]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blame - arch/i386/kernel/traps.c
[PATCH] i386 CPU hotplug
[mirror_ubuntu-disco-kernel.git] / arch / i386 / kernel / traps.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/i386/traps.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9
10/*
11 * 'Traps.c' handles hardware traps and faults after we have saved some
12 * state in 'asm.s'.
13 */
14#include <linux/config.h>
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/string.h>
18#include <linux/errno.h>
19#include <linux/timer.h>
20#include <linux/mm.h>
21#include <linux/init.h>
22#include <linux/delay.h>
23#include <linux/spinlock.h>
24#include <linux/interrupt.h>
25#include <linux/highmem.h>
26#include <linux/kallsyms.h>
27#include <linux/ptrace.h>
28#include <linux/utsname.h>
29#include <linux/kprobes.h>
30
31#ifdef CONFIG_EISA
32#include <linux/ioport.h>
33#include <linux/eisa.h>
34#endif
35
36#ifdef CONFIG_MCA
37#include <linux/mca.h>
38#endif
39
40#include <asm/processor.h>
41#include <asm/system.h>
42#include <asm/uaccess.h>
43#include <asm/io.h>
44#include <asm/atomic.h>
45#include <asm/debugreg.h>
46#include <asm/desc.h>
47#include <asm/i387.h>
48#include <asm/nmi.h>
49
50#include <asm/smp.h>
51#include <asm/arch_hooks.h>
52#include <asm/kdebug.h>
53
54#include <linux/irq.h>
55#include <linux/module.h>
56
57#include "mach_traps.h"
58
59asmlinkage int system_call(void);
60
61struct desc_struct default_ldt[] = { { 0, 0 }, { 0, 0 }, { 0, 0 },
62 { 0, 0 }, { 0, 0 } };
63
64/* Do we ignore FPU interrupts ? */
65char ignore_fpu_irq = 0;
66
67/*
68 * The IDT has to be page-aligned to simplify the Pentium
69 * F0 0F bug workaround.. We have a special link segment
70 * for this.
71 */
72struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, };
73
74asmlinkage void divide_error(void);
75asmlinkage void debug(void);
76asmlinkage void nmi(void);
77asmlinkage void int3(void);
78asmlinkage void overflow(void);
79asmlinkage void bounds(void);
80asmlinkage void invalid_op(void);
81asmlinkage void device_not_available(void);
82asmlinkage void coprocessor_segment_overrun(void);
83asmlinkage void invalid_TSS(void);
84asmlinkage void segment_not_present(void);
85asmlinkage void stack_segment(void);
86asmlinkage void general_protection(void);
87asmlinkage void page_fault(void);
88asmlinkage void coprocessor_error(void);
89asmlinkage void simd_coprocessor_error(void);
90asmlinkage void alignment_check(void);
91asmlinkage void spurious_interrupt_bug(void);
92asmlinkage void machine_check(void);
93
94static int kstack_depth_to_print = 24;
95struct notifier_block *i386die_chain;
96static DEFINE_SPINLOCK(die_notifier_lock);
97
98int register_die_notifier(struct notifier_block *nb)
99{
100 int err = 0;
101 unsigned long flags;
102 spin_lock_irqsave(&die_notifier_lock, flags);
103 err = notifier_chain_register(&i386die_chain, nb);
104 spin_unlock_irqrestore(&die_notifier_lock, flags);
105 return err;
106}
129f6946 107EXPORT_SYMBOL(register_die_notifier);
1da177e4
LT
108
109static inline int valid_stack_ptr(struct thread_info *tinfo, void *p)
110{
111 return p > (void *)tinfo &&
112 p < (void *)tinfo + THREAD_SIZE - 3;
113}
114
115static inline unsigned long print_context_stack(struct thread_info *tinfo,
116 unsigned long *stack, unsigned long ebp)
117{
118 unsigned long addr;
119
120#ifdef CONFIG_FRAME_POINTER
121 while (valid_stack_ptr(tinfo, (void *)ebp)) {
122 addr = *(unsigned long *)(ebp + 4);
123 printk(" [<%08lx>] ", addr);
124 print_symbol("%s", addr);
125 printk("\n");
126 ebp = *(unsigned long *)ebp;
127 }
128#else
129 while (valid_stack_ptr(tinfo, stack)) {
130 addr = *stack++;
131 if (__kernel_text_address(addr)) {
132 printk(" [<%08lx>]", addr);
133 print_symbol(" %s", addr);
134 printk("\n");
135 }
136 }
137#endif
138 return ebp;
139}
140
141void show_trace(struct task_struct *task, unsigned long * stack)
142{
143 unsigned long ebp;
144
145 if (!task)
146 task = current;
147
148 if (task == current) {
149 /* Grab ebp right from our regs */
150 asm ("movl %%ebp, %0" : "=r" (ebp) : );
151 } else {
152 /* ebp is the last reg pushed by switch_to */
153 ebp = *(unsigned long *) task->thread.esp;
154 }
155
156 while (1) {
157 struct thread_info *context;
158 context = (struct thread_info *)
159 ((unsigned long)stack & (~(THREAD_SIZE - 1)));
160 ebp = print_context_stack(context, stack, ebp);
161 stack = (unsigned long*)context->previous_esp;
162 if (!stack)
163 break;
164 printk(" =======================\n");
165 }
166}
167
168void show_stack(struct task_struct *task, unsigned long *esp)
169{
170 unsigned long *stack;
171 int i;
172
173 if (esp == NULL) {
174 if (task)
175 esp = (unsigned long*)task->thread.esp;
176 else
177 esp = (unsigned long *)&esp;
178 }
179
180 stack = esp;
181 for(i = 0; i < kstack_depth_to_print; i++) {
182 if (kstack_end(stack))
183 break;
184 if (i && ((i % 8) == 0))
185 printk("\n ");
186 printk("%08lx ", *stack++);
187 }
188 printk("\nCall Trace:\n");
189 show_trace(task, esp);
190}
191
192/*
193 * The architecture-independent dump_stack generator
194 */
195void dump_stack(void)
196{
197 unsigned long stack;
198
199 show_trace(current, &stack);
200}
201
202EXPORT_SYMBOL(dump_stack);
203
204void show_registers(struct pt_regs *regs)
205{
206 int i;
207 int in_kernel = 1;
208 unsigned long esp;
209 unsigned short ss;
210
211 esp = (unsigned long) (&regs->esp);
212 ss = __KERNEL_DS;
717b594a 213 if (user_mode(regs)) {
1da177e4
LT
214 in_kernel = 0;
215 esp = regs->esp;
216 ss = regs->xss & 0xffff;
217 }
218 print_modules();
219 printk("CPU: %d\nEIP: %04x:[<%08lx>] %s VLI\nEFLAGS: %08lx"
220 " (%s) \n",
221 smp_processor_id(), 0xffff & regs->xcs, regs->eip,
222 print_tainted(), regs->eflags, system_utsname.release);
223 print_symbol("EIP is at %s\n", regs->eip);
224 printk("eax: %08lx ebx: %08lx ecx: %08lx edx: %08lx\n",
225 regs->eax, regs->ebx, regs->ecx, regs->edx);
226 printk("esi: %08lx edi: %08lx ebp: %08lx esp: %08lx\n",
227 regs->esi, regs->edi, regs->ebp, esp);
228 printk("ds: %04x es: %04x ss: %04x\n",
229 regs->xds & 0xffff, regs->xes & 0xffff, ss);
230 printk("Process %s (pid: %d, threadinfo=%p task=%p)",
231 current->comm, current->pid, current_thread_info(), current);
232 /*
233 * When in-kernel, we also print out the stack and code at the
234 * time of the fault..
235 */
236 if (in_kernel) {
237 u8 *eip;
238
239 printk("\nStack: ");
240 show_stack(NULL, (unsigned long*)esp);
241
242 printk("Code: ");
243
244 eip = (u8 *)regs->eip - 43;
245 for (i = 0; i < 64; i++, eip++) {
246 unsigned char c;
247
248 if (eip < (u8 *)PAGE_OFFSET || __get_user(c, eip)) {
249 printk(" Bad EIP value.");
250 break;
251 }
252 if (eip == (u8 *)regs->eip)
253 printk("<%02x> ", c);
254 else
255 printk("%02x ", c);
256 }
257 }
258 printk("\n");
259}
260
261static void handle_BUG(struct pt_regs *regs)
262{
263 unsigned short ud2;
264 unsigned short line;
265 char *file;
266 char c;
267 unsigned long eip;
268
717b594a 269 if (user_mode(regs))
1da177e4
LT
270 goto no_bug; /* Not in kernel */
271
272 eip = regs->eip;
273
274 if (eip < PAGE_OFFSET)
275 goto no_bug;
276 if (__get_user(ud2, (unsigned short *)eip))
277 goto no_bug;
278 if (ud2 != 0x0b0f)
279 goto no_bug;
280 if (__get_user(line, (unsigned short *)(eip + 2)))
281 goto bug;
282 if (__get_user(file, (char **)(eip + 4)) ||
283 (unsigned long)file < PAGE_OFFSET || __get_user(c, file))
284 file = "<bad filename>";
285
286 printk("------------[ cut here ]------------\n");
287 printk(KERN_ALERT "kernel BUG at %s:%d!\n", file, line);
288
289no_bug:
290 return;
291
292 /* Here we know it was a BUG but file-n-line is unavailable */
293bug:
294 printk("Kernel BUG\n");
295}
296
297void die(const char * str, struct pt_regs * regs, long err)
298{
299 static struct {
300 spinlock_t lock;
301 u32 lock_owner;
302 int lock_owner_depth;
303 } die = {
304 .lock = SPIN_LOCK_UNLOCKED,
305 .lock_owner = -1,
306 .lock_owner_depth = 0
307 };
308 static int die_counter;
309
39c715b7 310 if (die.lock_owner != raw_smp_processor_id()) {
1da177e4
LT
311 console_verbose();
312 spin_lock_irq(&die.lock);
313 die.lock_owner = smp_processor_id();
314 die.lock_owner_depth = 0;
315 bust_spinlocks(1);
316 }
317
318 if (++die.lock_owner_depth < 3) {
319 int nl = 0;
320 handle_BUG(regs);
321 printk(KERN_ALERT "%s: %04lx [#%d]\n", str, err & 0xffff, ++die_counter);
322#ifdef CONFIG_PREEMPT
323 printk("PREEMPT ");
324 nl = 1;
325#endif
326#ifdef CONFIG_SMP
327 printk("SMP ");
328 nl = 1;
329#endif
330#ifdef CONFIG_DEBUG_PAGEALLOC
331 printk("DEBUG_PAGEALLOC");
332 nl = 1;
333#endif
334 if (nl)
335 printk("\n");
336 notify_die(DIE_OOPS, (char *)str, regs, err, 255, SIGSEGV);
337 show_registers(regs);
338 } else
339 printk(KERN_ERR "Recursive die() failure, output suppressed\n");
340
341 bust_spinlocks(0);
342 die.lock_owner = -1;
343 spin_unlock_irq(&die.lock);
344 if (in_interrupt())
345 panic("Fatal exception in interrupt");
346
347 if (panic_on_oops) {
348 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
349 ssleep(5);
350 panic("Fatal exception");
351 }
352 do_exit(SIGSEGV);
353}
354
355static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
356{
717b594a 357 if (!user_mode_vm(regs))
1da177e4
LT
358 die(str, regs, err);
359}
360
361static void do_trap(int trapnr, int signr, char *str, int vm86,
362 struct pt_regs * regs, long error_code, siginfo_t *info)
363{
364 if (regs->eflags & VM_MASK) {
365 if (vm86)
366 goto vm86_trap;
367 goto trap_signal;
368 }
369
717b594a 370 if (!user_mode(regs))
1da177e4
LT
371 goto kernel_trap;
372
373 trap_signal: {
374 struct task_struct *tsk = current;
375 tsk->thread.error_code = error_code;
376 tsk->thread.trap_no = trapnr;
377 if (info)
378 force_sig_info(signr, info, tsk);
379 else
380 force_sig(signr, tsk);
381 return;
382 }
383
384 kernel_trap: {
385 if (!fixup_exception(regs))
386 die(str, regs, error_code);
387 return;
388 }
389
390 vm86_trap: {
391 int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr);
392 if (ret) goto trap_signal;
393 return;
394 }
395}
396
397#define DO_ERROR(trapnr, signr, str, name) \
398fastcall void do_##name(struct pt_regs * regs, long error_code) \
399{ \
400 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
401 == NOTIFY_STOP) \
402 return; \
403 do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
404}
405
406#define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
407fastcall void do_##name(struct pt_regs * regs, long error_code) \
408{ \
409 siginfo_t info; \
410 info.si_signo = signr; \
411 info.si_errno = 0; \
412 info.si_code = sicode; \
413 info.si_addr = (void __user *)siaddr; \
414 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
415 == NOTIFY_STOP) \
416 return; \
417 do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
418}
419
420#define DO_VM86_ERROR(trapnr, signr, str, name) \
421fastcall void do_##name(struct pt_regs * regs, long error_code) \
422{ \
423 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
424 == NOTIFY_STOP) \
425 return; \
426 do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
427}
428
429#define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
430fastcall void do_##name(struct pt_regs * regs, long error_code) \
431{ \
432 siginfo_t info; \
433 info.si_signo = signr; \
434 info.si_errno = 0; \
435 info.si_code = sicode; \
436 info.si_addr = (void __user *)siaddr; \
437 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
438 == NOTIFY_STOP) \
439 return; \
440 do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
441}
442
443DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->eip)
444#ifndef CONFIG_KPROBES
445DO_VM86_ERROR( 3, SIGTRAP, "int3", int3)
446#endif
447DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow)
448DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds)
449DO_ERROR_INFO( 6, SIGILL, "invalid operand", invalid_op, ILL_ILLOPN, regs->eip)
450DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
451DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
452DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
453DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
454DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
a879cbbb 455DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0)
1da177e4
LT
456
457fastcall void do_general_protection(struct pt_regs * regs, long error_code)
458{
459 int cpu = get_cpu();
460 struct tss_struct *tss = &per_cpu(init_tss, cpu);
461 struct thread_struct *thread = &current->thread;
462
463 /*
464 * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
465 * invalid offset set (the LAZY one) and the faulting thread has
466 * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
467 * and we set the offset field correctly. Then we let the CPU to
468 * restart the faulting instruction.
469 */
470 if (tss->io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
471 thread->io_bitmap_ptr) {
472 memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
473 thread->io_bitmap_max);
474 /*
475 * If the previously set map was extending to higher ports
476 * than the current one, pad extra space with 0xff (no access).
477 */
478 if (thread->io_bitmap_max < tss->io_bitmap_max)
479 memset((char *) tss->io_bitmap +
480 thread->io_bitmap_max, 0xff,
481 tss->io_bitmap_max - thread->io_bitmap_max);
482 tss->io_bitmap_max = thread->io_bitmap_max;
483 tss->io_bitmap_base = IO_BITMAP_OFFSET;
484 put_cpu();
485 return;
486 }
487 put_cpu();
488
489 if (regs->eflags & VM_MASK)
490 goto gp_in_vm86;
491
717b594a 492 if (!user_mode(regs))
1da177e4
LT
493 goto gp_in_kernel;
494
495 current->thread.error_code = error_code;
496 current->thread.trap_no = 13;
497 force_sig(SIGSEGV, current);
498 return;
499
500gp_in_vm86:
501 local_irq_enable();
502 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
503 return;
504
505gp_in_kernel:
506 if (!fixup_exception(regs)) {
507 if (notify_die(DIE_GPF, "general protection fault", regs,
508 error_code, 13, SIGSEGV) == NOTIFY_STOP)
509 return;
510 die("general protection fault", regs, error_code);
511 }
512}
513
514static void mem_parity_error(unsigned char reason, struct pt_regs * regs)
515{
516 printk("Uhhuh. NMI received. Dazed and confused, but trying to continue\n");
517 printk("You probably have a hardware problem with your RAM chips\n");
518
519 /* Clear and disable the memory parity error line. */
520 clear_mem_error(reason);
521}
522
523static void io_check_error(unsigned char reason, struct pt_regs * regs)
524{
525 unsigned long i;
526
527 printk("NMI: IOCK error (debug interrupt?)\n");
528 show_registers(regs);
529
530 /* Re-enable the IOCK line, wait for a few seconds */
531 reason = (reason & 0xf) | 8;
532 outb(reason, 0x61);
533 i = 2000;
534 while (--i) udelay(1000);
535 reason &= ~8;
536 outb(reason, 0x61);
537}
538
539static void unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
540{
541#ifdef CONFIG_MCA
542 /* Might actually be able to figure out what the guilty party
543 * is. */
544 if( MCA_bus ) {
545 mca_handle_nmi();
546 return;
547 }
548#endif
549 printk("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
550 reason, smp_processor_id());
551 printk("Dazed and confused, but trying to continue\n");
552 printk("Do you have a strange power saving mode enabled?\n");
553}
554
555static DEFINE_SPINLOCK(nmi_print_lock);
556
557void die_nmi (struct pt_regs *regs, const char *msg)
558{
559 spin_lock(&nmi_print_lock);
560 /*
561 * We are in trouble anyway, lets at least try
562 * to get a message out.
563 */
564 bust_spinlocks(1);
565 printk(msg);
566 printk(" on CPU%d, eip %08lx, registers:\n",
567 smp_processor_id(), regs->eip);
568 show_registers(regs);
569 printk("console shuts up ...\n");
570 console_silent();
571 spin_unlock(&nmi_print_lock);
572 bust_spinlocks(0);
573 do_exit(SIGSEGV);
574}
575
576static void default_do_nmi(struct pt_regs * regs)
577{
578 unsigned char reason = 0;
579
580 /* Only the BSP gets external NMIs from the system. */
581 if (!smp_processor_id())
582 reason = get_nmi_reason();
583
584 if (!(reason & 0xc0)) {
585 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 0, SIGINT)
586 == NOTIFY_STOP)
587 return;
588#ifdef CONFIG_X86_LOCAL_APIC
589 /*
590 * Ok, so this is none of the documented NMI sources,
591 * so it must be the NMI watchdog.
592 */
593 if (nmi_watchdog) {
594 nmi_watchdog_tick(regs);
595 return;
596 }
597#endif
598 unknown_nmi_error(reason, regs);
599 return;
600 }
601 if (notify_die(DIE_NMI, "nmi", regs, reason, 0, SIGINT) == NOTIFY_STOP)
602 return;
603 if (reason & 0x80)
604 mem_parity_error(reason, regs);
605 if (reason & 0x40)
606 io_check_error(reason, regs);
607 /*
608 * Reassert NMI in case it became active meanwhile
609 * as it's edge-triggered.
610 */
611 reassert_nmi();
612}
613
614static int dummy_nmi_callback(struct pt_regs * regs, int cpu)
615{
616 return 0;
617}
618
619static nmi_callback_t nmi_callback = dummy_nmi_callback;
620
621fastcall void do_nmi(struct pt_regs * regs, long error_code)
622{
623 int cpu;
624
625 nmi_enter();
626
627 cpu = smp_processor_id();
f3705136
ZM
628
629#ifdef CONFIG_HOTPLUG_CPU
630 if (!cpu_online(cpu)) {
631 nmi_exit();
632 return;
633 }
634#endif
635
1da177e4
LT
636 ++nmi_count(cpu);
637
638 if (!nmi_callback(regs, cpu))
639 default_do_nmi(regs);
640
641 nmi_exit();
642}
643
644void set_nmi_callback(nmi_callback_t callback)
645{
646 nmi_callback = callback;
647}
129f6946 648EXPORT_SYMBOL_GPL(set_nmi_callback);
1da177e4
LT
649
650void unset_nmi_callback(void)
651{
652 nmi_callback = dummy_nmi_callback;
653}
129f6946 654EXPORT_SYMBOL_GPL(unset_nmi_callback);
1da177e4
LT
655
656#ifdef CONFIG_KPROBES
48c88211 657fastcall void do_int3(struct pt_regs *regs, long error_code)
1da177e4
LT
658{
659 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
660 == NOTIFY_STOP)
48c88211 661 return;
1da177e4
LT
662 /* This is an interrupt gate, because kprobes wants interrupts
663 disabled. Normal trap handlers don't. */
664 restore_interrupts(regs);
665 do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
1da177e4
LT
666}
667#endif
668
669/*
670 * Our handling of the processor debug registers is non-trivial.
671 * We do not clear them on entry and exit from the kernel. Therefore
672 * it is possible to get a watchpoint trap here from inside the kernel.
673 * However, the code in ./ptrace.c has ensured that the user can
674 * only set watchpoints on userspace addresses. Therefore the in-kernel
675 * watchpoint trap can only occur in code which is reading/writing
676 * from user space. Such code must not hold kernel locks (since it
677 * can equally take a page fault), therefore it is safe to call
678 * force_sig_info even though that claims and releases locks.
679 *
680 * Code in ./signal.c ensures that the debug control register
681 * is restored before we deliver any signal, and therefore that
682 * user code runs with the correct debug control register even though
683 * we clear it here.
684 *
685 * Being careful here means that we don't have to be as careful in a
686 * lot of more complicated places (task switching can be a bit lazy
687 * about restoring all the debug state, and ptrace doesn't have to
688 * find every occurrence of the TF bit that could be saved away even
689 * by user code)
690 */
691fastcall void do_debug(struct pt_regs * regs, long error_code)
692{
693 unsigned int condition;
694 struct task_struct *tsk = current;
695
1cc6f12e 696 get_debugreg(condition, 6);
1da177e4
LT
697
698 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
699 SIGTRAP) == NOTIFY_STOP)
700 return;
701 /* It's safe to allow irq's after DR6 has been saved */
702 if (regs->eflags & X86_EFLAGS_IF)
703 local_irq_enable();
704
705 /* Mask out spurious debug traps due to lazy DR7 setting */
706 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
707 if (!tsk->thread.debugreg[7])
708 goto clear_dr7;
709 }
710
711 if (regs->eflags & VM_MASK)
712 goto debug_vm86;
713
714 /* Save debug status register where ptrace can see it */
715 tsk->thread.debugreg[6] = condition;
716
717 /*
718 * Single-stepping through TF: make sure we ignore any events in
719 * kernel space (but re-enable TF when returning to user mode).
720 */
721 if (condition & DR_STEP) {
722 /*
723 * We already checked v86 mode above, so we can
724 * check for kernel mode by just checking the CPL
725 * of CS.
726 */
717b594a 727 if (!user_mode(regs))
1da177e4
LT
728 goto clear_TF_reenable;
729 }
730
731 /* Ok, finally something we can handle */
732 send_sigtrap(tsk, regs, error_code);
733
734 /* Disable additional traps. They'll be re-enabled when
735 * the signal is delivered.
736 */
737clear_dr7:
1cc6f12e 738 set_debugreg(0, 7);
1da177e4
LT
739 return;
740
741debug_vm86:
742 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
743 return;
744
745clear_TF_reenable:
746 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
747 regs->eflags &= ~TF_MASK;
748 return;
749}
750
751/*
752 * Note that we play around with the 'TS' bit in an attempt to get
753 * the correct behaviour even in the presence of the asynchronous
754 * IRQ13 behaviour
755 */
756void math_error(void __user *eip)
757{
758 struct task_struct * task;
759 siginfo_t info;
760 unsigned short cwd, swd;
761
762 /*
763 * Save the info for the exception handler and clear the error.
764 */
765 task = current;
766 save_init_fpu(task);
767 task->thread.trap_no = 16;
768 task->thread.error_code = 0;
769 info.si_signo = SIGFPE;
770 info.si_errno = 0;
771 info.si_code = __SI_FAULT;
772 info.si_addr = eip;
773 /*
774 * (~cwd & swd) will mask out exceptions that are not set to unmasked
775 * status. 0x3f is the exception bits in these regs, 0x200 is the
776 * C1 reg you need in case of a stack fault, 0x040 is the stack
777 * fault bit. We should only be taking one exception at a time,
778 * so if this combination doesn't produce any single exception,
779 * then we have a bad program that isn't syncronizing its FPU usage
780 * and it will suffer the consequences since we won't be able to
781 * fully reproduce the context of the exception
782 */
783 cwd = get_fpu_cwd(task);
784 swd = get_fpu_swd(task);
785 switch (((~cwd) & swd & 0x3f) | (swd & 0x240)) {
786 case 0x000:
787 default:
788 break;
789 case 0x001: /* Invalid Op */
790 case 0x041: /* Stack Fault */
791 case 0x241: /* Stack Fault | Direction */
792 info.si_code = FPE_FLTINV;
793 /* Should we clear the SF or let user space do it ???? */
794 break;
795 case 0x002: /* Denormalize */
796 case 0x010: /* Underflow */
797 info.si_code = FPE_FLTUND;
798 break;
799 case 0x004: /* Zero Divide */
800 info.si_code = FPE_FLTDIV;
801 break;
802 case 0x008: /* Overflow */
803 info.si_code = FPE_FLTOVF;
804 break;
805 case 0x020: /* Precision */
806 info.si_code = FPE_FLTRES;
807 break;
808 }
809 force_sig_info(SIGFPE, &info, task);
810}
811
812fastcall void do_coprocessor_error(struct pt_regs * regs, long error_code)
813{
814 ignore_fpu_irq = 1;
815 math_error((void __user *)regs->eip);
816}
817
818static void simd_math_error(void __user *eip)
819{
820 struct task_struct * task;
821 siginfo_t info;
822 unsigned short mxcsr;
823
824 /*
825 * Save the info for the exception handler and clear the error.
826 */
827 task = current;
828 save_init_fpu(task);
829 task->thread.trap_no = 19;
830 task->thread.error_code = 0;
831 info.si_signo = SIGFPE;
832 info.si_errno = 0;
833 info.si_code = __SI_FAULT;
834 info.si_addr = eip;
835 /*
836 * The SIMD FPU exceptions are handled a little differently, as there
837 * is only a single status/control register. Thus, to determine which
838 * unmasked exception was caught we must mask the exception mask bits
839 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
840 */
841 mxcsr = get_fpu_mxcsr(task);
842 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
843 case 0x000:
844 default:
845 break;
846 case 0x001: /* Invalid Op */
847 info.si_code = FPE_FLTINV;
848 break;
849 case 0x002: /* Denormalize */
850 case 0x010: /* Underflow */
851 info.si_code = FPE_FLTUND;
852 break;
853 case 0x004: /* Zero Divide */
854 info.si_code = FPE_FLTDIV;
855 break;
856 case 0x008: /* Overflow */
857 info.si_code = FPE_FLTOVF;
858 break;
859 case 0x020: /* Precision */
860 info.si_code = FPE_FLTRES;
861 break;
862 }
863 force_sig_info(SIGFPE, &info, task);
864}
865
866fastcall void do_simd_coprocessor_error(struct pt_regs * regs,
867 long error_code)
868{
869 if (cpu_has_xmm) {
870 /* Handle SIMD FPU exceptions on PIII+ processors. */
871 ignore_fpu_irq = 1;
872 simd_math_error((void __user *)regs->eip);
873 } else {
874 /*
875 * Handle strange cache flush from user space exception
876 * in all other cases. This is undocumented behaviour.
877 */
878 if (regs->eflags & VM_MASK) {
879 handle_vm86_fault((struct kernel_vm86_regs *)regs,
880 error_code);
881 return;
882 }
883 die_if_kernel("cache flush denied", regs, error_code);
884 current->thread.trap_no = 19;
885 current->thread.error_code = error_code;
886 force_sig(SIGSEGV, current);
887 }
888}
889
890fastcall void do_spurious_interrupt_bug(struct pt_regs * regs,
891 long error_code)
892{
893#if 0
894 /* No need to warn about this any longer. */
895 printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
896#endif
897}
898
899fastcall void setup_x86_bogus_stack(unsigned char * stk)
900{
901 unsigned long *switch16_ptr, *switch32_ptr;
902 struct pt_regs *regs;
903 unsigned long stack_top, stack_bot;
904 unsigned short iret_frame16_off;
905 int cpu = smp_processor_id();
906 /* reserve the space on 32bit stack for the magic switch16 pointer */
907 memmove(stk, stk + 8, sizeof(struct pt_regs));
908 switch16_ptr = (unsigned long *)(stk + sizeof(struct pt_regs));
909 regs = (struct pt_regs *)stk;
910 /* now the switch32 on 16bit stack */
911 stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu);
912 stack_top = stack_bot + CPU_16BIT_STACK_SIZE;
913 switch32_ptr = (unsigned long *)(stack_top - 8);
914 iret_frame16_off = CPU_16BIT_STACK_SIZE - 8 - 20;
915 /* copy iret frame on 16bit stack */
916 memcpy((void *)(stack_bot + iret_frame16_off), &regs->eip, 20);
917 /* fill in the switch pointers */
918 switch16_ptr[0] = (regs->esp & 0xffff0000) | iret_frame16_off;
919 switch16_ptr[1] = __ESPFIX_SS;
920 switch32_ptr[0] = (unsigned long)stk + sizeof(struct pt_regs) +
921 8 - CPU_16BIT_STACK_SIZE;
922 switch32_ptr[1] = __KERNEL_DS;
923}
924
925fastcall unsigned char * fixup_x86_bogus_stack(unsigned short sp)
926{
927 unsigned long *switch32_ptr;
928 unsigned char *stack16, *stack32;
929 unsigned long stack_top, stack_bot;
930 int len;
931 int cpu = smp_processor_id();
932 stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu);
933 stack_top = stack_bot + CPU_16BIT_STACK_SIZE;
934 switch32_ptr = (unsigned long *)(stack_top - 8);
935 /* copy the data from 16bit stack to 32bit stack */
936 len = CPU_16BIT_STACK_SIZE - 8 - sp;
937 stack16 = (unsigned char *)(stack_bot + sp);
938 stack32 = (unsigned char *)
939 (switch32_ptr[0] + CPU_16BIT_STACK_SIZE - 8 - len);
940 memcpy(stack32, stack16, len);
941 return stack32;
942}
943
944/*
945 * 'math_state_restore()' saves the current math information in the
946 * old math state array, and gets the new ones from the current task
947 *
948 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
949 * Don't touch unless you *really* know how it works.
950 *
951 * Must be called with kernel preemption disabled (in this case,
952 * local interrupts are disabled at the call-site in entry.S).
953 */
954asmlinkage void math_state_restore(struct pt_regs regs)
955{
956 struct thread_info *thread = current_thread_info();
957 struct task_struct *tsk = thread->task;
958
959 clts(); /* Allow maths ops (or we recurse) */
960 if (!tsk_used_math(tsk))
961 init_fpu(tsk);
962 restore_fpu(tsk);
963 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
964}
965
966#ifndef CONFIG_MATH_EMULATION
967
968asmlinkage void math_emulate(long arg)
969{
970 printk("math-emulation not enabled and no coprocessor found.\n");
971 printk("killing %s.\n",current->comm);
972 force_sig(SIGFPE,current);
973 schedule();
974}
975
976#endif /* CONFIG_MATH_EMULATION */
977
978#ifdef CONFIG_X86_F00F_BUG
979void __init trap_init_f00f_bug(void)
980{
981 __set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO);
982
983 /*
984 * Update the IDT descriptor and reload the IDT so that
985 * it uses the read-only mapped virtual address.
986 */
987 idt_descr.address = fix_to_virt(FIX_F00F_IDT);
988 __asm__ __volatile__("lidt %0" : : "m" (idt_descr));
989}
990#endif
991
992#define _set_gate(gate_addr,type,dpl,addr,seg) \
993do { \
994 int __d0, __d1; \
995 __asm__ __volatile__ ("movw %%dx,%%ax\n\t" \
996 "movw %4,%%dx\n\t" \
997 "movl %%eax,%0\n\t" \
998 "movl %%edx,%1" \
999 :"=m" (*((long *) (gate_addr))), \
1000 "=m" (*(1+(long *) (gate_addr))), "=&a" (__d0), "=&d" (__d1) \
1001 :"i" ((short) (0x8000+(dpl<<13)+(type<<8))), \
1002 "3" ((char *) (addr)),"2" ((seg) << 16)); \
1003} while (0)
1004
1005
1006/*
1007 * This needs to use 'idt_table' rather than 'idt', and
1008 * thus use the _nonmapped_ version of the IDT, as the
1009 * Pentium F0 0F bugfix can have resulted in the mapped
1010 * IDT being write-protected.
1011 */
1012void set_intr_gate(unsigned int n, void *addr)
1013{
1014 _set_gate(idt_table+n,14,0,addr,__KERNEL_CS);
1015}
1016
1017/*
1018 * This routine sets up an interrupt gate at directory privilege level 3.
1019 */
1020static inline void set_system_intr_gate(unsigned int n, void *addr)
1021{
1022 _set_gate(idt_table+n, 14, 3, addr, __KERNEL_CS);
1023}
1024
1025static void __init set_trap_gate(unsigned int n, void *addr)
1026{
1027 _set_gate(idt_table+n,15,0,addr,__KERNEL_CS);
1028}
1029
1030static void __init set_system_gate(unsigned int n, void *addr)
1031{
1032 _set_gate(idt_table+n,15,3,addr,__KERNEL_CS);
1033}
1034
1035static void __init set_task_gate(unsigned int n, unsigned int gdt_entry)
1036{
1037 _set_gate(idt_table+n,5,0,0,(gdt_entry<<3));
1038}
1039
1040
1041void __init trap_init(void)
1042{
1043#ifdef CONFIG_EISA
1044 void __iomem *p = ioremap(0x0FFFD9, 4);
1045 if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) {
1046 EISA_bus = 1;
1047 }
1048 iounmap(p);
1049#endif
1050
1051#ifdef CONFIG_X86_LOCAL_APIC
1052 init_apic_mappings();
1053#endif
1054
1055 set_trap_gate(0,&divide_error);
1056 set_intr_gate(1,&debug);
1057 set_intr_gate(2,&nmi);
1058 set_system_intr_gate(3, &int3); /* int3-5 can be called from all */
1059 set_system_gate(4,&overflow);
1060 set_system_gate(5,&bounds);
1061 set_trap_gate(6,&invalid_op);
1062 set_trap_gate(7,&device_not_available);
1063 set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS);
1064 set_trap_gate(9,&coprocessor_segment_overrun);
1065 set_trap_gate(10,&invalid_TSS);
1066 set_trap_gate(11,&segment_not_present);
1067 set_trap_gate(12,&stack_segment);
1068 set_trap_gate(13,&general_protection);
1069 set_intr_gate(14,&page_fault);
1070 set_trap_gate(15,&spurious_interrupt_bug);
1071 set_trap_gate(16,&coprocessor_error);
1072 set_trap_gate(17,&alignment_check);
1073#ifdef CONFIG_X86_MCE
1074 set_trap_gate(18,&machine_check);
1075#endif
1076 set_trap_gate(19,&simd_coprocessor_error);
1077
1078 set_system_gate(SYSCALL_VECTOR,&system_call);
1079
1080 /*
1081 * Should be a barrier for any external CPU state.
1082 */
1083 cpu_init();
1084
1085 trap_init_hook();
1086}
1087
1088static int __init kstack_setup(char *s)
1089{
1090 kstack_depth_to_print = simple_strtoul(s, NULL, 0);
1091 return 0;
1092}
1093__setup("kstack=", kstack_setup);