]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blame - arch/x86/include/asm/mmu_context.h
x86/vsyscall/64: Warn and fail vsyscall emulation in NATIVE mode
[mirror_ubuntu-disco-kernel.git] / arch / x86 / include / asm / mmu_context.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1965aae3
PA
2#ifndef _ASM_X86_MMU_CONTEXT_H
3#define _ASM_X86_MMU_CONTEXT_H
c3c2fee3
JF
4
5#include <asm/desc.h>
60063497 6#include <linux/atomic.h>
d17d8f9d 7#include <linux/mm_types.h>
7d06d9c9 8#include <linux/pkeys.h>
d17d8f9d
DH
9
10#include <trace/events/tlb.h>
11
c3c2fee3
JF
12#include <asm/pgalloc.h>
13#include <asm/tlbflush.h>
14#include <asm/paravirt.h>
fe3d197f 15#include <asm/mpx.h>
f39681ed
AL
16
17extern atomic64_t last_mm_ctx_id;
18
c3c2fee3 19#ifndef CONFIG_PARAVIRT
c3c2fee3
JF
20static inline void paravirt_activate_mm(struct mm_struct *prev,
21 struct mm_struct *next)
22{
23}
24#endif /* !CONFIG_PARAVIRT */
25
7911d3f7 26#ifdef CONFIG_PERF_EVENTS
a6673429
AL
27extern struct static_key rdpmc_always_available;
28
7911d3f7
AL
29static inline void load_mm_cr4(struct mm_struct *mm)
30{
a833581e 31 if (static_key_false(&rdpmc_always_available) ||
a6673429 32 atomic_read(&mm->context.perf_rdpmc_allowed))
7911d3f7
AL
33 cr4_set_bits(X86_CR4_PCE);
34 else
35 cr4_clear_bits(X86_CR4_PCE);
36}
37#else
38static inline void load_mm_cr4(struct mm_struct *mm) {}
39#endif
40
a5b9e5a2 41#ifdef CONFIG_MODIFY_LDT_SYSCALL
37868fe1
AL
42/*
43 * ldt_structs can be allocated, used, and freed, but they are never
44 * modified while live.
45 */
46struct ldt_struct {
47 /*
48 * Xen requires page-aligned LDTs with special permissions. This is
49 * needed to prevent us from installing evil descriptors such as
50 * call gates. On native, we could merge the ldt_struct and LDT
51 * allocations, but it's not worth trying to optimize.
52 */
53 struct desc_struct *entries;
bbf79d21 54 unsigned int nr_entries;
37868fe1
AL
55};
56
a5b9e5a2
AL
57/*
58 * Used for LDT copy/destruction.
59 */
39a0526f
DH
60int init_new_context_ldt(struct task_struct *tsk, struct mm_struct *mm);
61void destroy_context_ldt(struct mm_struct *mm);
a5b9e5a2 62#else /* CONFIG_MODIFY_LDT_SYSCALL */
39a0526f
DH
63static inline int init_new_context_ldt(struct task_struct *tsk,
64 struct mm_struct *mm)
a5b9e5a2
AL
65{
66 return 0;
67}
39a0526f 68static inline void destroy_context_ldt(struct mm_struct *mm) {}
a5b9e5a2
AL
69#endif
70
37868fe1
AL
71static inline void load_mm_ldt(struct mm_struct *mm)
72{
a5b9e5a2 73#ifdef CONFIG_MODIFY_LDT_SYSCALL
37868fe1
AL
74 struct ldt_struct *ldt;
75
3382290e
WD
76 /* READ_ONCE synchronizes with smp_store_release */
77 ldt = READ_ONCE(mm->context.ldt);
37868fe1
AL
78
79 /*
80 * Any change to mm->context.ldt is followed by an IPI to all
81 * CPUs with the mm active. The LDT will not be freed until
82 * after the IPI is handled by all such CPUs. This means that,
83 * if the ldt_struct changes before we return, the values we see
84 * will be safe, and the new values will be loaded before we run
85 * any user code.
86 *
87 * NB: don't try to convert this to use RCU without extreme care.
88 * We would still need IRQs off, because we don't want to change
89 * the local LDT after an IPI loaded a newer value than the one
90 * that we can see.
91 */
92
93 if (unlikely(ldt))
bbf79d21 94 set_ldt(ldt->entries, ldt->nr_entries);
37868fe1
AL
95 else
96 clear_LDT();
a5b9e5a2
AL
97#else
98 clear_LDT();
99#endif
73534258
AL
100}
101
102static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
103{
104#ifdef CONFIG_MODIFY_LDT_SYSCALL
105 /*
106 * Load the LDT if either the old or new mm had an LDT.
107 *
108 * An mm will never go from having an LDT to not having an LDT. Two
109 * mms never share an LDT, so we don't gain anything by checking to
110 * see whether the LDT changed. There's also no guarantee that
111 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
112 * then prev->context.ldt will also be non-NULL.
113 *
114 * If we really cared, we could optimize the case where prev == next
115 * and we're exiting lazy mode. Most of the time, if this happens,
116 * we don't actually need to reload LDTR, but modify_ldt() is mostly
117 * used by legacy code and emulators where we don't need this level of
118 * performance.
119 *
120 * This uses | instead of || because it generates better code.
121 */
122 if (unlikely((unsigned long)prev->context.ldt |
123 (unsigned long)next->context.ldt))
124 load_mm_ldt(next);
125#endif
37868fe1
AL
126
127 DEBUG_LOCKS_WARN_ON(preemptible());
128}
129
b956575b 130void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
6826c8ff 131
39a0526f
DH
132static inline int init_new_context(struct task_struct *tsk,
133 struct mm_struct *mm)
134{
f39681ed
AL
135 mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
136 atomic64_set(&mm->context.tlb_gen, 0);
137
e8c24d3a
DH
138 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
139 if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
140 /* pkey 0 is the default and always allocated */
141 mm->context.pkey_allocation_map = 0x1;
142 /* -1 means unallocated or invalid */
143 mm->context.execute_only_pkey = -1;
144 }
145 #endif
ccd5b323 146 return init_new_context_ldt(tsk, mm);
39a0526f
DH
147}
148static inline void destroy_context(struct mm_struct *mm)
149{
150 destroy_context_ldt(mm);
151}
152
69c0319a
AL
153extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
154 struct task_struct *tsk);
6826c8ff 155
078194f8
AL
156extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
157 struct task_struct *tsk);
158#define switch_mm_irqs_off switch_mm_irqs_off
c3c2fee3
JF
159
160#define activate_mm(prev, next) \
161do { \
162 paravirt_activate_mm((prev), (next)); \
163 switch_mm((prev), (next), NULL); \
164} while (0);
165
6826c8ff
BG
166#ifdef CONFIG_X86_32
167#define deactivate_mm(tsk, mm) \
168do { \
ccbeed3a 169 lazy_load_gs(0); \
6826c8ff
BG
170} while (0)
171#else
172#define deactivate_mm(tsk, mm) \
173do { \
174 load_gs_index(0); \
175 loadsegment(fs, 0); \
176} while (0)
177#endif
c3c2fee3 178
a1ea1c03
DH
179static inline void arch_dup_mmap(struct mm_struct *oldmm,
180 struct mm_struct *mm)
181{
182 paravirt_arch_dup_mmap(oldmm, mm);
183}
184
185static inline void arch_exit_mmap(struct mm_struct *mm)
186{
187 paravirt_arch_exit_mmap(mm);
188}
189
b0e9b09b
DH
190#ifdef CONFIG_X86_64
191static inline bool is_64bit_mm(struct mm_struct *mm)
192{
97f2645f 193 return !IS_ENABLED(CONFIG_IA32_EMULATION) ||
b0e9b09b
DH
194 !(mm->context.ia32_compat == TIF_IA32);
195}
196#else
197static inline bool is_64bit_mm(struct mm_struct *mm)
198{
199 return false;
200}
201#endif
202
fe3d197f
DH
203static inline void arch_bprm_mm_init(struct mm_struct *mm,
204 struct vm_area_struct *vma)
205{
206 mpx_mm_init(mm);
207}
208
1de4fa14
DH
209static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
210 unsigned long start, unsigned long end)
211{
c922228e
DH
212 /*
213 * mpx_notify_unmap() goes and reads a rarely-hot
214 * cacheline in the mm_struct. That can be expensive
215 * enough to be seen in profiles.
216 *
217 * The mpx_notify_unmap() call and its contents have been
218 * observed to affect munmap() performance on hardware
219 * where MPX is not present.
220 *
221 * The unlikely() optimizes for the fast case: no MPX
222 * in the CPU, or no MPX use in the process. Even if
223 * we get this wrong (in the unlikely event that MPX
224 * is widely enabled on some system) the overhead of
225 * MPX itself (reading bounds tables) is expected to
226 * overwhelm the overhead of getting this unlikely()
227 * consistently wrong.
228 */
229 if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
230 mpx_notify_unmap(mm, vma, start, end);
1de4fa14
DH
231}
232
7d06d9c9 233#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
8f62c883
DH
234static inline int vma_pkey(struct vm_area_struct *vma)
235{
8f62c883
DH
236 unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
237 VM_PKEY_BIT2 | VM_PKEY_BIT3;
7d06d9c9
DH
238
239 return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
240}
241#else
242static inline int vma_pkey(struct vm_area_struct *vma)
243{
244 return 0;
8f62c883 245}
7d06d9c9 246#endif
8f62c883 247
33a709b2
DH
248/*
249 * We only want to enforce protection keys on the current process
250 * because we effectively have no access to PKRU for other
251 * processes or any way to tell *which * PKRU in a threaded
252 * process we could use.
253 *
254 * So do not enforce things if the VMA is not from the current
255 * mm, or if we are in a kernel thread.
256 */
257static inline bool vma_is_foreign(struct vm_area_struct *vma)
258{
259 if (!current->mm)
260 return true;
261 /*
262 * Should PKRU be enforced on the access to this VMA? If
263 * the VMA is from another process, then PKRU has no
264 * relevance and should not be enforced.
265 */
266 if (current->mm != vma->vm_mm)
267 return true;
268
269 return false;
270}
271
1b2ee126 272static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
d61172b4 273 bool write, bool execute, bool foreign)
33a709b2 274{
d61172b4
DH
275 /* pkeys never affect instruction fetches */
276 if (execute)
277 return true;
33a709b2 278 /* allow access if the VMA is not one from this process */
1b2ee126 279 if (foreign || vma_is_foreign(vma))
33a709b2
DH
280 return true;
281 return __pkru_allows_pkey(vma_pkey(vma), write);
282}
283
52a2af40
AL
284/*
285 * If PCID is on, ASID-aware code paths put the ASID+1 into the PCID
286 * bits. This serves two purposes. It prevents a nasty situation in
287 * which PCID-unaware code saves CR3, loads some other value (with PCID
288 * == 0), and then restores CR3, thus corrupting the TLB for ASID 0 if
289 * the saved ASID was nonzero. It also means that any bugs involving
290 * loading a PCID-enabled CR3 with CR4.PCIDE off will trigger
291 * deterministically.
292 */
293
47061a24
AL
294static inline unsigned long build_cr3(struct mm_struct *mm, u16 asid)
295{
52a2af40
AL
296 if (static_cpu_has(X86_FEATURE_PCID)) {
297 VM_WARN_ON_ONCE(asid > 4094);
298 return __sme_pa(mm->pgd) | (asid + 1);
299 } else {
300 VM_WARN_ON_ONCE(asid != 0);
301 return __sme_pa(mm->pgd);
302 }
47061a24
AL
303}
304
305static inline unsigned long build_cr3_noflush(struct mm_struct *mm, u16 asid)
306{
52a2af40
AL
307 VM_WARN_ON_ONCE(asid > 4094);
308 return __sme_pa(mm->pgd) | (asid + 1) | CR3_NOFLUSH;
47061a24 309}
d6e41f11
AL
310
311/*
312 * This can be used from process context to figure out what the value of
6c690ee1 313 * CR3 is without needing to do a (slow) __read_cr3().
d6e41f11
AL
314 *
315 * It's intended to be used for code like KVM that sneakily changes CR3
316 * and needs to restore it. It needs to be used very carefully.
317 */
318static inline unsigned long __get_current_cr3_fast(void)
319{
47061a24
AL
320 unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm),
321 this_cpu_read(cpu_tlbstate.loaded_mm_asid));
10af6235 322
d6e41f11 323 /* For now, be very restrictive about when this can be called. */
4c07f904 324 VM_WARN_ON(in_nmi() || preemptible());
d6e41f11 325
6c690ee1 326 VM_BUG_ON(cr3 != __read_cr3());
d6e41f11
AL
327 return cr3;
328}
329
1965aae3 330#endif /* _ASM_X86_MMU_CONTEXT_H */