]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-mq.c
blk-mq: export blk_mq_free_request()
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/mm.h>
13#include <linux/init.h>
14#include <linux/slab.h>
15#include <linux/workqueue.h>
16#include <linux/smp.h>
17#include <linux/llist.h>
18#include <linux/list_sort.h>
19#include <linux/cpu.h>
20#include <linux/cache.h>
21#include <linux/sched/sysctl.h>
22#include <linux/delay.h>
aedcd72f 23#include <linux/crash_dump.h>
320ae51f
JA
24
25#include <trace/events/block.h>
26
27#include <linux/blk-mq.h>
28#include "blk.h"
29#include "blk-mq.h"
30#include "blk-mq-tag.h"
31
32static DEFINE_MUTEX(all_q_mutex);
33static LIST_HEAD(all_q_list);
34
35static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
320ae51f
JA
37/*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41{
42 unsigned int i;
43
1429d7c9
JA
44 for (i = 0; i < hctx->ctx_map.map_size; i++)
45 if (hctx->ctx_map.map[i].word)
320ae51f
JA
46 return true;
47
48 return false;
49}
50
1429d7c9
JA
51static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
53{
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55}
56
57#define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
320ae51f
JA
60/*
61 * Mark this ctx as having pending work in this hardware queue
62 */
63static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
65{
1429d7c9
JA
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70}
71
72static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
74{
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
320ae51f
JA
78}
79
320ae51f
JA
80static int blk_mq_queue_enter(struct request_queue *q)
81{
add703fd
TH
82 while (true) {
83 int ret;
320ae51f 84
add703fd
TH
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
320ae51f 87
add703fd
TH
88 ret = wait_event_interruptible(q->mq_freeze_wq,
89 !q->mq_freeze_depth || blk_queue_dying(q));
90 if (blk_queue_dying(q))
91 return -ENODEV;
92 if (ret)
93 return ret;
94 }
320ae51f
JA
95}
96
97static void blk_mq_queue_exit(struct request_queue *q)
98{
add703fd
TH
99 percpu_ref_put(&q->mq_usage_counter);
100}
101
102static void blk_mq_usage_counter_release(struct percpu_ref *ref)
103{
104 struct request_queue *q =
105 container_of(ref, struct request_queue, mq_usage_counter);
106
107 wake_up_all(&q->mq_freeze_wq);
320ae51f
JA
108}
109
72d6f02a
TH
110/*
111 * Guarantee no request is in use, so we can change any data structure of
112 * the queue afterward.
113 */
114void blk_mq_freeze_queue(struct request_queue *q)
43a5e4e2 115{
cddd5d17
TH
116 bool freeze;
117
72d6f02a 118 spin_lock_irq(q->queue_lock);
cddd5d17 119 freeze = !q->mq_freeze_depth++;
72d6f02a
TH
120 spin_unlock_irq(q->queue_lock);
121
cddd5d17 122 if (freeze) {
9eca8046 123 percpu_ref_kill(&q->mq_usage_counter);
cddd5d17
TH
124 blk_mq_run_queues(q, false);
125 }
add703fd 126 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
43a5e4e2
ML
127}
128
320ae51f
JA
129static void blk_mq_unfreeze_queue(struct request_queue *q)
130{
cddd5d17 131 bool wake;
320ae51f
JA
132
133 spin_lock_irq(q->queue_lock);
780db207
TH
134 wake = !--q->mq_freeze_depth;
135 WARN_ON_ONCE(q->mq_freeze_depth < 0);
320ae51f 136 spin_unlock_irq(q->queue_lock);
add703fd
TH
137 if (wake) {
138 percpu_ref_reinit(&q->mq_usage_counter);
320ae51f 139 wake_up_all(&q->mq_freeze_wq);
add703fd 140 }
320ae51f
JA
141}
142
143bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
144{
145 return blk_mq_has_free_tags(hctx->tags);
146}
147EXPORT_SYMBOL(blk_mq_can_queue);
148
94eddfbe
JA
149static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
150 struct request *rq, unsigned int rw_flags)
320ae51f 151{
94eddfbe
JA
152 if (blk_queue_io_stat(q))
153 rw_flags |= REQ_IO_STAT;
154
af76e555
CH
155 INIT_LIST_HEAD(&rq->queuelist);
156 /* csd/requeue_work/fifo_time is initialized before use */
157 rq->q = q;
320ae51f 158 rq->mq_ctx = ctx;
0d2602ca 159 rq->cmd_flags |= rw_flags;
af76e555
CH
160 /* do not touch atomic flags, it needs atomic ops against the timer */
161 rq->cpu = -1;
af76e555
CH
162 INIT_HLIST_NODE(&rq->hash);
163 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
164 rq->rq_disk = NULL;
165 rq->part = NULL;
3ee32372 166 rq->start_time = jiffies;
af76e555
CH
167#ifdef CONFIG_BLK_CGROUP
168 rq->rl = NULL;
0fec08b4 169 set_start_time_ns(rq);
af76e555
CH
170 rq->io_start_time_ns = 0;
171#endif
172 rq->nr_phys_segments = 0;
173#if defined(CONFIG_BLK_DEV_INTEGRITY)
174 rq->nr_integrity_segments = 0;
175#endif
af76e555
CH
176 rq->special = NULL;
177 /* tag was already set */
178 rq->errors = 0;
af76e555 179
6f4a1626
TB
180 rq->cmd = rq->__cmd;
181
af76e555
CH
182 rq->extra_len = 0;
183 rq->sense_len = 0;
184 rq->resid_len = 0;
185 rq->sense = NULL;
186
af76e555 187 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
188 rq->timeout = 0;
189
af76e555
CH
190 rq->end_io = NULL;
191 rq->end_io_data = NULL;
192 rq->next_rq = NULL;
193
320ae51f
JA
194 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
195}
196
5dee8577 197static struct request *
cb96a42c 198__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
5dee8577
CH
199{
200 struct request *rq;
201 unsigned int tag;
202
cb96a42c 203 tag = blk_mq_get_tag(data);
5dee8577 204 if (tag != BLK_MQ_TAG_FAIL) {
cb96a42c 205 rq = data->hctx->tags->rqs[tag];
5dee8577 206
cb96a42c 207 if (blk_mq_tag_busy(data->hctx)) {
5dee8577 208 rq->cmd_flags = REQ_MQ_INFLIGHT;
cb96a42c 209 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
210 }
211
212 rq->tag = tag;
cb96a42c 213 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
5dee8577
CH
214 return rq;
215 }
216
217 return NULL;
218}
219
4ce01dd1
CH
220struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
221 bool reserved)
320ae51f 222{
d852564f
CH
223 struct blk_mq_ctx *ctx;
224 struct blk_mq_hw_ctx *hctx;
320ae51f 225 struct request *rq;
cb96a42c 226 struct blk_mq_alloc_data alloc_data;
a492f075 227 int ret;
320ae51f 228
a492f075
JL
229 ret = blk_mq_queue_enter(q);
230 if (ret)
231 return ERR_PTR(ret);
320ae51f 232
d852564f
CH
233 ctx = blk_mq_get_ctx(q);
234 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
235 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
236 reserved, ctx, hctx);
d852564f 237
cb96a42c 238 rq = __blk_mq_alloc_request(&alloc_data, rw);
d852564f
CH
239 if (!rq && (gfp & __GFP_WAIT)) {
240 __blk_mq_run_hw_queue(hctx);
241 blk_mq_put_ctx(ctx);
242
243 ctx = blk_mq_get_ctx(q);
244 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
245 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
246 hctx);
247 rq = __blk_mq_alloc_request(&alloc_data, rw);
248 ctx = alloc_data.ctx;
d852564f
CH
249 }
250 blk_mq_put_ctx(ctx);
a492f075
JL
251 if (!rq)
252 return ERR_PTR(-EWOULDBLOCK);
320ae51f
JA
253 return rq;
254}
4bb659b1 255EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 256
320ae51f
JA
257static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
258 struct blk_mq_ctx *ctx, struct request *rq)
259{
260 const int tag = rq->tag;
261 struct request_queue *q = rq->q;
262
0d2602ca
JA
263 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
264 atomic_dec(&hctx->nr_active);
683d0e12 265 rq->cmd_flags = 0;
0d2602ca 266
af76e555 267 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
0d2602ca 268 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
320ae51f
JA
269 blk_mq_queue_exit(q);
270}
271
272void blk_mq_free_request(struct request *rq)
273{
274 struct blk_mq_ctx *ctx = rq->mq_ctx;
275 struct blk_mq_hw_ctx *hctx;
276 struct request_queue *q = rq->q;
277
278 ctx->rq_completed[rq_is_sync(rq)]++;
279
280 hctx = q->mq_ops->map_queue(q, ctx->cpu);
281 __blk_mq_free_request(hctx, ctx, rq);
282}
1a3b595a 283EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 284
c8a446ad 285inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 286{
0d11e6ac
ML
287 blk_account_io_done(rq);
288
91b63639 289 if (rq->end_io) {
320ae51f 290 rq->end_io(rq, error);
91b63639
CH
291 } else {
292 if (unlikely(blk_bidi_rq(rq)))
293 blk_mq_free_request(rq->next_rq);
320ae51f 294 blk_mq_free_request(rq);
91b63639 295 }
320ae51f 296}
c8a446ad 297EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 298
c8a446ad 299void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
300{
301 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
302 BUG();
c8a446ad 303 __blk_mq_end_request(rq, error);
63151a44 304}
c8a446ad 305EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 306
30a91cb4 307static void __blk_mq_complete_request_remote(void *data)
320ae51f 308{
3d6efbf6 309 struct request *rq = data;
320ae51f 310
30a91cb4 311 rq->q->softirq_done_fn(rq);
320ae51f 312}
320ae51f 313
ed851860 314static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
315{
316 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 317 bool shared = false;
320ae51f
JA
318 int cpu;
319
38535201 320 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
321 rq->q->softirq_done_fn(rq);
322 return;
323 }
320ae51f
JA
324
325 cpu = get_cpu();
38535201
CH
326 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
327 shared = cpus_share_cache(cpu, ctx->cpu);
328
329 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 330 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
331 rq->csd.info = rq;
332 rq->csd.flags = 0;
c46fff2a 333 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 334 } else {
30a91cb4 335 rq->q->softirq_done_fn(rq);
3d6efbf6 336 }
320ae51f
JA
337 put_cpu();
338}
30a91cb4 339
ed851860
JA
340void __blk_mq_complete_request(struct request *rq)
341{
342 struct request_queue *q = rq->q;
343
344 if (!q->softirq_done_fn)
c8a446ad 345 blk_mq_end_request(rq, rq->errors);
ed851860
JA
346 else
347 blk_mq_ipi_complete_request(rq);
348}
349
30a91cb4
CH
350/**
351 * blk_mq_complete_request - end I/O on a request
352 * @rq: the request being processed
353 *
354 * Description:
355 * Ends all I/O on a request. It does not handle partial completions.
356 * The actual completion happens out-of-order, through a IPI handler.
357 **/
358void blk_mq_complete_request(struct request *rq)
359{
95f09684
JA
360 struct request_queue *q = rq->q;
361
362 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 363 return;
ed851860
JA
364 if (!blk_mark_rq_complete(rq))
365 __blk_mq_complete_request(rq);
30a91cb4
CH
366}
367EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 368
e2490073 369void blk_mq_start_request(struct request *rq)
320ae51f
JA
370{
371 struct request_queue *q = rq->q;
372
373 trace_block_rq_issue(q, rq);
374
742ee69b 375 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
376 if (unlikely(blk_bidi_rq(rq)))
377 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 378
2b8393b4 379 blk_add_timer(rq);
87ee7b11 380
538b7534
JA
381 /*
382 * Ensure that ->deadline is visible before set the started
383 * flag and clear the completed flag.
384 */
385 smp_mb__before_atomic();
386
87ee7b11
JA
387 /*
388 * Mark us as started and clear complete. Complete might have been
389 * set if requeue raced with timeout, which then marked it as
390 * complete. So be sure to clear complete again when we start
391 * the request, otherwise we'll ignore the completion event.
392 */
4b570521
JA
393 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
394 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
395 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
396 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
397
398 if (q->dma_drain_size && blk_rq_bytes(rq)) {
399 /*
400 * Make sure space for the drain appears. We know we can do
401 * this because max_hw_segments has been adjusted to be one
402 * fewer than the device can handle.
403 */
404 rq->nr_phys_segments++;
405 }
320ae51f 406}
e2490073 407EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 408
ed0791b2 409static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
410{
411 struct request_queue *q = rq->q;
412
413 trace_block_rq_requeue(q, rq);
49f5baa5 414
e2490073
CH
415 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
416 if (q->dma_drain_size && blk_rq_bytes(rq))
417 rq->nr_phys_segments--;
418 }
320ae51f
JA
419}
420
ed0791b2
CH
421void blk_mq_requeue_request(struct request *rq)
422{
ed0791b2 423 __blk_mq_requeue_request(rq);
ed0791b2 424
ed0791b2 425 BUG_ON(blk_queued_rq(rq));
6fca6a61 426 blk_mq_add_to_requeue_list(rq, true);
ed0791b2
CH
427}
428EXPORT_SYMBOL(blk_mq_requeue_request);
429
6fca6a61
CH
430static void blk_mq_requeue_work(struct work_struct *work)
431{
432 struct request_queue *q =
433 container_of(work, struct request_queue, requeue_work);
434 LIST_HEAD(rq_list);
435 struct request *rq, *next;
436 unsigned long flags;
437
438 spin_lock_irqsave(&q->requeue_lock, flags);
439 list_splice_init(&q->requeue_list, &rq_list);
440 spin_unlock_irqrestore(&q->requeue_lock, flags);
441
442 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
443 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
444 continue;
445
446 rq->cmd_flags &= ~REQ_SOFTBARRIER;
447 list_del_init(&rq->queuelist);
448 blk_mq_insert_request(rq, true, false, false);
449 }
450
451 while (!list_empty(&rq_list)) {
452 rq = list_entry(rq_list.next, struct request, queuelist);
453 list_del_init(&rq->queuelist);
454 blk_mq_insert_request(rq, false, false, false);
455 }
456
8b957415
JA
457 /*
458 * Use the start variant of queue running here, so that running
459 * the requeue work will kick stopped queues.
460 */
461 blk_mq_start_hw_queues(q);
6fca6a61
CH
462}
463
464void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
465{
466 struct request_queue *q = rq->q;
467 unsigned long flags;
468
469 /*
470 * We abuse this flag that is otherwise used by the I/O scheduler to
471 * request head insertation from the workqueue.
472 */
473 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
474
475 spin_lock_irqsave(&q->requeue_lock, flags);
476 if (at_head) {
477 rq->cmd_flags |= REQ_SOFTBARRIER;
478 list_add(&rq->queuelist, &q->requeue_list);
479 } else {
480 list_add_tail(&rq->queuelist, &q->requeue_list);
481 }
482 spin_unlock_irqrestore(&q->requeue_lock, flags);
483}
484EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
485
486void blk_mq_kick_requeue_list(struct request_queue *q)
487{
488 kblockd_schedule_work(&q->requeue_work);
489}
490EXPORT_SYMBOL(blk_mq_kick_requeue_list);
491
7c94e1c1
ML
492static inline bool is_flush_request(struct request *rq,
493 struct blk_flush_queue *fq, unsigned int tag)
24d2f903 494{
0e62f51f 495 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
7c94e1c1 496 fq->flush_rq->tag == tag);
0e62f51f
JA
497}
498
499struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
500{
501 struct request *rq = tags->rqs[tag];
e97c293c
ML
502 /* mq_ctx of flush rq is always cloned from the corresponding req */
503 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
22302375 504
7c94e1c1 505 if (!is_flush_request(rq, fq, tag))
0e62f51f 506 return rq;
22302375 507
7c94e1c1 508 return fq->flush_rq;
24d2f903
CH
509}
510EXPORT_SYMBOL(blk_mq_tag_to_rq);
511
320ae51f 512struct blk_mq_timeout_data {
46f92d42
CH
513 unsigned long next;
514 unsigned int next_set;
320ae51f
JA
515};
516
90415837 517void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 518{
46f92d42
CH
519 struct blk_mq_ops *ops = req->q->mq_ops;
520 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
521
522 /*
523 * We know that complete is set at this point. If STARTED isn't set
524 * anymore, then the request isn't active and the "timeout" should
525 * just be ignored. This can happen due to the bitflag ordering.
526 * Timeout first checks if STARTED is set, and if it is, assumes
527 * the request is active. But if we race with completion, then
528 * we both flags will get cleared. So check here again, and ignore
529 * a timeout event with a request that isn't active.
530 */
46f92d42
CH
531 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
532 return;
87ee7b11 533
46f92d42 534 if (ops->timeout)
0152fb6b 535 ret = ops->timeout(req, reserved);
46f92d42
CH
536
537 switch (ret) {
538 case BLK_EH_HANDLED:
539 __blk_mq_complete_request(req);
540 break;
541 case BLK_EH_RESET_TIMER:
542 blk_add_timer(req);
543 blk_clear_rq_complete(req);
544 break;
545 case BLK_EH_NOT_HANDLED:
546 break;
547 default:
548 printk(KERN_ERR "block: bad eh return: %d\n", ret);
549 break;
550 }
87ee7b11 551}
81481eb4 552
81481eb4
CH
553static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
554 struct request *rq, void *priv, bool reserved)
555{
556 struct blk_mq_timeout_data *data = priv;
87ee7b11 557
46f92d42
CH
558 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
559 return;
87ee7b11 560
46f92d42
CH
561 if (time_after_eq(jiffies, rq->deadline)) {
562 if (!blk_mark_rq_complete(rq))
0152fb6b 563 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
564 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
565 data->next = rq->deadline;
566 data->next_set = 1;
567 }
87ee7b11
JA
568}
569
81481eb4 570static void blk_mq_rq_timer(unsigned long priv)
320ae51f 571{
81481eb4
CH
572 struct request_queue *q = (struct request_queue *)priv;
573 struct blk_mq_timeout_data data = {
574 .next = 0,
575 .next_set = 0,
576 };
320ae51f 577 struct blk_mq_hw_ctx *hctx;
81481eb4 578 int i;
320ae51f 579
484b4061
JA
580 queue_for_each_hw_ctx(q, hctx, i) {
581 /*
582 * If not software queues are currently mapped to this
583 * hardware queue, there's nothing to check
584 */
585 if (!hctx->nr_ctx || !hctx->tags)
586 continue;
587
81481eb4 588 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
484b4061 589 }
320ae51f 590
81481eb4
CH
591 if (data.next_set) {
592 data.next = blk_rq_timeout(round_jiffies_up(data.next));
593 mod_timer(&q->timeout, data.next);
0d2602ca
JA
594 } else {
595 queue_for_each_hw_ctx(q, hctx, i)
596 blk_mq_tag_idle(hctx);
597 }
320ae51f
JA
598}
599
600/*
601 * Reverse check our software queue for entries that we could potentially
602 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
603 * too much time checking for merges.
604 */
605static bool blk_mq_attempt_merge(struct request_queue *q,
606 struct blk_mq_ctx *ctx, struct bio *bio)
607{
608 struct request *rq;
609 int checked = 8;
610
611 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
612 int el_ret;
613
614 if (!checked--)
615 break;
616
617 if (!blk_rq_merge_ok(rq, bio))
618 continue;
619
620 el_ret = blk_try_merge(rq, bio);
621 if (el_ret == ELEVATOR_BACK_MERGE) {
622 if (bio_attempt_back_merge(q, rq, bio)) {
623 ctx->rq_merged++;
624 return true;
625 }
626 break;
627 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
628 if (bio_attempt_front_merge(q, rq, bio)) {
629 ctx->rq_merged++;
630 return true;
631 }
632 break;
633 }
634 }
635
636 return false;
637}
638
1429d7c9
JA
639/*
640 * Process software queues that have been marked busy, splicing them
641 * to the for-dispatch
642 */
643static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
644{
645 struct blk_mq_ctx *ctx;
646 int i;
647
648 for (i = 0; i < hctx->ctx_map.map_size; i++) {
649 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
650 unsigned int off, bit;
651
652 if (!bm->word)
653 continue;
654
655 bit = 0;
656 off = i * hctx->ctx_map.bits_per_word;
657 do {
658 bit = find_next_bit(&bm->word, bm->depth, bit);
659 if (bit >= bm->depth)
660 break;
661
662 ctx = hctx->ctxs[bit + off];
663 clear_bit(bit, &bm->word);
664 spin_lock(&ctx->lock);
665 list_splice_tail_init(&ctx->rq_list, list);
666 spin_unlock(&ctx->lock);
667
668 bit++;
669 } while (1);
670 }
671}
672
320ae51f
JA
673/*
674 * Run this hardware queue, pulling any software queues mapped to it in.
675 * Note that this function currently has various problems around ordering
676 * of IO. In particular, we'd like FIFO behaviour on handling existing
677 * items on the hctx->dispatch list. Ignore that for now.
678 */
679static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
680{
681 struct request_queue *q = hctx->queue;
320ae51f
JA
682 struct request *rq;
683 LIST_HEAD(rq_list);
74c45052
JA
684 LIST_HEAD(driver_list);
685 struct list_head *dptr;
1429d7c9 686 int queued;
320ae51f 687
fd1270d5 688 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 689
5d12f905 690 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
691 return;
692
693 hctx->run++;
694
695 /*
696 * Touch any software queue that has pending entries.
697 */
1429d7c9 698 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
699
700 /*
701 * If we have previous entries on our dispatch list, grab them
702 * and stuff them at the front for more fair dispatch.
703 */
704 if (!list_empty_careful(&hctx->dispatch)) {
705 spin_lock(&hctx->lock);
706 if (!list_empty(&hctx->dispatch))
707 list_splice_init(&hctx->dispatch, &rq_list);
708 spin_unlock(&hctx->lock);
709 }
710
74c45052
JA
711 /*
712 * Start off with dptr being NULL, so we start the first request
713 * immediately, even if we have more pending.
714 */
715 dptr = NULL;
716
320ae51f
JA
717 /*
718 * Now process all the entries, sending them to the driver.
719 */
1429d7c9 720 queued = 0;
320ae51f 721 while (!list_empty(&rq_list)) {
74c45052 722 struct blk_mq_queue_data bd;
320ae51f
JA
723 int ret;
724
725 rq = list_first_entry(&rq_list, struct request, queuelist);
726 list_del_init(&rq->queuelist);
320ae51f 727
74c45052
JA
728 bd.rq = rq;
729 bd.list = dptr;
730 bd.last = list_empty(&rq_list);
731
732 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
733 switch (ret) {
734 case BLK_MQ_RQ_QUEUE_OK:
735 queued++;
736 continue;
737 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 738 list_add(&rq->queuelist, &rq_list);
ed0791b2 739 __blk_mq_requeue_request(rq);
320ae51f
JA
740 break;
741 default:
742 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 743 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 744 rq->errors = -EIO;
c8a446ad 745 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
746 break;
747 }
748
749 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
750 break;
74c45052
JA
751
752 /*
753 * We've done the first request. If we have more than 1
754 * left in the list, set dptr to defer issue.
755 */
756 if (!dptr && rq_list.next != rq_list.prev)
757 dptr = &driver_list;
320ae51f
JA
758 }
759
760 if (!queued)
761 hctx->dispatched[0]++;
762 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
763 hctx->dispatched[ilog2(queued) + 1]++;
764
765 /*
766 * Any items that need requeuing? Stuff them into hctx->dispatch,
767 * that is where we will continue on next queue run.
768 */
769 if (!list_empty(&rq_list)) {
770 spin_lock(&hctx->lock);
771 list_splice(&rq_list, &hctx->dispatch);
772 spin_unlock(&hctx->lock);
773 }
774}
775
506e931f
JA
776/*
777 * It'd be great if the workqueue API had a way to pass
778 * in a mask and had some smarts for more clever placement.
779 * For now we just round-robin here, switching for every
780 * BLK_MQ_CPU_WORK_BATCH queued items.
781 */
782static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
783{
784 int cpu = hctx->next_cpu;
785
786 if (--hctx->next_cpu_batch <= 0) {
787 int next_cpu;
788
789 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
790 if (next_cpu >= nr_cpu_ids)
791 next_cpu = cpumask_first(hctx->cpumask);
792
793 hctx->next_cpu = next_cpu;
794 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
795 }
796
797 return cpu;
798}
799
320ae51f
JA
800void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
801{
5d12f905 802 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
803 return;
804
398205b8 805 if (!async) {
2a90d4aa
PB
806 int cpu = get_cpu();
807 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 808 __blk_mq_run_hw_queue(hctx);
2a90d4aa 809 put_cpu();
398205b8
PB
810 return;
811 }
812
2a90d4aa 813 put_cpu();
398205b8
PB
814 }
815
816 if (hctx->queue->nr_hw_queues == 1)
70f4db63 817 kblockd_schedule_delayed_work(&hctx->run_work, 0);
e4043dcf
JA
818 else {
819 unsigned int cpu;
820
506e931f 821 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63 822 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
e4043dcf 823 }
320ae51f
JA
824}
825
826void blk_mq_run_queues(struct request_queue *q, bool async)
827{
828 struct blk_mq_hw_ctx *hctx;
829 int i;
830
831 queue_for_each_hw_ctx(q, hctx, i) {
832 if ((!blk_mq_hctx_has_pending(hctx) &&
833 list_empty_careful(&hctx->dispatch)) ||
5d12f905 834 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
835 continue;
836
837 blk_mq_run_hw_queue(hctx, async);
838 }
839}
840EXPORT_SYMBOL(blk_mq_run_queues);
841
842void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
843{
70f4db63
CH
844 cancel_delayed_work(&hctx->run_work);
845 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
846 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
847}
848EXPORT_SYMBOL(blk_mq_stop_hw_queue);
849
280d45f6
CH
850void blk_mq_stop_hw_queues(struct request_queue *q)
851{
852 struct blk_mq_hw_ctx *hctx;
853 int i;
854
855 queue_for_each_hw_ctx(q, hctx, i)
856 blk_mq_stop_hw_queue(hctx);
857}
858EXPORT_SYMBOL(blk_mq_stop_hw_queues);
859
320ae51f
JA
860void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
861{
862 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 863
0ffbce80 864 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
865}
866EXPORT_SYMBOL(blk_mq_start_hw_queue);
867
2f268556
CH
868void blk_mq_start_hw_queues(struct request_queue *q)
869{
870 struct blk_mq_hw_ctx *hctx;
871 int i;
872
873 queue_for_each_hw_ctx(q, hctx, i)
874 blk_mq_start_hw_queue(hctx);
875}
876EXPORT_SYMBOL(blk_mq_start_hw_queues);
877
878
1b4a3258 879void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
880{
881 struct blk_mq_hw_ctx *hctx;
882 int i;
883
884 queue_for_each_hw_ctx(q, hctx, i) {
885 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
886 continue;
887
888 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1b4a3258 889 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
890 }
891}
892EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
893
70f4db63 894static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
895{
896 struct blk_mq_hw_ctx *hctx;
897
70f4db63 898 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 899
320ae51f
JA
900 __blk_mq_run_hw_queue(hctx);
901}
902
70f4db63
CH
903static void blk_mq_delay_work_fn(struct work_struct *work)
904{
905 struct blk_mq_hw_ctx *hctx;
906
907 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
908
909 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
910 __blk_mq_run_hw_queue(hctx);
911}
912
913void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
914{
915 unsigned long tmo = msecs_to_jiffies(msecs);
916
917 if (hctx->queue->nr_hw_queues == 1)
918 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
919 else {
920 unsigned int cpu;
921
506e931f 922 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63
CH
923 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
924 }
925}
926EXPORT_SYMBOL(blk_mq_delay_queue);
927
320ae51f 928static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 929 struct request *rq, bool at_head)
320ae51f
JA
930{
931 struct blk_mq_ctx *ctx = rq->mq_ctx;
932
01b983c9
JA
933 trace_block_rq_insert(hctx->queue, rq);
934
72a0a36e
CH
935 if (at_head)
936 list_add(&rq->queuelist, &ctx->rq_list);
937 else
938 list_add_tail(&rq->queuelist, &ctx->rq_list);
4bb659b1 939
320ae51f 940 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
941}
942
eeabc850
CH
943void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
944 bool async)
320ae51f 945{
eeabc850 946 struct request_queue *q = rq->q;
320ae51f 947 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
948 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
949
950 current_ctx = blk_mq_get_ctx(q);
951 if (!cpu_online(ctx->cpu))
952 rq->mq_ctx = ctx = current_ctx;
320ae51f 953
320ae51f
JA
954 hctx = q->mq_ops->map_queue(q, ctx->cpu);
955
a57a178a
CH
956 spin_lock(&ctx->lock);
957 __blk_mq_insert_request(hctx, rq, at_head);
958 spin_unlock(&ctx->lock);
320ae51f 959
320ae51f
JA
960 if (run_queue)
961 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
962
963 blk_mq_put_ctx(current_ctx);
320ae51f
JA
964}
965
966static void blk_mq_insert_requests(struct request_queue *q,
967 struct blk_mq_ctx *ctx,
968 struct list_head *list,
969 int depth,
970 bool from_schedule)
971
972{
973 struct blk_mq_hw_ctx *hctx;
974 struct blk_mq_ctx *current_ctx;
975
976 trace_block_unplug(q, depth, !from_schedule);
977
978 current_ctx = blk_mq_get_ctx(q);
979
980 if (!cpu_online(ctx->cpu))
981 ctx = current_ctx;
982 hctx = q->mq_ops->map_queue(q, ctx->cpu);
983
984 /*
985 * preemption doesn't flush plug list, so it's possible ctx->cpu is
986 * offline now
987 */
988 spin_lock(&ctx->lock);
989 while (!list_empty(list)) {
990 struct request *rq;
991
992 rq = list_first_entry(list, struct request, queuelist);
993 list_del_init(&rq->queuelist);
994 rq->mq_ctx = ctx;
72a0a36e 995 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
996 }
997 spin_unlock(&ctx->lock);
998
320ae51f 999 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 1000 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1001}
1002
1003static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1004{
1005 struct request *rqa = container_of(a, struct request, queuelist);
1006 struct request *rqb = container_of(b, struct request, queuelist);
1007
1008 return !(rqa->mq_ctx < rqb->mq_ctx ||
1009 (rqa->mq_ctx == rqb->mq_ctx &&
1010 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1011}
1012
1013void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1014{
1015 struct blk_mq_ctx *this_ctx;
1016 struct request_queue *this_q;
1017 struct request *rq;
1018 LIST_HEAD(list);
1019 LIST_HEAD(ctx_list);
1020 unsigned int depth;
1021
1022 list_splice_init(&plug->mq_list, &list);
1023
1024 list_sort(NULL, &list, plug_ctx_cmp);
1025
1026 this_q = NULL;
1027 this_ctx = NULL;
1028 depth = 0;
1029
1030 while (!list_empty(&list)) {
1031 rq = list_entry_rq(list.next);
1032 list_del_init(&rq->queuelist);
1033 BUG_ON(!rq->q);
1034 if (rq->mq_ctx != this_ctx) {
1035 if (this_ctx) {
1036 blk_mq_insert_requests(this_q, this_ctx,
1037 &ctx_list, depth,
1038 from_schedule);
1039 }
1040
1041 this_ctx = rq->mq_ctx;
1042 this_q = rq->q;
1043 depth = 0;
1044 }
1045
1046 depth++;
1047 list_add_tail(&rq->queuelist, &ctx_list);
1048 }
1049
1050 /*
1051 * If 'this_ctx' is set, we know we have entries to complete
1052 * on 'ctx_list'. Do those.
1053 */
1054 if (this_ctx) {
1055 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1056 from_schedule);
1057 }
1058}
1059
1060static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1061{
1062 init_request_from_bio(rq, bio);
4b570521 1063
3ee32372 1064 if (blk_do_io_stat(rq))
4b570521 1065 blk_account_io_start(rq, 1);
320ae51f
JA
1066}
1067
274a5843
JA
1068static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1069{
1070 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1071 !blk_queue_nomerges(hctx->queue);
1072}
1073
07068d5b
JA
1074static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1075 struct blk_mq_ctx *ctx,
1076 struct request *rq, struct bio *bio)
320ae51f 1077{
274a5843 1078 if (!hctx_allow_merges(hctx)) {
07068d5b
JA
1079 blk_mq_bio_to_request(rq, bio);
1080 spin_lock(&ctx->lock);
1081insert_rq:
1082 __blk_mq_insert_request(hctx, rq, false);
1083 spin_unlock(&ctx->lock);
1084 return false;
1085 } else {
274a5843
JA
1086 struct request_queue *q = hctx->queue;
1087
07068d5b
JA
1088 spin_lock(&ctx->lock);
1089 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1090 blk_mq_bio_to_request(rq, bio);
1091 goto insert_rq;
1092 }
320ae51f 1093
07068d5b
JA
1094 spin_unlock(&ctx->lock);
1095 __blk_mq_free_request(hctx, ctx, rq);
1096 return true;
14ec77f3 1097 }
07068d5b 1098}
14ec77f3 1099
07068d5b
JA
1100struct blk_map_ctx {
1101 struct blk_mq_hw_ctx *hctx;
1102 struct blk_mq_ctx *ctx;
1103};
1104
1105static struct request *blk_mq_map_request(struct request_queue *q,
1106 struct bio *bio,
1107 struct blk_map_ctx *data)
1108{
1109 struct blk_mq_hw_ctx *hctx;
1110 struct blk_mq_ctx *ctx;
1111 struct request *rq;
1112 int rw = bio_data_dir(bio);
cb96a42c 1113 struct blk_mq_alloc_data alloc_data;
320ae51f 1114
07068d5b 1115 if (unlikely(blk_mq_queue_enter(q))) {
320ae51f 1116 bio_endio(bio, -EIO);
07068d5b 1117 return NULL;
320ae51f
JA
1118 }
1119
1120 ctx = blk_mq_get_ctx(q);
1121 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1122
07068d5b 1123 if (rw_is_sync(bio->bi_rw))
27fbf4e8 1124 rw |= REQ_SYNC;
07068d5b 1125
320ae51f 1126 trace_block_getrq(q, bio, rw);
cb96a42c
ML
1127 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1128 hctx);
1129 rq = __blk_mq_alloc_request(&alloc_data, rw);
5dee8577 1130 if (unlikely(!rq)) {
793597a6 1131 __blk_mq_run_hw_queue(hctx);
320ae51f
JA
1132 blk_mq_put_ctx(ctx);
1133 trace_block_sleeprq(q, bio, rw);
793597a6
CH
1134
1135 ctx = blk_mq_get_ctx(q);
320ae51f 1136 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
1137 blk_mq_set_alloc_data(&alloc_data, q,
1138 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1139 rq = __blk_mq_alloc_request(&alloc_data, rw);
1140 ctx = alloc_data.ctx;
1141 hctx = alloc_data.hctx;
320ae51f
JA
1142 }
1143
1144 hctx->queued++;
07068d5b
JA
1145 data->hctx = hctx;
1146 data->ctx = ctx;
1147 return rq;
1148}
1149
1150/*
1151 * Multiple hardware queue variant. This will not use per-process plugs,
1152 * but will attempt to bypass the hctx queueing if we can go straight to
1153 * hardware for SYNC IO.
1154 */
1155static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1156{
1157 const int is_sync = rw_is_sync(bio->bi_rw);
1158 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1159 struct blk_map_ctx data;
1160 struct request *rq;
1161
1162 blk_queue_bounce(q, &bio);
1163
1164 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1165 bio_endio(bio, -EIO);
1166 return;
1167 }
1168
1169 rq = blk_mq_map_request(q, bio, &data);
1170 if (unlikely(!rq))
1171 return;
1172
1173 if (unlikely(is_flush_fua)) {
1174 blk_mq_bio_to_request(rq, bio);
1175 blk_insert_flush(rq);
1176 goto run_queue;
1177 }
1178
e167dfb5
JA
1179 /*
1180 * If the driver supports defer issued based on 'last', then
1181 * queue it up like normal since we can potentially save some
1182 * CPU this way.
1183 */
1184 if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
74c45052
JA
1185 struct blk_mq_queue_data bd = {
1186 .rq = rq,
1187 .list = NULL,
1188 .last = 1
1189 };
07068d5b
JA
1190 int ret;
1191
1192 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1193
1194 /*
1195 * For OK queue, we are done. For error, kill it. Any other
1196 * error (busy), just add it to our list as we previously
1197 * would have done
1198 */
74c45052 1199 ret = q->mq_ops->queue_rq(data.hctx, &bd);
07068d5b
JA
1200 if (ret == BLK_MQ_RQ_QUEUE_OK)
1201 goto done;
1202 else {
1203 __blk_mq_requeue_request(rq);
1204
1205 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1206 rq->errors = -EIO;
c8a446ad 1207 blk_mq_end_request(rq, rq->errors);
07068d5b
JA
1208 goto done;
1209 }
1210 }
1211 }
1212
1213 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1214 /*
1215 * For a SYNC request, send it to the hardware immediately. For
1216 * an ASYNC request, just ensure that we run it later on. The
1217 * latter allows for merging opportunities and more efficient
1218 * dispatching.
1219 */
1220run_queue:
1221 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1222 }
1223done:
1224 blk_mq_put_ctx(data.ctx);
1225}
1226
1227/*
1228 * Single hardware queue variant. This will attempt to use any per-process
1229 * plug for merging and IO deferral.
1230 */
1231static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1232{
1233 const int is_sync = rw_is_sync(bio->bi_rw);
1234 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1235 unsigned int use_plug, request_count = 0;
1236 struct blk_map_ctx data;
1237 struct request *rq;
1238
1239 /*
1240 * If we have multiple hardware queues, just go directly to
1241 * one of those for sync IO.
1242 */
1243 use_plug = !is_flush_fua && !is_sync;
1244
1245 blk_queue_bounce(q, &bio);
1246
1247 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1248 bio_endio(bio, -EIO);
1249 return;
1250 }
1251
1252 if (use_plug && !blk_queue_nomerges(q) &&
1253 blk_attempt_plug_merge(q, bio, &request_count))
1254 return;
1255
1256 rq = blk_mq_map_request(q, bio, &data);
ff87bcec
JA
1257 if (unlikely(!rq))
1258 return;
320ae51f
JA
1259
1260 if (unlikely(is_flush_fua)) {
1261 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1262 blk_insert_flush(rq);
1263 goto run_queue;
1264 }
1265
1266 /*
1267 * A task plug currently exists. Since this is completely lockless,
1268 * utilize that to temporarily store requests until the task is
1269 * either done or scheduled away.
1270 */
1271 if (use_plug) {
1272 struct blk_plug *plug = current->plug;
1273
1274 if (plug) {
1275 blk_mq_bio_to_request(rq, bio);
92f399c7 1276 if (list_empty(&plug->mq_list))
320ae51f
JA
1277 trace_block_plug(q);
1278 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1279 blk_flush_plug_list(plug, false);
1280 trace_block_plug(q);
1281 }
1282 list_add_tail(&rq->queuelist, &plug->mq_list);
07068d5b 1283 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1284 return;
1285 }
1286 }
1287
07068d5b
JA
1288 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1289 /*
1290 * For a SYNC request, send it to the hardware immediately. For
1291 * an ASYNC request, just ensure that we run it later on. The
1292 * latter allows for merging opportunities and more efficient
1293 * dispatching.
1294 */
1295run_queue:
1296 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1297 }
1298
07068d5b 1299 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1300}
1301
1302/*
1303 * Default mapping to a software queue, since we use one per CPU.
1304 */
1305struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1306{
1307 return q->queue_hw_ctx[q->mq_map[cpu]];
1308}
1309EXPORT_SYMBOL(blk_mq_map_queue);
1310
24d2f903
CH
1311static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1312 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1313{
e9b267d9 1314 struct page *page;
320ae51f 1315
24d2f903 1316 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1317 int i;
320ae51f 1318
24d2f903
CH
1319 for (i = 0; i < tags->nr_tags; i++) {
1320 if (!tags->rqs[i])
e9b267d9 1321 continue;
24d2f903
CH
1322 set->ops->exit_request(set->driver_data, tags->rqs[i],
1323 hctx_idx, i);
a5164405 1324 tags->rqs[i] = NULL;
e9b267d9 1325 }
320ae51f 1326 }
320ae51f 1327
24d2f903
CH
1328 while (!list_empty(&tags->page_list)) {
1329 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1330 list_del_init(&page->lru);
320ae51f
JA
1331 __free_pages(page, page->private);
1332 }
1333
24d2f903 1334 kfree(tags->rqs);
320ae51f 1335
24d2f903 1336 blk_mq_free_tags(tags);
320ae51f
JA
1337}
1338
1339static size_t order_to_size(unsigned int order)
1340{
4ca08500 1341 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1342}
1343
24d2f903
CH
1344static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1345 unsigned int hctx_idx)
320ae51f 1346{
24d2f903 1347 struct blk_mq_tags *tags;
320ae51f
JA
1348 unsigned int i, j, entries_per_page, max_order = 4;
1349 size_t rq_size, left;
1350
24d2f903
CH
1351 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1352 set->numa_node);
1353 if (!tags)
1354 return NULL;
320ae51f 1355
24d2f903
CH
1356 INIT_LIST_HEAD(&tags->page_list);
1357
a5164405
JA
1358 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1359 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1360 set->numa_node);
24d2f903
CH
1361 if (!tags->rqs) {
1362 blk_mq_free_tags(tags);
1363 return NULL;
1364 }
320ae51f
JA
1365
1366 /*
1367 * rq_size is the size of the request plus driver payload, rounded
1368 * to the cacheline size
1369 */
24d2f903 1370 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1371 cache_line_size());
24d2f903 1372 left = rq_size * set->queue_depth;
320ae51f 1373
24d2f903 1374 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1375 int this_order = max_order;
1376 struct page *page;
1377 int to_do;
1378 void *p;
1379
1380 while (left < order_to_size(this_order - 1) && this_order)
1381 this_order--;
1382
1383 do {
a5164405
JA
1384 page = alloc_pages_node(set->numa_node,
1385 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1386 this_order);
320ae51f
JA
1387 if (page)
1388 break;
1389 if (!this_order--)
1390 break;
1391 if (order_to_size(this_order) < rq_size)
1392 break;
1393 } while (1);
1394
1395 if (!page)
24d2f903 1396 goto fail;
320ae51f
JA
1397
1398 page->private = this_order;
24d2f903 1399 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1400
1401 p = page_address(page);
1402 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1403 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1404 left -= to_do * rq_size;
1405 for (j = 0; j < to_do; j++) {
24d2f903 1406 tags->rqs[i] = p;
683d0e12
DH
1407 tags->rqs[i]->atomic_flags = 0;
1408 tags->rqs[i]->cmd_flags = 0;
24d2f903
CH
1409 if (set->ops->init_request) {
1410 if (set->ops->init_request(set->driver_data,
1411 tags->rqs[i], hctx_idx, i,
a5164405
JA
1412 set->numa_node)) {
1413 tags->rqs[i] = NULL;
24d2f903 1414 goto fail;
a5164405 1415 }
e9b267d9
CH
1416 }
1417
320ae51f
JA
1418 p += rq_size;
1419 i++;
1420 }
1421 }
1422
24d2f903 1423 return tags;
320ae51f 1424
24d2f903 1425fail:
24d2f903
CH
1426 blk_mq_free_rq_map(set, tags, hctx_idx);
1427 return NULL;
320ae51f
JA
1428}
1429
1429d7c9
JA
1430static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1431{
1432 kfree(bitmap->map);
1433}
1434
1435static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1436{
1437 unsigned int bpw = 8, total, num_maps, i;
1438
1439 bitmap->bits_per_word = bpw;
1440
1441 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1442 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1443 GFP_KERNEL, node);
1444 if (!bitmap->map)
1445 return -ENOMEM;
1446
1447 bitmap->map_size = num_maps;
1448
1449 total = nr_cpu_ids;
1450 for (i = 0; i < num_maps; i++) {
1451 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1452 total -= bitmap->map[i].depth;
1453 }
1454
1455 return 0;
1456}
1457
484b4061
JA
1458static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1459{
1460 struct request_queue *q = hctx->queue;
1461 struct blk_mq_ctx *ctx;
1462 LIST_HEAD(tmp);
1463
1464 /*
1465 * Move ctx entries to new CPU, if this one is going away.
1466 */
1467 ctx = __blk_mq_get_ctx(q, cpu);
1468
1469 spin_lock(&ctx->lock);
1470 if (!list_empty(&ctx->rq_list)) {
1471 list_splice_init(&ctx->rq_list, &tmp);
1472 blk_mq_hctx_clear_pending(hctx, ctx);
1473 }
1474 spin_unlock(&ctx->lock);
1475
1476 if (list_empty(&tmp))
1477 return NOTIFY_OK;
1478
1479 ctx = blk_mq_get_ctx(q);
1480 spin_lock(&ctx->lock);
1481
1482 while (!list_empty(&tmp)) {
1483 struct request *rq;
1484
1485 rq = list_first_entry(&tmp, struct request, queuelist);
1486 rq->mq_ctx = ctx;
1487 list_move_tail(&rq->queuelist, &ctx->rq_list);
1488 }
1489
1490 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1491 blk_mq_hctx_mark_pending(hctx, ctx);
1492
1493 spin_unlock(&ctx->lock);
1494
1495 blk_mq_run_hw_queue(hctx, true);
1496 blk_mq_put_ctx(ctx);
1497 return NOTIFY_OK;
1498}
1499
1500static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1501{
1502 struct request_queue *q = hctx->queue;
1503 struct blk_mq_tag_set *set = q->tag_set;
1504
1505 if (set->tags[hctx->queue_num])
1506 return NOTIFY_OK;
1507
1508 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1509 if (!set->tags[hctx->queue_num])
1510 return NOTIFY_STOP;
1511
1512 hctx->tags = set->tags[hctx->queue_num];
1513 return NOTIFY_OK;
1514}
1515
1516static int blk_mq_hctx_notify(void *data, unsigned long action,
1517 unsigned int cpu)
1518{
1519 struct blk_mq_hw_ctx *hctx = data;
1520
1521 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1522 return blk_mq_hctx_cpu_offline(hctx, cpu);
1523 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1524 return blk_mq_hctx_cpu_online(hctx, cpu);
1525
1526 return NOTIFY_OK;
1527}
1528
08e98fc6
ML
1529static void blk_mq_exit_hctx(struct request_queue *q,
1530 struct blk_mq_tag_set *set,
1531 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1532{
f70ced09
ML
1533 unsigned flush_start_tag = set->queue_depth;
1534
08e98fc6
ML
1535 blk_mq_tag_idle(hctx);
1536
f70ced09
ML
1537 if (set->ops->exit_request)
1538 set->ops->exit_request(set->driver_data,
1539 hctx->fq->flush_rq, hctx_idx,
1540 flush_start_tag + hctx_idx);
1541
08e98fc6
ML
1542 if (set->ops->exit_hctx)
1543 set->ops->exit_hctx(hctx, hctx_idx);
1544
1545 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
f70ced09 1546 blk_free_flush_queue(hctx->fq);
08e98fc6
ML
1547 kfree(hctx->ctxs);
1548 blk_mq_free_bitmap(&hctx->ctx_map);
1549}
1550
624dbe47
ML
1551static void blk_mq_exit_hw_queues(struct request_queue *q,
1552 struct blk_mq_tag_set *set, int nr_queue)
1553{
1554 struct blk_mq_hw_ctx *hctx;
1555 unsigned int i;
1556
1557 queue_for_each_hw_ctx(q, hctx, i) {
1558 if (i == nr_queue)
1559 break;
08e98fc6 1560 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1561 }
624dbe47
ML
1562}
1563
1564static void blk_mq_free_hw_queues(struct request_queue *q,
1565 struct blk_mq_tag_set *set)
1566{
1567 struct blk_mq_hw_ctx *hctx;
1568 unsigned int i;
1569
1570 queue_for_each_hw_ctx(q, hctx, i) {
1571 free_cpumask_var(hctx->cpumask);
cdef54dd 1572 kfree(hctx);
624dbe47
ML
1573 }
1574}
1575
08e98fc6
ML
1576static int blk_mq_init_hctx(struct request_queue *q,
1577 struct blk_mq_tag_set *set,
1578 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1579{
08e98fc6 1580 int node;
f70ced09 1581 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1582
1583 node = hctx->numa_node;
1584 if (node == NUMA_NO_NODE)
1585 node = hctx->numa_node = set->numa_node;
1586
1587 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1588 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1589 spin_lock_init(&hctx->lock);
1590 INIT_LIST_HEAD(&hctx->dispatch);
1591 hctx->queue = q;
1592 hctx->queue_num = hctx_idx;
1593 hctx->flags = set->flags;
1594 hctx->cmd_size = set->cmd_size;
1595
1596 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1597 blk_mq_hctx_notify, hctx);
1598 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1599
1600 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1601
1602 /*
08e98fc6
ML
1603 * Allocate space for all possible cpus to avoid allocation at
1604 * runtime
320ae51f 1605 */
08e98fc6
ML
1606 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1607 GFP_KERNEL, node);
1608 if (!hctx->ctxs)
1609 goto unregister_cpu_notifier;
320ae51f 1610
08e98fc6
ML
1611 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1612 goto free_ctxs;
320ae51f 1613
08e98fc6 1614 hctx->nr_ctx = 0;
320ae51f 1615
08e98fc6
ML
1616 if (set->ops->init_hctx &&
1617 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1618 goto free_bitmap;
320ae51f 1619
f70ced09
ML
1620 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1621 if (!hctx->fq)
1622 goto exit_hctx;
320ae51f 1623
f70ced09
ML
1624 if (set->ops->init_request &&
1625 set->ops->init_request(set->driver_data,
1626 hctx->fq->flush_rq, hctx_idx,
1627 flush_start_tag + hctx_idx, node))
1628 goto free_fq;
320ae51f 1629
08e98fc6 1630 return 0;
320ae51f 1631
f70ced09
ML
1632 free_fq:
1633 kfree(hctx->fq);
1634 exit_hctx:
1635 if (set->ops->exit_hctx)
1636 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6
ML
1637 free_bitmap:
1638 blk_mq_free_bitmap(&hctx->ctx_map);
1639 free_ctxs:
1640 kfree(hctx->ctxs);
1641 unregister_cpu_notifier:
1642 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
320ae51f 1643
08e98fc6
ML
1644 return -1;
1645}
320ae51f 1646
08e98fc6
ML
1647static int blk_mq_init_hw_queues(struct request_queue *q,
1648 struct blk_mq_tag_set *set)
1649{
1650 struct blk_mq_hw_ctx *hctx;
1651 unsigned int i;
320ae51f 1652
08e98fc6
ML
1653 /*
1654 * Initialize hardware queues
1655 */
1656 queue_for_each_hw_ctx(q, hctx, i) {
1657 if (blk_mq_init_hctx(q, set, hctx, i))
320ae51f
JA
1658 break;
1659 }
1660
1661 if (i == q->nr_hw_queues)
1662 return 0;
1663
1664 /*
1665 * Init failed
1666 */
624dbe47 1667 blk_mq_exit_hw_queues(q, set, i);
320ae51f
JA
1668
1669 return 1;
1670}
1671
1672static void blk_mq_init_cpu_queues(struct request_queue *q,
1673 unsigned int nr_hw_queues)
1674{
1675 unsigned int i;
1676
1677 for_each_possible_cpu(i) {
1678 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1679 struct blk_mq_hw_ctx *hctx;
1680
1681 memset(__ctx, 0, sizeof(*__ctx));
1682 __ctx->cpu = i;
1683 spin_lock_init(&__ctx->lock);
1684 INIT_LIST_HEAD(&__ctx->rq_list);
1685 __ctx->queue = q;
1686
1687 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1688 if (!cpu_online(i))
1689 continue;
1690
e4043dcf
JA
1691 hctx = q->mq_ops->map_queue(q, i);
1692 cpumask_set_cpu(i, hctx->cpumask);
1693 hctx->nr_ctx++;
1694
320ae51f
JA
1695 /*
1696 * Set local node, IFF we have more than one hw queue. If
1697 * not, we remain on the home node of the device
1698 */
1699 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1700 hctx->numa_node = cpu_to_node(i);
1701 }
1702}
1703
1704static void blk_mq_map_swqueue(struct request_queue *q)
1705{
1706 unsigned int i;
1707 struct blk_mq_hw_ctx *hctx;
1708 struct blk_mq_ctx *ctx;
1709
1710 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1711 cpumask_clear(hctx->cpumask);
320ae51f
JA
1712 hctx->nr_ctx = 0;
1713 }
1714
1715 /*
1716 * Map software to hardware queues
1717 */
1718 queue_for_each_ctx(q, ctx, i) {
1719 /* If the cpu isn't online, the cpu is mapped to first hctx */
e4043dcf
JA
1720 if (!cpu_online(i))
1721 continue;
1722
320ae51f 1723 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1724 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1725 ctx->index_hw = hctx->nr_ctx;
1726 hctx->ctxs[hctx->nr_ctx++] = ctx;
1727 }
506e931f
JA
1728
1729 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 1730 /*
a68aafa5
JA
1731 * If no software queues are mapped to this hardware queue,
1732 * disable it and free the request entries.
484b4061
JA
1733 */
1734 if (!hctx->nr_ctx) {
1735 struct blk_mq_tag_set *set = q->tag_set;
1736
1737 if (set->tags[i]) {
1738 blk_mq_free_rq_map(set, set->tags[i], i);
1739 set->tags[i] = NULL;
1740 hctx->tags = NULL;
1741 }
1742 continue;
1743 }
1744
1745 /*
1746 * Initialize batch roundrobin counts
1747 */
506e931f
JA
1748 hctx->next_cpu = cpumask_first(hctx->cpumask);
1749 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1750 }
320ae51f
JA
1751}
1752
0d2602ca
JA
1753static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1754{
1755 struct blk_mq_hw_ctx *hctx;
1756 struct request_queue *q;
1757 bool shared;
1758 int i;
1759
1760 if (set->tag_list.next == set->tag_list.prev)
1761 shared = false;
1762 else
1763 shared = true;
1764
1765 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1766 blk_mq_freeze_queue(q);
1767
1768 queue_for_each_hw_ctx(q, hctx, i) {
1769 if (shared)
1770 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1771 else
1772 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1773 }
1774 blk_mq_unfreeze_queue(q);
1775 }
1776}
1777
1778static void blk_mq_del_queue_tag_set(struct request_queue *q)
1779{
1780 struct blk_mq_tag_set *set = q->tag_set;
1781
0d2602ca
JA
1782 mutex_lock(&set->tag_list_lock);
1783 list_del_init(&q->tag_set_list);
1784 blk_mq_update_tag_set_depth(set);
1785 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
1786}
1787
1788static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1789 struct request_queue *q)
1790{
1791 q->tag_set = set;
1792
1793 mutex_lock(&set->tag_list_lock);
1794 list_add_tail(&q->tag_set_list, &set->tag_list);
1795 blk_mq_update_tag_set_depth(set);
1796 mutex_unlock(&set->tag_list_lock);
1797}
1798
24d2f903 1799struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
320ae51f
JA
1800{
1801 struct blk_mq_hw_ctx **hctxs;
e6cdb092 1802 struct blk_mq_ctx __percpu *ctx;
320ae51f 1803 struct request_queue *q;
f14bbe77 1804 unsigned int *map;
320ae51f
JA
1805 int i;
1806
320ae51f
JA
1807 ctx = alloc_percpu(struct blk_mq_ctx);
1808 if (!ctx)
1809 return ERR_PTR(-ENOMEM);
1810
aedcd72f
JA
1811 /*
1812 * If a crashdump is active, then we are potentially in a very
1813 * memory constrained environment. Limit us to 1 queue and
1814 * 64 tags to prevent using too much memory.
1815 */
1816 if (is_kdump_kernel()) {
1817 set->nr_hw_queues = 1;
1818 set->queue_depth = min(64U, set->queue_depth);
1819 }
1820
24d2f903
CH
1821 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1822 set->numa_node);
320ae51f
JA
1823
1824 if (!hctxs)
1825 goto err_percpu;
1826
f14bbe77
JA
1827 map = blk_mq_make_queue_map(set);
1828 if (!map)
1829 goto err_map;
1830
24d2f903 1831 for (i = 0; i < set->nr_hw_queues; i++) {
f14bbe77
JA
1832 int node = blk_mq_hw_queue_to_node(map, i);
1833
cdef54dd
CH
1834 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1835 GFP_KERNEL, node);
320ae51f
JA
1836 if (!hctxs[i])
1837 goto err_hctxs;
1838
a86073e4
JA
1839 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1840 node))
e4043dcf
JA
1841 goto err_hctxs;
1842
0d2602ca 1843 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 1844 hctxs[i]->numa_node = node;
320ae51f
JA
1845 hctxs[i]->queue_num = i;
1846 }
1847
24d2f903 1848 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
320ae51f
JA
1849 if (!q)
1850 goto err_hctxs;
1851
17497acb
TH
1852 /*
1853 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1854 * See blk_register_queue() for details.
1855 */
a34375ef 1856 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
17497acb 1857 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
3d2936f4
ML
1858 goto err_map;
1859
320ae51f
JA
1860 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1861 blk_queue_rq_timeout(q, 30000);
1862
1863 q->nr_queues = nr_cpu_ids;
24d2f903 1864 q->nr_hw_queues = set->nr_hw_queues;
f14bbe77 1865 q->mq_map = map;
320ae51f
JA
1866
1867 q->queue_ctx = ctx;
1868 q->queue_hw_ctx = hctxs;
1869
24d2f903 1870 q->mq_ops = set->ops;
94eddfbe 1871 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1872
05f1dd53
JA
1873 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1874 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1875
1be036e9
CH
1876 q->sg_reserved_size = INT_MAX;
1877
6fca6a61
CH
1878 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1879 INIT_LIST_HEAD(&q->requeue_list);
1880 spin_lock_init(&q->requeue_lock);
1881
07068d5b
JA
1882 if (q->nr_hw_queues > 1)
1883 blk_queue_make_request(q, blk_mq_make_request);
1884 else
1885 blk_queue_make_request(q, blk_sq_make_request);
1886
24d2f903
CH
1887 if (set->timeout)
1888 blk_queue_rq_timeout(q, set->timeout);
320ae51f 1889
eba71768
JA
1890 /*
1891 * Do this after blk_queue_make_request() overrides it...
1892 */
1893 q->nr_requests = set->queue_depth;
1894
24d2f903
CH
1895 if (set->ops->complete)
1896 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 1897
24d2f903 1898 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 1899
24d2f903 1900 if (blk_mq_init_hw_queues(q, set))
1bcb1ead 1901 goto err_hw;
18741986 1902
320ae51f
JA
1903 mutex_lock(&all_q_mutex);
1904 list_add_tail(&q->all_q_node, &all_q_list);
1905 mutex_unlock(&all_q_mutex);
1906
0d2602ca
JA
1907 blk_mq_add_queue_tag_set(set, q);
1908
484b4061
JA
1909 blk_mq_map_swqueue(q);
1910
320ae51f 1911 return q;
18741986 1912
320ae51f 1913err_hw:
320ae51f
JA
1914 blk_cleanup_queue(q);
1915err_hctxs:
f14bbe77 1916 kfree(map);
24d2f903 1917 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
1918 if (!hctxs[i])
1919 break;
e4043dcf 1920 free_cpumask_var(hctxs[i]->cpumask);
cdef54dd 1921 kfree(hctxs[i]);
320ae51f 1922 }
f14bbe77 1923err_map:
320ae51f
JA
1924 kfree(hctxs);
1925err_percpu:
1926 free_percpu(ctx);
1927 return ERR_PTR(-ENOMEM);
1928}
1929EXPORT_SYMBOL(blk_mq_init_queue);
1930
1931void blk_mq_free_queue(struct request_queue *q)
1932{
624dbe47 1933 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1934
0d2602ca
JA
1935 blk_mq_del_queue_tag_set(q);
1936
624dbe47
ML
1937 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1938 blk_mq_free_hw_queues(q, set);
320ae51f 1939
add703fd 1940 percpu_ref_exit(&q->mq_usage_counter);
3d2936f4 1941
320ae51f
JA
1942 free_percpu(q->queue_ctx);
1943 kfree(q->queue_hw_ctx);
1944 kfree(q->mq_map);
1945
1946 q->queue_ctx = NULL;
1947 q->queue_hw_ctx = NULL;
1948 q->mq_map = NULL;
1949
1950 mutex_lock(&all_q_mutex);
1951 list_del_init(&q->all_q_node);
1952 mutex_unlock(&all_q_mutex);
1953}
320ae51f
JA
1954
1955/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1956static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1957{
1958 blk_mq_freeze_queue(q);
1959
67aec14c
JA
1960 blk_mq_sysfs_unregister(q);
1961
320ae51f
JA
1962 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1963
1964 /*
1965 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1966 * we should change hctx numa_node according to new topology (this
1967 * involves free and re-allocate memory, worthy doing?)
1968 */
1969
1970 blk_mq_map_swqueue(q);
1971
67aec14c
JA
1972 blk_mq_sysfs_register(q);
1973
320ae51f
JA
1974 blk_mq_unfreeze_queue(q);
1975}
1976
f618ef7c
PG
1977static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1978 unsigned long action, void *hcpu)
320ae51f
JA
1979{
1980 struct request_queue *q;
1981
1982 /*
9fccfed8
JA
1983 * Before new mappings are established, hotadded cpu might already
1984 * start handling requests. This doesn't break anything as we map
1985 * offline CPUs to first hardware queue. We will re-init the queue
1986 * below to get optimal settings.
320ae51f
JA
1987 */
1988 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1989 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1990 return NOTIFY_OK;
1991
1992 mutex_lock(&all_q_mutex);
1993 list_for_each_entry(q, &all_q_list, all_q_node)
1994 blk_mq_queue_reinit(q);
1995 mutex_unlock(&all_q_mutex);
1996 return NOTIFY_OK;
1997}
1998
a5164405
JA
1999static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2000{
2001 int i;
2002
2003 for (i = 0; i < set->nr_hw_queues; i++) {
2004 set->tags[i] = blk_mq_init_rq_map(set, i);
2005 if (!set->tags[i])
2006 goto out_unwind;
2007 }
2008
2009 return 0;
2010
2011out_unwind:
2012 while (--i >= 0)
2013 blk_mq_free_rq_map(set, set->tags[i], i);
2014
a5164405
JA
2015 return -ENOMEM;
2016}
2017
2018/*
2019 * Allocate the request maps associated with this tag_set. Note that this
2020 * may reduce the depth asked for, if memory is tight. set->queue_depth
2021 * will be updated to reflect the allocated depth.
2022 */
2023static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2024{
2025 unsigned int depth;
2026 int err;
2027
2028 depth = set->queue_depth;
2029 do {
2030 err = __blk_mq_alloc_rq_maps(set);
2031 if (!err)
2032 break;
2033
2034 set->queue_depth >>= 1;
2035 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2036 err = -ENOMEM;
2037 break;
2038 }
2039 } while (set->queue_depth);
2040
2041 if (!set->queue_depth || err) {
2042 pr_err("blk-mq: failed to allocate request map\n");
2043 return -ENOMEM;
2044 }
2045
2046 if (depth != set->queue_depth)
2047 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2048 depth, set->queue_depth);
2049
2050 return 0;
2051}
2052
a4391c64
JA
2053/*
2054 * Alloc a tag set to be associated with one or more request queues.
2055 * May fail with EINVAL for various error conditions. May adjust the
2056 * requested depth down, if if it too large. In that case, the set
2057 * value will be stored in set->queue_depth.
2058 */
24d2f903
CH
2059int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2060{
24d2f903
CH
2061 if (!set->nr_hw_queues)
2062 return -EINVAL;
a4391c64 2063 if (!set->queue_depth)
24d2f903
CH
2064 return -EINVAL;
2065 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2066 return -EINVAL;
2067
cdef54dd 2068 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
24d2f903
CH
2069 return -EINVAL;
2070
a4391c64
JA
2071 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2072 pr_info("blk-mq: reduced tag depth to %u\n",
2073 BLK_MQ_MAX_DEPTH);
2074 set->queue_depth = BLK_MQ_MAX_DEPTH;
2075 }
24d2f903 2076
48479005
ML
2077 set->tags = kmalloc_node(set->nr_hw_queues *
2078 sizeof(struct blk_mq_tags *),
24d2f903
CH
2079 GFP_KERNEL, set->numa_node);
2080 if (!set->tags)
a5164405 2081 return -ENOMEM;
24d2f903 2082
a5164405
JA
2083 if (blk_mq_alloc_rq_maps(set))
2084 goto enomem;
24d2f903 2085
0d2602ca
JA
2086 mutex_init(&set->tag_list_lock);
2087 INIT_LIST_HEAD(&set->tag_list);
2088
24d2f903 2089 return 0;
a5164405 2090enomem:
5676e7b6
RE
2091 kfree(set->tags);
2092 set->tags = NULL;
24d2f903
CH
2093 return -ENOMEM;
2094}
2095EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2096
2097void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2098{
2099 int i;
2100
484b4061
JA
2101 for (i = 0; i < set->nr_hw_queues; i++) {
2102 if (set->tags[i])
2103 blk_mq_free_rq_map(set, set->tags[i], i);
2104 }
2105
981bd189 2106 kfree(set->tags);
5676e7b6 2107 set->tags = NULL;
24d2f903
CH
2108}
2109EXPORT_SYMBOL(blk_mq_free_tag_set);
2110
e3a2b3f9
JA
2111int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2112{
2113 struct blk_mq_tag_set *set = q->tag_set;
2114 struct blk_mq_hw_ctx *hctx;
2115 int i, ret;
2116
2117 if (!set || nr > set->queue_depth)
2118 return -EINVAL;
2119
2120 ret = 0;
2121 queue_for_each_hw_ctx(q, hctx, i) {
2122 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2123 if (ret)
2124 break;
2125 }
2126
2127 if (!ret)
2128 q->nr_requests = nr;
2129
2130 return ret;
2131}
2132
676141e4
JA
2133void blk_mq_disable_hotplug(void)
2134{
2135 mutex_lock(&all_q_mutex);
2136}
2137
2138void blk_mq_enable_hotplug(void)
2139{
2140 mutex_unlock(&all_q_mutex);
2141}
2142
320ae51f
JA
2143static int __init blk_mq_init(void)
2144{
320ae51f
JA
2145 blk_mq_cpu_init();
2146
add703fd 2147 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
320ae51f
JA
2148
2149 return 0;
2150}
2151subsys_initcall(blk_mq_init);