]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/cpu/common.c
x86/kasan/64: Teach KASAN about the cpu_entry_area
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
CommitLineData
f0fc4aff 1#include <linux/bootmem.h>
9766cdbc 2#include <linux/linkage.h>
f0fc4aff 3#include <linux/bitops.h>
9766cdbc 4#include <linux/kernel.h>
186f4360 5#include <linux/export.h>
9766cdbc
JSR
6#include <linux/percpu.h>
7#include <linux/string.h>
ee098e1a 8#include <linux/ctype.h>
1da177e4 9#include <linux/delay.h>
68e21be2 10#include <linux/sched/mm.h>
e6017571 11#include <linux/sched/clock.h>
9164bb4a 12#include <linux/sched/task.h>
9766cdbc 13#include <linux/init.h>
0f46efeb 14#include <linux/kprobes.h>
9766cdbc 15#include <linux/kgdb.h>
1da177e4 16#include <linux/smp.h>
9766cdbc 17#include <linux/io.h>
b51ef52d 18#include <linux/syscore_ops.h>
9766cdbc
JSR
19
20#include <asm/stackprotector.h>
cdd6c482 21#include <asm/perf_event.h>
1da177e4 22#include <asm/mmu_context.h>
49d859d7 23#include <asm/archrandom.h>
9766cdbc
JSR
24#include <asm/hypervisor.h>
25#include <asm/processor.h>
1e02ce4c 26#include <asm/tlbflush.h>
f649e938 27#include <asm/debugreg.h>
9766cdbc 28#include <asm/sections.h>
f40c3300 29#include <asm/vsyscall.h>
8bdbd962
AC
30#include <linux/topology.h>
31#include <linux/cpumask.h>
9766cdbc 32#include <asm/pgtable.h>
60063497 33#include <linux/atomic.h>
9766cdbc
JSR
34#include <asm/proto.h>
35#include <asm/setup.h>
36#include <asm/apic.h>
37#include <asm/desc.h>
78f7f1e5 38#include <asm/fpu/internal.h>
27b07da7 39#include <asm/mtrr.h>
0274f955 40#include <asm/hwcap2.h>
8bdbd962 41#include <linux/numa.h>
9766cdbc 42#include <asm/asm.h>
0f6ff2bc 43#include <asm/bugs.h>
9766cdbc 44#include <asm/cpu.h>
a03a3e28 45#include <asm/mce.h>
9766cdbc 46#include <asm/msr.h>
8d4a4300 47#include <asm/pat.h>
d288e1cf
FY
48#include <asm/microcode.h>
49#include <asm/microcode_intel.h>
e641f5f5
IM
50
51#ifdef CONFIG_X86_LOCAL_APIC
bdbcdd48 52#include <asm/uv/uv.h>
1da177e4
LT
53#endif
54
55#include "cpu.h"
56
0274f955
GA
57u32 elf_hwcap2 __read_mostly;
58
c2d1cec1 59/* all of these masks are initialized in setup_cpu_local_masks() */
c2d1cec1 60cpumask_var_t cpu_initialized_mask;
9766cdbc
JSR
61cpumask_var_t cpu_callout_mask;
62cpumask_var_t cpu_callin_mask;
c2d1cec1
MT
63
64/* representing cpus for which sibling maps can be computed */
65cpumask_var_t cpu_sibling_setup_mask;
66
2f2f52ba 67/* correctly size the local cpu masks */
4369f1fb 68void __init setup_cpu_local_masks(void)
2f2f52ba
BG
69{
70 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
71 alloc_bootmem_cpumask_var(&cpu_callin_mask);
72 alloc_bootmem_cpumask_var(&cpu_callout_mask);
73 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
74}
75
148f9bb8 76static void default_init(struct cpuinfo_x86 *c)
e8055139
OZ
77{
78#ifdef CONFIG_X86_64
27c13ece 79 cpu_detect_cache_sizes(c);
e8055139
OZ
80#else
81 /* Not much we can do here... */
82 /* Check if at least it has cpuid */
83 if (c->cpuid_level == -1) {
84 /* No cpuid. It must be an ancient CPU */
85 if (c->x86 == 4)
86 strcpy(c->x86_model_id, "486");
87 else if (c->x86 == 3)
88 strcpy(c->x86_model_id, "386");
89 }
90#endif
91}
92
148f9bb8 93static const struct cpu_dev default_cpu = {
e8055139
OZ
94 .c_init = default_init,
95 .c_vendor = "Unknown",
96 .c_x86_vendor = X86_VENDOR_UNKNOWN,
97};
98
148f9bb8 99static const struct cpu_dev *this_cpu = &default_cpu;
0a488a53 100
06deef89 101DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
950ad7ff 102#ifdef CONFIG_X86_64
06deef89
BG
103 /*
104 * We need valid kernel segments for data and code in long mode too
105 * IRET will check the segment types kkeil 2000/10/28
106 * Also sysret mandates a special GDT layout
107 *
9766cdbc 108 * TLS descriptors are currently at a different place compared to i386.
06deef89
BG
109 * Hopefully nobody expects them at a fixed place (Wine?)
110 */
1e5de182
AM
111 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
112 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
113 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
114 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
115 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
116 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
950ad7ff 117#else
1e5de182
AM
118 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
119 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
120 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
121 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
bf504672
RR
122 /*
123 * Segments used for calling PnP BIOS have byte granularity.
124 * They code segments and data segments have fixed 64k limits,
125 * the transfer segment sizes are set at run time.
126 */
6842ef0e 127 /* 32-bit code */
1e5de182 128 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
6842ef0e 129 /* 16-bit code */
1e5de182 130 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
6842ef0e 131 /* 16-bit data */
1e5de182 132 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
6842ef0e 133 /* 16-bit data */
1e5de182 134 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
6842ef0e 135 /* 16-bit data */
1e5de182 136 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
bf504672
RR
137 /*
138 * The APM segments have byte granularity and their bases
139 * are set at run time. All have 64k limits.
140 */
6842ef0e 141 /* 32-bit code */
1e5de182 142 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
bf504672 143 /* 16-bit code */
1e5de182 144 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
6842ef0e 145 /* data */
72c4d853 146 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
bf504672 147
1e5de182
AM
148 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
149 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
60a5317f 150 GDT_STACK_CANARY_INIT
950ad7ff 151#endif
06deef89 152} };
7a61d35d 153EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
ae1ee11b 154
8c3641e9 155static int __init x86_mpx_setup(char *s)
0c752a93 156{
8c3641e9 157 /* require an exact match without trailing characters */
2cd3949f
DH
158 if (strlen(s))
159 return 0;
0c752a93 160
8c3641e9
DH
161 /* do not emit a message if the feature is not present */
162 if (!boot_cpu_has(X86_FEATURE_MPX))
163 return 1;
6bad06b7 164
8c3641e9
DH
165 setup_clear_cpu_cap(X86_FEATURE_MPX);
166 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
b6f42a4a
FY
167 return 1;
168}
8c3641e9 169__setup("nompx", x86_mpx_setup);
b6f42a4a 170
62d3a636 171#ifdef CONFIG_X86_64
0e6a37a4 172static int __init x86_nopcid_setup(char *s)
62d3a636 173{
0e6a37a4
AL
174 /* nopcid doesn't accept parameters */
175 if (s)
176 return -EINVAL;
62d3a636
AL
177
178 /* do not emit a message if the feature is not present */
179 if (!boot_cpu_has(X86_FEATURE_PCID))
0e6a37a4 180 return 0;
62d3a636
AL
181
182 setup_clear_cpu_cap(X86_FEATURE_PCID);
183 pr_info("nopcid: PCID feature disabled\n");
0e6a37a4 184 return 0;
62d3a636 185}
0e6a37a4 186early_param("nopcid", x86_nopcid_setup);
62d3a636
AL
187#endif
188
d12a72b8
AL
189static int __init x86_noinvpcid_setup(char *s)
190{
191 /* noinvpcid doesn't accept parameters */
192 if (s)
193 return -EINVAL;
194
195 /* do not emit a message if the feature is not present */
196 if (!boot_cpu_has(X86_FEATURE_INVPCID))
197 return 0;
198
199 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
200 pr_info("noinvpcid: INVPCID feature disabled\n");
201 return 0;
202}
203early_param("noinvpcid", x86_noinvpcid_setup);
204
ba51dced 205#ifdef CONFIG_X86_32
148f9bb8
PG
206static int cachesize_override = -1;
207static int disable_x86_serial_nr = 1;
1da177e4 208
0a488a53
YL
209static int __init cachesize_setup(char *str)
210{
211 get_option(&str, &cachesize_override);
212 return 1;
213}
214__setup("cachesize=", cachesize_setup);
215
0a488a53
YL
216static int __init x86_sep_setup(char *s)
217{
218 setup_clear_cpu_cap(X86_FEATURE_SEP);
219 return 1;
220}
221__setup("nosep", x86_sep_setup);
222
223/* Standard macro to see if a specific flag is changeable */
224static inline int flag_is_changeable_p(u32 flag)
225{
226 u32 f1, f2;
227
94f6bac1
KH
228 /*
229 * Cyrix and IDT cpus allow disabling of CPUID
230 * so the code below may return different results
231 * when it is executed before and after enabling
232 * the CPUID. Add "volatile" to not allow gcc to
233 * optimize the subsequent calls to this function.
234 */
0f3fa48a
IM
235 asm volatile ("pushfl \n\t"
236 "pushfl \n\t"
237 "popl %0 \n\t"
238 "movl %0, %1 \n\t"
239 "xorl %2, %0 \n\t"
240 "pushl %0 \n\t"
241 "popfl \n\t"
242 "pushfl \n\t"
243 "popl %0 \n\t"
244 "popfl \n\t"
245
94f6bac1
KH
246 : "=&r" (f1), "=&r" (f2)
247 : "ir" (flag));
0a488a53
YL
248
249 return ((f1^f2) & flag) != 0;
250}
251
252/* Probe for the CPUID instruction */
148f9bb8 253int have_cpuid_p(void)
0a488a53
YL
254{
255 return flag_is_changeable_p(X86_EFLAGS_ID);
256}
257
148f9bb8 258static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
0a488a53 259{
0f3fa48a
IM
260 unsigned long lo, hi;
261
262 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
263 return;
264
265 /* Disable processor serial number: */
266
267 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
268 lo |= 0x200000;
269 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
270
1b74dde7 271 pr_notice("CPU serial number disabled.\n");
0f3fa48a
IM
272 clear_cpu_cap(c, X86_FEATURE_PN);
273
274 /* Disabling the serial number may affect the cpuid level */
275 c->cpuid_level = cpuid_eax(0);
0a488a53
YL
276}
277
278static int __init x86_serial_nr_setup(char *s)
279{
280 disable_x86_serial_nr = 0;
281 return 1;
282}
283__setup("serialnumber", x86_serial_nr_setup);
ba51dced 284#else
102bbe3a
YL
285static inline int flag_is_changeable_p(u32 flag)
286{
287 return 1;
288}
102bbe3a
YL
289static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
290{
291}
ba51dced 292#endif
0a488a53 293
de5397ad
FY
294static __init int setup_disable_smep(char *arg)
295{
b2cc2a07 296 setup_clear_cpu_cap(X86_FEATURE_SMEP);
0f6ff2bc
DH
297 /* Check for things that depend on SMEP being enabled: */
298 check_mpx_erratum(&boot_cpu_data);
de5397ad
FY
299 return 1;
300}
301__setup("nosmep", setup_disable_smep);
302
b2cc2a07 303static __always_inline void setup_smep(struct cpuinfo_x86 *c)
de5397ad 304{
b2cc2a07 305 if (cpu_has(c, X86_FEATURE_SMEP))
375074cc 306 cr4_set_bits(X86_CR4_SMEP);
de5397ad
FY
307}
308
52b6179a
PA
309static __init int setup_disable_smap(char *arg)
310{
b2cc2a07 311 setup_clear_cpu_cap(X86_FEATURE_SMAP);
52b6179a
PA
312 return 1;
313}
314__setup("nosmap", setup_disable_smap);
315
b2cc2a07
PA
316static __always_inline void setup_smap(struct cpuinfo_x86 *c)
317{
581b7f15 318 unsigned long eflags = native_save_fl();
b2cc2a07
PA
319
320 /* This should have been cleared long ago */
b2cc2a07
PA
321 BUG_ON(eflags & X86_EFLAGS_AC);
322
03bbd596
PA
323 if (cpu_has(c, X86_FEATURE_SMAP)) {
324#ifdef CONFIG_X86_SMAP
375074cc 325 cr4_set_bits(X86_CR4_SMAP);
03bbd596 326#else
375074cc 327 cr4_clear_bits(X86_CR4_SMAP);
03bbd596
PA
328#endif
329 }
de5397ad
FY
330}
331
06976945
DH
332/*
333 * Protection Keys are not available in 32-bit mode.
334 */
335static bool pku_disabled;
336
337static __always_inline void setup_pku(struct cpuinfo_x86 *c)
338{
e8df1a95
DH
339 /* check the boot processor, plus compile options for PKU: */
340 if (!cpu_feature_enabled(X86_FEATURE_PKU))
341 return;
342 /* checks the actual processor's cpuid bits: */
06976945
DH
343 if (!cpu_has(c, X86_FEATURE_PKU))
344 return;
345 if (pku_disabled)
346 return;
347
348 cr4_set_bits(X86_CR4_PKE);
349 /*
350 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
351 * cpuid bit to be set. We need to ensure that we
352 * update that bit in this CPU's "cpu_info".
353 */
354 get_cpu_cap(c);
355}
356
357#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
358static __init int setup_disable_pku(char *arg)
359{
360 /*
361 * Do not clear the X86_FEATURE_PKU bit. All of the
362 * runtime checks are against OSPKE so clearing the
363 * bit does nothing.
364 *
365 * This way, we will see "pku" in cpuinfo, but not
366 * "ospke", which is exactly what we want. It shows
367 * that the CPU has PKU, but the OS has not enabled it.
368 * This happens to be exactly how a system would look
369 * if we disabled the config option.
370 */
371 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
372 pku_disabled = true;
373 return 1;
374}
375__setup("nopku", setup_disable_pku);
376#endif /* CONFIG_X86_64 */
377
b38b0665
PA
378/*
379 * Some CPU features depend on higher CPUID levels, which may not always
380 * be available due to CPUID level capping or broken virtualization
381 * software. Add those features to this table to auto-disable them.
382 */
383struct cpuid_dependent_feature {
384 u32 feature;
385 u32 level;
386};
0f3fa48a 387
148f9bb8 388static const struct cpuid_dependent_feature
b38b0665
PA
389cpuid_dependent_features[] = {
390 { X86_FEATURE_MWAIT, 0x00000005 },
391 { X86_FEATURE_DCA, 0x00000009 },
392 { X86_FEATURE_XSAVE, 0x0000000d },
393 { 0, 0 }
394};
395
148f9bb8 396static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
b38b0665
PA
397{
398 const struct cpuid_dependent_feature *df;
9766cdbc 399
b38b0665 400 for (df = cpuid_dependent_features; df->feature; df++) {
0f3fa48a
IM
401
402 if (!cpu_has(c, df->feature))
403 continue;
b38b0665
PA
404 /*
405 * Note: cpuid_level is set to -1 if unavailable, but
406 * extended_extended_level is set to 0 if unavailable
407 * and the legitimate extended levels are all negative
408 * when signed; hence the weird messing around with
409 * signs here...
410 */
0f3fa48a 411 if (!((s32)df->level < 0 ?
f6db44df 412 (u32)df->level > (u32)c->extended_cpuid_level :
0f3fa48a
IM
413 (s32)df->level > (s32)c->cpuid_level))
414 continue;
415
416 clear_cpu_cap(c, df->feature);
417 if (!warn)
418 continue;
419
1b74dde7
CY
420 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
421 x86_cap_flag(df->feature), df->level);
b38b0665 422 }
f6db44df 423}
b38b0665 424
102bbe3a
YL
425/*
426 * Naming convention should be: <Name> [(<Codename>)]
427 * This table only is used unless init_<vendor>() below doesn't set it;
0f3fa48a
IM
428 * in particular, if CPUID levels 0x80000002..4 are supported, this
429 * isn't used
102bbe3a
YL
430 */
431
432/* Look up CPU names by table lookup. */
148f9bb8 433static const char *table_lookup_model(struct cpuinfo_x86 *c)
102bbe3a 434{
09dc68d9
JB
435#ifdef CONFIG_X86_32
436 const struct legacy_cpu_model_info *info;
102bbe3a
YL
437
438 if (c->x86_model >= 16)
439 return NULL; /* Range check */
440
441 if (!this_cpu)
442 return NULL;
443
09dc68d9 444 info = this_cpu->legacy_models;
102bbe3a 445
09dc68d9 446 while (info->family) {
102bbe3a
YL
447 if (info->family == c->x86)
448 return info->model_names[c->x86_model];
449 info++;
450 }
09dc68d9 451#endif
102bbe3a
YL
452 return NULL; /* Not found */
453}
454
148f9bb8
PG
455__u32 cpu_caps_cleared[NCAPINTS];
456__u32 cpu_caps_set[NCAPINTS];
7d851c8d 457
11e3a840
JF
458void load_percpu_segment(int cpu)
459{
460#ifdef CONFIG_X86_32
461 loadsegment(fs, __KERNEL_PERCPU);
462#else
45e876f7 463 __loadsegment_simple(gs, 0);
11e3a840
JF
464 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
465#endif
60a5317f 466 load_stack_canary_segment();
11e3a840
JF
467}
468
b17894f1
AL
469/* Setup the fixmap mappings only once per-processor */
470static inline void setup_cpu_entry_area(int cpu)
b23adb7d 471{
45fc8757 472#ifdef CONFIG_X86_64
b23adb7d 473 /* On 64-bit systems, we use a read-only fixmap GDT. */
b17894f1 474 pgprot_t gdt_prot = PAGE_KERNEL_RO;
45fc8757 475#else
b23adb7d
AL
476 /*
477 * On native 32-bit systems, the GDT cannot be read-only because
478 * our double fault handler uses a task gate, and entering through
479 * a task gate needs to change an available TSS to busy. If the GDT
480 * is read-only, that will triple fault.
481 *
482 * On Xen PV, the GDT must be read-only because the hypervisor requires
483 * it.
484 */
b17894f1 485 pgprot_t gdt_prot = boot_cpu_has(X86_FEATURE_XENPV) ?
b23adb7d 486 PAGE_KERNEL_RO : PAGE_KERNEL;
45fc8757 487#endif
69218e47 488
b17894f1 489 __set_fixmap(get_cpu_entry_area_index(cpu, gdt), get_cpu_gdt_paddr(cpu), gdt_prot);
69218e47
TG
490}
491
45fc8757
TG
492/* Load the original GDT from the per-cpu structure */
493void load_direct_gdt(int cpu)
494{
495 struct desc_ptr gdt_descr;
496
497 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
498 gdt_descr.size = GDT_SIZE - 1;
499 load_gdt(&gdt_descr);
500}
501EXPORT_SYMBOL_GPL(load_direct_gdt);
502
69218e47
TG
503/* Load a fixmap remapping of the per-cpu GDT */
504void load_fixmap_gdt(int cpu)
505{
506 struct desc_ptr gdt_descr;
507
508 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
509 gdt_descr.size = GDT_SIZE - 1;
510 load_gdt(&gdt_descr);
511}
45fc8757 512EXPORT_SYMBOL_GPL(load_fixmap_gdt);
69218e47 513
0f3fa48a
IM
514/*
515 * Current gdt points %fs at the "master" per-cpu area: after this,
516 * it's on the real one.
517 */
552be871 518void switch_to_new_gdt(int cpu)
9d31d35b 519{
45fc8757
TG
520 /* Load the original GDT */
521 load_direct_gdt(cpu);
2697fbd5 522 /* Reload the per-cpu base */
11e3a840 523 load_percpu_segment(cpu);
9d31d35b
YL
524}
525
148f9bb8 526static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
1da177e4 527
148f9bb8 528static void get_model_name(struct cpuinfo_x86 *c)
1da177e4
LT
529{
530 unsigned int *v;
ee098e1a 531 char *p, *q, *s;
1da177e4 532
3da99c97 533 if (c->extended_cpuid_level < 0x80000004)
1b05d60d 534 return;
1da177e4 535
0f3fa48a 536 v = (unsigned int *)c->x86_model_id;
1da177e4
LT
537 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
538 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
539 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
540 c->x86_model_id[48] = 0;
541
ee098e1a
BP
542 /* Trim whitespace */
543 p = q = s = &c->x86_model_id[0];
544
545 while (*p == ' ')
546 p++;
547
548 while (*p) {
549 /* Note the last non-whitespace index */
550 if (!isspace(*p))
551 s = q;
552
553 *q++ = *p++;
554 }
555
556 *(s + 1) = '\0';
1da177e4
LT
557}
558
148f9bb8 559void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
1da177e4 560{
9d31d35b 561 unsigned int n, dummy, ebx, ecx, edx, l2size;
1da177e4 562
3da99c97 563 n = c->extended_cpuid_level;
1da177e4
LT
564
565 if (n >= 0x80000005) {
9d31d35b 566 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
9d31d35b 567 c->x86_cache_size = (ecx>>24) + (edx>>24);
140fc727
YL
568#ifdef CONFIG_X86_64
569 /* On K8 L1 TLB is inclusive, so don't count it */
570 c->x86_tlbsize = 0;
571#endif
1da177e4
LT
572 }
573
574 if (n < 0x80000006) /* Some chips just has a large L1. */
575 return;
576
0a488a53 577 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
1da177e4 578 l2size = ecx >> 16;
34048c9e 579
140fc727
YL
580#ifdef CONFIG_X86_64
581 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
582#else
1da177e4 583 /* do processor-specific cache resizing */
09dc68d9
JB
584 if (this_cpu->legacy_cache_size)
585 l2size = this_cpu->legacy_cache_size(c, l2size);
1da177e4
LT
586
587 /* Allow user to override all this if necessary. */
588 if (cachesize_override != -1)
589 l2size = cachesize_override;
590
34048c9e 591 if (l2size == 0)
1da177e4 592 return; /* Again, no L2 cache is possible */
140fc727 593#endif
1da177e4
LT
594
595 c->x86_cache_size = l2size;
1da177e4
LT
596}
597
e0ba94f1
AS
598u16 __read_mostly tlb_lli_4k[NR_INFO];
599u16 __read_mostly tlb_lli_2m[NR_INFO];
600u16 __read_mostly tlb_lli_4m[NR_INFO];
601u16 __read_mostly tlb_lld_4k[NR_INFO];
602u16 __read_mostly tlb_lld_2m[NR_INFO];
603u16 __read_mostly tlb_lld_4m[NR_INFO];
dd360393 604u16 __read_mostly tlb_lld_1g[NR_INFO];
e0ba94f1 605
f94fe119 606static void cpu_detect_tlb(struct cpuinfo_x86 *c)
e0ba94f1
AS
607{
608 if (this_cpu->c_detect_tlb)
609 this_cpu->c_detect_tlb(c);
610
f94fe119 611 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
e0ba94f1 612 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
f94fe119
SH
613 tlb_lli_4m[ENTRIES]);
614
615 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
616 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
617 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
e0ba94f1
AS
618}
619
148f9bb8 620void detect_ht(struct cpuinfo_x86 *c)
1da177e4 621{
c8e56d20 622#ifdef CONFIG_SMP
0a488a53
YL
623 u32 eax, ebx, ecx, edx;
624 int index_msb, core_bits;
2eaad1fd 625 static bool printed;
1da177e4 626
0a488a53 627 if (!cpu_has(c, X86_FEATURE_HT))
9d31d35b 628 return;
1da177e4 629
0a488a53
YL
630 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
631 goto out;
1da177e4 632
1cd78776
YL
633 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
634 return;
1da177e4 635
0a488a53 636 cpuid(1, &eax, &ebx, &ecx, &edx);
1da177e4 637
9d31d35b
YL
638 smp_num_siblings = (ebx & 0xff0000) >> 16;
639
640 if (smp_num_siblings == 1) {
1b74dde7 641 pr_info_once("CPU0: Hyper-Threading is disabled\n");
0f3fa48a
IM
642 goto out;
643 }
9d31d35b 644
0f3fa48a
IM
645 if (smp_num_siblings <= 1)
646 goto out;
9d31d35b 647
0f3fa48a
IM
648 index_msb = get_count_order(smp_num_siblings);
649 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
9d31d35b 650
0f3fa48a 651 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
9d31d35b 652
0f3fa48a 653 index_msb = get_count_order(smp_num_siblings);
9d31d35b 654
0f3fa48a 655 core_bits = get_count_order(c->x86_max_cores);
9d31d35b 656
0f3fa48a
IM
657 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
658 ((1 << core_bits) - 1);
1da177e4 659
0a488a53 660out:
2eaad1fd 661 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
1b74dde7
CY
662 pr_info("CPU: Physical Processor ID: %d\n",
663 c->phys_proc_id);
664 pr_info("CPU: Processor Core ID: %d\n",
665 c->cpu_core_id);
2eaad1fd 666 printed = 1;
9d31d35b 667 }
9d31d35b 668#endif
97e4db7c 669}
1da177e4 670
148f9bb8 671static void get_cpu_vendor(struct cpuinfo_x86 *c)
1da177e4
LT
672{
673 char *v = c->x86_vendor_id;
0f3fa48a 674 int i;
1da177e4
LT
675
676 for (i = 0; i < X86_VENDOR_NUM; i++) {
10a434fc
YL
677 if (!cpu_devs[i])
678 break;
679
680 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
681 (cpu_devs[i]->c_ident[1] &&
682 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
0f3fa48a 683
10a434fc
YL
684 this_cpu = cpu_devs[i];
685 c->x86_vendor = this_cpu->c_x86_vendor;
686 return;
1da177e4
LT
687 }
688 }
10a434fc 689
1b74dde7
CY
690 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
691 "CPU: Your system may be unstable.\n", v);
10a434fc 692
fe38d855
CE
693 c->x86_vendor = X86_VENDOR_UNKNOWN;
694 this_cpu = &default_cpu;
1da177e4
LT
695}
696
148f9bb8 697void cpu_detect(struct cpuinfo_x86 *c)
1da177e4 698{
1da177e4 699 /* Get vendor name */
4a148513
HH
700 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
701 (unsigned int *)&c->x86_vendor_id[0],
702 (unsigned int *)&c->x86_vendor_id[8],
703 (unsigned int *)&c->x86_vendor_id[4]);
1da177e4 704
1da177e4 705 c->x86 = 4;
9d31d35b 706 /* Intel-defined flags: level 0x00000001 */
1da177e4
LT
707 if (c->cpuid_level >= 0x00000001) {
708 u32 junk, tfms, cap0, misc;
0f3fa48a 709
1da177e4 710 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
99f925ce
BP
711 c->x86 = x86_family(tfms);
712 c->x86_model = x86_model(tfms);
713 c->x86_mask = x86_stepping(tfms);
0f3fa48a 714
d4387bd3 715 if (cap0 & (1<<19)) {
d4387bd3 716 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
9d31d35b 717 c->x86_cache_alignment = c->x86_clflush_size;
d4387bd3 718 }
1da177e4 719 }
1da177e4 720}
3da99c97 721
8bf1ebca
AL
722static void apply_forced_caps(struct cpuinfo_x86 *c)
723{
724 int i;
725
726 for (i = 0; i < NCAPINTS; i++) {
727 c->x86_capability[i] &= ~cpu_caps_cleared[i];
728 c->x86_capability[i] |= cpu_caps_set[i];
729 }
730}
731
148f9bb8 732void get_cpu_cap(struct cpuinfo_x86 *c)
093af8d7 733{
39c06df4 734 u32 eax, ebx, ecx, edx;
093af8d7 735
3da99c97
YL
736 /* Intel-defined flags: level 0x00000001 */
737 if (c->cpuid_level >= 0x00000001) {
39c06df4 738 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
0f3fa48a 739
39c06df4
BP
740 c->x86_capability[CPUID_1_ECX] = ecx;
741 c->x86_capability[CPUID_1_EDX] = edx;
3da99c97 742 }
093af8d7 743
3df8d920
AL
744 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
745 if (c->cpuid_level >= 0x00000006)
746 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
747
bdc802dc
PA
748 /* Additional Intel-defined flags: level 0x00000007 */
749 if (c->cpuid_level >= 0x00000007) {
bdc802dc 750 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
39c06df4 751 c->x86_capability[CPUID_7_0_EBX] = ebx;
dfb4a70f 752 c->x86_capability[CPUID_7_ECX] = ecx;
bdc802dc
PA
753 }
754
6229ad27
FY
755 /* Extended state features: level 0x0000000d */
756 if (c->cpuid_level >= 0x0000000d) {
6229ad27
FY
757 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
758
39c06df4 759 c->x86_capability[CPUID_D_1_EAX] = eax;
6229ad27
FY
760 }
761
cbc82b17
PWJ
762 /* Additional Intel-defined flags: level 0x0000000F */
763 if (c->cpuid_level >= 0x0000000F) {
cbc82b17
PWJ
764
765 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
766 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
39c06df4
BP
767 c->x86_capability[CPUID_F_0_EDX] = edx;
768
cbc82b17
PWJ
769 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
770 /* will be overridden if occupancy monitoring exists */
771 c->x86_cache_max_rmid = ebx;
772
773 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
774 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
39c06df4
BP
775 c->x86_capability[CPUID_F_1_EDX] = edx;
776
33c3cc7a
VS
777 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
778 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
779 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
cbc82b17
PWJ
780 c->x86_cache_max_rmid = ecx;
781 c->x86_cache_occ_scale = ebx;
782 }
783 } else {
784 c->x86_cache_max_rmid = -1;
785 c->x86_cache_occ_scale = -1;
786 }
787 }
788
3da99c97 789 /* AMD-defined flags: level 0x80000001 */
39c06df4
BP
790 eax = cpuid_eax(0x80000000);
791 c->extended_cpuid_level = eax;
792
793 if ((eax & 0xffff0000) == 0x80000000) {
794 if (eax >= 0x80000001) {
795 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
0f3fa48a 796
39c06df4
BP
797 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
798 c->x86_capability[CPUID_8000_0001_EDX] = edx;
093af8d7 799 }
093af8d7 800 }
093af8d7 801
71faad43
YG
802 if (c->extended_cpuid_level >= 0x80000007) {
803 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
804
805 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
806 c->x86_power = edx;
807 }
808
5122c890 809 if (c->extended_cpuid_level >= 0x80000008) {
39c06df4 810 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
5122c890
YL
811
812 c->x86_virt_bits = (eax >> 8) & 0xff;
813 c->x86_phys_bits = eax & 0xff;
39c06df4 814 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
093af8d7 815 }
13c6c532
JB
816#ifdef CONFIG_X86_32
817 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
818 c->x86_phys_bits = 36;
5122c890 819#endif
e3224234 820
2ccd71f1 821 if (c->extended_cpuid_level >= 0x8000000a)
39c06df4 822 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
093af8d7 823
1dedefd1 824 init_scattered_cpuid_features(c);
60d34501
AL
825
826 /*
827 * Clear/Set all flags overridden by options, after probe.
828 * This needs to happen each time we re-probe, which may happen
829 * several times during CPU initialization.
830 */
831 apply_forced_caps(c);
093af8d7 832}
1da177e4 833
148f9bb8 834static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
aef93c8b
YL
835{
836#ifdef CONFIG_X86_32
837 int i;
838
839 /*
840 * First of all, decide if this is a 486 or higher
841 * It's a 486 if we can modify the AC flag
842 */
843 if (flag_is_changeable_p(X86_EFLAGS_AC))
844 c->x86 = 4;
845 else
846 c->x86 = 3;
847
848 for (i = 0; i < X86_VENDOR_NUM; i++)
849 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
850 c->x86_vendor_id[0] = 0;
851 cpu_devs[i]->c_identify(c);
852 if (c->x86_vendor_id[0]) {
853 get_cpu_vendor(c);
854 break;
855 }
856 }
857#endif
858}
859
34048c9e
PC
860/*
861 * Do minimum CPU detection early.
862 * Fields really needed: vendor, cpuid_level, family, model, mask,
863 * cache alignment.
864 * The others are not touched to avoid unwanted side effects.
865 *
866 * WARNING: this function is only called on the BP. Don't add code here
867 * that is supposed to run on all CPUs.
868 */
3da99c97 869static void __init early_identify_cpu(struct cpuinfo_x86 *c)
d7cd5611 870{
6627d242
YL
871#ifdef CONFIG_X86_64
872 c->x86_clflush_size = 64;
13c6c532
JB
873 c->x86_phys_bits = 36;
874 c->x86_virt_bits = 48;
6627d242 875#else
d4387bd3 876 c->x86_clflush_size = 32;
13c6c532
JB
877 c->x86_phys_bits = 32;
878 c->x86_virt_bits = 32;
6627d242 879#endif
0a488a53 880 c->x86_cache_alignment = c->x86_clflush_size;
d7cd5611 881
3da99c97 882 memset(&c->x86_capability, 0, sizeof c->x86_capability);
0a488a53 883 c->extended_cpuid_level = 0;
d7cd5611 884
aef93c8b 885 /* cyrix could have cpuid enabled via c_identify()*/
05fb3c19
AL
886 if (have_cpuid_p()) {
887 cpu_detect(c);
888 get_cpu_vendor(c);
889 get_cpu_cap(c);
78d1b296 890 setup_force_cpu_cap(X86_FEATURE_CPUID);
d7cd5611 891
05fb3c19
AL
892 if (this_cpu->c_early_init)
893 this_cpu->c_early_init(c);
12cf105c 894
05fb3c19
AL
895 c->cpu_index = 0;
896 filter_cpuid_features(c, false);
093af8d7 897
05fb3c19
AL
898 if (this_cpu->c_bsp_init)
899 this_cpu->c_bsp_init(c);
78d1b296
BP
900 } else {
901 identify_cpu_without_cpuid(c);
902 setup_clear_cpu_cap(X86_FEATURE_CPUID);
05fb3c19 903 }
c3b83598
BP
904
905 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
db52ef74 906 fpu__init_system(c);
d7cd5611
RR
907}
908
9d31d35b
YL
909void __init early_cpu_init(void)
910{
02dde8b4 911 const struct cpu_dev *const *cdev;
10a434fc
YL
912 int count = 0;
913
ac23f253 914#ifdef CONFIG_PROCESSOR_SELECT
1b74dde7 915 pr_info("KERNEL supported cpus:\n");
31c997ca
IM
916#endif
917
10a434fc 918 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
02dde8b4 919 const struct cpu_dev *cpudev = *cdev;
9d31d35b 920
10a434fc
YL
921 if (count >= X86_VENDOR_NUM)
922 break;
923 cpu_devs[count] = cpudev;
924 count++;
925
ac23f253 926#ifdef CONFIG_PROCESSOR_SELECT
31c997ca
IM
927 {
928 unsigned int j;
929
930 for (j = 0; j < 2; j++) {
931 if (!cpudev->c_ident[j])
932 continue;
1b74dde7 933 pr_info(" %s %s\n", cpudev->c_vendor,
31c997ca
IM
934 cpudev->c_ident[j]);
935 }
10a434fc 936 }
0388423d 937#endif
10a434fc 938 }
9d31d35b 939 early_identify_cpu(&boot_cpu_data);
d7cd5611 940}
093af8d7 941
b6734c35 942/*
366d4a43
BP
943 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
944 * unfortunately, that's not true in practice because of early VIA
945 * chips and (more importantly) broken virtualizers that are not easy
946 * to detect. In the latter case it doesn't even *fail* reliably, so
947 * probing for it doesn't even work. Disable it completely on 32-bit
ba0593bf 948 * unless we can find a reliable way to detect all the broken cases.
366d4a43 949 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
b6734c35 950 */
148f9bb8 951static void detect_nopl(struct cpuinfo_x86 *c)
b6734c35 952{
366d4a43 953#ifdef CONFIG_X86_32
b6734c35 954 clear_cpu_cap(c, X86_FEATURE_NOPL);
366d4a43
BP
955#else
956 set_cpu_cap(c, X86_FEATURE_NOPL);
58a5aac5 957#endif
d7cd5611 958}
58a5aac5 959
7a5d6704
AL
960static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
961{
962#ifdef CONFIG_X86_64
58a5aac5 963 /*
7a5d6704
AL
964 * Empirically, writing zero to a segment selector on AMD does
965 * not clear the base, whereas writing zero to a segment
966 * selector on Intel does clear the base. Intel's behavior
967 * allows slightly faster context switches in the common case
968 * where GS is unused by the prev and next threads.
58a5aac5 969 *
7a5d6704
AL
970 * Since neither vendor documents this anywhere that I can see,
971 * detect it directly instead of hardcoding the choice by
972 * vendor.
973 *
974 * I've designated AMD's behavior as the "bug" because it's
975 * counterintuitive and less friendly.
58a5aac5 976 */
7a5d6704
AL
977
978 unsigned long old_base, tmp;
979 rdmsrl(MSR_FS_BASE, old_base);
980 wrmsrl(MSR_FS_BASE, 1);
981 loadsegment(fs, 0);
982 rdmsrl(MSR_FS_BASE, tmp);
983 if (tmp != 0)
984 set_cpu_bug(c, X86_BUG_NULL_SEG);
985 wrmsrl(MSR_FS_BASE, old_base);
366d4a43 986#endif
d7cd5611
RR
987}
988
148f9bb8 989static void generic_identify(struct cpuinfo_x86 *c)
1da177e4 990{
aef93c8b 991 c->extended_cpuid_level = 0;
1da177e4 992
3da99c97 993 if (!have_cpuid_p())
aef93c8b 994 identify_cpu_without_cpuid(c);
1d67953f 995
aef93c8b 996 /* cyrix could have cpuid enabled via c_identify()*/
a9853dd6 997 if (!have_cpuid_p())
aef93c8b 998 return;
1da177e4 999
3da99c97 1000 cpu_detect(c);
1da177e4 1001
3da99c97 1002 get_cpu_vendor(c);
1da177e4 1003
3da99c97 1004 get_cpu_cap(c);
1da177e4 1005
3da99c97
YL
1006 if (c->cpuid_level >= 0x00000001) {
1007 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
b89d3b3e 1008#ifdef CONFIG_X86_32
c8e56d20 1009# ifdef CONFIG_SMP
cb8cc442 1010 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
b89d3b3e 1011# else
3da99c97 1012 c->apicid = c->initial_apicid;
b89d3b3e
YL
1013# endif
1014#endif
b89d3b3e 1015 c->phys_proc_id = c->initial_apicid;
3da99c97 1016 }
1da177e4 1017
1b05d60d 1018 get_model_name(c); /* Default name */
1da177e4 1019
3da99c97 1020 detect_nopl(c);
7a5d6704
AL
1021
1022 detect_null_seg_behavior(c);
0230bb03
AL
1023
1024 /*
1025 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1026 * systems that run Linux at CPL > 0 may or may not have the
1027 * issue, but, even if they have the issue, there's absolutely
1028 * nothing we can do about it because we can't use the real IRET
1029 * instruction.
1030 *
1031 * NB: For the time being, only 32-bit kernels support
1032 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1033 * whether to apply espfix using paravirt hooks. If any
1034 * non-paravirt system ever shows up that does *not* have the
1035 * ESPFIX issue, we can change this.
1036 */
1037#ifdef CONFIG_X86_32
1038# ifdef CONFIG_PARAVIRT
1039 do {
1040 extern void native_iret(void);
1041 if (pv_cpu_ops.iret == native_iret)
1042 set_cpu_bug(c, X86_BUG_ESPFIX);
1043 } while (0);
1044# else
1045 set_cpu_bug(c, X86_BUG_ESPFIX);
1046# endif
1047#endif
1da177e4 1048}
1da177e4 1049
cbc82b17
PWJ
1050static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1051{
1052 /*
1053 * The heavy lifting of max_rmid and cache_occ_scale are handled
1054 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1055 * in case CQM bits really aren't there in this CPU.
1056 */
1057 if (c != &boot_cpu_data) {
1058 boot_cpu_data.x86_cache_max_rmid =
1059 min(boot_cpu_data.x86_cache_max_rmid,
1060 c->x86_cache_max_rmid);
1061 }
1062}
1063
d49597fd 1064/*
9d85eb91
TG
1065 * Validate that ACPI/mptables have the same information about the
1066 * effective APIC id and update the package map.
d49597fd 1067 */
9d85eb91 1068static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
d49597fd
TG
1069{
1070#ifdef CONFIG_SMP
9d85eb91 1071 unsigned int apicid, cpu = smp_processor_id();
d49597fd
TG
1072
1073 apicid = apic->cpu_present_to_apicid(cpu);
d49597fd 1074
9d85eb91
TG
1075 if (apicid != c->apicid) {
1076 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
d49597fd 1077 cpu, apicid, c->initial_apicid);
d49597fd 1078 }
9d85eb91 1079 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
d49597fd
TG
1080#else
1081 c->logical_proc_id = 0;
1082#endif
1083}
1084
1da177e4
LT
1085/*
1086 * This does the hard work of actually picking apart the CPU stuff...
1087 */
148f9bb8 1088static void identify_cpu(struct cpuinfo_x86 *c)
1da177e4
LT
1089{
1090 int i;
1091
1092 c->loops_per_jiffy = loops_per_jiffy;
1093 c->x86_cache_size = -1;
1094 c->x86_vendor = X86_VENDOR_UNKNOWN;
1da177e4
LT
1095 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1096 c->x86_vendor_id[0] = '\0'; /* Unset */
1097 c->x86_model_id[0] = '\0'; /* Unset */
94605eff 1098 c->x86_max_cores = 1;
102bbe3a 1099 c->x86_coreid_bits = 0;
79a8b9aa 1100 c->cu_id = 0xff;
11fdd252 1101#ifdef CONFIG_X86_64
102bbe3a 1102 c->x86_clflush_size = 64;
13c6c532
JB
1103 c->x86_phys_bits = 36;
1104 c->x86_virt_bits = 48;
102bbe3a
YL
1105#else
1106 c->cpuid_level = -1; /* CPUID not detected */
770d132f 1107 c->x86_clflush_size = 32;
13c6c532
JB
1108 c->x86_phys_bits = 32;
1109 c->x86_virt_bits = 32;
102bbe3a
YL
1110#endif
1111 c->x86_cache_alignment = c->x86_clflush_size;
1da177e4
LT
1112 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1113
1da177e4
LT
1114 generic_identify(c);
1115
3898534d 1116 if (this_cpu->c_identify)
1da177e4
LT
1117 this_cpu->c_identify(c);
1118
6a6256f9 1119 /* Clear/Set all flags overridden by options, after probe */
8bf1ebca 1120 apply_forced_caps(c);
2759c328 1121
102bbe3a 1122#ifdef CONFIG_X86_64
cb8cc442 1123 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
102bbe3a
YL
1124#endif
1125
1da177e4
LT
1126 /*
1127 * Vendor-specific initialization. In this section we
1128 * canonicalize the feature flags, meaning if there are
1129 * features a certain CPU supports which CPUID doesn't
1130 * tell us, CPUID claiming incorrect flags, or other bugs,
1131 * we handle them here.
1132 *
1133 * At the end of this section, c->x86_capability better
1134 * indicate the features this CPU genuinely supports!
1135 */
1136 if (this_cpu->c_init)
1137 this_cpu->c_init(c);
1138
1139 /* Disable the PN if appropriate */
1140 squash_the_stupid_serial_number(c);
1141
b2cc2a07
PA
1142 /* Set up SMEP/SMAP */
1143 setup_smep(c);
1144 setup_smap(c);
1145
1da177e4 1146 /*
0f3fa48a
IM
1147 * The vendor-specific functions might have changed features.
1148 * Now we do "generic changes."
1da177e4
LT
1149 */
1150
b38b0665
PA
1151 /* Filter out anything that depends on CPUID levels we don't have */
1152 filter_cpuid_features(c, true);
1153
1da177e4 1154 /* If the model name is still unset, do table lookup. */
34048c9e 1155 if (!c->x86_model_id[0]) {
02dde8b4 1156 const char *p;
1da177e4 1157 p = table_lookup_model(c);
34048c9e 1158 if (p)
1da177e4
LT
1159 strcpy(c->x86_model_id, p);
1160 else
1161 /* Last resort... */
1162 sprintf(c->x86_model_id, "%02x/%02x",
54a20f8c 1163 c->x86, c->x86_model);
1da177e4
LT
1164 }
1165
102bbe3a
YL
1166#ifdef CONFIG_X86_64
1167 detect_ht(c);
1168#endif
1169
49d859d7 1170 x86_init_rdrand(c);
cbc82b17 1171 x86_init_cache_qos(c);
06976945 1172 setup_pku(c);
3e0c3737
YL
1173
1174 /*
6a6256f9 1175 * Clear/Set all flags overridden by options, need do it
3e0c3737
YL
1176 * before following smp all cpus cap AND.
1177 */
8bf1ebca 1178 apply_forced_caps(c);
3e0c3737 1179
1da177e4
LT
1180 /*
1181 * On SMP, boot_cpu_data holds the common feature set between
1182 * all CPUs; so make sure that we indicate which features are
1183 * common between the CPUs. The first time this routine gets
1184 * executed, c == &boot_cpu_data.
1185 */
34048c9e 1186 if (c != &boot_cpu_data) {
1da177e4 1187 /* AND the already accumulated flags with these */
9d31d35b 1188 for (i = 0; i < NCAPINTS; i++)
1da177e4 1189 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
65fc985b
BP
1190
1191 /* OR, i.e. replicate the bug flags */
1192 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1193 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1da177e4
LT
1194 }
1195
1196 /* Init Machine Check Exception if available. */
5e09954a 1197 mcheck_cpu_init(c);
30d432df
AK
1198
1199 select_idle_routine(c);
102bbe3a 1200
de2d9445 1201#ifdef CONFIG_NUMA
102bbe3a
YL
1202 numa_add_cpu(smp_processor_id());
1203#endif
a6c4e076 1204}
31ab269a 1205
8b6c0ab1
IM
1206/*
1207 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1208 * on 32-bit kernels:
1209 */
cfda7bb9
AL
1210#ifdef CONFIG_X86_32
1211void enable_sep_cpu(void)
1212{
8b6c0ab1
IM
1213 struct tss_struct *tss;
1214 int cpu;
cfda7bb9 1215
b3edfda4
BP
1216 if (!boot_cpu_has(X86_FEATURE_SEP))
1217 return;
1218
8b6c0ab1
IM
1219 cpu = get_cpu();
1220 tss = &per_cpu(cpu_tss, cpu);
1221
8b6c0ab1 1222 /*
cf9328cc
AL
1223 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1224 * see the big comment in struct x86_hw_tss's definition.
8b6c0ab1 1225 */
cfda7bb9
AL
1226
1227 tss->x86_tss.ss1 = __KERNEL_CS;
8b6c0ab1
IM
1228 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1229
cf9328cc
AL
1230 wrmsr(MSR_IA32_SYSENTER_ESP,
1231 (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1232 0);
8b6c0ab1 1233
4c8cd0c5 1234 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
8b6c0ab1 1235
cfda7bb9
AL
1236 put_cpu();
1237}
e04d645f
GC
1238#endif
1239
a6c4e076
JF
1240void __init identify_boot_cpu(void)
1241{
1242 identify_cpu(&boot_cpu_data);
102bbe3a 1243#ifdef CONFIG_X86_32
a6c4e076 1244 sysenter_setup();
6fe940d6 1245 enable_sep_cpu();
102bbe3a 1246#endif
5b556332 1247 cpu_detect_tlb(&boot_cpu_data);
a6c4e076 1248}
3b520b23 1249
148f9bb8 1250void identify_secondary_cpu(struct cpuinfo_x86 *c)
a6c4e076
JF
1251{
1252 BUG_ON(c == &boot_cpu_data);
1253 identify_cpu(c);
102bbe3a 1254#ifdef CONFIG_X86_32
a6c4e076 1255 enable_sep_cpu();
102bbe3a 1256#endif
a6c4e076 1257 mtrr_ap_init();
9d85eb91 1258 validate_apic_and_package_id(c);
1da177e4
LT
1259}
1260
191679fd
AK
1261static __init int setup_noclflush(char *arg)
1262{
840d2830 1263 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
da4aaa7d 1264 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
191679fd
AK
1265 return 1;
1266}
1267__setup("noclflush", setup_noclflush);
1268
148f9bb8 1269void print_cpu_info(struct cpuinfo_x86 *c)
1da177e4 1270{
02dde8b4 1271 const char *vendor = NULL;
1da177e4 1272
0f3fa48a 1273 if (c->x86_vendor < X86_VENDOR_NUM) {
1da177e4 1274 vendor = this_cpu->c_vendor;
0f3fa48a
IM
1275 } else {
1276 if (c->cpuid_level >= 0)
1277 vendor = c->x86_vendor_id;
1278 }
1da177e4 1279
bd32a8cf 1280 if (vendor && !strstr(c->x86_model_id, vendor))
1b74dde7 1281 pr_cont("%s ", vendor);
1da177e4 1282
9d31d35b 1283 if (c->x86_model_id[0])
1b74dde7 1284 pr_cont("%s", c->x86_model_id);
1da177e4 1285 else
1b74dde7 1286 pr_cont("%d86", c->x86);
1da177e4 1287
1b74dde7 1288 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
924e101a 1289
34048c9e 1290 if (c->x86_mask || c->cpuid_level >= 0)
1b74dde7 1291 pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1da177e4 1292 else
1b74dde7 1293 pr_cont(")\n");
1da177e4
LT
1294}
1295
27deb452
AK
1296/*
1297 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1298 * But we need to keep a dummy __setup around otherwise it would
1299 * show up as an environment variable for init.
1300 */
1301static __init int setup_clearcpuid(char *arg)
ac72e788 1302{
ac72e788
AK
1303 return 1;
1304}
27deb452 1305__setup("clearcpuid=", setup_clearcpuid);
ac72e788 1306
d5494d4f 1307#ifdef CONFIG_X86_64
404f6aac
KC
1308struct desc_ptr idt_descr __ro_after_init = {
1309 .size = NR_VECTORS * 16 - 1,
1310 .address = (unsigned long) idt_table,
1311};
1312const struct desc_ptr debug_idt_descr = {
1313 .size = NR_VECTORS * 16 - 1,
1314 .address = (unsigned long) debug_idt_table,
1315};
d5494d4f 1316
947e76cd 1317DEFINE_PER_CPU_FIRST(union irq_stack_union,
277d5b40 1318 irq_stack_union) __aligned(PAGE_SIZE) __visible;
0f3fa48a 1319
bdf977b3 1320/*
a7fcf28d
AL
1321 * The following percpu variables are hot. Align current_task to
1322 * cacheline size such that they fall in the same cacheline.
bdf977b3
TH
1323 */
1324DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1325 &init_task;
1326EXPORT_PER_CPU_SYMBOL(current_task);
d5494d4f 1327
bdf977b3 1328DEFINE_PER_CPU(char *, irq_stack_ptr) =
4950d6d4 1329 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
bdf977b3 1330
277d5b40 1331DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
d5494d4f 1332
c2daa3be
PZ
1333DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1334EXPORT_PER_CPU_SYMBOL(__preempt_count);
1335
0f3fa48a
IM
1336/*
1337 * Special IST stacks which the CPU switches to when it calls
1338 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1339 * limit), all of them are 4K, except the debug stack which
1340 * is 8K.
1341 */
1342static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1343 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1344 [DEBUG_STACK - 1] = DEBUG_STKSZ
1345};
1346
92d65b23 1347static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
3e352aa8 1348 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
d5494d4f 1349
d5494d4f
YL
1350/* May not be marked __init: used by software suspend */
1351void syscall_init(void)
1da177e4 1352{
31ac34ca 1353 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
47edb651 1354 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
d56fe4bf
IM
1355
1356#ifdef CONFIG_IA32_EMULATION
47edb651 1357 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
a76c7f46 1358 /*
487d1edb
DV
1359 * This only works on Intel CPUs.
1360 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1361 * This does not cause SYSENTER to jump to the wrong location, because
1362 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
a76c7f46
DV
1363 */
1364 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
8e621515
AL
1365 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1366 (unsigned long)this_cpu_ptr(&cpu_tss) +
1367 offsetofend(struct tss_struct, SYSENTER_stack));
4c8cd0c5 1368 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
d56fe4bf 1369#else
47edb651 1370 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
6b51311c 1371 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
d56fe4bf
IM
1372 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1373 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
d5494d4f 1374#endif
03ae5768 1375
d5494d4f
YL
1376 /* Flags to clear on syscall */
1377 wrmsrl(MSR_SYSCALL_MASK,
63bcff2a 1378 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
8c7aa698 1379 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1da177e4 1380}
62111195 1381
d5494d4f
YL
1382/*
1383 * Copies of the original ist values from the tss are only accessed during
1384 * debugging, no special alignment required.
1385 */
1386DEFINE_PER_CPU(struct orig_ist, orig_ist);
1387
228bdaa9 1388static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
42181186 1389DEFINE_PER_CPU(int, debug_stack_usage);
228bdaa9
SR
1390
1391int is_debug_stack(unsigned long addr)
1392{
89cbc767
CL
1393 return __this_cpu_read(debug_stack_usage) ||
1394 (addr <= __this_cpu_read(debug_stack_addr) &&
1395 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
228bdaa9 1396}
0f46efeb 1397NOKPROBE_SYMBOL(is_debug_stack);
228bdaa9 1398
629f4f9d 1399DEFINE_PER_CPU(u32, debug_idt_ctr);
f8988175 1400
228bdaa9
SR
1401void debug_stack_set_zero(void)
1402{
629f4f9d
SA
1403 this_cpu_inc(debug_idt_ctr);
1404 load_current_idt();
228bdaa9 1405}
0f46efeb 1406NOKPROBE_SYMBOL(debug_stack_set_zero);
228bdaa9
SR
1407
1408void debug_stack_reset(void)
1409{
629f4f9d 1410 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
f8988175 1411 return;
629f4f9d
SA
1412 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1413 load_current_idt();
228bdaa9 1414}
0f46efeb 1415NOKPROBE_SYMBOL(debug_stack_reset);
228bdaa9 1416
0f3fa48a 1417#else /* CONFIG_X86_64 */
d5494d4f 1418
bdf977b3
TH
1419DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1420EXPORT_PER_CPU_SYMBOL(current_task);
c2daa3be
PZ
1421DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1422EXPORT_PER_CPU_SYMBOL(__preempt_count);
bdf977b3 1423
a7fcf28d
AL
1424/*
1425 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1426 * the top of the kernel stack. Use an extra percpu variable to track the
1427 * top of the kernel stack directly.
1428 */
1429DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1430 (unsigned long)&init_thread_union + THREAD_SIZE;
1431EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1432
60a5317f 1433#ifdef CONFIG_CC_STACKPROTECTOR
53f82452 1434DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
60a5317f 1435#endif
d5494d4f 1436
0f3fa48a 1437#endif /* CONFIG_X86_64 */
c5413fbe 1438
9766cdbc
JSR
1439/*
1440 * Clear all 6 debug registers:
1441 */
1442static void clear_all_debug_regs(void)
1443{
1444 int i;
1445
1446 for (i = 0; i < 8; i++) {
1447 /* Ignore db4, db5 */
1448 if ((i == 4) || (i == 5))
1449 continue;
1450
1451 set_debugreg(0, i);
1452 }
1453}
c5413fbe 1454
0bb9fef9
JW
1455#ifdef CONFIG_KGDB
1456/*
1457 * Restore debug regs if using kgdbwait and you have a kernel debugger
1458 * connection established.
1459 */
1460static void dbg_restore_debug_regs(void)
1461{
1462 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1463 arch_kgdb_ops.correct_hw_break();
1464}
1465#else /* ! CONFIG_KGDB */
1466#define dbg_restore_debug_regs()
1467#endif /* ! CONFIG_KGDB */
1468
ce4b1b16
IM
1469static void wait_for_master_cpu(int cpu)
1470{
1471#ifdef CONFIG_SMP
1472 /*
1473 * wait for ACK from master CPU before continuing
1474 * with AP initialization
1475 */
1476 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1477 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1478 cpu_relax();
1479#endif
1480}
1481
d2cbcc49
RR
1482/*
1483 * cpu_init() initializes state that is per-CPU. Some data is already
1484 * initialized (naturally) in the bootstrap process, such as the GDT
1485 * and IDT. We reload them nevertheless, this function acts as a
1486 * 'CPU state barrier', nothing should get across.
1ba76586 1487 * A lot of state is already set up in PDA init for 64 bit
d2cbcc49 1488 */
1ba76586 1489#ifdef CONFIG_X86_64
0f3fa48a 1490
148f9bb8 1491void cpu_init(void)
1ba76586 1492{
0fe1e009 1493 struct orig_ist *oist;
1ba76586 1494 struct task_struct *me;
0f3fa48a
IM
1495 struct tss_struct *t;
1496 unsigned long v;
fb59831b 1497 int cpu = raw_smp_processor_id();
1ba76586
YL
1498 int i;
1499
ce4b1b16
IM
1500 wait_for_master_cpu(cpu);
1501
1e02ce4c
AL
1502 /*
1503 * Initialize the CR4 shadow before doing anything that could
1504 * try to read it.
1505 */
1506 cr4_init_shadow();
1507
777284b6
BP
1508 if (cpu)
1509 load_ucode_ap();
e6ebf5de 1510
24933b82 1511 t = &per_cpu(cpu_tss, cpu);
0fe1e009 1512 oist = &per_cpu(orig_ist, cpu);
0f3fa48a 1513
e7a22c1e 1514#ifdef CONFIG_NUMA
27fd185f 1515 if (this_cpu_read(numa_node) == 0 &&
e534c7c5
LS
1516 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1517 set_numa_node(early_cpu_to_node(cpu));
e7a22c1e 1518#endif
1ba76586
YL
1519
1520 me = current;
1521
2eaad1fd 1522 pr_debug("Initializing CPU#%d\n", cpu);
1ba76586 1523
375074cc 1524 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1ba76586
YL
1525
1526 /*
1527 * Initialize the per-CPU GDT with the boot GDT,
1528 * and set up the GDT descriptor:
1529 */
1530
552be871 1531 switch_to_new_gdt(cpu);
2697fbd5
BG
1532 loadsegment(fs, 0);
1533
cf910e83 1534 load_current_idt();
1ba76586
YL
1535
1536 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1537 syscall_init();
1538
1539 wrmsrl(MSR_FS_BASE, 0);
1540 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1541 barrier();
1542
4763ed4d 1543 x86_configure_nx();
659006bf 1544 x2apic_setup();
1ba76586
YL
1545
1546 /*
1547 * set up and load the per-CPU TSS
1548 */
0fe1e009 1549 if (!oist->ist[0]) {
92d65b23 1550 char *estacks = per_cpu(exception_stacks, cpu);
0f3fa48a 1551
1ba76586 1552 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
0f3fa48a 1553 estacks += exception_stack_sizes[v];
0fe1e009 1554 oist->ist[v] = t->x86_tss.ist[v] =
1ba76586 1555 (unsigned long)estacks;
228bdaa9
SR
1556 if (v == DEBUG_STACK-1)
1557 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1ba76586
YL
1558 }
1559 }
1560
1561 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
0f3fa48a 1562
1ba76586
YL
1563 /*
1564 * <= is required because the CPU will access up to
1565 * 8 bits beyond the end of the IO permission bitmap.
1566 */
1567 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1568 t->io_bitmap[i] = ~0UL;
1569
f1f10076 1570 mmgrab(&init_mm);
1ba76586 1571 me->active_mm = &init_mm;
8c5dfd25 1572 BUG_ON(me->mm);
1ba76586
YL
1573 enter_lazy_tlb(&init_mm, me);
1574
8c6b12e8
AL
1575 /*
1576 * Initialize the TSS. Don't bother initializing sp0, as the initial
1577 * task never enters user mode.
1578 */
1ba76586
YL
1579 set_tss_desc(cpu, t);
1580 load_TR_desc();
8c6b12e8 1581
37868fe1 1582 load_mm_ldt(&init_mm);
1ba76586 1583
0bb9fef9
JW
1584 clear_all_debug_regs();
1585 dbg_restore_debug_regs();
1ba76586 1586
21c4cd10 1587 fpu__init_cpu();
1ba76586 1588
1ba76586
YL
1589 if (is_uv_system())
1590 uv_cpu_init();
69218e47 1591
b17894f1 1592 setup_cpu_entry_area(cpu);
69218e47 1593 load_fixmap_gdt(cpu);
1ba76586
YL
1594}
1595
1596#else
1597
148f9bb8 1598void cpu_init(void)
9ee79a3d 1599{
d2cbcc49
RR
1600 int cpu = smp_processor_id();
1601 struct task_struct *curr = current;
24933b82 1602 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
62111195 1603
ce4b1b16 1604 wait_for_master_cpu(cpu);
e6ebf5de 1605
5b2bdbc8
SR
1606 /*
1607 * Initialize the CR4 shadow before doing anything that could
1608 * try to read it.
1609 */
1610 cr4_init_shadow();
1611
ce4b1b16 1612 show_ucode_info_early();
62111195 1613
1b74dde7 1614 pr_info("Initializing CPU#%d\n", cpu);
62111195 1615
362f924b 1616 if (cpu_feature_enabled(X86_FEATURE_VME) ||
59e21e3d 1617 boot_cpu_has(X86_FEATURE_TSC) ||
362f924b 1618 boot_cpu_has(X86_FEATURE_DE))
375074cc 1619 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
62111195 1620
cf910e83 1621 load_current_idt();
552be871 1622 switch_to_new_gdt(cpu);
1da177e4 1623
1da177e4
LT
1624 /*
1625 * Set up and load the per-CPU TSS and LDT
1626 */
f1f10076 1627 mmgrab(&init_mm);
62111195 1628 curr->active_mm = &init_mm;
8c5dfd25 1629 BUG_ON(curr->mm);
62111195 1630 enter_lazy_tlb(&init_mm, curr);
1da177e4 1631
8c6b12e8
AL
1632 /*
1633 * Initialize the TSS. Don't bother initializing sp0, as the initial
1634 * task never enters user mode.
1635 */
34048c9e 1636 set_tss_desc(cpu, t);
1da177e4 1637 load_TR_desc();
8c6b12e8 1638
37868fe1 1639 load_mm_ldt(&init_mm);
1da177e4 1640
f9a196b8
TG
1641 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1642
22c4e308 1643#ifdef CONFIG_DOUBLEFAULT
1da177e4
LT
1644 /* Set up doublefault TSS pointer in the GDT */
1645 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
22c4e308 1646#endif
1da177e4 1647
9766cdbc 1648 clear_all_debug_regs();
0bb9fef9 1649 dbg_restore_debug_regs();
1da177e4 1650
21c4cd10 1651 fpu__init_cpu();
69218e47 1652
b17894f1 1653 setup_cpu_entry_area(cpu);
69218e47 1654 load_fixmap_gdt(cpu);
1da177e4 1655}
1ba76586 1656#endif
5700f743 1657
b51ef52d
LA
1658static void bsp_resume(void)
1659{
1660 if (this_cpu->c_bsp_resume)
1661 this_cpu->c_bsp_resume(&boot_cpu_data);
1662}
1663
1664static struct syscore_ops cpu_syscore_ops = {
1665 .resume = bsp_resume,
1666};
1667
1668static int __init init_cpu_syscore(void)
1669{
1670 register_syscore_ops(&cpu_syscore_ops);
1671 return 0;
1672}
1673core_initcall(init_cpu_syscore);