ldbu", MEM(0x0A), BWX, ARG_MEM },
786 { "unop", MEM_(0x0B) | (30 << 16),
787 MEM_MASK, BASE, { ZA } }, /* pseudo */
788 { "ldq_u", MEM(0x0B), BASE, ARG_MEM },
789 { "ldwu", MEM(0x0C), BWX, ARG_MEM },
790 { "stw", MEM(0x0D), BWX, ARG_MEM },
791 { "stb", MEM(0x0E), BWX, ARG_MEM },
792 { "stq_u", MEM(0x0F), BASE, ARG_MEM },
793
794 { "sextl", OPR(0x10,0x00), BASE, ARG_OPRZ1 }, /* pseudo */
795 { "sextl", OPRL(0x10,0x00), BASE, ARG_OPRLZ1 }, /* pseudo */
796 { "addl", OPR(0x10,0x00), BASE, ARG_OPR },
797 { "addl", OPRL(0x10,0x00), BASE, ARG_OPRL },
798 { "s4addl", OPR(0x10,0x02), BASE, ARG_OPR },
799 { "s4addl", OPRL(0x10,0x02), BASE, ARG_OPRL },
800 { "negl", OPR(0x10,0x09), BASE, ARG_OPRZ1 }, /* pseudo */
801 { "negl", OPRL(0x10,0x09), BASE, ARG_OPRLZ1 }, /* pseudo */
802 { "subl", OPR(0x10,0x09), BASE, ARG_OPR },
803 { "subl", OPRL(0x10,0x09), BASE, ARG_OPRL },
804 { "s4subl", OPR(0x10,0x0B), BASE, ARG_OPR },
805 { "s4subl", OPRL(0x10,0x0B), BASE, ARG_OPRL },
806 { "cmpbge", OPR(0x10,0x0F), BASE, ARG_OPR },
807 { "cmpbge", OPRL(0x10,0x0F), BASE, ARG_OPRL },
808 { "s8addl", OPR(0x10,0x12), BASE, ARG_OPR },
809 { "s8addl", OPRL(0x10,0x12), BASE, ARG_OPRL },
810 { "s8subl", OPR(0x10,0x1B), BASE, ARG_OPR },
811 { "s8subl", OPRL(0x10,0x1B), BASE, ARG_OPRL },
812 { "cmpult", OPR(0x10,0x1D), BASE, ARG_OPR },
813 { "cmpult", OPRL(0x10,0x1D), BASE, ARG_OPRL },
814 { "addq", OPR(0x10,0x20), BASE, ARG_OPR },
815 { "addq", OPRL(0x10,0x20), BASE, ARG_OPRL },
816 { "s4addq", OPR(0x10,0x22), BASE, ARG_OPR },
817 { "s4addq", OPRL(0x10,0x22), BASE, ARG_OPRL },
818 { "negq", OPR(0x10,0x29), BASE, ARG_OPRZ1 }, /* pseudo */
819 { "negq", OPRL(0x10,0x29), BASE, ARG_OPRLZ1 }, /* pseudo */
820 { "subq", OPR(0x10,0x29), BASE, ARG_OPR },
821 { "subq", OPRL(0x10,0x29), BASE, ARG_OPRL },
822 { "s4subq", OPR(0x10,0x2B), BASE, ARG_OPR },
823 { "s4subq", OPRL(0x10,0x2B), BASE, ARG_OPRL },
824 { "cmpeq", OPR(0x10,0x2D), BASE, ARG_OPR },
825 { "cmpeq", OPRL(0x10,0x2D), BASE, ARG_OPRL },
826 { "s8addq", OPR(0x10,0x32), BASE, ARG_OPR },
827 { "s8addq", OPRL(0x10,0x32), BASE, ARG_OPRL },
828 { "s8subq", OPR(0x10,0x3B), BASE, ARG_OPR },
829 { "s8subq", OPRL(0x10,0x3B), BASE, ARG_OPRL },
830 { "cmpule", OPR(0x10,0x3D), BASE, ARG_OPR },
831 { "cmpule", OPRL(0x10,0x3D), BASE, ARG_OPRL },
832 { "addl/v", OPR(0x10,0x40), BASE, ARG_OPR },
833 { "addl/v", OPRL(0x10,0x40), BASE, ARG_OPRL },
834 { "negl/v", OPR(0x10,0x49), BASE, ARG_OPRZ1 }, /* pseudo */
835 { "negl/v", OPRL(0x10,0x49), BASE, ARG_OPRLZ1 }, /* pseudo */
836 { "subl/v", OPR(0x10,0x49), BASE, ARG_OPR },
837 { "subl/v", OPRL(0x10,0x49), BASE, ARG_OPRL },
838 { "cmplt", OPR(0x10,0x4D), BASE, ARG_OPR },
839 { "cmplt", OPRL(0x10,0x4D), BASE, ARG_OPRL },
840 { "addq/v", OPR(0x10,0x60), BASE, ARG_OPR },
841 { "addq/v", OPRL(0x10,0x60), BASE, ARG_OPRL },
842 { "negq/v", OPR(0x10,0x69), BASE, ARG_OPRZ1 }, /* pseudo */
843 { "negq/v", OPRL(0x10,0x69), BASE, ARG_OPRLZ1 }, /* pseudo */
844 { "subq/v", OPR(0x10,0x69), BASE, ARG_OPR },
845 { "subq/v", OPRL(0x10,0x69), BASE, ARG_OPRL },
846 { "cmple", OPR(0x10,0x6D), BASE, ARG_OPR },
847 { "cmple", OPRL(0x10,0x6D), BASE, ARG_OPRL },
848
849 { "and", OPR(0x11,0x00), BASE, ARG_OPR },
850 { "and", OPRL(0x11,0x00), BASE, ARG_OPRL },
851 { "andnot", OPR(0x11,0x08), BASE, ARG_OPR }, /* alias */
852 { "andnot", OPRL(0x11,0x08), BASE, ARG_OPRL }, /* alias */
853 { "bic", OPR(0x11,0x08), BASE, ARG_OPR },
854 { "bic", OPRL(0x11,0x08), BASE, ARG_OPRL },
855 { "cmovlbs", OPR(0x11,0x14), BASE, ARG_OPR },
856 { "cmovlbs", OPRL(0x11,0x14), BASE, ARG_OPRL },
857 { "cmovlbc", OPR(0x11,0x16), BASE, ARG_OPR },
858 { "cmovlbc", OPRL(0x11,0x16), BASE, ARG_OPRL },
859 { "nop", OPR(0x11,0x20), BASE, { ZA, ZB, ZC } }, /* pseudo */
860 { "clr", OPR(0x11,0x20), BASE, { ZA, ZB, RC } }, /* pseudo */
861 { "mov", OPR(0x11,0x20), BASE, { ZA, RB, RC } }, /* pseudo */
862 { "mov", OPR(0x11,0x20), BASE, { RA, RBA, RC } }, /* pseudo */
863 { "mov", OPRL(0x11,0x20), BASE, { ZA, LIT, RC } }, /* pseudo */
864 { "or", OPR(0x11,0x20), BASE, ARG_OPR }, /* alias */
865 { "or", OPRL(0x11,0x20), BASE, ARG_OPRL }, /* alias */
866 { "bis", OPR(0x11,0x20), BASE, ARG_OPR },
867 { "bis", OPRL(0x11,0x20), BASE, ARG_OPRL },
868 { "cmoveq", OPR(0x11,0x24), BASE, ARG_OPR },
869 { "cmoveq", OPRL(0x11,0x24), BASE, ARG_OPRL },
870 { "cmovne", OPR(0x11,0x26), BASE, ARG_OPR },
871 { "cmovne", OPRL(0x11,0x26), BASE, ARG_OPRL },
872 { "not", OPR(0x11,0x28), BASE, ARG_OPRZ1 }, /* pseudo */
873 { "not", OPRL(0x11,0x28), BASE, ARG_OPRLZ1 }, /* pseudo */
874 { "ornot", OPR(0x11,0x28), BASE, ARG_OPR },
875 { "ornot", OPRL(0x11,0x28), BASE, ARG_OPRL },
876 { "xor", OPR(0x11,0x40), BASE, ARG_OPR },
877 { "xor", OPRL(0x11,0x40), BASE, ARG_OPRL },
878 { "cmovlt", OPR(0x11,0x44), BASE, ARG_OPR },
879 { "cmovlt", OPRL(0x11,0x44), BASE, ARG_OPRL },
880 { "cmovge", OPR(0x11,0x46), BASE, ARG_OPR },
881 { "cmovge", OPRL(0x11,0x46), BASE, ARG_OPRL },
882 { "eqv", OPR(0x11,0x48), BASE, ARG_OPR },
883 { "eqv", OPRL(0x11,0x48), BASE, ARG_OPRL },
884 { "xornot", OPR(0x11,0x48), BASE, ARG_OPR }, /* alias */
885 { "xornot", OPRL(0x11,0x48), BASE, ARG_OPRL }, /* alias */
886 { "amask", OPR(0x11,0x61), BASE, ARG_OPRZ1 }, /* ev56 but */
887 { "amask", OPRL(0x11,0x61), BASE, ARG_OPRLZ1 }, /* ev56 but */
888 { "cmovle", OPR(0x11,0x64), BASE, ARG_OPR },
889 { "cmovle", OPRL(0x11,0x64), BASE, ARG_OPRL },
890 { "cmovgt", OPR(0x11,0x66), BASE, ARG_OPR },
891 { "cmovgt", OPRL(0x11,0x66), BASE, ARG_OPRL },
892 { "implver", OPRL_(0x11,0x6C)|(31<<21)|(1<<13),
893 0xFFFFFFE0, BASE, { RC } }, /* ev56 but */
894
895 { "mskbl", OPR(0x12,0x02), BASE, ARG_OPR },
896 { "mskbl", OPRL(0x12,0x02), BASE, ARG_OPRL },
897 { "extbl", OPR(0x12,0x06), BASE, ARG_OPR },
898 { "extbl", OPRL(0x12,0x06), BASE, ARG_OPRL },
899 { "insbl", OPR(0x12,0x0B), BASE, ARG_OPR },
900 { "insbl", OPRL(0x12,0x0B), BASE, ARG_OPRL },
901 { "mskwl", OPR(0x12,0x12), BASE, ARG_OPR },
902 { "mskwl", OPRL(0x12,0x12), BASE, ARG_OPRL },
903 { "extwl", OPR(0x12,0x16), BASE, ARG_OPR },
904 { "extwl", OPRL(0x12,0x16), BASE, ARG_OPRL },
905 { "inswl", OPR(0x12,0x1B), BASE, ARG_OPR },
906 { "inswl", OPRL(0x12,0x1B), BASE, ARG_OPRL },
907 { "mskll", OPR(0x12,0x22), BASE, ARG_OPR },
908 { "mskll", OPRL(0x12,0x22), BASE, ARG_OPRL },
909 { "extll", OPR(0x12,0x26), BASE, ARG_OPR },
910 { "extll", OPRL(0x12,0x26), BASE, ARG_OPRL },
911 { "insll", OPR(0x12,0x2B), BASE, ARG_OPR },
912 { "insll", OPRL(0x12,0x2B), BASE, ARG_OPRL },
913 { "zap", OPR(0x12,0x30), BASE, ARG_OPR },
914 { "zap", OPRL(0x12,0x30), BASE, ARG_OPRL },
915 { "zapnot", OPR(0x12,0x31), BASE, ARG_OPR },
916 { "zapnot", OPRL(0x12,0x31), BASE, ARG_OPRL },
917 { "mskql", OPR(0x12,0x32), BASE, ARG_OPR },
918 { "mskql", OPRL(0x12,0x32), BASE, ARG_OPRL },
919 { "srl", OPR(0x12,0x34), BASE, ARG_OPR },
920 { "srl", OPRL(0x12,0x34), BASE, ARG_OPRL },
921 { "extql", OPR(0x12,0x36), BASE, ARG_OPR },
922 { "extql", OPRL(0x12,0x36), BASE, ARG_OPRL },
923 { "sll", OPR(0x12,0x39), BASE, ARG_OPR },
924 { "sll", OPRL(0x12,0x39), BASE, ARG_OPRL },
925 { "insql", OPR(0x12,0x3B), BASE, ARG_OPR },
926 { "insql", OPRL(0x12,0x3B), BASE, ARG_OPRL },
927 { "sra", OPR(0x12,0x3C), BASE, ARG_OPR },
928 { "sra", OPRL(0x12,0x3C), BASE, ARG_OPRL },
929 { "mskwh", OPR(0x12,0x52), BASE, ARG_OPR },
930 { "mskwh", OPRL(0x12,0x52), BASE, ARG_OPRL },
931 { "inswh", OPR(0x12,0x57), BASE, ARG_OPR },
932 { "inswh", OPRL(0x12,0x57), BASE, ARG_OPRL },
933 { "extwh", OPR(0x12,0x5A), BASE, ARG_OPR },
934 { "extwh", OPRL(0x12,0x5A), BASE, ARG_OPRL },
935 { "msklh", OPR(0x12,0x62), BASE, ARG_OPR },
936 { "msklh", OPRL(0x12,0x62), BASE, ARG_OPRL },
937 { "inslh", OPR(0x12,0x67), BASE, ARG_OPR },
938 { "inslh", OPRL(0x12,0x67), BASE, ARG_OPRL },
939 { "extlh", OPR(0x12,0x6A), BASE, ARG_OPR },
940 { "extlh", OPRL(0x12,0x6A), BASE, ARG_OPRL },
941 { "mskqh", OPR(0x12,0x72), BASE, ARG_OPR },
942 { "mskqh", OPRL(0x12,0x72), BASE, ARG_OPRL },
943 { "insqh", OPR(0x12,0x77), BASE, ARG_OPR },
944 { "insqh", OPRL(0x12,0x77), BASE, ARG_OPRL },
945 { "extqh", OPR(0x12,0x7A), BASE, ARG_OPR },
946 { "extqh", OPRL(0x12,0x7A), BASE, ARG_OPRL },
947
948 { "mull", OPR(0x13,0x00), BASE, ARG_OPR },
949 { "mull", OPRL(0x13,0x00), BASE, ARG_OPRL },
950 { "mulq", OPR(0x13,0x20), BASE, ARG_OPR },
951 { "mulq", OPRL(0x13,0x20), BASE, ARG_OPRL },
952 { "umulh", OPR(0x13,0x30), BASE, ARG_OPR },
953 { "umulh", OPRL(0x13,0x30), BASE, ARG_OPRL },
954 { "mull/v", OPR(0x13,0x40), BASE, ARG_OPR },
955 { "mull/v", OPRL(0x13,0x40), BASE, ARG_OPRL },
956 { "mulq/v", OPR(0x13,0x60), BASE, ARG_OPR },
957 { "mulq/v", OPRL(0x13,0x60), BASE, ARG_OPRL },
958
959 { "itofs", FP(0x14,0x004), CIX, { RA, ZB, FC } },
960 { "sqrtf/c", FP(0x14,0x00A), CIX, ARG_FPZ1 },
961 { "sqrts/c", FP(0x14,0x00B), CIX, ARG_FPZ1 },
962 { "itoff", FP(0x14,0x014), CIX, { RA, ZB, FC } },
963 { "itoft", FP(0x14,0x024), CIX, { RA, ZB, FC } },
964 { "sqrtg/c", FP(0x14,0x02A), CIX, ARG_FPZ1 },
965 { "sqrtt/c", FP(0x14,0x02B), CIX, ARG_FPZ1 },
966 { "sqrts/m", FP(0x14,0x04B), CIX, ARG_FPZ1 },
967 { "sqrtt/m", FP(0x14,0x06B), CIX, ARG_FPZ1 },
968 { "sqrtf", FP(0x14,0x08A), CIX, ARG_FPZ1 },
969 { "sqrts", FP(0x14,0x08B), CIX, ARG_FPZ1 },
970 { "sqrtg", FP(0x14,0x0AA), CIX, ARG_FPZ1 },
971 { "sqrtt", FP(0x14,0x0AB), CIX, ARG_FPZ1 },
972 { "sqrts/d", FP(0x14,0x0CB), CIX, ARG_FPZ1 },
973 { "sqrtt/d", FP(0x14,0x0EB), CIX, ARG_FPZ1 },
974 { "sqrtf/uc", FP(0x14,0x10A), CIX, ARG_FPZ1 },
975 { "sqrts/uc", FP(0x14,0x10B), CIX, ARG_FPZ1 },
976 { "sqrtg/uc", FP(0x14,0x12A), CIX, ARG_FPZ1 },
977 { "sqrtt/uc", FP(0x14,0x12B), CIX, ARG_FPZ1 },
978 { "sqrts/um", FP(0x14,0x14B), CIX, ARG_FPZ1 },
979 { "sqrtt/um", FP(0x14,0x16B), CIX, ARG_FPZ1 },
980 { "sqrtf/u", FP(0x14,0x18A), CIX, ARG_FPZ1 },
981 { "sqrts/u", FP(0x14,0x18B), CIX, ARG_FPZ1 },
982 { "sqrtg/u", FP(0x14,0x1AA), CIX, ARG_FPZ1 },
983 { "sqrtt/u", FP(0x14,0x1AB), CIX, ARG_FPZ1 },
984 { "sqrts/ud", FP(0x14,0x1CB), CIX, ARG_FPZ1 },
985 { "sqrtt/ud", FP(0x14,0x1EB), CIX, ARG_FPZ1 },
986 { "sqrtf/sc", FP(0x14,0x40A), CIX, ARG_FPZ1 },
987 { "sqrtg/sc", FP(0x14,0x42A), CIX, ARG_FPZ1 },
988 { "sqrtf/s", FP(0x14,0x48A), CIX, ARG_FPZ1 },
989 { "sqrtg/s", FP(0x14,0x4AA), CIX, ARG_FPZ1 },
990 { "sqrtf/suc", FP(0x14,0x50A), CIX, ARG_FPZ1 },
991 { "sqrts/suc", FP(0x14,0x50B), CIX, ARG_FPZ1 },
992 { "sqrtg/suc", FP(0x14,0x52A), CIX, ARG_FPZ1 },
993 { "sqrtt/suc", FP(0x14,0x52B), CIX, ARG_FPZ1 },
994 { "sqrts/sum", FP(0x14,0x54B), CIX, ARG_FPZ1 },
995 { "sqrtt/sum", FP(0x14,0x56B), CIX, ARG_FPZ1 },
996 { "sqrtf/su", FP(0x14,0x58A), CIX, ARG_FPZ1 },
997 { "sqrts/su", FP(0x14,0x58B), CIX, ARG_FPZ1 },
998 { "sqrtg/su", FP(0x14,0x5AA), CIX, ARG_FPZ1 },
999 { "sqrtt/su", FP(0x14,0x5AB), CIX, ARG_FPZ1 },
1000 { "sqrts/sud", FP(0x14,0x5CB), CIX, ARG_FPZ1 },
1001 { "sqrtt/sud", FP(0x14,0x5EB), CIX, ARG_FPZ1 },
1002 { "sqrts/suic", FP(0x14,0x70B), CIX, ARG_FPZ1 },
1003 { "sqrtt/suic", FP(0x14,0x72B), CIX, ARG_FPZ1 },
1004 { "sqrts/suim", FP(0x14,0x74B), CIX, ARG_FPZ1 },
1005 { "sqrtt/suim", FP(0x14,0x76B), CIX, ARG_FPZ1 },
1006 { "sqrts/sui", FP(0x14,0x78B), CIX, ARG_FPZ1 },
1007 { "sqrtt/sui", FP(0x14,0x7AB), CIX, ARG_FPZ1 },
1008 { "sqrts/suid", FP(0x14,0x7CB), CIX, ARG_FPZ1 },
1009 { "sqrtt/suid", FP(0x14,0x7EB), CIX, ARG_FPZ1 },
1010
1011 { "addf/c", FP(0x15,0x000), BASE, ARG_FP },
1012 { "subf/c", FP(0x15,0x001), BASE, ARG_FP },
1013 { "mulf/c", FP(0x15,0x002), BASE, ARG_FP },
1014 { "divf/c", FP(0x15,0x003), BASE, ARG_FP },
1015 { "cvtdg/c", FP(0x15,0x01E), BASE, ARG_FPZ1 },
1016 { "addg/c", FP(0x15,0x020), BASE, ARG_FP },
1017 { "subg/c", FP(0x15,0x021), BASE, ARG_FP },
1018 { "mulg/c", FP(0x15,0x022), BASE, ARG_FP },
1019 { "divg/c", FP(0x15,0x023), BASE, ARG_FP },
1020 { "cvtgf/c", FP(0x15,0x02C), BASE, ARG_FPZ1 },
1021 { "cvtgd/c", FP(0x15,0x02D), BASE, ARG_FPZ1 },
1022 { "cvtgq/c", FP(0x15,0x02F), BASE, ARG_FPZ1 },
1023 { "cvtqf/c", FP(0x15,0x03C), BASE, ARG_FPZ1 },
1024 { "cvtqg/c", FP(0x15,0x03E), BASE, ARG_FPZ1 },
1025 { "addf", FP(0x15,0x080), BASE, ARG_FP },
1026 { "negf", FP(0x15,0x081), BASE, ARG_FPZ1 }, /* pseudo */
1027 { "subf", FP(0x15,0x081), BASE, ARG_FP },
1028 { "mulf", FP(0x15,0x082), BASE, ARG_FP },
1029 { "divf", FP(0x15,0x083), BASE, ARG_FP },
1030 { "cvtdg", FP(0x15,0x09E), BASE, ARG_FPZ1 },
1031 { "addg", FP(0x15,0x0A0), BASE, ARG_FP },
1032 { "negg", FP(0x15,0x0A1), BASE, ARG_FPZ1 }, /* pseudo */
1033 { "subg", FP(0x15,0x0A1), BASE, ARG_FP },
1034 { "mulg", FP(0x15,0x0A2), BASE, ARG_FP },
1035 { "divg", FP(0x15,0x0A3), BASE, ARG_FP },
1036 { "cmpgeq", FP(0x15,0x0A5), BASE, ARG_FP },
1037 { "cmpglt", FP(0x15,0x0A6), BASE, ARG_FP },
1038 { "cmpgle", FP(0x15,0x0A7), BASE, ARG_FP },
1039 { "cvtgf", FP(0x15,0x0AC), BASE, ARG_FPZ1 },
1040 { "cvtgd", FP(0x15,0x0AD), BASE, ARG_FPZ1 },
1041 { "cvtgq", FP(0x15,0x0AF), BASE, ARG_FPZ1 },
1042 { "cvtqf", FP(0x15,0x0BC), BASE, ARG_FPZ1 },
1043 { "cvtqg", FP(0x15,0x0BE), BASE, ARG_FPZ1 },
1044 { "addf/uc", FP(0x15,0x100), BASE, ARG_FP },
1045 { "subf/uc", FP(0x15,0x101), BASE, ARG_FP },
1046 { "mulf/uc", FP(0x15,0x102), BASE, ARG_FP },
1047 { "divf/uc", FP(0x15,0x103), BASE, ARG_FP },
1048 { "cvtdg/uc", FP(0x15,0x11E), BASE, ARG_FPZ1 },
1049 { "addg/uc", FP(0x15,0x120), BASE, ARG_FP },
1050 { "subg/uc", FP(0x15,0x121), BASE, ARG_FP },
1051 { "mulg/uc", FP(0x15,0x122), BASE, ARG_FP },
1052 { "divg/uc", FP(0x15,0x123), BASE, ARG_FP },
1053 { "cvtgf/uc", FP(0x15,0x12C), BASE, ARG_FPZ1 },
1054 { "cvtgd/uc", FP(0x15,0x12D), BASE, ARG_FPZ1 },
1055 { "cvtgq/vc", FP(0x15,0x12F), BASE, ARG_FPZ1 },
1056 { "addf/u", FP(0x15,0x180), BASE, ARG_FP },
1057 { "subf/u", FP(0x15,0x181), BASE, ARG_FP },
1058 { "mulf/u", FP(0x15,0x182), BASE, ARG_FP },
1059 { "divf/u", FP(0x15,0x183), BASE, ARG_FP },
1060 { "cvtdg/u", FP(0x15,0x19E), BASE, ARG_FPZ1 },
1061 { "addg/u", FP(0x15,0x1A0), BASE, ARG_FP },
1062 { "subg/u", FP(0x15,0x1A1), BASE, ARG_FP },
1063 { "mulg/u", FP(0x15,0x1A2), BASE, ARG_FP },
1064 { "divg/u", FP(0x15,0x1A3), BASE, ARG_FP },
1065 { "cvtgf/u", FP(0x15,0x1AC), BASE, ARG_FPZ1 },
1066 { "cvtgd/u", FP(0x15,0x1AD), BASE, ARG_FPZ1 },
1067 { "cvtgq/v", FP(0x15,0x1AF), BASE, ARG_FPZ1 },
1068 { "addf/sc", FP(0x15,0x400), BASE, ARG_FP },
1069 { "subf/sc", FP(0x15,0x401), BASE, ARG_FP },
1070 { "mulf/sc", FP(0x15,0x402), BASE, ARG_FP },
1071 { "divf/sc", FP(0x15,0x403), BASE, ARG_FP },
1072 { "cvtdg/sc", FP(0x15,0x41E), BASE, ARG_FPZ1 },
1073 { "addg/sc", FP(0x15,0x420), BASE, ARG_FP },
1074 { "subg/sc", FP(0x15,0x421), BASE, ARG_FP },
1075 { "mulg/sc", FP(0x15,0x422), BASE, ARG_FP },
1076 { "divg/sc", FP(0x15,0x423), BASE, ARG_FP },
1077 { "cvtgf/sc", FP(0x15,0x42C), BASE, ARG_FPZ1 },
1078 { "cvtgd/sc", FP(0x15,0x42D), BASE, ARG_FPZ1 },
1079 { "cvtgq/sc", FP(0x15,0x42F), BASE, ARG_FPZ1 },
1080 { "addf/s", FP(0x15,0x480), BASE, ARG_FP },
1081 { "negf/s", FP(0x15,0x481), BASE, ARG_FPZ1 }, /* pseudo */
1082 { "subf/s", FP(0x15,0x481), BASE, ARG_FP },
1083 { "mulf/s", FP(0x15,0x482), BASE, ARG_FP },
1084 { "divf/s", FP(0x15,0x483), BASE, ARG_FP },
1085 { "cvtdg/s", FP(0x15,0x49E), BASE, ARG_FPZ1 },
1086 { "addg/s", FP(0x15,0x4A0), BASE, ARG_FP },
1087 { "negg/s", FP(0x15,0x4A1), BASE, ARG_FPZ1 }, /* pseudo */
1088 { "subg/s", FP(0x15,0x4A1), BASE, ARG_FP },
1089 { "mulg/s", FP(0x15,0x4A2), BASE, ARG_FP },
1090 { "divg/s", FP(0x15,0x4A3), BASE, ARG_FP },
1091 { "cmpgeq/s", FP(0x15,0x4A5), BASE, ARG_FP },
1092 { "cmpglt/s", FP(0x15,0x4A6), BASE, ARG_FP },
1093 { "cmpgle/s", FP(0x15,0x4A7), BASE, ARG_FP },
1094 { "cvtgf/s", FP(0x15,0x4AC), BASE, ARG_FPZ1 },
1095 { "cvtgd/s", FP(0x15,0x4AD), BASE, ARG_FPZ1 },
1096 { "cvtgq/s", FP(0x15,0x4AF), BASE, ARG_FPZ1 },
1097 { "addf/suc", FP(0x15,0x500), BASE, ARG_FP },
1098 { "subf/suc", FP(0x15,0x501), BASE, ARG_FP },
1099 { "mulf/suc", FP(0x15,0x502), BASE, ARG_FP },
1100 { "divf/suc", FP(0x15,0x503), BASE, ARG_FP },
1101 { "cvtdg/suc", FP(0x15,0x51E), BASE, ARG_FPZ1 },
1102 { "addg/suc", FP(0x15,0x520), BASE, ARG_FP },
1103 { "subg/suc", FP(0x15,0x521), BASE, ARG_FP },
1104 { "mulg/suc", FP(0x15,0x522), BASE, ARG_FP },
1105 { "divg/suc", FP(0x15,0x523), BASE, ARG_FP },
1106 { "cvtgf/suc", FP(0x15,0x52C), BASE, ARG_FPZ1 },
1107 { "cvtgd/suc", FP(0x15,0x52D), BASE, ARG_FPZ1 },
1108 { "cvtgq/svc", FP(0x15,0x52F), BASE, ARG_FPZ1 },
1109 { "addf/su", FP(0x15,0x580), BASE, ARG_FP },
1110 { "subf/su", FP(0x15,0x581), BASE, ARG_FP },
1111 { "mulf/su", FP(0x15,0x582), BASE, ARG_FP },
1112 { "divf/su", FP(0x15,0x583), BASE, ARG_FP },
1113 { "cvtdg/su", FP(0x15,0x59E), BASE, ARG_FPZ1 },
1114 { "addg/su", FP(0x15,0x5A0), BASE, ARG_FP },
1115 { "subg/su", FP(0x15,0x5A1), BASE, ARG_FP },
1116 { "mulg/su", FP(0x15,0x5A2), BASE, ARG_FP },
1117 { "divg/su", FP(0x15,0x5A3), BASE, ARG_FP },
1118 { "cvtgf/su", FP(0x15,0x5AC), BASE, ARG_FPZ1 },
1119 { "cvtgd/su", FP(0x15,0x5AD), BASE, ARG_FPZ1 },
1120 { "cvtgq/sv", FP(0x15,0x5AF), BASE, ARG_FPZ1 },
1121
1122 { "adds/c", FP(0x16,0x000), BASE, ARG_FP },
1123 { "subs/c", FP(0x16,0x001), BASE, ARG_FP },
1124 { "muls/c", FP(0x16,0x002), BASE, ARG_FP },
1125 { "divs/c", FP(0x16,0x003), BASE, ARG_FP },
1126 { "addt/c", FP(0x16,0x020), BASE, ARG_FP },
1127 { "subt/c", FP(0x16,0x021), BASE, ARG_FP },
1128 { "mult/c", FP(0x16,0x022), BASE, ARG_FP },
1129 { "divt/c", FP(0x16,0x023), BASE, ARG_FP },
1130 { "cvtts/c", FP(0x16,0x02C), BASE, ARG_FPZ1 },
1131 { "cvttq/c", FP(0x16,0x02F), BASE, ARG_FPZ1 },
1132 { "cvtqs/c", FP(0x16,0x03C), BASE, ARG_FPZ1 },
1133 { "cvtqt/c", FP(0x16,0x03E), BASE, ARG_FPZ1 },
1134 { "adds/m", FP(0x16,0x040), BASE, ARG_FP },
1135 { "subs/m", FP(0x16,0x041), BASE, ARG_FP },
1136 { "muls/m", FP(0x16,0x042), BASE, ARG_FP },
1137 { "divs/m", FP(0x16,0x043), BASE, ARG_FP },
1138 { "addt/m", FP(0x16,0x060), BASE, ARG_FP },
1139 { "subt/m", FP(0x16,0x061), BASE, ARG_FP },
1140 { "mult/m", FP(0x16,0x062), BASE, ARG_FP },
1141 { "divt/m", FP(0x16,0x063), BASE, ARG_FP },
1142 { "cvtts/m", FP(0x16,0x06C), BASE, ARG_FPZ1 },
1143 { "cvttq/m", FP(0x16,0x06F), BASE, ARG_FPZ1 },
1144 { "cvtqs/m", FP(0x16,0x07C), BASE, ARG_FPZ1 },
1145 { "cvtqt/m", FP(0x16,0x07E), BASE, ARG_FPZ1 },
1146 { "adds", FP(0x16,0x080), BASE, ARG_FP },
1147 { "negs", FP(0x16,0x081), BASE, ARG_FPZ1 }, /* pseudo */
1148 { "subs", FP(0x16,0x081), BASE, ARG_FP },
1149 { "muls", FP(0x16,0x082), BASE, ARG_FP },
1150 { "divs", FP(0x16,0x083), BASE, ARG_FP },
1151 { "addt", FP(0x16,0x0A0), BASE, ARG_FP },
1152 { "negt", FP(0x16,0x0A1), BASE, ARG_FPZ1 }, /* pseudo */
1153 { "subt", FP(0x16,0x0A1), BASE, ARG_FP },
1154 { "mult", FP(0x16,0x0A2), BASE, ARG_FP },
1155 { "divt", FP(0x16,0x0A3), BASE, ARG_FP },
1156 { "cmptun", FP(0x16,0x0A4), BASE, ARG_FP },
1157 { "cmpteq", FP(0x16,0x0A5), BASE, ARG_FP },
1158 { "cmptlt", FP(0x16,0x0A6), BASE, ARG_FP },
1159 { "cmptle", FP(0x16,0x0A7), BASE, ARG_FP },
1160 { "cvtts", FP(0x16,0x0AC), BASE, ARG_FPZ1 },
1161 { "cvttq", FP(0x16,0x0AF), BASE, ARG_FPZ1 },
1162 { "cvtqs", FP(0x16,0x0BC), BASE, ARG_FPZ1 },
1163 { "cvtqt", FP(0x16,0x0BE), BASE, ARG_FPZ1 },
1164 { "adds/d", FP(0x16,0x0C0), BASE, ARG_FP },
1165 { "subs/d", FP(0x16,0x0C1), BASE, ARG_FP },
1166 { "muls/d", FP(0x16,0x0C2), BASE, ARG_FP },
1167 { "divs/d", FP(0x16,0x0C3), BASE, ARG_FP },
1168 { "addt/d", FP(0x16,0x0E0), BASE, ARG_FP },
1169 { "subt/d", FP(0x16,0x0E1), BASE, ARG_FP },
1170 { "mult/d", FP(0x16,0x0E2), BASE, ARG_FP },
1171 { "divt/d", FP(0x16,0x0E3), BASE, ARG_FP },
1172 { "cvtts/d", FP(0x16,0x0EC), BASE, ARG_FPZ1 },
1173 { "cvttq/d", FP(0x16,0x0EF), BASE, ARG_FPZ1 },
1174 { "cvtqs/d", FP(0x16,0x0FC), BASE, ARG_FPZ1 },
1175 { "cvtqt/d", FP(0x16,0x0FE), BASE, ARG_FPZ1 },
1176 { "adds/uc", FP(0x16,0x100), BASE, ARG_FP },
1177 { "subs/uc", FP(0x16,0x101), BASE, ARG_FP },
1178 { "muls/uc", FP(0x16,0x102), BASE, ARG_FP },
1179 { "divs/uc", FP(0x16,0x103), BASE, ARG_FP },
1180 { "addt/uc", FP(0x16,0x120), BASE, ARG_FP },
1181 { "subt/uc", FP(0x16,0x121), BASE, ARG_FP },
1182 { "mult/uc", FP(0x16,0x122), BASE, ARG_FP },
1183 { "divt/uc", FP(0x16,0x123), BASE, ARG_FP },
1184 { "cvtts/uc", FP(0x16,0x12C), BASE, ARG_FPZ1 },
1185 { "cvttq/vc", FP(0x16,0x12F), BASE, ARG_FPZ1 },
1186 { "adds/um", FP(0x16,0x140), BASE, ARG_FP },
1187 { "subs/um", FP(0x16,0x141), BASE, ARG_FP },
1188 { "muls/um", FP(0x16,0x142), BASE, ARG_FP },
1189 { "divs/um", FP(0x16,0x143), BASE, ARG_FP },
1190 { "addt/um", FP(0x16,0x160), BASE, ARG_FP },
1191 { "subt/um", FP(0x16,0x161), BASE, ARG_FP },
1192 { "mult/um", FP(0x16,0x162), BASE, ARG_FP },
1193 { "divt/um", FP(0x16,0x163), BASE, ARG_FP },
1194 { "cvtts/um", FP(0x16,0x16C), BASE, ARG_FPZ1 },
1195 { "cvttq/vm", FP(0x16,0x16F), BASE, ARG_FPZ1 },
1196 { "adds/u", FP(0x16,0x180), BASE, ARG_FP },
1197 { "subs/u", FP(0x16,0x181), BASE, ARG_FP },
1198 { "muls/u", FP(0x16,0x182), BASE, ARG_FP },
1199 { "divs/u", FP(0x16,0x183), BASE, ARG_FP },
1200 { "addt/u", FP(0x16,0x1A0), BASE, ARG_FP },
1201 { "subt/u", FP(0x16,0x1A1), BASE, ARG_FP },
1202 { "mult/u", FP(0x16,0x1A2), BASE, ARG_FP },
1203 { "divt/u", FP(0x16,0x1A3), BASE, ARG_FP },
1204 { "cvtts/u", FP(0x16,0x1AC), BASE, ARG_FPZ1 },
1205 { "cvttq/v", FP(0x16,0x1AF), BASE, ARG_FPZ1 },
1206 { "adds/ud", FP(0x16,0x1C0), BASE, ARG_FP },
1207 { "subs/ud", FP(0x16,0x1C1), BASE, ARG_FP },
1208 { "muls/ud", FP(0x16,0x1C2), BASE, ARG_FP },
1209 { "divs/ud", FP(0x16,0x1C3), BASE, ARG_FP },
1210 { "addt/ud", FP(0x16,0x1E0), BASE, ARG_FP },
1211 { "subt/ud", FP(0x16,0x1E1), BASE, ARG_FP },
1212 { "mult/ud", FP(0x16,0x1E2), BASE, ARG_FP },
1213 { "divt/ud", FP(0x16,0x1E3), BASE, ARG_FP },
1214 { "cvtts/ud", FP(0x16,0x1EC), BASE, ARG_FPZ1 },
1215 { "cvttq/vd", FP(0x16,0x1EF), BASE, ARG_FPZ1 },
1216 { "cvtst", FP(0x16,0x2AC), BASE, ARG_FPZ1 },
1217 { "adds/suc", FP(0x16,0x500), BASE, ARG_FP },
1218 { "subs/suc", FP(0x16,0x501), BASE, ARG_FP },
1219 { "muls/suc", FP(0x16,0x502), BASE, ARG_FP },
1220 { "divs/suc", FP(0x16,0x503), BASE, ARG_FP },
1221 { "addt/suc", FP(0x16,0x520), BASE, ARG_FP },
1222 { "subt/suc", FP(0x16,0x521), BASE, ARG_FP },
1223 { "mult/suc", FP(0x16,0x522), BASE, ARG_FP },
1224 { "divt/suc", FP(0x16,0x523), BASE, ARG_FP },
1225 { "cvtts/suc", FP(0x16,0x52C), BASE, ARG_FPZ1 },
1226 { "cvttq/svc", FP(0x16,0x52F), BASE, ARG_FPZ1 },
1227 { "adds/sum", FP(0x16,0x540), BASE, ARG_FP },
1228 { "subs/sum", FP(0x16,0x541), BASE, ARG_FP },
1229 { "muls/sum", FP(0x16,0x542), BASE, ARG_FP },
1230 { "divs/sum", FP(0x16,0x543), BASE, ARG_FP },
1231 { "addt/sum", FP(0x16,0x560), BASE, ARG_FP },
1232 { "subt/sum", FP(0x16,0x561), BASE, ARG_FP },
1233 { "mult/sum", FP(0x16,0x562), BASE, ARG_FP },
1234 { "divt/sum", FP(0x16,0x563), BASE, ARG_FP },
1235 { "cvtts/sum", FP(0x16,0x56C), BASE, ARG_FPZ1 },
1236 { "cvttq/svm", FP(0x16,0x56F), BASE, ARG_FPZ1 },
1237 { "adds/su", FP(0x16,0x580), BASE, ARG_FP },
1238 { "negs/su", FP(0x16,0x581), BASE, ARG_FPZ1 }, /* pseudo */
1239 { "subs/su", FP(0x16,0x581), BASE, ARG_FP },
1240 { "muls/su", FP(0x16,0x582), BASE, ARG_FP },
1241 { "divs/su", FP(0x16,0x583), BASE, ARG_FP },
1242 { "addt/su", FP(0x16,0x5A0), BASE, ARG_FP },
1243 { "negt/su", FP(0x16,0x5A1), BASE, ARG_FPZ1 }, /* pseudo */
1244 { "subt/su", FP(0x16,0x5A1), BASE, ARG_FP },
1245 { "mult/su", FP(0x16,0x5A2), BASE, ARG_FP },
1246 { "divt/su", FP(0x16,0x5A3), BASE, ARG_FP },
1247 { "cmptun/su", FP(0x16,0x5A4), BASE, ARG_FP },
1248 { "cmpteq/su", FP(0x16,0x5A5), BASE, ARG_FP },
1249 { "cmptlt/su", FP(0x16,0x5A6), BASE, ARG_FP },
1250 { "cmptle/su", FP(0x16,0x5A7), BASE, ARG_FP },
1251 { "cvtts/su", FP(0x16,0x5AC), BASE, ARG_FPZ1 },
1252 { "cvttq/sv", FP(0x16,0x5AF), BASE, ARG_FPZ1 },
1253 { "adds/sud", FP(0x16,0x5C0), BASE, ARG_FP },
1254 { "subs/sud", FP(0x16,0x5C1), BASE, ARG_FP },
1255 { "muls/sud", FP(0x16,0x5C2), BASE, ARG_FP },
1256 { "divs/sud", FP(0x16,0x5C3), BASE, ARG_FP },
1257 { "addt/sud", FP(0x16,0x5E0), BASE, ARG_FP },
1258 { "subt/sud", FP(0x16,0x5E1), BASE, ARG_FP },
1259 { "mult/sud", FP(0x16,0x5E2), BASE, ARG_FP },
1260 { "divt/sud", FP(0x16,0x5E3), BASE, ARG_FP },
1261 { "cvtts/sud", FP(0x16,0x5EC), BASE, ARG_FPZ1 },
1262 { "cvttq/svd", FP(0x16,0x5EF), BASE, ARG_FPZ1 },
1263 { "cvtst/s", FP(0x16,0x6AC), BASE, ARG_FPZ1 },
1264 { "adds/suic", FP(0x16,0x700), BASE, ARG_FP },
1265 { "subs/suic", FP(0x16,0x701), BASE, ARG_FP },
1266 { "muls/suic", FP(0x16,0x702), BASE, ARG_FP },
1267 { "divs/suic", FP(0x16,0x703), BASE, ARG_FP },
1268 { "addt/suic", FP(0x16,0x720), BASE, ARG_FP },
1269 { "subt/suic", FP(0x16,0x721), BASE, ARG_FP },
1270 { "mult/suic", FP(0x16,0x722), BASE, ARG_FP },
1271 { "divt/suic", FP(0x16,0x723), BASE, ARG_FP },
1272 { "cvtts/suic", FP(0x16,0x72C), BASE, ARG_FPZ1 },
1273 { "cvttq/svic", FP(0x16,0x72F), BASE, ARG_FPZ1 },
1274 { "cvtqs/suic", FP(0x16,0x73C), BASE, ARG_FPZ1 },
1275 { "cvtqt/suic", FP(0x16,0x73E), BASE, ARG_FPZ1 },
1276 { "adds/suim", FP(0x16,0x740), BASE, ARG_FP },
1277 { "subs/suim", FP(0x16,0x741), BASE, ARG_FP },
1278 { "muls/suim", FP(0x16,0x742), BASE, ARG_FP },
1279 { "divs/suim", FP(0x16,0x743), BASE, ARG_FP },
1280 { "addt/suim", FP(0x16,0x760), BASE, ARG_FP },
1281 { "subt/suim", FP(0x16,0x761), BASE, ARG_FP },
1282 { "mult/suim", FP(0x16,0x762), BASE, ARG_FP },
1283 { "divt/suim", FP(0x16,0x763), BASE, ARG_FP },
1284 { "cvtts/suim", FP(0x16,0x76C), BASE, ARG_FPZ1 },
1285 { "cvttq/svim", FP(0x16,0x76F), BASE, ARG_FPZ1 },
1286 { "cvtqs/suim", FP(0x16,0x77C), BASE, ARG_FPZ1 },
1287 { "cvtqt/suim", FP(0x16,0x77E), BASE, ARG_FPZ1 },
1288 { "adds/sui", FP(0x16,0x780), BASE, ARG_FP },
1289 { "negs/sui", FP(0x16,0x781), BASE, ARG_FPZ1 }, /* pseudo */
1290 { "subs/sui", FP(0x16,0x781), BASE, ARG_FP },
1291 { "muls/sui", FP(0x16,0x782), BASE, ARG_FP },
1292 { "divs/sui", FP(0x16,0x783), BASE, ARG_FP },
1293 { "addt/sui", FP(0x16,0x7A0), BASE, ARG_FP },
1294 { "negt/sui", FP(0x16,0x7A1), BASE, ARG_FPZ1 }, /* pseudo */
1295 { "subt/sui", FP(0x16,0x7A1), BASE, ARG_FP },
1296 { "mult/sui", FP(0x16,0x7A2), BASE, ARG_FP },
1297 { "divt/sui", FP(0x16,0x7A3), BASE, ARG_FP },
1298 { "cvtts/sui", FP(0x16,0x7AC), BASE, ARG_FPZ1 },
1299 { "cvttq/svi", FP(0x16,0x7AF), BASE, ARG_FPZ1 },
1300 { "cvtqs/sui", FP(0x16,0x7BC), BASE, ARG_FPZ1 },
1301 { "cvtqt/sui", FP(0x16,0x7BE), BASE, ARG_FPZ1 },
1302 { "adds/suid", FP(0x16,0x7C0), BASE, ARG_FP },
1303 { "subs/suid", FP(0x16,0x7C1), BASE, ARG_FP },
1304 { "muls/suid", FP(0x16,0x7C2), BASE, ARG_FP },
1305 { "divs/suid", FP(0x16,0x7C3), BASE, ARG_FP },
1306 { "addt/suid", FP(0x16,0x7E0), BASE, ARG_FP },
1307 { "subt/suid", FP(0x16,0x7E1), BASE, ARG_FP },
1308 { "mult/suid", FP(0x16,0x7E2), BASE, ARG_FP },
1309 { "divt/suid", FP(0x16,0x7E3), BASE, ARG_FP },
1310 { "cvtts/suid", FP(0x16,0x7EC), BASE, ARG_FPZ1 },
1311 { "cvttq/svid", FP(0x16,0x7EF), BASE, ARG_FPZ1 },
1312 { "cvtqs/suid", FP(0x16,0x7FC), BASE, ARG_FPZ1 },
1313 { "cvtqt/suid", FP(0x16,0x7FE), BASE, ARG_FPZ1 },
1314
1315 { "cvtlq", FP(0x17,0x010), BASE, ARG_FPZ1 },
1316 { "fnop", FP(0x17,0x020), BASE, { ZA, ZB, ZC } }, /* pseudo */
1317 { "fclr", FP(0x17,0x020), BASE, { ZA, ZB, FC } }, /* pseudo */
1318 { "fabs", FP(0x17,0x020), BASE, ARG_FPZ1 }, /* pseudo */
1319 { "fmov", FP(0x17,0x020), BASE, { FA, RBA, FC } }, /* pseudo */
1320 { "cpys", FP(0x17,0x020), BASE, ARG_FP },
1321 { "fneg", FP(0x17,0x021), BASE, { FA, RBA, FC } }, /* pseudo */
1322 { "cpysn", FP(0x17,0x021), BASE, ARG_FP },
1323 { "cpyse", FP(0x17,0x022), BASE, ARG_FP },
1324 { "mt_fpcr", FP(0x17,0x024), BASE, { FA, RBA, RCA } },
1325 { "mf_fpcr", FP(0x17,0x025), BASE, { FA, RBA, RCA } },
1326 { "fcmoveq", FP(0x17,0x02A), BASE, ARG_FP },
1327 { "fcmovne", FP(0x17,0x02B), BASE, ARG_FP },
1328 { "fcmovlt", FP(0x17,0x02C), BASE, ARG_FP },
1329 { "fcmovge", FP(0x17,0x02D), BASE, ARG_FP },
1330 { "fcmovle", FP(0x17,0x02E), BASE, ARG_FP },
1331 { "fcmovgt", FP(0x17,0x02F), BASE, ARG_FP },
1332 { "cvtql", FP(0x17,0x030), BASE, ARG_FPZ1 },
1333 { "cvtql/v", FP(0x17,0x130), BASE, ARG_FPZ1 },
1334 { "cvtql/sv", FP(0x17,0x530), BASE, ARG_FPZ1 },
1335
1336 { "trapb", MFC(0x18,0x0000), BASE, ARG_NONE },
1337 { "draint", MFC(0x18,0x0000), BASE, ARG_NONE }, /* alias */
1338 { "excb", MFC(0x18,0x0400), BASE, ARG_NONE },
1339 { "mb", MFC(0x18,0x4000), BASE, ARG_NONE },
1340 { "wmb", MFC(0x18,0x4400), BASE, ARG_NONE },
1341 { "fetch", MFC(0x18,0x8000), BASE, { ZA, PRB } },
1342 { "fetch_m", MFC(0x18,0xA000), BASE, { ZA, PRB } },
1343 { "rpcc", MFC(0x18,0xC000), BASE, { RA } },
1344 { "rc", MFC(0x18,0xE000), BASE, { RA } },
1345 { "ecb", MFC(0x18,0xE800), BASE, { ZA, PRB } }, /* ev56 una */
1346 { "rs", MFC(0x18,0xF000), BASE, { RA } },
1347 { "wh64", MFC(0x18,0xF800), BASE, { ZA, PRB } }, /* ev56 una */
1348 { "wh64en", MFC(0x18,0xFC00), BASE, { ZA, PRB } }, /* ev7 una */
1349
1350 { "hw_mfpr", OPR(0x19,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1351 { "hw_mfpr", OP(0x19), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1352 { "hw_mfpr", OP(0x19), OP_MASK, EV6, { RA, ZB, EV6HWINDEX } },
1353 { "hw_mfpr/i", OPR(0x19,0x01), EV4, ARG_EV4HWMPR },
1354 { "hw_mfpr/a", OPR(0x19,0x02), EV4, ARG_EV4HWMPR },
1355 { "hw_mfpr/ai", OPR(0x19,0x03), EV4, ARG_EV4HWMPR },
1356 { "hw_mfpr/p", OPR(0x19,0x04), EV4, ARG_EV4HWMPR },
1357 { "hw_mfpr/pi", OPR(0x19,0x05), EV4, ARG_EV4HWMPR },
1358 { "hw_mfpr/pa", OPR(0x19,0x06), EV4, ARG_EV4HWMPR },
1359 { "hw_mfpr/pai", OPR(0x19,0x07), EV4, ARG_EV4HWMPR },
1360 { "pal19", PCD(0x19), BASE, ARG_PCD },
1361
1362 { "jmp", MBR_(0x1A,0), MBR_MASK | 0x3FFF, /* pseudo */
1363 BASE, { ZA, CPRB } },
1364 { "jmp", MBR(0x1A,0), BASE, { RA, CPRB, JMPHINT } },
1365 { "jsr", MBR(0x1A,1), BASE, { RA, CPRB, JMPHINT } },
1366 { "ret", MBR_(0x1A,2) | (31 << 21) | (26 << 16) | 1,/* pseudo */
1367 0xFFFFFFFF, BASE, { 0 } },
1368 { "ret", MBR(0x1A,2), BASE, { RA, CPRB, RETHINT } },
1369 { "jcr", MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } }, /* alias */
1370 { "jsr_coroutine", MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } },
1371
1372 { "hw_ldl", EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1373 { "hw_ldl", EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1374 { "hw_ldl", EV6HWMEM(0x1B,0x8), EV6, ARG_EV6HWMEM },
1375 { "hw_ldl/a", EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1376 { "hw_ldl/a", EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1377 { "hw_ldl/a", EV6HWMEM(0x1B,0xC), EV6, ARG_EV6HWMEM },
1378 { "hw_ldl/al", EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1379 { "hw_ldl/ar", EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1380 { "hw_ldl/av", EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1381 { "hw_ldl/avl", EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1382 { "hw_ldl/aw", EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1383 { "hw_ldl/awl", EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1384 { "hw_ldl/awv", EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1385 { "hw_ldl/awvl", EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1386 { "hw_ldl/l", EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1387 { "hw_ldl/p", EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1388 { "hw_ldl/p", EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1389 { "hw_ldl/p", EV6HWMEM(0x1B,0x0), EV6, ARG_EV6HWMEM },
1390 { "hw_ldl/pa", EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1391 { "hw_ldl/pa", EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1392 { "hw_ldl/pal", EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1393 { "hw_ldl/par", EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1394 { "hw_ldl/pav", EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1395 { "hw_ldl/pavl", EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1396 { "hw_ldl/paw", EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1397 { "hw_ldl/pawl", EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1398 { "hw_ldl/pawv", EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1399 { "hw_ldl/pawvl", EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1400 { "hw_ldl/pl", EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1401 { "hw_ldl/pr", EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1402 { "hw_ldl/pv", EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1403 { "hw_ldl/pvl", EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1404 { "hw_ldl/pw", EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1405 { "hw_ldl/pwl", EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1406 { "hw_ldl/pwv", EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1407 { "hw_ldl/pwvl", EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1408 { "hw_ldl/r", EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1409 { "hw_ldl/v", EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1410 { "hw_ldl/v", EV6HWMEM(0x1B,0x4), EV6, ARG_EV6HWMEM },
1411 { "hw_ldl/vl", EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1412 { "hw_ldl/w", EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1413 { "hw_ldl/w", EV6HWMEM(0x1B,0xA), EV6, ARG_EV6HWMEM },
1414 { "hw_ldl/wa", EV6HWMEM(0x1B,0xE), EV6, ARG_EV6HWMEM },
1415 { "hw_ldl/wl", EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1416 { "hw_ldl/wv", EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1417 { "hw_ldl/wvl", EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1418 { "hw_ldl_l", EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1419 { "hw_ldl_l/a", EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1420 { "hw_ldl_l/av", EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1421 { "hw_ldl_l/aw", EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1422 { "hw_ldl_l/awv", EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1423 { "hw_ldl_l/p", EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1424 { "hw_ldl_l/p", EV6HWMEM(0x1B,0x2), EV6, ARG_EV6HWMEM },
1425 { "hw_ldl_l/pa", EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1426 { "hw_ldl_l/pav", EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1427 { "hw_ldl_l/paw", EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1428 { "hw_ldl_l/pawv", EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1429 { "hw_ldl_l/pv", EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1430 { "hw_ldl_l/pw", EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1431 { "hw_ldl_l/pwv", EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1432 { "hw_ldl_l/v", EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1433 { "hw_ldl_l/w", EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1434 { "hw_ldl_l/wv", EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1435 { "hw_ldq", EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1436 { "hw_ldq", EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1437 { "hw_ldq", EV6HWMEM(0x1B,0x9), EV6, ARG_EV6HWMEM },
1438 { "hw_ldq/a", EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1439 { "hw_ldq/a", EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1440 { "hw_ldq/a", EV6HWMEM(0x1B,0xD), EV6, ARG_EV6HWMEM },
1441 { "hw_ldq/al", EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1442 { "hw_ldq/ar", EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1443 { "hw_ldq/av", EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1444 { "hw_ldq/avl", EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1445 { "hw_ldq/aw", EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1446 { "hw_ldq/awl", EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1447 { "hw_ldq/awv", EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1448 { "hw_ldq/awvl", EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1449 { "hw_ldq/l", EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1450 { "hw_ldq/p", EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1451 { "hw_ldq/p", EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1452 { "hw_ldq/p", EV6HWMEM(0x1B,0x1), EV6, ARG_EV6HWMEM },
1453 { "hw_ldq/pa", EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1454 { "hw_ldq/pa", EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1455 { "hw_ldq/pal", EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1456 { "hw_ldq/par", EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1457 { "hw_ldq/pav", EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1458 { "hw_ldq/pavl", EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1459 { "hw_ldq/paw", EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1460 { "hw_ldq/pawl", EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1461 { "hw_ldq/pawv", EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1462 { "hw_ldq/pawvl", EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1463 { "hw_ldq/pl", EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1464 { "hw_ldq/pr", EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1465 { "hw_ldq/pv", EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1466 { "hw_ldq/pvl", EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1467 { "hw_ldq/pw", EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1468 { "hw_ldq/pwl", EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1469 { "hw_ldq/pwv", EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1470 { "hw_ldq/pwvl", EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1471 { "hw_ldq/r", EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1472 { "hw_ldq/v", EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1473 { "hw_ldq/v", EV6HWMEM(0x1B,0x5), EV6, ARG_EV6HWMEM },
1474 { "hw_ldq/vl", EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1475 { "hw_ldq/w", EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1476 { "hw_ldq/w", EV6HWMEM(0x1B,0xB), EV6, ARG_EV6HWMEM },
1477 { "hw_ldq/wa", EV6HWMEM(0x1B,0xF), EV6, ARG_EV6HWMEM },
1478 { "hw_ldq/wl", EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1479 { "hw_ldq/wv", EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1480 { "hw_ldq/wvl", EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1481 { "hw_ldq_l", EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1482 { "hw_ldq_l/a", EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1483 { "hw_ldq_l/av", EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1484 { "hw_ldq_l/aw", EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1485 { "hw_ldq_l/awv", EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1486 { "hw_ldq_l/p", EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1487 { "hw_ldq_l/p", EV6HWMEM(0x1B,0x3), EV6, ARG_EV6HWMEM },
1488 { "hw_ldq_l/pa", EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1489 { "hw_ldq_l/pav", EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1490 { "hw_ldq_l/paw", EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1491 { "hw_ldq_l/pawv", EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1492 { "hw_ldq_l/pv", EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1493 { "hw_ldq_l/pw", EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1494 { "hw_ldq_l/pwv", EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1495 { "hw_ldq_l/v", EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1496 { "hw_ldq_l/w", EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1497 { "hw_ldq_l/wv", EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1498 { "hw_ld", EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1499 { "hw_ld", EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1500 { "hw_ld/a", EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1501 { "hw_ld/a", EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1502 { "hw_ld/al", EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1503 { "hw_ld/aq", EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1504 { "hw_ld/aq", EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1505 { "hw_ld/aql", EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1506 { "hw_ld/aqv", EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1507 { "hw_ld/aqvl", EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1508 { "hw_ld/ar", EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1509 { "hw_ld/arq", EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1510 { "hw_ld/av", EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1511 { "hw_ld/avl", EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1512 { "hw_ld/aw", EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1513 { "hw_ld/awl", EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1514 { "hw_ld/awq", EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1515 { "hw_ld/awql", EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1516 { "hw_ld/awqv", EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1517 { "hw_ld/awqvl", EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1518 { "hw_ld/awv", EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1519 { "hw_ld/awvl", EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1520 { "hw_ld/l", EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1521 { "hw_ld/p", EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1522 { "hw_ld/p", EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1523 { "hw_ld/pa", EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1524 { "hw_ld/pa", EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1525 { "hw_ld/pal", EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1526 { "hw_ld/paq", EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1527 { "hw_ld/paq", EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1528 { "hw_ld/paql", EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1529 { "hw_ld/paqv", EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1530 { "hw_ld/paqvl", EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1531 { "hw_ld/par", EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1532 { "hw_ld/parq", EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1533 { "hw_ld/pav", EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1534 { "hw_ld/pavl", EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1535 { "hw_ld/paw", EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1536 { "hw_ld/pawl", EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1537 { "hw_ld/pawq", EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1538 { "hw_ld/pawql", EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1539 { "hw_ld/pawqv", EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1540 { "hw_ld/pawqvl", EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1541 { "hw_ld/pawv", EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1542 { "hw_ld/pawvl", EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1543 { "hw_ld/pl", EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1544 { "hw_ld/pq", EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1545 { "hw_ld/pq", EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1546 { "hw_ld/pql", EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1547 { "hw_ld/pqv", EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1548 { "hw_ld/pqvl", EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1549 { "hw_ld/pr", EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1550 { "hw_ld/prq", EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1551 { "hw_ld/pv", EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1552 { "hw_ld/pvl", EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1553 { "hw_ld/pw", EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1554 { "hw_ld/pwl", EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1555 { "hw_ld/pwq", EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1556 { "hw_ld/pwql", EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1557 { "hw_ld/pwqv", EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1558 { "hw_ld/pwqvl", EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1559 { "hw_ld/pwv", EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1560 { "hw_ld/pwvl", EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1561 { "hw_ld/q", EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1562 { "hw_ld/q", EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1563 { "hw_ld/ql", EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1564 { "hw_ld/qv", EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1565 { "hw_ld/qvl", EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1566 { "hw_ld/r", EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1567 { "hw_ld/rq", EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1568 { "hw_ld/v", EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1569 { "hw_ld/vl", EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1570 { "hw_ld/w", EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1571 { "hw_ld/wl", EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1572 { "hw_ld/wq", EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1573 { "hw_ld/wql", EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1574 { "hw_ld/wqv", EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1575 { "hw_ld/wqvl", EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1576 { "hw_ld/wv", EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1577 { "hw_ld/wvl", EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1578 { "pal1b", PCD(0x1B), BASE, ARG_PCD },
1579
1580 { "sextb", OPR(0x1C, 0x00), BWX, ARG_OPRZ1 },
1581 { "sextw", OPR(0x1C, 0x01), BWX, ARG_OPRZ1 },
1582 { "ctpop", OPR(0x1C, 0x30), CIX, ARG_OPRZ1 },
1583 { "perr", OPR(0x1C, 0x31), MAX, ARG_OPR },
1584 { "ctlz", OPR(0x1C, 0x32), CIX, ARG_OPRZ1 },
1585 { "cttz", OPR(0x1C, 0x33), CIX, ARG_OPRZ1 },
1586 { "unpkbw", OPR(0x1C, 0x34), MAX, ARG_OPRZ1 },
1587 { "unpkbl", OPR(0x1C, 0x35), MAX, ARG_OPRZ1 },
1588 { "pkwb", OPR(0x1C, 0x36), MAX, ARG_OPRZ1 },
1589 { "pklb", OPR(0x1C, 0x37), MAX, ARG_OPRZ1 },
1590 { "minsb8", OPR(0x1C, 0x38), MAX, ARG_OPR },
1591 { "minsb8", OPRL(0x1C, 0x38), MAX, ARG_OPRL },
1592 { "minsw4", OPR(0x1C, 0x39), MAX, ARG_OPR },
1593 { "minsw4", OPRL(0x1C, 0x39), MAX, ARG_OPRL },
1594 { "minub8", OPR(0x1C, 0x3A), MAX, ARG_OPR },
1595 { "minub8", OPRL(0x1C, 0x3A), MAX, ARG_OPRL },
1596 { "minuw4", OPR(0x1C, 0x3B), MAX, ARG_OPR },
1597 { "minuw4", OPRL(0x1C, 0x3B), MAX, ARG_OPRL },
1598 { "maxub8", OPR(0x1C, 0x3C), MAX, ARG_OPR },
1599 { "maxub8", OPRL(0x1C, 0x3C), MAX, ARG_OPRL },
1600 { "maxuw4", OPR(0x1C, 0x3D), MAX, ARG_OPR },
1601 { "maxuw4", OPRL(0x1C, 0x3D), MAX, ARG_OPRL },
1602 { "maxsb8", OPR(0x1C, 0x3E), MAX, ARG_OPR },
1603 { "maxsb8", OPRL(0x1C, 0x3E), MAX, ARG_OPRL },
1604 { "maxsw4", OPR(0x1C, 0x3F), MAX, ARG_OPR },
1605 { "maxsw4", OPRL(0x1C, 0x3F), MAX, ARG_OPRL },
1606 { "ftoit", FP(0x1C, 0x70), CIX, { FA, ZB, RC } },
1607 { "ftois", FP(0x1C, 0x78), CIX, { FA, ZB, RC } },
1608
1609 { "hw_mtpr", OPR(0x1D,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1610 { "hw_mtpr", OP(0x1D), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1611 { "hw_mtpr", OP(0x1D), OP_MASK, EV6, { ZA, RB, EV6HWINDEX } },
1612 { "hw_mtpr/i", OPR(0x1D,0x01), EV4, ARG_EV4HWMPR },
1613 { "hw_mtpr/a", OPR(0x1D,0x02), EV4, ARG_EV4HWMPR },
1614 { "hw_mtpr/ai", OPR(0x1D,0x03), EV4, ARG_EV4HWMPR },
1615 { "hw_mtpr/p", OPR(0x1D,0x04), EV4, ARG_EV4HWMPR },
1616 { "hw_mtpr/pi", OPR(0x1D,0x05), EV4, ARG_EV4HWMPR },
1617 { "hw_mtpr/pa", OPR(0x1D,0x06), EV4, ARG_EV4HWMPR },
1618 { "hw_mtpr/pai", OPR(0x1D,0x07), EV4, ARG_EV4HWMPR },
1619 { "pal1d", PCD(0x1D), BASE, ARG_PCD },
1620
1621 { "hw_rei", SPCD(0x1E,0x3FF8000), EV4|EV5, ARG_NONE },
1622 { "hw_rei_stall", SPCD(0x1E,0x3FFC000), EV5, ARG_NONE },
1623 { "hw_jmp", EV6HWMBR(0x1E,0x0), EV6, { ZA, PRB, EV6HWJMPHINT } },
1624 { "hw_jsr", EV6HWMBR(0x1E,0x2), EV6, { ZA, PRB, EV6HWJMPHINT } },
1625 { "hw_ret", EV6HWMBR(0x1E,0x4), EV6, { ZA, PRB } },
1626 { "hw_jcr", EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } },
1627 { "hw_coroutine", EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } }, /* alias */
1628 { "hw_jmp/stall", EV6HWMBR(0x1E,0x1), EV6, { ZA, PRB, EV6HWJMPHINT } },
1629 { "hw_jsr/stall", EV6HWMBR(0x1E,0x3), EV6, { ZA, PRB, EV6HWJMPHINT } },
1630 { "hw_ret/stall", EV6HWMBR(0x1E,0x5), EV6, { ZA, PRB } },
1631 { "hw_jcr/stall", EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } },
1632 { "hw_coroutine/stall", EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } }, /* alias */
1633 { "pal1e", PCD(0x1E), BASE, ARG_PCD },
1634
1635 { "hw_stl", EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1636 { "hw_stl", EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1637 { "hw_stl", EV6HWMEM(0x1F,0x4), EV6, ARG_EV6HWMEM }, /* ??? 8 */
1638 { "hw_stl/a", EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1639 { "hw_stl/a", EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1640 { "hw_stl/a", EV6HWMEM(0x1F,0xC), EV6, ARG_EV6HWMEM },
1641 { "hw_stl/ac", EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1642 { "hw_stl/ar", EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1643 { "hw_stl/av", EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1644 { "hw_stl/avc", EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1645 { "hw_stl/c", EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1646 { "hw_stl/p", EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1647 { "hw_stl/p", EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1648 { "hw_stl/p", EV6HWMEM(0x1F,0x0), EV6, ARG_EV6HWMEM },
1649 { "hw_stl/pa", EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1650 { "hw_stl/pa", EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1651 { "hw_stl/pac", EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1652 { "hw_stl/pav", EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1653 { "hw_stl/pavc", EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1654 { "hw_stl/pc", EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1655 { "hw_stl/pr", EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1656 { "hw_stl/pv", EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1657 { "hw_stl/pvc", EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1658 { "hw_stl/r", EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1659 { "hw_stl/v", EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1660 { "hw_stl/vc", EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1661 { "hw_stl_c", EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1662 { "hw_stl_c/a", EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1663 { "hw_stl_c/av", EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1664 { "hw_stl_c/p", EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1665 { "hw_stl_c/p", EV6HWMEM(0x1F,0x2), EV6, ARG_EV6HWMEM },
1666 { "hw_stl_c/pa", EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1667 { "hw_stl_c/pav", EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1668 { "hw_stl_c/pv", EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1669 { "hw_stl_c/v", EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1670 { "hw_stq", EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1671 { "hw_stq", EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1672 { "hw_stq", EV6HWMEM(0x1F,0x5), EV6, ARG_EV6HWMEM }, /* ??? 9 */
1673 { "hw_stq/a", EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1674 { "hw_stq/a", EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1675 { "hw_stq/a", EV6HWMEM(0x1F,0xD), EV6, ARG_EV6HWMEM },
1676 { "hw_stq/ac", EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1677 { "hw_stq/ar", EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1678 { "hw_stq/av", EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1679 { "hw_stq/avc", EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1680 { "hw_stq/c", EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1681 { "hw_stq/p", EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1682 { "hw_stq/p", EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1683 { "hw_stq/p", EV6HWMEM(0x1F,0x1), EV6, ARG_EV6HWMEM },
1684 { "hw_stq/pa", EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1685 { "hw_stq/pa", EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1686 { "hw_stq/pac", EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1687 { "hw_stq/par", EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1688 { "hw_stq/par", EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1689 { "hw_stq/pav", EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1690 { "hw_stq/pavc", EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1691 { "hw_stq/pc", EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1692 { "hw_stq/pr", EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1693 { "hw_stq/pv", EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1694 { "hw_stq/pvc", EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1695 { "hw_stq/r", EV4HWMEM(0x1F,0x3), EV4, ARG_EV4HWMEM },
1696 { "hw_stq/v", EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1697 { "hw_stq/vc", EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1698 { "hw_stq_c", EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1699 { "hw_stq_c/a", EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1700 { "hw_stq_c/av", EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1701 { "hw_stq_c/p", EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1702 { "hw_stq_c/p", EV6HWMEM(0x1F,0x3), EV6, ARG_EV6HWMEM },
1703 { "hw_stq_c/pa", EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1704 { "hw_stq_c/pav", EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1705 { "hw_stq_c/pv", EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1706 { "hw_stq_c/v", EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1707 { "hw_st", EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1708 { "hw_st", EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1709 { "hw_st/a", EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1710 { "hw_st/a", EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1711 { "hw_st/ac", EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1712 { "hw_st/aq", EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1713 { "hw_st/aq", EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1714 { "hw_st/aqc", EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1715 { "hw_st/aqv", EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1716 { "hw_st/aqvc", EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1717 { "hw_st/ar", EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1718 { "hw_st/arq", EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1719 { "hw_st/av", EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1720 { "hw_st/avc", EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1721 { "hw_st/c", EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1722 { "hw_st/p", EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1723 { "hw_st/p", EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1724 { "hw_st/pa", EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1725 { "hw_st/pa", EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1726 { "hw_st/pac", EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1727 { "hw_st/paq", EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1728 { "hw_st/paq", EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1729 { "hw_st/paqc", EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1730 { "hw_st/paqv", EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1731 { "hw_st/paqvc", EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1732 { "hw_st/par", EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1733 { "hw_st/parq", EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1734 { "hw_st/pav", EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1735 { "hw_st/pavc", EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1736 { "hw_st/pc", EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1737 { "hw_st/pq", EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1738 { "hw_st/pq", EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1739 { "hw_st/pqc", EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1740 { "hw_st/pqv", EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1741 { "hw_st/pqvc", EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1742 { "hw_st/pr", EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1743 { "hw_st/prq", EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1744 { "hw_st/pv", EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1745 { "hw_st/pvc", EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1746 { "hw_st/q", EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1747 { "hw_st/q", EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1748 { "hw_st/qc", EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1749 { "hw_st/qv", EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1750 { "hw_st/qvc", EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1751 { "hw_st/r", EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1752 { "hw_st/v", EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1753 { "hw_st/vc", EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1754 { "pal1f", PCD(0x1F), BASE, ARG_PCD },
1755
1756 { "ldf", MEM(0x20), BASE, ARG_FMEM },
1757 { "ldg", MEM(0x21), BASE, ARG_FMEM },
1758 { "lds", MEM(0x22), BASE, ARG_FMEM },
1759 { "ldt", MEM(0x23), BASE, ARG_FMEM },
1760 { "stf", MEM(0x24), BASE, ARG_FMEM },
1761 { "stg", MEM(0x25), BASE, ARG_FMEM },
1762 { "sts", MEM(0x26), BASE, ARG_FMEM },
1763 { "stt", MEM(0x27), BASE, ARG_FMEM },
1764
1765 { "ldl", MEM(0x28), BASE, ARG_MEM },
1766 { "ldq", MEM(0x29), BASE, ARG_MEM },
1767 { "ldl_l", MEM(0x2A), BASE, ARG_MEM },
1768 { "ldq_l", MEM(0x2B), BASE, ARG_MEM },
1769 { "stl", MEM(0x2C), BASE, ARG_MEM },
1770 { "stq", MEM(0x2D), BASE, ARG_MEM },
1771 { "stl_c", MEM(0x2E), BASE, ARG_MEM },
1772 { "stq_c", MEM(0x2F), BASE, ARG_MEM },
1773
1774 { "br", BRA(0x30), BASE, { ZA, BDISP } }, /* pseudo */
1775 { "br", BRA(0x30), BASE, ARG_BRA },
1776 { "fbeq", BRA(0x31), BASE, ARG_FBRA },
1777 { "fblt", BRA(0x32), BASE, ARG_FBRA },
1778 { "fble", BRA(0x33), BASE, ARG_FBRA },
1779 { "bsr", BRA(0x34), BASE, ARG_BRA },
1780 { "fbne", BRA(0x35), BASE, ARG_FBRA },
1781 { "fbge", BRA(0x36), BASE, ARG_FBRA },
1782 { "fbgt", BRA(0x37), BASE, ARG_FBRA },
1783 { "blbc", BRA(0x38), BASE, ARG_BRA },
1784 { "beq", BRA(0x39), BASE, ARG_BRA },
1785 { "blt", BRA(0x3A), BASE, ARG_BRA },
1786 { "ble", BRA(0x3B), BASE, ARG_BRA },
1787 { "blbs", BRA(0x3C), BASE, ARG_BRA },
1788 { "bne", BRA(0x3D), BASE, ARG_BRA },
1789 { "bge", BRA(0x3E), BASE, ARG_BRA },
1790 { "bgt", BRA(0x3F), BASE, ARG_BRA },
1791};
1792
1793const unsigned alpha_num_opcodes = sizeof(alpha_opcodes)/sizeof(*alpha_opcodes);
1794
1795/* OSF register names. */
1796
1797static const char * const osf_regnames[64] = {
1798 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
1799 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
1800 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
1801 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
1802 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7",
1803 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",
1804 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",
1805 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31"
1806};
1807
1808/* VMS register names. */
1809
1810static const char * const vms_regnames[64] = {
1811 "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7",
1812 "R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15",
1813 "R16", "R17", "R18", "R19", "R20", "R21", "R22", "R23",
1814 "R24", "AI", "RA", "PV", "AT", "FP", "SP", "RZ",
1815 "F0", "F1", "F2", "F3", "F4", "F5", "F6", "F7",
1816 "F8", "F9", "F10", "F11", "F12", "F13", "F14", "F15",
1817 "F16", "F17", "F18", "F19", "F20", "F21", "F22", "F23",
1818 "F24", "F25", "F26", "F27", "F28", "F29", "F30", "FZ"
1819};
1820
1821/* Disassemble Alpha instructions. */
1822
1823int
1824print_insn_alpha (memaddr, info)
1825 bfd_vma memaddr;
1826 struct disassemble_info *info;
1827{
1828 static const struct alpha_opcode *opcode_index[AXP_NOPS+1];
1829 const char * const * regnames;
1830 const struct alpha_opcode *opcode, *opcode_end;
1831 const unsigned char *opindex;
1832 unsigned insn, op, isa_mask;
1833 int need_comma;
1834
1835 /* Initialize the majorop table the first time through */
1836 if (!opcode_index[0])
1837 {
1838 opcode = alpha_opcodes;
1839 opcode_end = opcode + alpha_num_opcodes;
1840
1841 for (op = 0; op < AXP_NOPS; ++op)
1842 {
1843 opcode_index[op] = opcode;
1844 while (opcode < opcode_end && op == AXP_OP (opcode->opcode))
1845 ++opcode;
1846 }
1847 opcode_index[op] = opcode;
1848 }
1849
1850 if (info->flavour == bfd_target_evax_flavour)
1851 regnames = vms_regnames;
1852 else
1853 regnames = osf_regnames;
1854
1855 isa_mask = AXP_OPCODE_NOPAL;
1856 switch (info->mach)
1857 {
1858 case bfd_mach_alpha_ev4:
1859 isa_mask |= AXP_OPCODE_EV4;
1860 break;
1861 case bfd_mach_alpha_ev5:
1862 isa_mask |= AXP_OPCODE_EV5;
1863 break;
1864 case bfd_mach_alpha_ev6:
1865 isa_mask |= AXP_OPCODE_EV6;
1866 break;
1867 }
1868
1869 /* Read the insn into a host word */
1870 {
1871 bfd_byte buffer[4];
1872 int status = (*info->read_memory_func) (memaddr, buffer, 4, info);
1873 if (status != 0)
1874 {
1875 (*info->memory_error_func) (status, memaddr, info);
1876 return -1;
1877 }
1878 insn = bfd_getl32 (buffer);
1879 }
1880
1881 /* Get the major opcode of the instruction. */
1882 op = AXP_OP (insn);
1883
1884 /* Find the first match in the opcode table. */
1885 opcode_end = opcode_index[op + 1];
1886 for (opcode = opcode_index[op]; opcode < opcode_end; ++opcode)
1887 {
1888 if ((insn ^ opcode->opcode) & opcode->mask)
1889 continue;
1890
1891 if (!(opcode->flags & isa_mask))
1892 continue;
1893
1894 /* Make two passes over the operands. First see if any of them
1895 have extraction functions, and, if they do, make sure the
1896 instruction is valid. */
1897 {
1898 int invalid = 0;
1899 for (opindex = opcode->operands; *opindex != 0; opindex++)
1900 {
1901 const struct alpha_operand *operand = alpha_operands + *opindex;
1902 if (operand->extract)
1903 (*operand->extract) (insn, &invalid);
1904 }
1905 if (invalid)
1906 continue;
1907 }
1908
1909 /* The instruction is valid. */
1910 goto found;
1911 }
1912
1913 /* No instruction found */
1914 (*info->fprintf_func) (info->stream, ".long %#08x", insn);
1915
1916 return 4;
1917
1918found:
1919 (*info->fprintf_func) (info->stream, "%s", opcode->name);
1920 if (opcode->operands[0] != 0)
1921 (*info->fprintf_func) (info->stream, "\t");
1922
1923 /* Now extract and print the operands. */
1924 need_comma = 0;
1925 for (opindex = opcode->operands; *opindex != 0; opindex++)
1926 {
1927 const struct alpha_operand *operand = alpha_operands + *opindex;
1928 int value;
1929
1930 /* Operands that are marked FAKE are simply ignored. We
1931 already made sure that the extract function considered
1932 the instruction to be valid. */
1933 if ((operand->flags & AXP_OPERAND_FAKE) != 0)
1934 continue;
1935
1936 /* Extract the value from the instruction. */
1937 if (operand->extract)
1938 value = (*operand->extract) (insn, (int *) NULL);
1939 else
1940 {
1941 value = (insn >> operand->shift) & ((1 << operand->bits) - 1);
1942 if (operand->flags & AXP_OPERAND_SIGNED)
1943 {
1944 int signbit = 1 << (operand->bits - 1);
1945 value = (value ^ signbit) - signbit;
1946 }
1947 }
1948
1949 if (need_comma &&
1950 ((operand->flags & (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA))
1951 != AXP_OPERAND_PARENS))
1952 {
1953 (*info->fprintf_func) (info->stream, ",");
1954 }
1955 if (operand->flags & AXP_OPERAND_PARENS)
1956 (*info->fprintf_func) (info->stream, "(");
1957
1958 /* Print the operand as directed by the flags. */
1959 if (operand->flags & AXP_OPERAND_IR)
1960 (*info->fprintf_func) (info->stream, "%s", regnames[value]);
1961 else if (operand->flags & AXP_OPERAND_FPR)
1962 (*info->fprintf_func) (info->stream, "%s", regnames[value + 32]);
1963 else if (operand->flags & AXP_OPERAND_RELATIVE)
1964 (*info->print_address_func) (memaddr + 4 + value, info);
1965 else if (operand->flags & AXP_OPERAND_SIGNED)
1966 (*info->fprintf_func) (info->stream, "%d", value);
1967 else
1968 (*info->fprintf_func) (info->stream, "%#x", value);
1969
1970 if (operand->flags & AXP_OPERAND_PARENS)
1971 (*info->fprintf_func) (info->stream, ")");
1972 need_comma = 1;
1973 }
1974
1975 return 4;
1976}