]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/cpu/common.c
x86/uaccess: Move thread_info::addr_limit to thread_struct
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
CommitLineData
f0fc4aff 1#include <linux/bootmem.h>
9766cdbc 2#include <linux/linkage.h>
f0fc4aff 3#include <linux/bitops.h>
9766cdbc 4#include <linux/kernel.h>
f0fc4aff 5#include <linux/module.h>
9766cdbc
JSR
6#include <linux/percpu.h>
7#include <linux/string.h>
ee098e1a 8#include <linux/ctype.h>
1da177e4 9#include <linux/delay.h>
9766cdbc
JSR
10#include <linux/sched.h>
11#include <linux/init.h>
0f46efeb 12#include <linux/kprobes.h>
9766cdbc 13#include <linux/kgdb.h>
1da177e4 14#include <linux/smp.h>
9766cdbc 15#include <linux/io.h>
b51ef52d 16#include <linux/syscore_ops.h>
9766cdbc
JSR
17
18#include <asm/stackprotector.h>
cdd6c482 19#include <asm/perf_event.h>
1da177e4 20#include <asm/mmu_context.h>
49d859d7 21#include <asm/archrandom.h>
9766cdbc
JSR
22#include <asm/hypervisor.h>
23#include <asm/processor.h>
1e02ce4c 24#include <asm/tlbflush.h>
f649e938 25#include <asm/debugreg.h>
9766cdbc 26#include <asm/sections.h>
f40c3300 27#include <asm/vsyscall.h>
8bdbd962
AC
28#include <linux/topology.h>
29#include <linux/cpumask.h>
9766cdbc 30#include <asm/pgtable.h>
60063497 31#include <linux/atomic.h>
9766cdbc
JSR
32#include <asm/proto.h>
33#include <asm/setup.h>
34#include <asm/apic.h>
35#include <asm/desc.h>
78f7f1e5 36#include <asm/fpu/internal.h>
27b07da7 37#include <asm/mtrr.h>
8bdbd962 38#include <linux/numa.h>
9766cdbc 39#include <asm/asm.h>
0f6ff2bc 40#include <asm/bugs.h>
9766cdbc 41#include <asm/cpu.h>
a03a3e28 42#include <asm/mce.h>
9766cdbc 43#include <asm/msr.h>
8d4a4300 44#include <asm/pat.h>
d288e1cf
FY
45#include <asm/microcode.h>
46#include <asm/microcode_intel.h>
e641f5f5
IM
47
48#ifdef CONFIG_X86_LOCAL_APIC
bdbcdd48 49#include <asm/uv/uv.h>
1da177e4
LT
50#endif
51
52#include "cpu.h"
53
c2d1cec1 54/* all of these masks are initialized in setup_cpu_local_masks() */
c2d1cec1 55cpumask_var_t cpu_initialized_mask;
9766cdbc
JSR
56cpumask_var_t cpu_callout_mask;
57cpumask_var_t cpu_callin_mask;
c2d1cec1
MT
58
59/* representing cpus for which sibling maps can be computed */
60cpumask_var_t cpu_sibling_setup_mask;
61
2f2f52ba 62/* correctly size the local cpu masks */
4369f1fb 63void __init setup_cpu_local_masks(void)
2f2f52ba
BG
64{
65 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
66 alloc_bootmem_cpumask_var(&cpu_callin_mask);
67 alloc_bootmem_cpumask_var(&cpu_callout_mask);
68 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
69}
70
148f9bb8 71static void default_init(struct cpuinfo_x86 *c)
e8055139
OZ
72{
73#ifdef CONFIG_X86_64
27c13ece 74 cpu_detect_cache_sizes(c);
e8055139
OZ
75#else
76 /* Not much we can do here... */
77 /* Check if at least it has cpuid */
78 if (c->cpuid_level == -1) {
79 /* No cpuid. It must be an ancient CPU */
80 if (c->x86 == 4)
81 strcpy(c->x86_model_id, "486");
82 else if (c->x86 == 3)
83 strcpy(c->x86_model_id, "386");
84 }
85#endif
86}
87
148f9bb8 88static const struct cpu_dev default_cpu = {
e8055139
OZ
89 .c_init = default_init,
90 .c_vendor = "Unknown",
91 .c_x86_vendor = X86_VENDOR_UNKNOWN,
92};
93
148f9bb8 94static const struct cpu_dev *this_cpu = &default_cpu;
0a488a53 95
06deef89 96DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
950ad7ff 97#ifdef CONFIG_X86_64
06deef89
BG
98 /*
99 * We need valid kernel segments for data and code in long mode too
100 * IRET will check the segment types kkeil 2000/10/28
101 * Also sysret mandates a special GDT layout
102 *
9766cdbc 103 * TLS descriptors are currently at a different place compared to i386.
06deef89
BG
104 * Hopefully nobody expects them at a fixed place (Wine?)
105 */
1e5de182
AM
106 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
107 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
108 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
109 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
110 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
111 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
950ad7ff 112#else
1e5de182
AM
113 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
114 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
115 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
116 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
bf504672
RR
117 /*
118 * Segments used for calling PnP BIOS have byte granularity.
119 * They code segments and data segments have fixed 64k limits,
120 * the transfer segment sizes are set at run time.
121 */
6842ef0e 122 /* 32-bit code */
1e5de182 123 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
6842ef0e 124 /* 16-bit code */
1e5de182 125 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
6842ef0e 126 /* 16-bit data */
1e5de182 127 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
6842ef0e 128 /* 16-bit data */
1e5de182 129 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
6842ef0e 130 /* 16-bit data */
1e5de182 131 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
bf504672
RR
132 /*
133 * The APM segments have byte granularity and their bases
134 * are set at run time. All have 64k limits.
135 */
6842ef0e 136 /* 32-bit code */
1e5de182 137 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
bf504672 138 /* 16-bit code */
1e5de182 139 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
6842ef0e 140 /* data */
72c4d853 141 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
bf504672 142
1e5de182
AM
143 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
144 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
60a5317f 145 GDT_STACK_CANARY_INIT
950ad7ff 146#endif
06deef89 147} };
7a61d35d 148EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
ae1ee11b 149
8c3641e9 150static int __init x86_mpx_setup(char *s)
0c752a93 151{
8c3641e9 152 /* require an exact match without trailing characters */
2cd3949f
DH
153 if (strlen(s))
154 return 0;
0c752a93 155
8c3641e9
DH
156 /* do not emit a message if the feature is not present */
157 if (!boot_cpu_has(X86_FEATURE_MPX))
158 return 1;
6bad06b7 159
8c3641e9
DH
160 setup_clear_cpu_cap(X86_FEATURE_MPX);
161 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
b6f42a4a
FY
162 return 1;
163}
8c3641e9 164__setup("nompx", x86_mpx_setup);
b6f42a4a 165
d12a72b8
AL
166static int __init x86_noinvpcid_setup(char *s)
167{
168 /* noinvpcid doesn't accept parameters */
169 if (s)
170 return -EINVAL;
171
172 /* do not emit a message if the feature is not present */
173 if (!boot_cpu_has(X86_FEATURE_INVPCID))
174 return 0;
175
176 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
177 pr_info("noinvpcid: INVPCID feature disabled\n");
178 return 0;
179}
180early_param("noinvpcid", x86_noinvpcid_setup);
181
ba51dced 182#ifdef CONFIG_X86_32
148f9bb8
PG
183static int cachesize_override = -1;
184static int disable_x86_serial_nr = 1;
1da177e4 185
0a488a53
YL
186static int __init cachesize_setup(char *str)
187{
188 get_option(&str, &cachesize_override);
189 return 1;
190}
191__setup("cachesize=", cachesize_setup);
192
0a488a53
YL
193static int __init x86_sep_setup(char *s)
194{
195 setup_clear_cpu_cap(X86_FEATURE_SEP);
196 return 1;
197}
198__setup("nosep", x86_sep_setup);
199
200/* Standard macro to see if a specific flag is changeable */
201static inline int flag_is_changeable_p(u32 flag)
202{
203 u32 f1, f2;
204
94f6bac1
KH
205 /*
206 * Cyrix and IDT cpus allow disabling of CPUID
207 * so the code below may return different results
208 * when it is executed before and after enabling
209 * the CPUID. Add "volatile" to not allow gcc to
210 * optimize the subsequent calls to this function.
211 */
0f3fa48a
IM
212 asm volatile ("pushfl \n\t"
213 "pushfl \n\t"
214 "popl %0 \n\t"
215 "movl %0, %1 \n\t"
216 "xorl %2, %0 \n\t"
217 "pushl %0 \n\t"
218 "popfl \n\t"
219 "pushfl \n\t"
220 "popl %0 \n\t"
221 "popfl \n\t"
222
94f6bac1
KH
223 : "=&r" (f1), "=&r" (f2)
224 : "ir" (flag));
0a488a53
YL
225
226 return ((f1^f2) & flag) != 0;
227}
228
229/* Probe for the CPUID instruction */
148f9bb8 230int have_cpuid_p(void)
0a488a53
YL
231{
232 return flag_is_changeable_p(X86_EFLAGS_ID);
233}
234
148f9bb8 235static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
0a488a53 236{
0f3fa48a
IM
237 unsigned long lo, hi;
238
239 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
240 return;
241
242 /* Disable processor serial number: */
243
244 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
245 lo |= 0x200000;
246 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
247
1b74dde7 248 pr_notice("CPU serial number disabled.\n");
0f3fa48a
IM
249 clear_cpu_cap(c, X86_FEATURE_PN);
250
251 /* Disabling the serial number may affect the cpuid level */
252 c->cpuid_level = cpuid_eax(0);
0a488a53
YL
253}
254
255static int __init x86_serial_nr_setup(char *s)
256{
257 disable_x86_serial_nr = 0;
258 return 1;
259}
260__setup("serialnumber", x86_serial_nr_setup);
ba51dced 261#else
102bbe3a
YL
262static inline int flag_is_changeable_p(u32 flag)
263{
264 return 1;
265}
102bbe3a
YL
266static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
267{
268}
ba51dced 269#endif
0a488a53 270
de5397ad
FY
271static __init int setup_disable_smep(char *arg)
272{
b2cc2a07 273 setup_clear_cpu_cap(X86_FEATURE_SMEP);
0f6ff2bc
DH
274 /* Check for things that depend on SMEP being enabled: */
275 check_mpx_erratum(&boot_cpu_data);
de5397ad
FY
276 return 1;
277}
278__setup("nosmep", setup_disable_smep);
279
b2cc2a07 280static __always_inline void setup_smep(struct cpuinfo_x86 *c)
de5397ad 281{
b2cc2a07 282 if (cpu_has(c, X86_FEATURE_SMEP))
375074cc 283 cr4_set_bits(X86_CR4_SMEP);
de5397ad
FY
284}
285
52b6179a
PA
286static __init int setup_disable_smap(char *arg)
287{
b2cc2a07 288 setup_clear_cpu_cap(X86_FEATURE_SMAP);
52b6179a
PA
289 return 1;
290}
291__setup("nosmap", setup_disable_smap);
292
b2cc2a07
PA
293static __always_inline void setup_smap(struct cpuinfo_x86 *c)
294{
581b7f15 295 unsigned long eflags = native_save_fl();
b2cc2a07
PA
296
297 /* This should have been cleared long ago */
b2cc2a07
PA
298 BUG_ON(eflags & X86_EFLAGS_AC);
299
03bbd596
PA
300 if (cpu_has(c, X86_FEATURE_SMAP)) {
301#ifdef CONFIG_X86_SMAP
375074cc 302 cr4_set_bits(X86_CR4_SMAP);
03bbd596 303#else
375074cc 304 cr4_clear_bits(X86_CR4_SMAP);
03bbd596
PA
305#endif
306 }
de5397ad
FY
307}
308
06976945
DH
309/*
310 * Protection Keys are not available in 32-bit mode.
311 */
312static bool pku_disabled;
313
314static __always_inline void setup_pku(struct cpuinfo_x86 *c)
315{
e8df1a95
DH
316 /* check the boot processor, plus compile options for PKU: */
317 if (!cpu_feature_enabled(X86_FEATURE_PKU))
318 return;
319 /* checks the actual processor's cpuid bits: */
06976945
DH
320 if (!cpu_has(c, X86_FEATURE_PKU))
321 return;
322 if (pku_disabled)
323 return;
324
325 cr4_set_bits(X86_CR4_PKE);
326 /*
327 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
328 * cpuid bit to be set. We need to ensure that we
329 * update that bit in this CPU's "cpu_info".
330 */
331 get_cpu_cap(c);
332}
333
334#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
335static __init int setup_disable_pku(char *arg)
336{
337 /*
338 * Do not clear the X86_FEATURE_PKU bit. All of the
339 * runtime checks are against OSPKE so clearing the
340 * bit does nothing.
341 *
342 * This way, we will see "pku" in cpuinfo, but not
343 * "ospke", which is exactly what we want. It shows
344 * that the CPU has PKU, but the OS has not enabled it.
345 * This happens to be exactly how a system would look
346 * if we disabled the config option.
347 */
348 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
349 pku_disabled = true;
350 return 1;
351}
352__setup("nopku", setup_disable_pku);
353#endif /* CONFIG_X86_64 */
354
b38b0665
PA
355/*
356 * Some CPU features depend on higher CPUID levels, which may not always
357 * be available due to CPUID level capping or broken virtualization
358 * software. Add those features to this table to auto-disable them.
359 */
360struct cpuid_dependent_feature {
361 u32 feature;
362 u32 level;
363};
0f3fa48a 364
148f9bb8 365static const struct cpuid_dependent_feature
b38b0665
PA
366cpuid_dependent_features[] = {
367 { X86_FEATURE_MWAIT, 0x00000005 },
368 { X86_FEATURE_DCA, 0x00000009 },
369 { X86_FEATURE_XSAVE, 0x0000000d },
370 { 0, 0 }
371};
372
148f9bb8 373static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
b38b0665
PA
374{
375 const struct cpuid_dependent_feature *df;
9766cdbc 376
b38b0665 377 for (df = cpuid_dependent_features; df->feature; df++) {
0f3fa48a
IM
378
379 if (!cpu_has(c, df->feature))
380 continue;
b38b0665
PA
381 /*
382 * Note: cpuid_level is set to -1 if unavailable, but
383 * extended_extended_level is set to 0 if unavailable
384 * and the legitimate extended levels are all negative
385 * when signed; hence the weird messing around with
386 * signs here...
387 */
0f3fa48a 388 if (!((s32)df->level < 0 ?
f6db44df 389 (u32)df->level > (u32)c->extended_cpuid_level :
0f3fa48a
IM
390 (s32)df->level > (s32)c->cpuid_level))
391 continue;
392
393 clear_cpu_cap(c, df->feature);
394 if (!warn)
395 continue;
396
1b74dde7
CY
397 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
398 x86_cap_flag(df->feature), df->level);
b38b0665 399 }
f6db44df 400}
b38b0665 401
102bbe3a
YL
402/*
403 * Naming convention should be: <Name> [(<Codename>)]
404 * This table only is used unless init_<vendor>() below doesn't set it;
0f3fa48a
IM
405 * in particular, if CPUID levels 0x80000002..4 are supported, this
406 * isn't used
102bbe3a
YL
407 */
408
409/* Look up CPU names by table lookup. */
148f9bb8 410static const char *table_lookup_model(struct cpuinfo_x86 *c)
102bbe3a 411{
09dc68d9
JB
412#ifdef CONFIG_X86_32
413 const struct legacy_cpu_model_info *info;
102bbe3a
YL
414
415 if (c->x86_model >= 16)
416 return NULL; /* Range check */
417
418 if (!this_cpu)
419 return NULL;
420
09dc68d9 421 info = this_cpu->legacy_models;
102bbe3a 422
09dc68d9 423 while (info->family) {
102bbe3a
YL
424 if (info->family == c->x86)
425 return info->model_names[c->x86_model];
426 info++;
427 }
09dc68d9 428#endif
102bbe3a
YL
429 return NULL; /* Not found */
430}
431
148f9bb8
PG
432__u32 cpu_caps_cleared[NCAPINTS];
433__u32 cpu_caps_set[NCAPINTS];
7d851c8d 434
11e3a840
JF
435void load_percpu_segment(int cpu)
436{
437#ifdef CONFIG_X86_32
438 loadsegment(fs, __KERNEL_PERCPU);
439#else
45e876f7 440 __loadsegment_simple(gs, 0);
11e3a840
JF
441 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
442#endif
60a5317f 443 load_stack_canary_segment();
11e3a840
JF
444}
445
0f3fa48a
IM
446/*
447 * Current gdt points %fs at the "master" per-cpu area: after this,
448 * it's on the real one.
449 */
552be871 450void switch_to_new_gdt(int cpu)
9d31d35b
YL
451{
452 struct desc_ptr gdt_descr;
453
2697fbd5 454 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
9d31d35b
YL
455 gdt_descr.size = GDT_SIZE - 1;
456 load_gdt(&gdt_descr);
2697fbd5 457 /* Reload the per-cpu base */
11e3a840
JF
458
459 load_percpu_segment(cpu);
9d31d35b
YL
460}
461
148f9bb8 462static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
1da177e4 463
148f9bb8 464static void get_model_name(struct cpuinfo_x86 *c)
1da177e4
LT
465{
466 unsigned int *v;
ee098e1a 467 char *p, *q, *s;
1da177e4 468
3da99c97 469 if (c->extended_cpuid_level < 0x80000004)
1b05d60d 470 return;
1da177e4 471
0f3fa48a 472 v = (unsigned int *)c->x86_model_id;
1da177e4
LT
473 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
474 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
475 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
476 c->x86_model_id[48] = 0;
477
ee098e1a
BP
478 /* Trim whitespace */
479 p = q = s = &c->x86_model_id[0];
480
481 while (*p == ' ')
482 p++;
483
484 while (*p) {
485 /* Note the last non-whitespace index */
486 if (!isspace(*p))
487 s = q;
488
489 *q++ = *p++;
490 }
491
492 *(s + 1) = '\0';
1da177e4
LT
493}
494
148f9bb8 495void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
1da177e4 496{
9d31d35b 497 unsigned int n, dummy, ebx, ecx, edx, l2size;
1da177e4 498
3da99c97 499 n = c->extended_cpuid_level;
1da177e4
LT
500
501 if (n >= 0x80000005) {
9d31d35b 502 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
9d31d35b 503 c->x86_cache_size = (ecx>>24) + (edx>>24);
140fc727
YL
504#ifdef CONFIG_X86_64
505 /* On K8 L1 TLB is inclusive, so don't count it */
506 c->x86_tlbsize = 0;
507#endif
1da177e4
LT
508 }
509
510 if (n < 0x80000006) /* Some chips just has a large L1. */
511 return;
512
0a488a53 513 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
1da177e4 514 l2size = ecx >> 16;
34048c9e 515
140fc727
YL
516#ifdef CONFIG_X86_64
517 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
518#else
1da177e4 519 /* do processor-specific cache resizing */
09dc68d9
JB
520 if (this_cpu->legacy_cache_size)
521 l2size = this_cpu->legacy_cache_size(c, l2size);
1da177e4
LT
522
523 /* Allow user to override all this if necessary. */
524 if (cachesize_override != -1)
525 l2size = cachesize_override;
526
34048c9e 527 if (l2size == 0)
1da177e4 528 return; /* Again, no L2 cache is possible */
140fc727 529#endif
1da177e4
LT
530
531 c->x86_cache_size = l2size;
1da177e4
LT
532}
533
e0ba94f1
AS
534u16 __read_mostly tlb_lli_4k[NR_INFO];
535u16 __read_mostly tlb_lli_2m[NR_INFO];
536u16 __read_mostly tlb_lli_4m[NR_INFO];
537u16 __read_mostly tlb_lld_4k[NR_INFO];
538u16 __read_mostly tlb_lld_2m[NR_INFO];
539u16 __read_mostly tlb_lld_4m[NR_INFO];
dd360393 540u16 __read_mostly tlb_lld_1g[NR_INFO];
e0ba94f1 541
f94fe119 542static void cpu_detect_tlb(struct cpuinfo_x86 *c)
e0ba94f1
AS
543{
544 if (this_cpu->c_detect_tlb)
545 this_cpu->c_detect_tlb(c);
546
f94fe119 547 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
e0ba94f1 548 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
f94fe119
SH
549 tlb_lli_4m[ENTRIES]);
550
551 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
552 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
553 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
e0ba94f1
AS
554}
555
148f9bb8 556void detect_ht(struct cpuinfo_x86 *c)
1da177e4 557{
c8e56d20 558#ifdef CONFIG_SMP
0a488a53
YL
559 u32 eax, ebx, ecx, edx;
560 int index_msb, core_bits;
2eaad1fd 561 static bool printed;
1da177e4 562
0a488a53 563 if (!cpu_has(c, X86_FEATURE_HT))
9d31d35b 564 return;
1da177e4 565
0a488a53
YL
566 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
567 goto out;
1da177e4 568
1cd78776
YL
569 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
570 return;
1da177e4 571
0a488a53 572 cpuid(1, &eax, &ebx, &ecx, &edx);
1da177e4 573
9d31d35b
YL
574 smp_num_siblings = (ebx & 0xff0000) >> 16;
575
576 if (smp_num_siblings == 1) {
1b74dde7 577 pr_info_once("CPU0: Hyper-Threading is disabled\n");
0f3fa48a
IM
578 goto out;
579 }
9d31d35b 580
0f3fa48a
IM
581 if (smp_num_siblings <= 1)
582 goto out;
9d31d35b 583
0f3fa48a
IM
584 index_msb = get_count_order(smp_num_siblings);
585 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
9d31d35b 586
0f3fa48a 587 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
9d31d35b 588
0f3fa48a 589 index_msb = get_count_order(smp_num_siblings);
9d31d35b 590
0f3fa48a 591 core_bits = get_count_order(c->x86_max_cores);
9d31d35b 592
0f3fa48a
IM
593 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
594 ((1 << core_bits) - 1);
1da177e4 595
0a488a53 596out:
2eaad1fd 597 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
1b74dde7
CY
598 pr_info("CPU: Physical Processor ID: %d\n",
599 c->phys_proc_id);
600 pr_info("CPU: Processor Core ID: %d\n",
601 c->cpu_core_id);
2eaad1fd 602 printed = 1;
9d31d35b 603 }
9d31d35b 604#endif
97e4db7c 605}
1da177e4 606
148f9bb8 607static void get_cpu_vendor(struct cpuinfo_x86 *c)
1da177e4
LT
608{
609 char *v = c->x86_vendor_id;
0f3fa48a 610 int i;
1da177e4
LT
611
612 for (i = 0; i < X86_VENDOR_NUM; i++) {
10a434fc
YL
613 if (!cpu_devs[i])
614 break;
615
616 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
617 (cpu_devs[i]->c_ident[1] &&
618 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
0f3fa48a 619
10a434fc
YL
620 this_cpu = cpu_devs[i];
621 c->x86_vendor = this_cpu->c_x86_vendor;
622 return;
1da177e4
LT
623 }
624 }
10a434fc 625
1b74dde7
CY
626 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
627 "CPU: Your system may be unstable.\n", v);
10a434fc 628
fe38d855
CE
629 c->x86_vendor = X86_VENDOR_UNKNOWN;
630 this_cpu = &default_cpu;
1da177e4
LT
631}
632
148f9bb8 633void cpu_detect(struct cpuinfo_x86 *c)
1da177e4 634{
1da177e4 635 /* Get vendor name */
4a148513
HH
636 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
637 (unsigned int *)&c->x86_vendor_id[0],
638 (unsigned int *)&c->x86_vendor_id[8],
639 (unsigned int *)&c->x86_vendor_id[4]);
1da177e4 640
1da177e4 641 c->x86 = 4;
9d31d35b 642 /* Intel-defined flags: level 0x00000001 */
1da177e4
LT
643 if (c->cpuid_level >= 0x00000001) {
644 u32 junk, tfms, cap0, misc;
0f3fa48a 645
1da177e4 646 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
99f925ce
BP
647 c->x86 = x86_family(tfms);
648 c->x86_model = x86_model(tfms);
649 c->x86_mask = x86_stepping(tfms);
0f3fa48a 650
d4387bd3 651 if (cap0 & (1<<19)) {
d4387bd3 652 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
9d31d35b 653 c->x86_cache_alignment = c->x86_clflush_size;
d4387bd3 654 }
1da177e4 655 }
1da177e4 656}
3da99c97 657
148f9bb8 658void get_cpu_cap(struct cpuinfo_x86 *c)
093af8d7 659{
39c06df4 660 u32 eax, ebx, ecx, edx;
093af8d7 661
3da99c97
YL
662 /* Intel-defined flags: level 0x00000001 */
663 if (c->cpuid_level >= 0x00000001) {
39c06df4 664 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
0f3fa48a 665
39c06df4
BP
666 c->x86_capability[CPUID_1_ECX] = ecx;
667 c->x86_capability[CPUID_1_EDX] = edx;
3da99c97 668 }
093af8d7 669
bdc802dc
PA
670 /* Additional Intel-defined flags: level 0x00000007 */
671 if (c->cpuid_level >= 0x00000007) {
bdc802dc
PA
672 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
673
39c06df4 674 c->x86_capability[CPUID_7_0_EBX] = ebx;
2ccd71f1 675
39c06df4 676 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
dfb4a70f 677 c->x86_capability[CPUID_7_ECX] = ecx;
bdc802dc
PA
678 }
679
6229ad27
FY
680 /* Extended state features: level 0x0000000d */
681 if (c->cpuid_level >= 0x0000000d) {
6229ad27
FY
682 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
683
39c06df4 684 c->x86_capability[CPUID_D_1_EAX] = eax;
6229ad27
FY
685 }
686
cbc82b17
PWJ
687 /* Additional Intel-defined flags: level 0x0000000F */
688 if (c->cpuid_level >= 0x0000000F) {
cbc82b17
PWJ
689
690 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
691 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
39c06df4
BP
692 c->x86_capability[CPUID_F_0_EDX] = edx;
693
cbc82b17
PWJ
694 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
695 /* will be overridden if occupancy monitoring exists */
696 c->x86_cache_max_rmid = ebx;
697
698 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
699 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
39c06df4
BP
700 c->x86_capability[CPUID_F_1_EDX] = edx;
701
33c3cc7a
VS
702 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
703 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
704 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
cbc82b17
PWJ
705 c->x86_cache_max_rmid = ecx;
706 c->x86_cache_occ_scale = ebx;
707 }
708 } else {
709 c->x86_cache_max_rmid = -1;
710 c->x86_cache_occ_scale = -1;
711 }
712 }
713
3da99c97 714 /* AMD-defined flags: level 0x80000001 */
39c06df4
BP
715 eax = cpuid_eax(0x80000000);
716 c->extended_cpuid_level = eax;
717
718 if ((eax & 0xffff0000) == 0x80000000) {
719 if (eax >= 0x80000001) {
720 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
0f3fa48a 721
39c06df4
BP
722 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
723 c->x86_capability[CPUID_8000_0001_EDX] = edx;
093af8d7 724 }
093af8d7 725 }
093af8d7 726
71faad43
YG
727 if (c->extended_cpuid_level >= 0x80000007) {
728 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
729
730 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
731 c->x86_power = edx;
732 }
733
5122c890 734 if (c->extended_cpuid_level >= 0x80000008) {
39c06df4 735 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
5122c890
YL
736
737 c->x86_virt_bits = (eax >> 8) & 0xff;
738 c->x86_phys_bits = eax & 0xff;
39c06df4 739 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
093af8d7 740 }
13c6c532
JB
741#ifdef CONFIG_X86_32
742 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
743 c->x86_phys_bits = 36;
5122c890 744#endif
e3224234 745
2ccd71f1 746 if (c->extended_cpuid_level >= 0x8000000a)
39c06df4 747 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
093af8d7 748
1dedefd1 749 init_scattered_cpuid_features(c);
093af8d7 750}
1da177e4 751
148f9bb8 752static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
aef93c8b
YL
753{
754#ifdef CONFIG_X86_32
755 int i;
756
757 /*
758 * First of all, decide if this is a 486 or higher
759 * It's a 486 if we can modify the AC flag
760 */
761 if (flag_is_changeable_p(X86_EFLAGS_AC))
762 c->x86 = 4;
763 else
764 c->x86 = 3;
765
766 for (i = 0; i < X86_VENDOR_NUM; i++)
767 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
768 c->x86_vendor_id[0] = 0;
769 cpu_devs[i]->c_identify(c);
770 if (c->x86_vendor_id[0]) {
771 get_cpu_vendor(c);
772 break;
773 }
774 }
775#endif
776}
777
34048c9e
PC
778/*
779 * Do minimum CPU detection early.
780 * Fields really needed: vendor, cpuid_level, family, model, mask,
781 * cache alignment.
782 * The others are not touched to avoid unwanted side effects.
783 *
784 * WARNING: this function is only called on the BP. Don't add code here
785 * that is supposed to run on all CPUs.
786 */
3da99c97 787static void __init early_identify_cpu(struct cpuinfo_x86 *c)
d7cd5611 788{
6627d242
YL
789#ifdef CONFIG_X86_64
790 c->x86_clflush_size = 64;
13c6c532
JB
791 c->x86_phys_bits = 36;
792 c->x86_virt_bits = 48;
6627d242 793#else
d4387bd3 794 c->x86_clflush_size = 32;
13c6c532
JB
795 c->x86_phys_bits = 32;
796 c->x86_virt_bits = 32;
6627d242 797#endif
0a488a53 798 c->x86_cache_alignment = c->x86_clflush_size;
d7cd5611 799
3da99c97 800 memset(&c->x86_capability, 0, sizeof c->x86_capability);
0a488a53 801 c->extended_cpuid_level = 0;
d7cd5611 802
aef93c8b
YL
803 if (!have_cpuid_p())
804 identify_cpu_without_cpuid(c);
805
806 /* cyrix could have cpuid enabled via c_identify()*/
d7cd5611
RR
807 if (!have_cpuid_p())
808 return;
809
810 cpu_detect(c);
3da99c97 811 get_cpu_vendor(c);
3da99c97 812 get_cpu_cap(c);
12cf105c 813
10a434fc
YL
814 if (this_cpu->c_early_init)
815 this_cpu->c_early_init(c);
093af8d7 816
f6e9456c 817 c->cpu_index = 0;
b38b0665 818 filter_cpuid_features(c, false);
de5397ad 819
a110b5ec
BP
820 if (this_cpu->c_bsp_init)
821 this_cpu->c_bsp_init(c);
c3b83598
BP
822
823 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
db52ef74 824 fpu__init_system(c);
d7cd5611
RR
825}
826
9d31d35b
YL
827void __init early_cpu_init(void)
828{
02dde8b4 829 const struct cpu_dev *const *cdev;
10a434fc
YL
830 int count = 0;
831
ac23f253 832#ifdef CONFIG_PROCESSOR_SELECT
1b74dde7 833 pr_info("KERNEL supported cpus:\n");
31c997ca
IM
834#endif
835
10a434fc 836 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
02dde8b4 837 const struct cpu_dev *cpudev = *cdev;
9d31d35b 838
10a434fc
YL
839 if (count >= X86_VENDOR_NUM)
840 break;
841 cpu_devs[count] = cpudev;
842 count++;
843
ac23f253 844#ifdef CONFIG_PROCESSOR_SELECT
31c997ca
IM
845 {
846 unsigned int j;
847
848 for (j = 0; j < 2; j++) {
849 if (!cpudev->c_ident[j])
850 continue;
1b74dde7 851 pr_info(" %s %s\n", cpudev->c_vendor,
31c997ca
IM
852 cpudev->c_ident[j]);
853 }
10a434fc 854 }
0388423d 855#endif
10a434fc 856 }
9d31d35b 857 early_identify_cpu(&boot_cpu_data);
d7cd5611 858}
093af8d7 859
b6734c35 860/*
366d4a43
BP
861 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
862 * unfortunately, that's not true in practice because of early VIA
863 * chips and (more importantly) broken virtualizers that are not easy
864 * to detect. In the latter case it doesn't even *fail* reliably, so
865 * probing for it doesn't even work. Disable it completely on 32-bit
ba0593bf 866 * unless we can find a reliable way to detect all the broken cases.
366d4a43 867 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
b6734c35 868 */
148f9bb8 869static void detect_nopl(struct cpuinfo_x86 *c)
b6734c35 870{
366d4a43 871#ifdef CONFIG_X86_32
b6734c35 872 clear_cpu_cap(c, X86_FEATURE_NOPL);
366d4a43
BP
873#else
874 set_cpu_cap(c, X86_FEATURE_NOPL);
58a5aac5 875#endif
d7cd5611 876}
58a5aac5 877
7a5d6704
AL
878static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
879{
880#ifdef CONFIG_X86_64
58a5aac5 881 /*
7a5d6704
AL
882 * Empirically, writing zero to a segment selector on AMD does
883 * not clear the base, whereas writing zero to a segment
884 * selector on Intel does clear the base. Intel's behavior
885 * allows slightly faster context switches in the common case
886 * where GS is unused by the prev and next threads.
58a5aac5 887 *
7a5d6704
AL
888 * Since neither vendor documents this anywhere that I can see,
889 * detect it directly instead of hardcoding the choice by
890 * vendor.
891 *
892 * I've designated AMD's behavior as the "bug" because it's
893 * counterintuitive and less friendly.
58a5aac5 894 */
7a5d6704
AL
895
896 unsigned long old_base, tmp;
897 rdmsrl(MSR_FS_BASE, old_base);
898 wrmsrl(MSR_FS_BASE, 1);
899 loadsegment(fs, 0);
900 rdmsrl(MSR_FS_BASE, tmp);
901 if (tmp != 0)
902 set_cpu_bug(c, X86_BUG_NULL_SEG);
903 wrmsrl(MSR_FS_BASE, old_base);
366d4a43 904#endif
d7cd5611
RR
905}
906
148f9bb8 907static void generic_identify(struct cpuinfo_x86 *c)
1da177e4 908{
aef93c8b 909 c->extended_cpuid_level = 0;
1da177e4 910
3da99c97 911 if (!have_cpuid_p())
aef93c8b 912 identify_cpu_without_cpuid(c);
1d67953f 913
aef93c8b 914 /* cyrix could have cpuid enabled via c_identify()*/
a9853dd6 915 if (!have_cpuid_p())
aef93c8b 916 return;
1da177e4 917
3da99c97 918 cpu_detect(c);
1da177e4 919
3da99c97 920 get_cpu_vendor(c);
1da177e4 921
3da99c97 922 get_cpu_cap(c);
1da177e4 923
3da99c97
YL
924 if (c->cpuid_level >= 0x00000001) {
925 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
b89d3b3e 926#ifdef CONFIG_X86_32
c8e56d20 927# ifdef CONFIG_SMP
cb8cc442 928 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
b89d3b3e 929# else
3da99c97 930 c->apicid = c->initial_apicid;
b89d3b3e
YL
931# endif
932#endif
b89d3b3e 933 c->phys_proc_id = c->initial_apicid;
3da99c97 934 }
1da177e4 935
1b05d60d 936 get_model_name(c); /* Default name */
1da177e4 937
3da99c97 938 detect_nopl(c);
7a5d6704
AL
939
940 detect_null_seg_behavior(c);
0230bb03
AL
941
942 /*
943 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
944 * systems that run Linux at CPL > 0 may or may not have the
945 * issue, but, even if they have the issue, there's absolutely
946 * nothing we can do about it because we can't use the real IRET
947 * instruction.
948 *
949 * NB: For the time being, only 32-bit kernels support
950 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
951 * whether to apply espfix using paravirt hooks. If any
952 * non-paravirt system ever shows up that does *not* have the
953 * ESPFIX issue, we can change this.
954 */
955#ifdef CONFIG_X86_32
956# ifdef CONFIG_PARAVIRT
957 do {
958 extern void native_iret(void);
959 if (pv_cpu_ops.iret == native_iret)
960 set_cpu_bug(c, X86_BUG_ESPFIX);
961 } while (0);
962# else
963 set_cpu_bug(c, X86_BUG_ESPFIX);
964# endif
965#endif
1da177e4 966}
1da177e4 967
cbc82b17
PWJ
968static void x86_init_cache_qos(struct cpuinfo_x86 *c)
969{
970 /*
971 * The heavy lifting of max_rmid and cache_occ_scale are handled
972 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
973 * in case CQM bits really aren't there in this CPU.
974 */
975 if (c != &boot_cpu_data) {
976 boot_cpu_data.x86_cache_max_rmid =
977 min(boot_cpu_data.x86_cache_max_rmid,
978 c->x86_cache_max_rmid);
979 }
980}
981
1da177e4
LT
982/*
983 * This does the hard work of actually picking apart the CPU stuff...
984 */
148f9bb8 985static void identify_cpu(struct cpuinfo_x86 *c)
1da177e4
LT
986{
987 int i;
988
989 c->loops_per_jiffy = loops_per_jiffy;
990 c->x86_cache_size = -1;
991 c->x86_vendor = X86_VENDOR_UNKNOWN;
1da177e4
LT
992 c->x86_model = c->x86_mask = 0; /* So far unknown... */
993 c->x86_vendor_id[0] = '\0'; /* Unset */
994 c->x86_model_id[0] = '\0'; /* Unset */
94605eff 995 c->x86_max_cores = 1;
102bbe3a 996 c->x86_coreid_bits = 0;
11fdd252 997#ifdef CONFIG_X86_64
102bbe3a 998 c->x86_clflush_size = 64;
13c6c532
JB
999 c->x86_phys_bits = 36;
1000 c->x86_virt_bits = 48;
102bbe3a
YL
1001#else
1002 c->cpuid_level = -1; /* CPUID not detected */
770d132f 1003 c->x86_clflush_size = 32;
13c6c532
JB
1004 c->x86_phys_bits = 32;
1005 c->x86_virt_bits = 32;
102bbe3a
YL
1006#endif
1007 c->x86_cache_alignment = c->x86_clflush_size;
1da177e4
LT
1008 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1009
1da177e4
LT
1010 generic_identify(c);
1011
3898534d 1012 if (this_cpu->c_identify)
1da177e4
LT
1013 this_cpu->c_identify(c);
1014
6a6256f9 1015 /* Clear/Set all flags overridden by options, after probe */
2759c328
YL
1016 for (i = 0; i < NCAPINTS; i++) {
1017 c->x86_capability[i] &= ~cpu_caps_cleared[i];
1018 c->x86_capability[i] |= cpu_caps_set[i];
1019 }
1020
102bbe3a 1021#ifdef CONFIG_X86_64
cb8cc442 1022 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
102bbe3a
YL
1023#endif
1024
1da177e4
LT
1025 /*
1026 * Vendor-specific initialization. In this section we
1027 * canonicalize the feature flags, meaning if there are
1028 * features a certain CPU supports which CPUID doesn't
1029 * tell us, CPUID claiming incorrect flags, or other bugs,
1030 * we handle them here.
1031 *
1032 * At the end of this section, c->x86_capability better
1033 * indicate the features this CPU genuinely supports!
1034 */
1035 if (this_cpu->c_init)
1036 this_cpu->c_init(c);
1037
1038 /* Disable the PN if appropriate */
1039 squash_the_stupid_serial_number(c);
1040
b2cc2a07
PA
1041 /* Set up SMEP/SMAP */
1042 setup_smep(c);
1043 setup_smap(c);
1044
1da177e4 1045 /*
0f3fa48a
IM
1046 * The vendor-specific functions might have changed features.
1047 * Now we do "generic changes."
1da177e4
LT
1048 */
1049
b38b0665
PA
1050 /* Filter out anything that depends on CPUID levels we don't have */
1051 filter_cpuid_features(c, true);
1052
1da177e4 1053 /* If the model name is still unset, do table lookup. */
34048c9e 1054 if (!c->x86_model_id[0]) {
02dde8b4 1055 const char *p;
1da177e4 1056 p = table_lookup_model(c);
34048c9e 1057 if (p)
1da177e4
LT
1058 strcpy(c->x86_model_id, p);
1059 else
1060 /* Last resort... */
1061 sprintf(c->x86_model_id, "%02x/%02x",
54a20f8c 1062 c->x86, c->x86_model);
1da177e4
LT
1063 }
1064
102bbe3a
YL
1065#ifdef CONFIG_X86_64
1066 detect_ht(c);
1067#endif
1068
88b094fb 1069 init_hypervisor(c);
49d859d7 1070 x86_init_rdrand(c);
cbc82b17 1071 x86_init_cache_qos(c);
06976945 1072 setup_pku(c);
3e0c3737
YL
1073
1074 /*
6a6256f9 1075 * Clear/Set all flags overridden by options, need do it
3e0c3737
YL
1076 * before following smp all cpus cap AND.
1077 */
1078 for (i = 0; i < NCAPINTS; i++) {
1079 c->x86_capability[i] &= ~cpu_caps_cleared[i];
1080 c->x86_capability[i] |= cpu_caps_set[i];
1081 }
1082
1da177e4
LT
1083 /*
1084 * On SMP, boot_cpu_data holds the common feature set between
1085 * all CPUs; so make sure that we indicate which features are
1086 * common between the CPUs. The first time this routine gets
1087 * executed, c == &boot_cpu_data.
1088 */
34048c9e 1089 if (c != &boot_cpu_data) {
1da177e4 1090 /* AND the already accumulated flags with these */
9d31d35b 1091 for (i = 0; i < NCAPINTS; i++)
1da177e4 1092 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
65fc985b
BP
1093
1094 /* OR, i.e. replicate the bug flags */
1095 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1096 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1da177e4
LT
1097 }
1098
1099 /* Init Machine Check Exception if available. */
5e09954a 1100 mcheck_cpu_init(c);
30d432df
AK
1101
1102 select_idle_routine(c);
102bbe3a 1103
de2d9445 1104#ifdef CONFIG_NUMA
102bbe3a
YL
1105 numa_add_cpu(smp_processor_id());
1106#endif
1f12e32f
TG
1107 /* The boot/hotplug time assigment got cleared, restore it */
1108 c->logical_proc_id = topology_phys_to_logical_pkg(c->phys_proc_id);
a6c4e076 1109}
31ab269a 1110
8b6c0ab1
IM
1111/*
1112 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1113 * on 32-bit kernels:
1114 */
cfda7bb9
AL
1115#ifdef CONFIG_X86_32
1116void enable_sep_cpu(void)
1117{
8b6c0ab1
IM
1118 struct tss_struct *tss;
1119 int cpu;
cfda7bb9 1120
b3edfda4
BP
1121 if (!boot_cpu_has(X86_FEATURE_SEP))
1122 return;
1123
8b6c0ab1
IM
1124 cpu = get_cpu();
1125 tss = &per_cpu(cpu_tss, cpu);
1126
8b6c0ab1 1127 /*
cf9328cc
AL
1128 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1129 * see the big comment in struct x86_hw_tss's definition.
8b6c0ab1 1130 */
cfda7bb9
AL
1131
1132 tss->x86_tss.ss1 = __KERNEL_CS;
8b6c0ab1
IM
1133 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1134
cf9328cc
AL
1135 wrmsr(MSR_IA32_SYSENTER_ESP,
1136 (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1137 0);
8b6c0ab1 1138
4c8cd0c5 1139 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
8b6c0ab1 1140
cfda7bb9
AL
1141 put_cpu();
1142}
e04d645f
GC
1143#endif
1144
a6c4e076
JF
1145void __init identify_boot_cpu(void)
1146{
1147 identify_cpu(&boot_cpu_data);
02c68a02 1148 init_amd_e400_c1e_mask();
102bbe3a 1149#ifdef CONFIG_X86_32
a6c4e076 1150 sysenter_setup();
6fe940d6 1151 enable_sep_cpu();
102bbe3a 1152#endif
5b556332 1153 cpu_detect_tlb(&boot_cpu_data);
a6c4e076 1154}
3b520b23 1155
148f9bb8 1156void identify_secondary_cpu(struct cpuinfo_x86 *c)
a6c4e076
JF
1157{
1158 BUG_ON(c == &boot_cpu_data);
1159 identify_cpu(c);
102bbe3a 1160#ifdef CONFIG_X86_32
a6c4e076 1161 enable_sep_cpu();
102bbe3a 1162#endif
a6c4e076 1163 mtrr_ap_init();
1da177e4
LT
1164}
1165
a0854a46 1166struct msr_range {
0f3fa48a
IM
1167 unsigned min;
1168 unsigned max;
a0854a46 1169};
1da177e4 1170
148f9bb8 1171static const struct msr_range msr_range_array[] = {
a0854a46
YL
1172 { 0x00000000, 0x00000418},
1173 { 0xc0000000, 0xc000040b},
1174 { 0xc0010000, 0xc0010142},
1175 { 0xc0011000, 0xc001103b},
1176};
1da177e4 1177
148f9bb8 1178static void __print_cpu_msr(void)
a0854a46 1179{
0f3fa48a 1180 unsigned index_min, index_max;
a0854a46
YL
1181 unsigned index;
1182 u64 val;
1183 int i;
a0854a46
YL
1184
1185 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1186 index_min = msr_range_array[i].min;
1187 index_max = msr_range_array[i].max;
0f3fa48a 1188
a0854a46 1189 for (index = index_min; index < index_max; index++) {
ecd431d9 1190 if (rdmsrl_safe(index, &val))
a0854a46 1191 continue;
1b74dde7 1192 pr_info(" MSR%08x: %016llx\n", index, val);
1da177e4 1193 }
a0854a46
YL
1194 }
1195}
94605eff 1196
148f9bb8 1197static int show_msr;
0f3fa48a 1198
a0854a46
YL
1199static __init int setup_show_msr(char *arg)
1200{
1201 int num;
3dd9d514 1202
a0854a46 1203 get_option(&arg, &num);
3dd9d514 1204
a0854a46
YL
1205 if (num > 0)
1206 show_msr = num;
1207 return 1;
1da177e4 1208}
a0854a46 1209__setup("show_msr=", setup_show_msr);
1da177e4 1210
191679fd
AK
1211static __init int setup_noclflush(char *arg)
1212{
840d2830 1213 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
da4aaa7d 1214 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
191679fd
AK
1215 return 1;
1216}
1217__setup("noclflush", setup_noclflush);
1218
148f9bb8 1219void print_cpu_info(struct cpuinfo_x86 *c)
1da177e4 1220{
02dde8b4 1221 const char *vendor = NULL;
1da177e4 1222
0f3fa48a 1223 if (c->x86_vendor < X86_VENDOR_NUM) {
1da177e4 1224 vendor = this_cpu->c_vendor;
0f3fa48a
IM
1225 } else {
1226 if (c->cpuid_level >= 0)
1227 vendor = c->x86_vendor_id;
1228 }
1da177e4 1229
bd32a8cf 1230 if (vendor && !strstr(c->x86_model_id, vendor))
1b74dde7 1231 pr_cont("%s ", vendor);
1da177e4 1232
9d31d35b 1233 if (c->x86_model_id[0])
1b74dde7 1234 pr_cont("%s", c->x86_model_id);
1da177e4 1235 else
1b74dde7 1236 pr_cont("%d86", c->x86);
1da177e4 1237
1b74dde7 1238 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
924e101a 1239
34048c9e 1240 if (c->x86_mask || c->cpuid_level >= 0)
1b74dde7 1241 pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1da177e4 1242 else
1b74dde7 1243 pr_cont(")\n");
a0854a46 1244
0b8b8078 1245 print_cpu_msr(c);
21c3fcf3
YL
1246}
1247
148f9bb8 1248void print_cpu_msr(struct cpuinfo_x86 *c)
21c3fcf3 1249{
a0854a46 1250 if (c->cpu_index < show_msr)
21c3fcf3 1251 __print_cpu_msr();
1da177e4
LT
1252}
1253
ac72e788
AK
1254static __init int setup_disablecpuid(char *arg)
1255{
1256 int bit;
0f3fa48a 1257
ac72e788
AK
1258 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1259 setup_clear_cpu_cap(bit);
1260 else
1261 return 0;
0f3fa48a 1262
ac72e788
AK
1263 return 1;
1264}
1265__setup("clearcpuid=", setup_disablecpuid);
1266
d5494d4f 1267#ifdef CONFIG_X86_64
9ff80942 1268struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
629f4f9d
SA
1269struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1270 (unsigned long) debug_idt_table };
d5494d4f 1271
947e76cd 1272DEFINE_PER_CPU_FIRST(union irq_stack_union,
277d5b40 1273 irq_stack_union) __aligned(PAGE_SIZE) __visible;
0f3fa48a 1274
bdf977b3 1275/*
a7fcf28d
AL
1276 * The following percpu variables are hot. Align current_task to
1277 * cacheline size such that they fall in the same cacheline.
bdf977b3
TH
1278 */
1279DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1280 &init_task;
1281EXPORT_PER_CPU_SYMBOL(current_task);
d5494d4f 1282
bdf977b3
TH
1283DEFINE_PER_CPU(char *, irq_stack_ptr) =
1284 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1285
277d5b40 1286DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
d5494d4f 1287
c2daa3be
PZ
1288DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1289EXPORT_PER_CPU_SYMBOL(__preempt_count);
1290
0f3fa48a
IM
1291/*
1292 * Special IST stacks which the CPU switches to when it calls
1293 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1294 * limit), all of them are 4K, except the debug stack which
1295 * is 8K.
1296 */
1297static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1298 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1299 [DEBUG_STACK - 1] = DEBUG_STKSZ
1300};
1301
92d65b23 1302static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
3e352aa8 1303 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
d5494d4f 1304
d5494d4f
YL
1305/* May not be marked __init: used by software suspend */
1306void syscall_init(void)
1da177e4 1307{
d5494d4f
YL
1308 /*
1309 * LSTAR and STAR live in a bit strange symbiosis.
1310 * They both write to the same internal register. STAR allows to
1311 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1312 */
31ac34ca 1313 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
47edb651 1314 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
d56fe4bf
IM
1315
1316#ifdef CONFIG_IA32_EMULATION
47edb651 1317 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
a76c7f46 1318 /*
487d1edb
DV
1319 * This only works on Intel CPUs.
1320 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1321 * This does not cause SYSENTER to jump to the wrong location, because
1322 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
a76c7f46
DV
1323 */
1324 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1325 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
4c8cd0c5 1326 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
d56fe4bf 1327#else
47edb651 1328 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
6b51311c 1329 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
d56fe4bf
IM
1330 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1331 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
d5494d4f 1332#endif
03ae5768 1333
d5494d4f
YL
1334 /* Flags to clear on syscall */
1335 wrmsrl(MSR_SYSCALL_MASK,
63bcff2a 1336 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
8c7aa698 1337 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1da177e4 1338}
62111195 1339
d5494d4f
YL
1340/*
1341 * Copies of the original ist values from the tss are only accessed during
1342 * debugging, no special alignment required.
1343 */
1344DEFINE_PER_CPU(struct orig_ist, orig_ist);
1345
228bdaa9 1346static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
42181186 1347DEFINE_PER_CPU(int, debug_stack_usage);
228bdaa9
SR
1348
1349int is_debug_stack(unsigned long addr)
1350{
89cbc767
CL
1351 return __this_cpu_read(debug_stack_usage) ||
1352 (addr <= __this_cpu_read(debug_stack_addr) &&
1353 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
228bdaa9 1354}
0f46efeb 1355NOKPROBE_SYMBOL(is_debug_stack);
228bdaa9 1356
629f4f9d 1357DEFINE_PER_CPU(u32, debug_idt_ctr);
f8988175 1358
228bdaa9
SR
1359void debug_stack_set_zero(void)
1360{
629f4f9d
SA
1361 this_cpu_inc(debug_idt_ctr);
1362 load_current_idt();
228bdaa9 1363}
0f46efeb 1364NOKPROBE_SYMBOL(debug_stack_set_zero);
228bdaa9
SR
1365
1366void debug_stack_reset(void)
1367{
629f4f9d 1368 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
f8988175 1369 return;
629f4f9d
SA
1370 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1371 load_current_idt();
228bdaa9 1372}
0f46efeb 1373NOKPROBE_SYMBOL(debug_stack_reset);
228bdaa9 1374
0f3fa48a 1375#else /* CONFIG_X86_64 */
d5494d4f 1376
bdf977b3
TH
1377DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1378EXPORT_PER_CPU_SYMBOL(current_task);
c2daa3be
PZ
1379DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1380EXPORT_PER_CPU_SYMBOL(__preempt_count);
bdf977b3 1381
a7fcf28d
AL
1382/*
1383 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1384 * the top of the kernel stack. Use an extra percpu variable to track the
1385 * top of the kernel stack directly.
1386 */
1387DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1388 (unsigned long)&init_thread_union + THREAD_SIZE;
1389EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1390
60a5317f 1391#ifdef CONFIG_CC_STACKPROTECTOR
53f82452 1392DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
60a5317f 1393#endif
d5494d4f 1394
0f3fa48a 1395#endif /* CONFIG_X86_64 */
c5413fbe 1396
9766cdbc
JSR
1397/*
1398 * Clear all 6 debug registers:
1399 */
1400static void clear_all_debug_regs(void)
1401{
1402 int i;
1403
1404 for (i = 0; i < 8; i++) {
1405 /* Ignore db4, db5 */
1406 if ((i == 4) || (i == 5))
1407 continue;
1408
1409 set_debugreg(0, i);
1410 }
1411}
c5413fbe 1412
0bb9fef9
JW
1413#ifdef CONFIG_KGDB
1414/*
1415 * Restore debug regs if using kgdbwait and you have a kernel debugger
1416 * connection established.
1417 */
1418static void dbg_restore_debug_regs(void)
1419{
1420 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1421 arch_kgdb_ops.correct_hw_break();
1422}
1423#else /* ! CONFIG_KGDB */
1424#define dbg_restore_debug_regs()
1425#endif /* ! CONFIG_KGDB */
1426
ce4b1b16
IM
1427static void wait_for_master_cpu(int cpu)
1428{
1429#ifdef CONFIG_SMP
1430 /*
1431 * wait for ACK from master CPU before continuing
1432 * with AP initialization
1433 */
1434 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1435 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1436 cpu_relax();
1437#endif
1438}
1439
d2cbcc49
RR
1440/*
1441 * cpu_init() initializes state that is per-CPU. Some data is already
1442 * initialized (naturally) in the bootstrap process, such as the GDT
1443 * and IDT. We reload them nevertheless, this function acts as a
1444 * 'CPU state barrier', nothing should get across.
1ba76586 1445 * A lot of state is already set up in PDA init for 64 bit
d2cbcc49 1446 */
1ba76586 1447#ifdef CONFIG_X86_64
0f3fa48a 1448
148f9bb8 1449void cpu_init(void)
1ba76586 1450{
0fe1e009 1451 struct orig_ist *oist;
1ba76586 1452 struct task_struct *me;
0f3fa48a
IM
1453 struct tss_struct *t;
1454 unsigned long v;
ce4b1b16 1455 int cpu = stack_smp_processor_id();
1ba76586
YL
1456 int i;
1457
ce4b1b16
IM
1458 wait_for_master_cpu(cpu);
1459
1e02ce4c
AL
1460 /*
1461 * Initialize the CR4 shadow before doing anything that could
1462 * try to read it.
1463 */
1464 cr4_init_shadow();
1465
e6ebf5de
FY
1466 /*
1467 * Load microcode on this cpu if a valid microcode is available.
1468 * This is early microcode loading procedure.
1469 */
1470 load_ucode_ap();
1471
24933b82 1472 t = &per_cpu(cpu_tss, cpu);
0fe1e009 1473 oist = &per_cpu(orig_ist, cpu);
0f3fa48a 1474
e7a22c1e 1475#ifdef CONFIG_NUMA
27fd185f 1476 if (this_cpu_read(numa_node) == 0 &&
e534c7c5
LS
1477 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1478 set_numa_node(early_cpu_to_node(cpu));
e7a22c1e 1479#endif
1ba76586
YL
1480
1481 me = current;
1482
2eaad1fd 1483 pr_debug("Initializing CPU#%d\n", cpu);
1ba76586 1484
375074cc 1485 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1ba76586
YL
1486
1487 /*
1488 * Initialize the per-CPU GDT with the boot GDT,
1489 * and set up the GDT descriptor:
1490 */
1491
552be871 1492 switch_to_new_gdt(cpu);
2697fbd5
BG
1493 loadsegment(fs, 0);
1494
cf910e83 1495 load_current_idt();
1ba76586
YL
1496
1497 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1498 syscall_init();
1499
1500 wrmsrl(MSR_FS_BASE, 0);
1501 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1502 barrier();
1503
4763ed4d 1504 x86_configure_nx();
659006bf 1505 x2apic_setup();
1ba76586
YL
1506
1507 /*
1508 * set up and load the per-CPU TSS
1509 */
0fe1e009 1510 if (!oist->ist[0]) {
92d65b23 1511 char *estacks = per_cpu(exception_stacks, cpu);
0f3fa48a 1512
1ba76586 1513 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
0f3fa48a 1514 estacks += exception_stack_sizes[v];
0fe1e009 1515 oist->ist[v] = t->x86_tss.ist[v] =
1ba76586 1516 (unsigned long)estacks;
228bdaa9
SR
1517 if (v == DEBUG_STACK-1)
1518 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1ba76586
YL
1519 }
1520 }
1521
1522 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
0f3fa48a 1523
1ba76586
YL
1524 /*
1525 * <= is required because the CPU will access up to
1526 * 8 bits beyond the end of the IO permission bitmap.
1527 */
1528 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1529 t->io_bitmap[i] = ~0UL;
1530
1531 atomic_inc(&init_mm.mm_count);
1532 me->active_mm = &init_mm;
8c5dfd25 1533 BUG_ON(me->mm);
1ba76586
YL
1534 enter_lazy_tlb(&init_mm, me);
1535
1536 load_sp0(t, &current->thread);
1537 set_tss_desc(cpu, t);
1538 load_TR_desc();
37868fe1 1539 load_mm_ldt(&init_mm);
1ba76586 1540
0bb9fef9
JW
1541 clear_all_debug_regs();
1542 dbg_restore_debug_regs();
1ba76586 1543
21c4cd10 1544 fpu__init_cpu();
1ba76586 1545
1ba76586
YL
1546 if (is_uv_system())
1547 uv_cpu_init();
1548}
1549
1550#else
1551
148f9bb8 1552void cpu_init(void)
9ee79a3d 1553{
d2cbcc49
RR
1554 int cpu = smp_processor_id();
1555 struct task_struct *curr = current;
24933b82 1556 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
9ee79a3d 1557 struct thread_struct *thread = &curr->thread;
62111195 1558
ce4b1b16 1559 wait_for_master_cpu(cpu);
e6ebf5de 1560
5b2bdbc8
SR
1561 /*
1562 * Initialize the CR4 shadow before doing anything that could
1563 * try to read it.
1564 */
1565 cr4_init_shadow();
1566
ce4b1b16 1567 show_ucode_info_early();
62111195 1568
1b74dde7 1569 pr_info("Initializing CPU#%d\n", cpu);
62111195 1570
362f924b 1571 if (cpu_feature_enabled(X86_FEATURE_VME) ||
59e21e3d 1572 boot_cpu_has(X86_FEATURE_TSC) ||
362f924b 1573 boot_cpu_has(X86_FEATURE_DE))
375074cc 1574 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
62111195 1575
cf910e83 1576 load_current_idt();
552be871 1577 switch_to_new_gdt(cpu);
1da177e4 1578
1da177e4
LT
1579 /*
1580 * Set up and load the per-CPU TSS and LDT
1581 */
1582 atomic_inc(&init_mm.mm_count);
62111195 1583 curr->active_mm = &init_mm;
8c5dfd25 1584 BUG_ON(curr->mm);
62111195 1585 enter_lazy_tlb(&init_mm, curr);
1da177e4 1586
faca6227 1587 load_sp0(t, thread);
34048c9e 1588 set_tss_desc(cpu, t);
1da177e4 1589 load_TR_desc();
37868fe1 1590 load_mm_ldt(&init_mm);
1da177e4 1591
f9a196b8
TG
1592 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1593
22c4e308 1594#ifdef CONFIG_DOUBLEFAULT
1da177e4
LT
1595 /* Set up doublefault TSS pointer in the GDT */
1596 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
22c4e308 1597#endif
1da177e4 1598
9766cdbc 1599 clear_all_debug_regs();
0bb9fef9 1600 dbg_restore_debug_regs();
1da177e4 1601
21c4cd10 1602 fpu__init_cpu();
1da177e4 1603}
1ba76586 1604#endif
5700f743 1605
b51ef52d
LA
1606static void bsp_resume(void)
1607{
1608 if (this_cpu->c_bsp_resume)
1609 this_cpu->c_bsp_resume(&boot_cpu_data);
1610}
1611
1612static struct syscore_ops cpu_syscore_ops = {
1613 .resume = bsp_resume,
1614};
1615
1616static int __init init_cpu_syscore(void)
1617{
1618 register_syscore_ops(&cpu_syscore_ops);
1619 return 0;
1620}
1621core_initcall(init_cpu_syscore);