]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/cpu/common.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
CommitLineData
f0fc4aff 1#include <linux/bootmem.h>
9766cdbc 2#include <linux/linkage.h>
f0fc4aff 3#include <linux/bitops.h>
9766cdbc 4#include <linux/kernel.h>
186f4360 5#include <linux/export.h>
9766cdbc
JSR
6#include <linux/percpu.h>
7#include <linux/string.h>
ee098e1a 8#include <linux/ctype.h>
1da177e4 9#include <linux/delay.h>
9766cdbc
JSR
10#include <linux/sched.h>
11#include <linux/init.h>
0f46efeb 12#include <linux/kprobes.h>
9766cdbc 13#include <linux/kgdb.h>
1da177e4 14#include <linux/smp.h>
9766cdbc 15#include <linux/io.h>
b51ef52d 16#include <linux/syscore_ops.h>
9766cdbc
JSR
17
18#include <asm/stackprotector.h>
cdd6c482 19#include <asm/perf_event.h>
1da177e4 20#include <asm/mmu_context.h>
49d859d7 21#include <asm/archrandom.h>
9766cdbc
JSR
22#include <asm/hypervisor.h>
23#include <asm/processor.h>
1e02ce4c 24#include <asm/tlbflush.h>
f649e938 25#include <asm/debugreg.h>
9766cdbc 26#include <asm/sections.h>
f40c3300 27#include <asm/vsyscall.h>
8bdbd962
AC
28#include <linux/topology.h>
29#include <linux/cpumask.h>
9766cdbc 30#include <asm/pgtable.h>
60063497 31#include <linux/atomic.h>
9766cdbc
JSR
32#include <asm/proto.h>
33#include <asm/setup.h>
34#include <asm/apic.h>
35#include <asm/desc.h>
78f7f1e5 36#include <asm/fpu/internal.h>
27b07da7 37#include <asm/mtrr.h>
0274f955 38#include <asm/hwcap2.h>
8bdbd962 39#include <linux/numa.h>
9766cdbc 40#include <asm/asm.h>
0f6ff2bc 41#include <asm/bugs.h>
9766cdbc 42#include <asm/cpu.h>
a03a3e28 43#include <asm/mce.h>
9766cdbc 44#include <asm/msr.h>
8d4a4300 45#include <asm/pat.h>
d288e1cf
FY
46#include <asm/microcode.h>
47#include <asm/microcode_intel.h>
e641f5f5
IM
48
49#ifdef CONFIG_X86_LOCAL_APIC
bdbcdd48 50#include <asm/uv/uv.h>
1da177e4
LT
51#endif
52
53#include "cpu.h"
54
0274f955
GA
55u32 elf_hwcap2 __read_mostly;
56
c2d1cec1 57/* all of these masks are initialized in setup_cpu_local_masks() */
c2d1cec1 58cpumask_var_t cpu_initialized_mask;
9766cdbc
JSR
59cpumask_var_t cpu_callout_mask;
60cpumask_var_t cpu_callin_mask;
c2d1cec1
MT
61
62/* representing cpus for which sibling maps can be computed */
63cpumask_var_t cpu_sibling_setup_mask;
64
2f2f52ba 65/* correctly size the local cpu masks */
4369f1fb 66void __init setup_cpu_local_masks(void)
2f2f52ba
BG
67{
68 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
69 alloc_bootmem_cpumask_var(&cpu_callin_mask);
70 alloc_bootmem_cpumask_var(&cpu_callout_mask);
71 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
72}
73
148f9bb8 74static void default_init(struct cpuinfo_x86 *c)
e8055139
OZ
75{
76#ifdef CONFIG_X86_64
27c13ece 77 cpu_detect_cache_sizes(c);
e8055139
OZ
78#else
79 /* Not much we can do here... */
80 /* Check if at least it has cpuid */
81 if (c->cpuid_level == -1) {
82 /* No cpuid. It must be an ancient CPU */
83 if (c->x86 == 4)
84 strcpy(c->x86_model_id, "486");
85 else if (c->x86 == 3)
86 strcpy(c->x86_model_id, "386");
87 }
88#endif
acb04058 89 clear_sched_clock_stable();
e8055139
OZ
90}
91
148f9bb8 92static const struct cpu_dev default_cpu = {
e8055139
OZ
93 .c_init = default_init,
94 .c_vendor = "Unknown",
95 .c_x86_vendor = X86_VENDOR_UNKNOWN,
96};
97
148f9bb8 98static const struct cpu_dev *this_cpu = &default_cpu;
0a488a53 99
06deef89 100DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
950ad7ff 101#ifdef CONFIG_X86_64
06deef89
BG
102 /*
103 * We need valid kernel segments for data and code in long mode too
104 * IRET will check the segment types kkeil 2000/10/28
105 * Also sysret mandates a special GDT layout
106 *
9766cdbc 107 * TLS descriptors are currently at a different place compared to i386.
06deef89
BG
108 * Hopefully nobody expects them at a fixed place (Wine?)
109 */
1e5de182
AM
110 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
111 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
112 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
113 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
114 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
115 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
950ad7ff 116#else
1e5de182
AM
117 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
118 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
119 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
120 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
bf504672
RR
121 /*
122 * Segments used for calling PnP BIOS have byte granularity.
123 * They code segments and data segments have fixed 64k limits,
124 * the transfer segment sizes are set at run time.
125 */
6842ef0e 126 /* 32-bit code */
1e5de182 127 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
6842ef0e 128 /* 16-bit code */
1e5de182 129 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
6842ef0e 130 /* 16-bit data */
1e5de182 131 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
6842ef0e 132 /* 16-bit data */
1e5de182 133 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
6842ef0e 134 /* 16-bit data */
1e5de182 135 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
bf504672
RR
136 /*
137 * The APM segments have byte granularity and their bases
138 * are set at run time. All have 64k limits.
139 */
6842ef0e 140 /* 32-bit code */
1e5de182 141 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
bf504672 142 /* 16-bit code */
1e5de182 143 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
6842ef0e 144 /* data */
72c4d853 145 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
bf504672 146
1e5de182
AM
147 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
148 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
60a5317f 149 GDT_STACK_CANARY_INIT
950ad7ff 150#endif
06deef89 151} };
7a61d35d 152EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
ae1ee11b 153
8c3641e9 154static int __init x86_mpx_setup(char *s)
0c752a93 155{
8c3641e9 156 /* require an exact match without trailing characters */
2cd3949f
DH
157 if (strlen(s))
158 return 0;
0c752a93 159
8c3641e9
DH
160 /* do not emit a message if the feature is not present */
161 if (!boot_cpu_has(X86_FEATURE_MPX))
162 return 1;
6bad06b7 163
8c3641e9
DH
164 setup_clear_cpu_cap(X86_FEATURE_MPX);
165 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
b6f42a4a
FY
166 return 1;
167}
8c3641e9 168__setup("nompx", x86_mpx_setup);
b6f42a4a 169
d12a72b8
AL
170static int __init x86_noinvpcid_setup(char *s)
171{
172 /* noinvpcid doesn't accept parameters */
173 if (s)
174 return -EINVAL;
175
176 /* do not emit a message if the feature is not present */
177 if (!boot_cpu_has(X86_FEATURE_INVPCID))
178 return 0;
179
180 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
181 pr_info("noinvpcid: INVPCID feature disabled\n");
182 return 0;
183}
184early_param("noinvpcid", x86_noinvpcid_setup);
185
ba51dced 186#ifdef CONFIG_X86_32
148f9bb8
PG
187static int cachesize_override = -1;
188static int disable_x86_serial_nr = 1;
1da177e4 189
0a488a53
YL
190static int __init cachesize_setup(char *str)
191{
192 get_option(&str, &cachesize_override);
193 return 1;
194}
195__setup("cachesize=", cachesize_setup);
196
0a488a53
YL
197static int __init x86_sep_setup(char *s)
198{
199 setup_clear_cpu_cap(X86_FEATURE_SEP);
200 return 1;
201}
202__setup("nosep", x86_sep_setup);
203
204/* Standard macro to see if a specific flag is changeable */
205static inline int flag_is_changeable_p(u32 flag)
206{
207 u32 f1, f2;
208
94f6bac1
KH
209 /*
210 * Cyrix and IDT cpus allow disabling of CPUID
211 * so the code below may return different results
212 * when it is executed before and after enabling
213 * the CPUID. Add "volatile" to not allow gcc to
214 * optimize the subsequent calls to this function.
215 */
0f3fa48a
IM
216 asm volatile ("pushfl \n\t"
217 "pushfl \n\t"
218 "popl %0 \n\t"
219 "movl %0, %1 \n\t"
220 "xorl %2, %0 \n\t"
221 "pushl %0 \n\t"
222 "popfl \n\t"
223 "pushfl \n\t"
224 "popl %0 \n\t"
225 "popfl \n\t"
226
94f6bac1
KH
227 : "=&r" (f1), "=&r" (f2)
228 : "ir" (flag));
0a488a53
YL
229
230 return ((f1^f2) & flag) != 0;
231}
232
233/* Probe for the CPUID instruction */
148f9bb8 234int have_cpuid_p(void)
0a488a53
YL
235{
236 return flag_is_changeable_p(X86_EFLAGS_ID);
237}
238
148f9bb8 239static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
0a488a53 240{
0f3fa48a
IM
241 unsigned long lo, hi;
242
243 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
244 return;
245
246 /* Disable processor serial number: */
247
248 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
249 lo |= 0x200000;
250 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
251
1b74dde7 252 pr_notice("CPU serial number disabled.\n");
0f3fa48a
IM
253 clear_cpu_cap(c, X86_FEATURE_PN);
254
255 /* Disabling the serial number may affect the cpuid level */
256 c->cpuid_level = cpuid_eax(0);
0a488a53
YL
257}
258
259static int __init x86_serial_nr_setup(char *s)
260{
261 disable_x86_serial_nr = 0;
262 return 1;
263}
264__setup("serialnumber", x86_serial_nr_setup);
ba51dced 265#else
102bbe3a
YL
266static inline int flag_is_changeable_p(u32 flag)
267{
268 return 1;
269}
102bbe3a
YL
270static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
271{
272}
ba51dced 273#endif
0a488a53 274
de5397ad
FY
275static __init int setup_disable_smep(char *arg)
276{
b2cc2a07 277 setup_clear_cpu_cap(X86_FEATURE_SMEP);
0f6ff2bc
DH
278 /* Check for things that depend on SMEP being enabled: */
279 check_mpx_erratum(&boot_cpu_data);
de5397ad
FY
280 return 1;
281}
282__setup("nosmep", setup_disable_smep);
283
b2cc2a07 284static __always_inline void setup_smep(struct cpuinfo_x86 *c)
de5397ad 285{
b2cc2a07 286 if (cpu_has(c, X86_FEATURE_SMEP))
375074cc 287 cr4_set_bits(X86_CR4_SMEP);
de5397ad
FY
288}
289
52b6179a
PA
290static __init int setup_disable_smap(char *arg)
291{
b2cc2a07 292 setup_clear_cpu_cap(X86_FEATURE_SMAP);
52b6179a
PA
293 return 1;
294}
295__setup("nosmap", setup_disable_smap);
296
b2cc2a07
PA
297static __always_inline void setup_smap(struct cpuinfo_x86 *c)
298{
581b7f15 299 unsigned long eflags = native_save_fl();
b2cc2a07
PA
300
301 /* This should have been cleared long ago */
b2cc2a07
PA
302 BUG_ON(eflags & X86_EFLAGS_AC);
303
03bbd596
PA
304 if (cpu_has(c, X86_FEATURE_SMAP)) {
305#ifdef CONFIG_X86_SMAP
375074cc 306 cr4_set_bits(X86_CR4_SMAP);
03bbd596 307#else
375074cc 308 cr4_clear_bits(X86_CR4_SMAP);
03bbd596
PA
309#endif
310 }
de5397ad
FY
311}
312
06976945
DH
313/*
314 * Protection Keys are not available in 32-bit mode.
315 */
316static bool pku_disabled;
317
318static __always_inline void setup_pku(struct cpuinfo_x86 *c)
319{
e8df1a95
DH
320 /* check the boot processor, plus compile options for PKU: */
321 if (!cpu_feature_enabled(X86_FEATURE_PKU))
322 return;
323 /* checks the actual processor's cpuid bits: */
06976945
DH
324 if (!cpu_has(c, X86_FEATURE_PKU))
325 return;
326 if (pku_disabled)
327 return;
328
329 cr4_set_bits(X86_CR4_PKE);
330 /*
331 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
332 * cpuid bit to be set. We need to ensure that we
333 * update that bit in this CPU's "cpu_info".
334 */
335 get_cpu_cap(c);
336}
337
338#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
339static __init int setup_disable_pku(char *arg)
340{
341 /*
342 * Do not clear the X86_FEATURE_PKU bit. All of the
343 * runtime checks are against OSPKE so clearing the
344 * bit does nothing.
345 *
346 * This way, we will see "pku" in cpuinfo, but not
347 * "ospke", which is exactly what we want. It shows
348 * that the CPU has PKU, but the OS has not enabled it.
349 * This happens to be exactly how a system would look
350 * if we disabled the config option.
351 */
352 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
353 pku_disabled = true;
354 return 1;
355}
356__setup("nopku", setup_disable_pku);
357#endif /* CONFIG_X86_64 */
358
b38b0665
PA
359/*
360 * Some CPU features depend on higher CPUID levels, which may not always
361 * be available due to CPUID level capping or broken virtualization
362 * software. Add those features to this table to auto-disable them.
363 */
364struct cpuid_dependent_feature {
365 u32 feature;
366 u32 level;
367};
0f3fa48a 368
148f9bb8 369static const struct cpuid_dependent_feature
b38b0665
PA
370cpuid_dependent_features[] = {
371 { X86_FEATURE_MWAIT, 0x00000005 },
372 { X86_FEATURE_DCA, 0x00000009 },
373 { X86_FEATURE_XSAVE, 0x0000000d },
374 { 0, 0 }
375};
376
148f9bb8 377static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
b38b0665
PA
378{
379 const struct cpuid_dependent_feature *df;
9766cdbc 380
b38b0665 381 for (df = cpuid_dependent_features; df->feature; df++) {
0f3fa48a
IM
382
383 if (!cpu_has(c, df->feature))
384 continue;
b38b0665
PA
385 /*
386 * Note: cpuid_level is set to -1 if unavailable, but
387 * extended_extended_level is set to 0 if unavailable
388 * and the legitimate extended levels are all negative
389 * when signed; hence the weird messing around with
390 * signs here...
391 */
0f3fa48a 392 if (!((s32)df->level < 0 ?
f6db44df 393 (u32)df->level > (u32)c->extended_cpuid_level :
0f3fa48a
IM
394 (s32)df->level > (s32)c->cpuid_level))
395 continue;
396
397 clear_cpu_cap(c, df->feature);
398 if (!warn)
399 continue;
400
1b74dde7
CY
401 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
402 x86_cap_flag(df->feature), df->level);
b38b0665 403 }
f6db44df 404}
b38b0665 405
102bbe3a
YL
406/*
407 * Naming convention should be: <Name> [(<Codename>)]
408 * This table only is used unless init_<vendor>() below doesn't set it;
0f3fa48a
IM
409 * in particular, if CPUID levels 0x80000002..4 are supported, this
410 * isn't used
102bbe3a
YL
411 */
412
413/* Look up CPU names by table lookup. */
148f9bb8 414static const char *table_lookup_model(struct cpuinfo_x86 *c)
102bbe3a 415{
09dc68d9
JB
416#ifdef CONFIG_X86_32
417 const struct legacy_cpu_model_info *info;
102bbe3a
YL
418
419 if (c->x86_model >= 16)
420 return NULL; /* Range check */
421
422 if (!this_cpu)
423 return NULL;
424
09dc68d9 425 info = this_cpu->legacy_models;
102bbe3a 426
09dc68d9 427 while (info->family) {
102bbe3a
YL
428 if (info->family == c->x86)
429 return info->model_names[c->x86_model];
430 info++;
431 }
09dc68d9 432#endif
102bbe3a
YL
433 return NULL; /* Not found */
434}
435
148f9bb8
PG
436__u32 cpu_caps_cleared[NCAPINTS];
437__u32 cpu_caps_set[NCAPINTS];
7d851c8d 438
11e3a840
JF
439void load_percpu_segment(int cpu)
440{
441#ifdef CONFIG_X86_32
442 loadsegment(fs, __KERNEL_PERCPU);
443#else
45e876f7 444 __loadsegment_simple(gs, 0);
11e3a840
JF
445 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
446#endif
60a5317f 447 load_stack_canary_segment();
11e3a840
JF
448}
449
0f3fa48a
IM
450/*
451 * Current gdt points %fs at the "master" per-cpu area: after this,
452 * it's on the real one.
453 */
552be871 454void switch_to_new_gdt(int cpu)
9d31d35b
YL
455{
456 struct desc_ptr gdt_descr;
457
2697fbd5 458 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
9d31d35b
YL
459 gdt_descr.size = GDT_SIZE - 1;
460 load_gdt(&gdt_descr);
2697fbd5 461 /* Reload the per-cpu base */
11e3a840
JF
462
463 load_percpu_segment(cpu);
9d31d35b
YL
464}
465
148f9bb8 466static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
1da177e4 467
148f9bb8 468static void get_model_name(struct cpuinfo_x86 *c)
1da177e4
LT
469{
470 unsigned int *v;
ee098e1a 471 char *p, *q, *s;
1da177e4 472
3da99c97 473 if (c->extended_cpuid_level < 0x80000004)
1b05d60d 474 return;
1da177e4 475
0f3fa48a 476 v = (unsigned int *)c->x86_model_id;
1da177e4
LT
477 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
478 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
479 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
480 c->x86_model_id[48] = 0;
481
ee098e1a
BP
482 /* Trim whitespace */
483 p = q = s = &c->x86_model_id[0];
484
485 while (*p == ' ')
486 p++;
487
488 while (*p) {
489 /* Note the last non-whitespace index */
490 if (!isspace(*p))
491 s = q;
492
493 *q++ = *p++;
494 }
495
496 *(s + 1) = '\0';
1da177e4
LT
497}
498
148f9bb8 499void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
1da177e4 500{
9d31d35b 501 unsigned int n, dummy, ebx, ecx, edx, l2size;
1da177e4 502
3da99c97 503 n = c->extended_cpuid_level;
1da177e4
LT
504
505 if (n >= 0x80000005) {
9d31d35b 506 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
9d31d35b 507 c->x86_cache_size = (ecx>>24) + (edx>>24);
140fc727
YL
508#ifdef CONFIG_X86_64
509 /* On K8 L1 TLB is inclusive, so don't count it */
510 c->x86_tlbsize = 0;
511#endif
1da177e4
LT
512 }
513
514 if (n < 0x80000006) /* Some chips just has a large L1. */
515 return;
516
0a488a53 517 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
1da177e4 518 l2size = ecx >> 16;
34048c9e 519
140fc727
YL
520#ifdef CONFIG_X86_64
521 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
522#else
1da177e4 523 /* do processor-specific cache resizing */
09dc68d9
JB
524 if (this_cpu->legacy_cache_size)
525 l2size = this_cpu->legacy_cache_size(c, l2size);
1da177e4
LT
526
527 /* Allow user to override all this if necessary. */
528 if (cachesize_override != -1)
529 l2size = cachesize_override;
530
34048c9e 531 if (l2size == 0)
1da177e4 532 return; /* Again, no L2 cache is possible */
140fc727 533#endif
1da177e4
LT
534
535 c->x86_cache_size = l2size;
1da177e4
LT
536}
537
e0ba94f1
AS
538u16 __read_mostly tlb_lli_4k[NR_INFO];
539u16 __read_mostly tlb_lli_2m[NR_INFO];
540u16 __read_mostly tlb_lli_4m[NR_INFO];
541u16 __read_mostly tlb_lld_4k[NR_INFO];
542u16 __read_mostly tlb_lld_2m[NR_INFO];
543u16 __read_mostly tlb_lld_4m[NR_INFO];
dd360393 544u16 __read_mostly tlb_lld_1g[NR_INFO];
e0ba94f1 545
f94fe119 546static void cpu_detect_tlb(struct cpuinfo_x86 *c)
e0ba94f1
AS
547{
548 if (this_cpu->c_detect_tlb)
549 this_cpu->c_detect_tlb(c);
550
f94fe119 551 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
e0ba94f1 552 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
f94fe119
SH
553 tlb_lli_4m[ENTRIES]);
554
555 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
556 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
557 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
e0ba94f1
AS
558}
559
148f9bb8 560void detect_ht(struct cpuinfo_x86 *c)
1da177e4 561{
c8e56d20 562#ifdef CONFIG_SMP
0a488a53
YL
563 u32 eax, ebx, ecx, edx;
564 int index_msb, core_bits;
2eaad1fd 565 static bool printed;
1da177e4 566
0a488a53 567 if (!cpu_has(c, X86_FEATURE_HT))
9d31d35b 568 return;
1da177e4 569
0a488a53
YL
570 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
571 goto out;
1da177e4 572
1cd78776
YL
573 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
574 return;
1da177e4 575
0a488a53 576 cpuid(1, &eax, &ebx, &ecx, &edx);
1da177e4 577
9d31d35b
YL
578 smp_num_siblings = (ebx & 0xff0000) >> 16;
579
580 if (smp_num_siblings == 1) {
1b74dde7 581 pr_info_once("CPU0: Hyper-Threading is disabled\n");
0f3fa48a
IM
582 goto out;
583 }
9d31d35b 584
0f3fa48a
IM
585 if (smp_num_siblings <= 1)
586 goto out;
9d31d35b 587
0f3fa48a
IM
588 index_msb = get_count_order(smp_num_siblings);
589 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
9d31d35b 590
0f3fa48a 591 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
9d31d35b 592
0f3fa48a 593 index_msb = get_count_order(smp_num_siblings);
9d31d35b 594
0f3fa48a 595 core_bits = get_count_order(c->x86_max_cores);
9d31d35b 596
0f3fa48a
IM
597 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
598 ((1 << core_bits) - 1);
1da177e4 599
0a488a53 600out:
2eaad1fd 601 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
1b74dde7
CY
602 pr_info("CPU: Physical Processor ID: %d\n",
603 c->phys_proc_id);
604 pr_info("CPU: Processor Core ID: %d\n",
605 c->cpu_core_id);
2eaad1fd 606 printed = 1;
9d31d35b 607 }
9d31d35b 608#endif
97e4db7c 609}
1da177e4 610
148f9bb8 611static void get_cpu_vendor(struct cpuinfo_x86 *c)
1da177e4
LT
612{
613 char *v = c->x86_vendor_id;
0f3fa48a 614 int i;
1da177e4
LT
615
616 for (i = 0; i < X86_VENDOR_NUM; i++) {
10a434fc
YL
617 if (!cpu_devs[i])
618 break;
619
620 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
621 (cpu_devs[i]->c_ident[1] &&
622 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
0f3fa48a 623
10a434fc
YL
624 this_cpu = cpu_devs[i];
625 c->x86_vendor = this_cpu->c_x86_vendor;
626 return;
1da177e4
LT
627 }
628 }
10a434fc 629
1b74dde7
CY
630 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
631 "CPU: Your system may be unstable.\n", v);
10a434fc 632
fe38d855
CE
633 c->x86_vendor = X86_VENDOR_UNKNOWN;
634 this_cpu = &default_cpu;
1da177e4
LT
635}
636
148f9bb8 637void cpu_detect(struct cpuinfo_x86 *c)
1da177e4 638{
1da177e4 639 /* Get vendor name */
4a148513
HH
640 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
641 (unsigned int *)&c->x86_vendor_id[0],
642 (unsigned int *)&c->x86_vendor_id[8],
643 (unsigned int *)&c->x86_vendor_id[4]);
1da177e4 644
1da177e4 645 c->x86 = 4;
9d31d35b 646 /* Intel-defined flags: level 0x00000001 */
1da177e4
LT
647 if (c->cpuid_level >= 0x00000001) {
648 u32 junk, tfms, cap0, misc;
0f3fa48a 649
1da177e4 650 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
99f925ce
BP
651 c->x86 = x86_family(tfms);
652 c->x86_model = x86_model(tfms);
653 c->x86_mask = x86_stepping(tfms);
0f3fa48a 654
d4387bd3 655 if (cap0 & (1<<19)) {
d4387bd3 656 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
9d31d35b 657 c->x86_cache_alignment = c->x86_clflush_size;
d4387bd3 658 }
1da177e4 659 }
1da177e4 660}
3da99c97 661
8bf1ebca
AL
662static void apply_forced_caps(struct cpuinfo_x86 *c)
663{
664 int i;
665
666 for (i = 0; i < NCAPINTS; i++) {
667 c->x86_capability[i] &= ~cpu_caps_cleared[i];
668 c->x86_capability[i] |= cpu_caps_set[i];
669 }
670}
671
148f9bb8 672void get_cpu_cap(struct cpuinfo_x86 *c)
093af8d7 673{
39c06df4 674 u32 eax, ebx, ecx, edx;
093af8d7 675
3da99c97
YL
676 /* Intel-defined flags: level 0x00000001 */
677 if (c->cpuid_level >= 0x00000001) {
39c06df4 678 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
0f3fa48a 679
39c06df4
BP
680 c->x86_capability[CPUID_1_ECX] = ecx;
681 c->x86_capability[CPUID_1_EDX] = edx;
3da99c97 682 }
093af8d7 683
3df8d920
AL
684 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
685 if (c->cpuid_level >= 0x00000006)
686 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
687
bdc802dc
PA
688 /* Additional Intel-defined flags: level 0x00000007 */
689 if (c->cpuid_level >= 0x00000007) {
bdc802dc 690 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
39c06df4 691 c->x86_capability[CPUID_7_0_EBX] = ebx;
dfb4a70f 692 c->x86_capability[CPUID_7_ECX] = ecx;
bdc802dc
PA
693 }
694
6229ad27
FY
695 /* Extended state features: level 0x0000000d */
696 if (c->cpuid_level >= 0x0000000d) {
6229ad27
FY
697 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
698
39c06df4 699 c->x86_capability[CPUID_D_1_EAX] = eax;
6229ad27
FY
700 }
701
cbc82b17
PWJ
702 /* Additional Intel-defined flags: level 0x0000000F */
703 if (c->cpuid_level >= 0x0000000F) {
cbc82b17
PWJ
704
705 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
706 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
39c06df4
BP
707 c->x86_capability[CPUID_F_0_EDX] = edx;
708
cbc82b17
PWJ
709 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
710 /* will be overridden if occupancy monitoring exists */
711 c->x86_cache_max_rmid = ebx;
712
713 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
714 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
39c06df4
BP
715 c->x86_capability[CPUID_F_1_EDX] = edx;
716
33c3cc7a
VS
717 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
718 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
719 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
cbc82b17
PWJ
720 c->x86_cache_max_rmid = ecx;
721 c->x86_cache_occ_scale = ebx;
722 }
723 } else {
724 c->x86_cache_max_rmid = -1;
725 c->x86_cache_occ_scale = -1;
726 }
727 }
728
3da99c97 729 /* AMD-defined flags: level 0x80000001 */
39c06df4
BP
730 eax = cpuid_eax(0x80000000);
731 c->extended_cpuid_level = eax;
732
733 if ((eax & 0xffff0000) == 0x80000000) {
734 if (eax >= 0x80000001) {
735 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
0f3fa48a 736
39c06df4
BP
737 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
738 c->x86_capability[CPUID_8000_0001_EDX] = edx;
093af8d7 739 }
093af8d7 740 }
093af8d7 741
71faad43
YG
742 if (c->extended_cpuid_level >= 0x80000007) {
743 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
744
745 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
746 c->x86_power = edx;
747 }
748
5122c890 749 if (c->extended_cpuid_level >= 0x80000008) {
39c06df4 750 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
5122c890
YL
751
752 c->x86_virt_bits = (eax >> 8) & 0xff;
753 c->x86_phys_bits = eax & 0xff;
39c06df4 754 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
093af8d7 755 }
13c6c532
JB
756#ifdef CONFIG_X86_32
757 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
758 c->x86_phys_bits = 36;
5122c890 759#endif
e3224234 760
2ccd71f1 761 if (c->extended_cpuid_level >= 0x8000000a)
39c06df4 762 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
093af8d7 763
1dedefd1 764 init_scattered_cpuid_features(c);
60d34501
AL
765
766 /*
767 * Clear/Set all flags overridden by options, after probe.
768 * This needs to happen each time we re-probe, which may happen
769 * several times during CPU initialization.
770 */
771 apply_forced_caps(c);
093af8d7 772}
1da177e4 773
148f9bb8 774static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
aef93c8b
YL
775{
776#ifdef CONFIG_X86_32
777 int i;
778
779 /*
780 * First of all, decide if this is a 486 or higher
781 * It's a 486 if we can modify the AC flag
782 */
783 if (flag_is_changeable_p(X86_EFLAGS_AC))
784 c->x86 = 4;
785 else
786 c->x86 = 3;
787
788 for (i = 0; i < X86_VENDOR_NUM; i++)
789 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
790 c->x86_vendor_id[0] = 0;
791 cpu_devs[i]->c_identify(c);
792 if (c->x86_vendor_id[0]) {
793 get_cpu_vendor(c);
794 break;
795 }
796 }
797#endif
798}
799
34048c9e
PC
800/*
801 * Do minimum CPU detection early.
802 * Fields really needed: vendor, cpuid_level, family, model, mask,
803 * cache alignment.
804 * The others are not touched to avoid unwanted side effects.
805 *
806 * WARNING: this function is only called on the BP. Don't add code here
807 * that is supposed to run on all CPUs.
808 */
3da99c97 809static void __init early_identify_cpu(struct cpuinfo_x86 *c)
d7cd5611 810{
6627d242
YL
811#ifdef CONFIG_X86_64
812 c->x86_clflush_size = 64;
13c6c532
JB
813 c->x86_phys_bits = 36;
814 c->x86_virt_bits = 48;
6627d242 815#else
d4387bd3 816 c->x86_clflush_size = 32;
13c6c532
JB
817 c->x86_phys_bits = 32;
818 c->x86_virt_bits = 32;
6627d242 819#endif
0a488a53 820 c->x86_cache_alignment = c->x86_clflush_size;
d7cd5611 821
3da99c97 822 memset(&c->x86_capability, 0, sizeof c->x86_capability);
0a488a53 823 c->extended_cpuid_level = 0;
d7cd5611 824
aef93c8b 825 /* cyrix could have cpuid enabled via c_identify()*/
05fb3c19
AL
826 if (have_cpuid_p()) {
827 cpu_detect(c);
828 get_cpu_vendor(c);
829 get_cpu_cap(c);
78d1b296 830 setup_force_cpu_cap(X86_FEATURE_CPUID);
d7cd5611 831
05fb3c19
AL
832 if (this_cpu->c_early_init)
833 this_cpu->c_early_init(c);
12cf105c 834
05fb3c19
AL
835 c->cpu_index = 0;
836 filter_cpuid_features(c, false);
093af8d7 837
05fb3c19
AL
838 if (this_cpu->c_bsp_init)
839 this_cpu->c_bsp_init(c);
78d1b296
BP
840 } else {
841 identify_cpu_without_cpuid(c);
842 setup_clear_cpu_cap(X86_FEATURE_CPUID);
05fb3c19 843 }
c3b83598
BP
844
845 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
db52ef74 846 fpu__init_system(c);
d7cd5611
RR
847}
848
9d31d35b
YL
849void __init early_cpu_init(void)
850{
02dde8b4 851 const struct cpu_dev *const *cdev;
10a434fc
YL
852 int count = 0;
853
ac23f253 854#ifdef CONFIG_PROCESSOR_SELECT
1b74dde7 855 pr_info("KERNEL supported cpus:\n");
31c997ca
IM
856#endif
857
10a434fc 858 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
02dde8b4 859 const struct cpu_dev *cpudev = *cdev;
9d31d35b 860
10a434fc
YL
861 if (count >= X86_VENDOR_NUM)
862 break;
863 cpu_devs[count] = cpudev;
864 count++;
865
ac23f253 866#ifdef CONFIG_PROCESSOR_SELECT
31c997ca
IM
867 {
868 unsigned int j;
869
870 for (j = 0; j < 2; j++) {
871 if (!cpudev->c_ident[j])
872 continue;
1b74dde7 873 pr_info(" %s %s\n", cpudev->c_vendor,
31c997ca
IM
874 cpudev->c_ident[j]);
875 }
10a434fc 876 }
0388423d 877#endif
10a434fc 878 }
9d31d35b 879 early_identify_cpu(&boot_cpu_data);
d7cd5611 880}
093af8d7 881
b6734c35 882/*
366d4a43
BP
883 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
884 * unfortunately, that's not true in practice because of early VIA
885 * chips and (more importantly) broken virtualizers that are not easy
886 * to detect. In the latter case it doesn't even *fail* reliably, so
887 * probing for it doesn't even work. Disable it completely on 32-bit
ba0593bf 888 * unless we can find a reliable way to detect all the broken cases.
366d4a43 889 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
b6734c35 890 */
148f9bb8 891static void detect_nopl(struct cpuinfo_x86 *c)
b6734c35 892{
366d4a43 893#ifdef CONFIG_X86_32
b6734c35 894 clear_cpu_cap(c, X86_FEATURE_NOPL);
366d4a43
BP
895#else
896 set_cpu_cap(c, X86_FEATURE_NOPL);
58a5aac5 897#endif
d7cd5611 898}
58a5aac5 899
7a5d6704
AL
900static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
901{
902#ifdef CONFIG_X86_64
58a5aac5 903 /*
7a5d6704
AL
904 * Empirically, writing zero to a segment selector on AMD does
905 * not clear the base, whereas writing zero to a segment
906 * selector on Intel does clear the base. Intel's behavior
907 * allows slightly faster context switches in the common case
908 * where GS is unused by the prev and next threads.
58a5aac5 909 *
7a5d6704
AL
910 * Since neither vendor documents this anywhere that I can see,
911 * detect it directly instead of hardcoding the choice by
912 * vendor.
913 *
914 * I've designated AMD's behavior as the "bug" because it's
915 * counterintuitive and less friendly.
58a5aac5 916 */
7a5d6704
AL
917
918 unsigned long old_base, tmp;
919 rdmsrl(MSR_FS_BASE, old_base);
920 wrmsrl(MSR_FS_BASE, 1);
921 loadsegment(fs, 0);
922 rdmsrl(MSR_FS_BASE, tmp);
923 if (tmp != 0)
924 set_cpu_bug(c, X86_BUG_NULL_SEG);
925 wrmsrl(MSR_FS_BASE, old_base);
366d4a43 926#endif
d7cd5611
RR
927}
928
148f9bb8 929static void generic_identify(struct cpuinfo_x86 *c)
1da177e4 930{
aef93c8b 931 c->extended_cpuid_level = 0;
1da177e4 932
3da99c97 933 if (!have_cpuid_p())
aef93c8b 934 identify_cpu_without_cpuid(c);
1d67953f 935
aef93c8b 936 /* cyrix could have cpuid enabled via c_identify()*/
a9853dd6 937 if (!have_cpuid_p())
aef93c8b 938 return;
1da177e4 939
3da99c97 940 cpu_detect(c);
1da177e4 941
3da99c97 942 get_cpu_vendor(c);
1da177e4 943
3da99c97 944 get_cpu_cap(c);
1da177e4 945
3da99c97
YL
946 if (c->cpuid_level >= 0x00000001) {
947 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
b89d3b3e 948#ifdef CONFIG_X86_32
c8e56d20 949# ifdef CONFIG_SMP
cb8cc442 950 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
b89d3b3e 951# else
3da99c97 952 c->apicid = c->initial_apicid;
b89d3b3e
YL
953# endif
954#endif
b89d3b3e 955 c->phys_proc_id = c->initial_apicid;
3da99c97 956 }
1da177e4 957
1b05d60d 958 get_model_name(c); /* Default name */
1da177e4 959
3da99c97 960 detect_nopl(c);
7a5d6704
AL
961
962 detect_null_seg_behavior(c);
0230bb03
AL
963
964 /*
965 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
966 * systems that run Linux at CPL > 0 may or may not have the
967 * issue, but, even if they have the issue, there's absolutely
968 * nothing we can do about it because we can't use the real IRET
969 * instruction.
970 *
971 * NB: For the time being, only 32-bit kernels support
972 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
973 * whether to apply espfix using paravirt hooks. If any
974 * non-paravirt system ever shows up that does *not* have the
975 * ESPFIX issue, we can change this.
976 */
977#ifdef CONFIG_X86_32
978# ifdef CONFIG_PARAVIRT
979 do {
980 extern void native_iret(void);
981 if (pv_cpu_ops.iret == native_iret)
982 set_cpu_bug(c, X86_BUG_ESPFIX);
983 } while (0);
984# else
985 set_cpu_bug(c, X86_BUG_ESPFIX);
986# endif
987#endif
1da177e4 988}
1da177e4 989
cbc82b17
PWJ
990static void x86_init_cache_qos(struct cpuinfo_x86 *c)
991{
992 /*
993 * The heavy lifting of max_rmid and cache_occ_scale are handled
994 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
995 * in case CQM bits really aren't there in this CPU.
996 */
997 if (c != &boot_cpu_data) {
998 boot_cpu_data.x86_cache_max_rmid =
999 min(boot_cpu_data.x86_cache_max_rmid,
1000 c->x86_cache_max_rmid);
1001 }
1002}
1003
d49597fd 1004/*
9d85eb91
TG
1005 * Validate that ACPI/mptables have the same information about the
1006 * effective APIC id and update the package map.
d49597fd 1007 */
9d85eb91 1008static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
d49597fd
TG
1009{
1010#ifdef CONFIG_SMP
9d85eb91 1011 unsigned int apicid, cpu = smp_processor_id();
d49597fd
TG
1012
1013 apicid = apic->cpu_present_to_apicid(cpu);
d49597fd 1014
9d85eb91
TG
1015 if (apicid != c->apicid) {
1016 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
d49597fd 1017 cpu, apicid, c->initial_apicid);
d49597fd 1018 }
9d85eb91 1019 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
d49597fd
TG
1020#else
1021 c->logical_proc_id = 0;
1022#endif
1023}
1024
1da177e4
LT
1025/*
1026 * This does the hard work of actually picking apart the CPU stuff...
1027 */
148f9bb8 1028static void identify_cpu(struct cpuinfo_x86 *c)
1da177e4
LT
1029{
1030 int i;
1031
1032 c->loops_per_jiffy = loops_per_jiffy;
1033 c->x86_cache_size = -1;
1034 c->x86_vendor = X86_VENDOR_UNKNOWN;
1da177e4
LT
1035 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1036 c->x86_vendor_id[0] = '\0'; /* Unset */
1037 c->x86_model_id[0] = '\0'; /* Unset */
94605eff 1038 c->x86_max_cores = 1;
102bbe3a 1039 c->x86_coreid_bits = 0;
79a8b9aa 1040 c->cu_id = 0xff;
11fdd252 1041#ifdef CONFIG_X86_64
102bbe3a 1042 c->x86_clflush_size = 64;
13c6c532
JB
1043 c->x86_phys_bits = 36;
1044 c->x86_virt_bits = 48;
102bbe3a
YL
1045#else
1046 c->cpuid_level = -1; /* CPUID not detected */
770d132f 1047 c->x86_clflush_size = 32;
13c6c532
JB
1048 c->x86_phys_bits = 32;
1049 c->x86_virt_bits = 32;
102bbe3a
YL
1050#endif
1051 c->x86_cache_alignment = c->x86_clflush_size;
1da177e4
LT
1052 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1053
1da177e4
LT
1054 generic_identify(c);
1055
3898534d 1056 if (this_cpu->c_identify)
1da177e4
LT
1057 this_cpu->c_identify(c);
1058
6a6256f9 1059 /* Clear/Set all flags overridden by options, after probe */
8bf1ebca 1060 apply_forced_caps(c);
2759c328 1061
102bbe3a 1062#ifdef CONFIG_X86_64
cb8cc442 1063 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
102bbe3a
YL
1064#endif
1065
1da177e4
LT
1066 /*
1067 * Vendor-specific initialization. In this section we
1068 * canonicalize the feature flags, meaning if there are
1069 * features a certain CPU supports which CPUID doesn't
1070 * tell us, CPUID claiming incorrect flags, or other bugs,
1071 * we handle them here.
1072 *
1073 * At the end of this section, c->x86_capability better
1074 * indicate the features this CPU genuinely supports!
1075 */
1076 if (this_cpu->c_init)
1077 this_cpu->c_init(c);
acb04058
PZ
1078 else
1079 clear_sched_clock_stable();
1da177e4
LT
1080
1081 /* Disable the PN if appropriate */
1082 squash_the_stupid_serial_number(c);
1083
b2cc2a07
PA
1084 /* Set up SMEP/SMAP */
1085 setup_smep(c);
1086 setup_smap(c);
1087
1da177e4 1088 /*
0f3fa48a
IM
1089 * The vendor-specific functions might have changed features.
1090 * Now we do "generic changes."
1da177e4
LT
1091 */
1092
b38b0665
PA
1093 /* Filter out anything that depends on CPUID levels we don't have */
1094 filter_cpuid_features(c, true);
1095
1da177e4 1096 /* If the model name is still unset, do table lookup. */
34048c9e 1097 if (!c->x86_model_id[0]) {
02dde8b4 1098 const char *p;
1da177e4 1099 p = table_lookup_model(c);
34048c9e 1100 if (p)
1da177e4
LT
1101 strcpy(c->x86_model_id, p);
1102 else
1103 /* Last resort... */
1104 sprintf(c->x86_model_id, "%02x/%02x",
54a20f8c 1105 c->x86, c->x86_model);
1da177e4
LT
1106 }
1107
102bbe3a
YL
1108#ifdef CONFIG_X86_64
1109 detect_ht(c);
1110#endif
1111
88b094fb 1112 init_hypervisor(c);
49d859d7 1113 x86_init_rdrand(c);
cbc82b17 1114 x86_init_cache_qos(c);
06976945 1115 setup_pku(c);
3e0c3737
YL
1116
1117 /*
6a6256f9 1118 * Clear/Set all flags overridden by options, need do it
3e0c3737
YL
1119 * before following smp all cpus cap AND.
1120 */
8bf1ebca 1121 apply_forced_caps(c);
3e0c3737 1122
1da177e4
LT
1123 /*
1124 * On SMP, boot_cpu_data holds the common feature set between
1125 * all CPUs; so make sure that we indicate which features are
1126 * common between the CPUs. The first time this routine gets
1127 * executed, c == &boot_cpu_data.
1128 */
34048c9e 1129 if (c != &boot_cpu_data) {
1da177e4 1130 /* AND the already accumulated flags with these */
9d31d35b 1131 for (i = 0; i < NCAPINTS; i++)
1da177e4 1132 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
65fc985b
BP
1133
1134 /* OR, i.e. replicate the bug flags */
1135 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1136 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1da177e4
LT
1137 }
1138
1139 /* Init Machine Check Exception if available. */
5e09954a 1140 mcheck_cpu_init(c);
30d432df
AK
1141
1142 select_idle_routine(c);
102bbe3a 1143
de2d9445 1144#ifdef CONFIG_NUMA
102bbe3a
YL
1145 numa_add_cpu(smp_processor_id());
1146#endif
a6c4e076 1147}
31ab269a 1148
8b6c0ab1
IM
1149/*
1150 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1151 * on 32-bit kernels:
1152 */
cfda7bb9
AL
1153#ifdef CONFIG_X86_32
1154void enable_sep_cpu(void)
1155{
8b6c0ab1
IM
1156 struct tss_struct *tss;
1157 int cpu;
cfda7bb9 1158
b3edfda4
BP
1159 if (!boot_cpu_has(X86_FEATURE_SEP))
1160 return;
1161
8b6c0ab1
IM
1162 cpu = get_cpu();
1163 tss = &per_cpu(cpu_tss, cpu);
1164
8b6c0ab1 1165 /*
cf9328cc
AL
1166 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1167 * see the big comment in struct x86_hw_tss's definition.
8b6c0ab1 1168 */
cfda7bb9
AL
1169
1170 tss->x86_tss.ss1 = __KERNEL_CS;
8b6c0ab1
IM
1171 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1172
cf9328cc
AL
1173 wrmsr(MSR_IA32_SYSENTER_ESP,
1174 (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1175 0);
8b6c0ab1 1176
4c8cd0c5 1177 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
8b6c0ab1 1178
cfda7bb9
AL
1179 put_cpu();
1180}
e04d645f
GC
1181#endif
1182
a6c4e076
JF
1183void __init identify_boot_cpu(void)
1184{
1185 identify_cpu(&boot_cpu_data);
102bbe3a 1186#ifdef CONFIG_X86_32
a6c4e076 1187 sysenter_setup();
6fe940d6 1188 enable_sep_cpu();
102bbe3a 1189#endif
5b556332 1190 cpu_detect_tlb(&boot_cpu_data);
a6c4e076 1191}
3b520b23 1192
148f9bb8 1193void identify_secondary_cpu(struct cpuinfo_x86 *c)
a6c4e076
JF
1194{
1195 BUG_ON(c == &boot_cpu_data);
1196 identify_cpu(c);
102bbe3a 1197#ifdef CONFIG_X86_32
a6c4e076 1198 enable_sep_cpu();
102bbe3a 1199#endif
a6c4e076 1200 mtrr_ap_init();
9d85eb91 1201 validate_apic_and_package_id(c);
1da177e4
LT
1202}
1203
191679fd
AK
1204static __init int setup_noclflush(char *arg)
1205{
840d2830 1206 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
da4aaa7d 1207 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
191679fd
AK
1208 return 1;
1209}
1210__setup("noclflush", setup_noclflush);
1211
148f9bb8 1212void print_cpu_info(struct cpuinfo_x86 *c)
1da177e4 1213{
02dde8b4 1214 const char *vendor = NULL;
1da177e4 1215
0f3fa48a 1216 if (c->x86_vendor < X86_VENDOR_NUM) {
1da177e4 1217 vendor = this_cpu->c_vendor;
0f3fa48a
IM
1218 } else {
1219 if (c->cpuid_level >= 0)
1220 vendor = c->x86_vendor_id;
1221 }
1da177e4 1222
bd32a8cf 1223 if (vendor && !strstr(c->x86_model_id, vendor))
1b74dde7 1224 pr_cont("%s ", vendor);
1da177e4 1225
9d31d35b 1226 if (c->x86_model_id[0])
1b74dde7 1227 pr_cont("%s", c->x86_model_id);
1da177e4 1228 else
1b74dde7 1229 pr_cont("%d86", c->x86);
1da177e4 1230
1b74dde7 1231 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
924e101a 1232
34048c9e 1233 if (c->x86_mask || c->cpuid_level >= 0)
1b74dde7 1234 pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1da177e4 1235 else
1b74dde7 1236 pr_cont(")\n");
1da177e4
LT
1237}
1238
ac72e788
AK
1239static __init int setup_disablecpuid(char *arg)
1240{
1241 int bit;
0f3fa48a 1242
dd853fd2 1243 if (get_option(&arg, &bit) && bit >= 0 && bit < NCAPINTS * 32)
ac72e788
AK
1244 setup_clear_cpu_cap(bit);
1245 else
1246 return 0;
0f3fa48a 1247
ac72e788
AK
1248 return 1;
1249}
1250__setup("clearcpuid=", setup_disablecpuid);
1251
d5494d4f 1252#ifdef CONFIG_X86_64
404f6aac
KC
1253struct desc_ptr idt_descr __ro_after_init = {
1254 .size = NR_VECTORS * 16 - 1,
1255 .address = (unsigned long) idt_table,
1256};
1257const struct desc_ptr debug_idt_descr = {
1258 .size = NR_VECTORS * 16 - 1,
1259 .address = (unsigned long) debug_idt_table,
1260};
d5494d4f 1261
947e76cd 1262DEFINE_PER_CPU_FIRST(union irq_stack_union,
277d5b40 1263 irq_stack_union) __aligned(PAGE_SIZE) __visible;
0f3fa48a 1264
bdf977b3 1265/*
a7fcf28d
AL
1266 * The following percpu variables are hot. Align current_task to
1267 * cacheline size such that they fall in the same cacheline.
bdf977b3
TH
1268 */
1269DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1270 &init_task;
1271EXPORT_PER_CPU_SYMBOL(current_task);
d5494d4f 1272
bdf977b3 1273DEFINE_PER_CPU(char *, irq_stack_ptr) =
4950d6d4 1274 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
bdf977b3 1275
277d5b40 1276DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
d5494d4f 1277
c2daa3be
PZ
1278DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1279EXPORT_PER_CPU_SYMBOL(__preempt_count);
1280
0f3fa48a
IM
1281/*
1282 * Special IST stacks which the CPU switches to when it calls
1283 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1284 * limit), all of them are 4K, except the debug stack which
1285 * is 8K.
1286 */
1287static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1288 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1289 [DEBUG_STACK - 1] = DEBUG_STKSZ
1290};
1291
92d65b23 1292static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
3e352aa8 1293 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
d5494d4f 1294
d5494d4f
YL
1295/* May not be marked __init: used by software suspend */
1296void syscall_init(void)
1da177e4 1297{
31ac34ca 1298 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
47edb651 1299 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
d56fe4bf
IM
1300
1301#ifdef CONFIG_IA32_EMULATION
47edb651 1302 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
a76c7f46 1303 /*
487d1edb
DV
1304 * This only works on Intel CPUs.
1305 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1306 * This does not cause SYSENTER to jump to the wrong location, because
1307 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
a76c7f46
DV
1308 */
1309 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1310 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
4c8cd0c5 1311 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
d56fe4bf 1312#else
47edb651 1313 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
6b51311c 1314 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
d56fe4bf
IM
1315 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1316 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
d5494d4f 1317#endif
03ae5768 1318
d5494d4f
YL
1319 /* Flags to clear on syscall */
1320 wrmsrl(MSR_SYSCALL_MASK,
63bcff2a 1321 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
8c7aa698 1322 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1da177e4 1323}
62111195 1324
d5494d4f
YL
1325/*
1326 * Copies of the original ist values from the tss are only accessed during
1327 * debugging, no special alignment required.
1328 */
1329DEFINE_PER_CPU(struct orig_ist, orig_ist);
1330
228bdaa9 1331static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
42181186 1332DEFINE_PER_CPU(int, debug_stack_usage);
228bdaa9
SR
1333
1334int is_debug_stack(unsigned long addr)
1335{
89cbc767
CL
1336 return __this_cpu_read(debug_stack_usage) ||
1337 (addr <= __this_cpu_read(debug_stack_addr) &&
1338 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
228bdaa9 1339}
0f46efeb 1340NOKPROBE_SYMBOL(is_debug_stack);
228bdaa9 1341
629f4f9d 1342DEFINE_PER_CPU(u32, debug_idt_ctr);
f8988175 1343
228bdaa9
SR
1344void debug_stack_set_zero(void)
1345{
629f4f9d
SA
1346 this_cpu_inc(debug_idt_ctr);
1347 load_current_idt();
228bdaa9 1348}
0f46efeb 1349NOKPROBE_SYMBOL(debug_stack_set_zero);
228bdaa9
SR
1350
1351void debug_stack_reset(void)
1352{
629f4f9d 1353 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
f8988175 1354 return;
629f4f9d
SA
1355 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1356 load_current_idt();
228bdaa9 1357}
0f46efeb 1358NOKPROBE_SYMBOL(debug_stack_reset);
228bdaa9 1359
0f3fa48a 1360#else /* CONFIG_X86_64 */
d5494d4f 1361
bdf977b3
TH
1362DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1363EXPORT_PER_CPU_SYMBOL(current_task);
c2daa3be
PZ
1364DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1365EXPORT_PER_CPU_SYMBOL(__preempt_count);
bdf977b3 1366
a7fcf28d
AL
1367/*
1368 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1369 * the top of the kernel stack. Use an extra percpu variable to track the
1370 * top of the kernel stack directly.
1371 */
1372DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1373 (unsigned long)&init_thread_union + THREAD_SIZE;
1374EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1375
60a5317f 1376#ifdef CONFIG_CC_STACKPROTECTOR
53f82452 1377DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
60a5317f 1378#endif
d5494d4f 1379
0f3fa48a 1380#endif /* CONFIG_X86_64 */
c5413fbe 1381
9766cdbc
JSR
1382/*
1383 * Clear all 6 debug registers:
1384 */
1385static void clear_all_debug_regs(void)
1386{
1387 int i;
1388
1389 for (i = 0; i < 8; i++) {
1390 /* Ignore db4, db5 */
1391 if ((i == 4) || (i == 5))
1392 continue;
1393
1394 set_debugreg(0, i);
1395 }
1396}
c5413fbe 1397
0bb9fef9
JW
1398#ifdef CONFIG_KGDB
1399/*
1400 * Restore debug regs if using kgdbwait and you have a kernel debugger
1401 * connection established.
1402 */
1403static void dbg_restore_debug_regs(void)
1404{
1405 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1406 arch_kgdb_ops.correct_hw_break();
1407}
1408#else /* ! CONFIG_KGDB */
1409#define dbg_restore_debug_regs()
1410#endif /* ! CONFIG_KGDB */
1411
ce4b1b16
IM
1412static void wait_for_master_cpu(int cpu)
1413{
1414#ifdef CONFIG_SMP
1415 /*
1416 * wait for ACK from master CPU before continuing
1417 * with AP initialization
1418 */
1419 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1420 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1421 cpu_relax();
1422#endif
1423}
1424
d2cbcc49
RR
1425/*
1426 * cpu_init() initializes state that is per-CPU. Some data is already
1427 * initialized (naturally) in the bootstrap process, such as the GDT
1428 * and IDT. We reload them nevertheless, this function acts as a
1429 * 'CPU state barrier', nothing should get across.
1ba76586 1430 * A lot of state is already set up in PDA init for 64 bit
d2cbcc49 1431 */
1ba76586 1432#ifdef CONFIG_X86_64
0f3fa48a 1433
148f9bb8 1434void cpu_init(void)
1ba76586 1435{
0fe1e009 1436 struct orig_ist *oist;
1ba76586 1437 struct task_struct *me;
0f3fa48a
IM
1438 struct tss_struct *t;
1439 unsigned long v;
fb59831b 1440 int cpu = raw_smp_processor_id();
1ba76586
YL
1441 int i;
1442
ce4b1b16
IM
1443 wait_for_master_cpu(cpu);
1444
1e02ce4c
AL
1445 /*
1446 * Initialize the CR4 shadow before doing anything that could
1447 * try to read it.
1448 */
1449 cr4_init_shadow();
1450
777284b6
BP
1451 if (cpu)
1452 load_ucode_ap();
e6ebf5de 1453
24933b82 1454 t = &per_cpu(cpu_tss, cpu);
0fe1e009 1455 oist = &per_cpu(orig_ist, cpu);
0f3fa48a 1456
e7a22c1e 1457#ifdef CONFIG_NUMA
27fd185f 1458 if (this_cpu_read(numa_node) == 0 &&
e534c7c5
LS
1459 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1460 set_numa_node(early_cpu_to_node(cpu));
e7a22c1e 1461#endif
1ba76586
YL
1462
1463 me = current;
1464
2eaad1fd 1465 pr_debug("Initializing CPU#%d\n", cpu);
1ba76586 1466
375074cc 1467 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1ba76586
YL
1468
1469 /*
1470 * Initialize the per-CPU GDT with the boot GDT,
1471 * and set up the GDT descriptor:
1472 */
1473
552be871 1474 switch_to_new_gdt(cpu);
2697fbd5
BG
1475 loadsegment(fs, 0);
1476
cf910e83 1477 load_current_idt();
1ba76586
YL
1478
1479 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1480 syscall_init();
1481
1482 wrmsrl(MSR_FS_BASE, 0);
1483 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1484 barrier();
1485
4763ed4d 1486 x86_configure_nx();
659006bf 1487 x2apic_setup();
1ba76586
YL
1488
1489 /*
1490 * set up and load the per-CPU TSS
1491 */
0fe1e009 1492 if (!oist->ist[0]) {
92d65b23 1493 char *estacks = per_cpu(exception_stacks, cpu);
0f3fa48a 1494
1ba76586 1495 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
0f3fa48a 1496 estacks += exception_stack_sizes[v];
0fe1e009 1497 oist->ist[v] = t->x86_tss.ist[v] =
1ba76586 1498 (unsigned long)estacks;
228bdaa9
SR
1499 if (v == DEBUG_STACK-1)
1500 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1ba76586
YL
1501 }
1502 }
1503
1504 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
0f3fa48a 1505
1ba76586
YL
1506 /*
1507 * <= is required because the CPU will access up to
1508 * 8 bits beyond the end of the IO permission bitmap.
1509 */
1510 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1511 t->io_bitmap[i] = ~0UL;
1512
f1f10076 1513 mmgrab(&init_mm);
1ba76586 1514 me->active_mm = &init_mm;
8c5dfd25 1515 BUG_ON(me->mm);
1ba76586
YL
1516 enter_lazy_tlb(&init_mm, me);
1517
1518 load_sp0(t, &current->thread);
1519 set_tss_desc(cpu, t);
1520 load_TR_desc();
37868fe1 1521 load_mm_ldt(&init_mm);
1ba76586 1522
0bb9fef9
JW
1523 clear_all_debug_regs();
1524 dbg_restore_debug_regs();
1ba76586 1525
21c4cd10 1526 fpu__init_cpu();
1ba76586 1527
1ba76586
YL
1528 if (is_uv_system())
1529 uv_cpu_init();
1530}
1531
1532#else
1533
148f9bb8 1534void cpu_init(void)
9ee79a3d 1535{
d2cbcc49
RR
1536 int cpu = smp_processor_id();
1537 struct task_struct *curr = current;
24933b82 1538 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
9ee79a3d 1539 struct thread_struct *thread = &curr->thread;
62111195 1540
ce4b1b16 1541 wait_for_master_cpu(cpu);
e6ebf5de 1542
5b2bdbc8
SR
1543 /*
1544 * Initialize the CR4 shadow before doing anything that could
1545 * try to read it.
1546 */
1547 cr4_init_shadow();
1548
ce4b1b16 1549 show_ucode_info_early();
62111195 1550
1b74dde7 1551 pr_info("Initializing CPU#%d\n", cpu);
62111195 1552
362f924b 1553 if (cpu_feature_enabled(X86_FEATURE_VME) ||
59e21e3d 1554 boot_cpu_has(X86_FEATURE_TSC) ||
362f924b 1555 boot_cpu_has(X86_FEATURE_DE))
375074cc 1556 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
62111195 1557
cf910e83 1558 load_current_idt();
552be871 1559 switch_to_new_gdt(cpu);
1da177e4 1560
1da177e4
LT
1561 /*
1562 * Set up and load the per-CPU TSS and LDT
1563 */
f1f10076 1564 mmgrab(&init_mm);
62111195 1565 curr->active_mm = &init_mm;
8c5dfd25 1566 BUG_ON(curr->mm);
62111195 1567 enter_lazy_tlb(&init_mm, curr);
1da177e4 1568
faca6227 1569 load_sp0(t, thread);
34048c9e 1570 set_tss_desc(cpu, t);
1da177e4 1571 load_TR_desc();
37868fe1 1572 load_mm_ldt(&init_mm);
1da177e4 1573
f9a196b8
TG
1574 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1575
22c4e308 1576#ifdef CONFIG_DOUBLEFAULT
1da177e4
LT
1577 /* Set up doublefault TSS pointer in the GDT */
1578 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
22c4e308 1579#endif
1da177e4 1580
9766cdbc 1581 clear_all_debug_regs();
0bb9fef9 1582 dbg_restore_debug_regs();
1da177e4 1583
21c4cd10 1584 fpu__init_cpu();
1da177e4 1585}
1ba76586 1586#endif
5700f743 1587
b51ef52d
LA
1588static void bsp_resume(void)
1589{
1590 if (this_cpu->c_bsp_resume)
1591 this_cpu->c_bsp_resume(&boot_cpu_data);
1592}
1593
1594static struct syscore_ops cpu_syscore_ops = {
1595 .resume = bsp_resume,
1596};
1597
1598static int __init init_cpu_syscore(void)
1599{
1600 register_syscore_ops(&cpu_syscore_ops);
1601 return 0;
1602}
1603core_initcall(init_cpu_syscore);