]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-mq.c
blk-mq: split tag ->rqs[] into two
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
23#include <linux/delay.h>
aedcd72f 24#include <linux/crash_dump.h>
88c7b2b7 25#include <linux/prefetch.h>
320ae51f
JA
26
27#include <trace/events/block.h>
28
29#include <linux/blk-mq.h>
30#include "blk.h"
31#include "blk-mq.h"
32#include "blk-mq-tag.h"
cf43e6be 33#include "blk-stat.h"
87760e5e 34#include "blk-wbt.h"
320ae51f
JA
35
36static DEFINE_MUTEX(all_q_mutex);
37static LIST_HEAD(all_q_list);
38
320ae51f
JA
39/*
40 * Check if any of the ctx's have pending work in this hardware queue
41 */
42static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
43{
88459642 44 return sbitmap_any_bit_set(&hctx->ctx_map);
1429d7c9
JA
45}
46
320ae51f
JA
47/*
48 * Mark this ctx as having pending work in this hardware queue
49 */
50static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52{
88459642
OS
53 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
54 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
55}
56
57static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
58 struct blk_mq_ctx *ctx)
59{
88459642 60 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
61}
62
b4c6a028 63void blk_mq_freeze_queue_start(struct request_queue *q)
43a5e4e2 64{
4ecd4fef 65 int freeze_depth;
cddd5d17 66
4ecd4fef
CH
67 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
68 if (freeze_depth == 1) {
3ef28e83 69 percpu_ref_kill(&q->q_usage_counter);
b94ec296 70 blk_mq_run_hw_queues(q, false);
cddd5d17 71 }
f3af020b 72}
b4c6a028 73EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
f3af020b
TH
74
75static void blk_mq_freeze_queue_wait(struct request_queue *q)
76{
3ef28e83 77 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2
ML
78}
79
f3af020b
TH
80/*
81 * Guarantee no request is in use, so we can change any data structure of
82 * the queue afterward.
83 */
3ef28e83 84void blk_freeze_queue(struct request_queue *q)
f3af020b 85{
3ef28e83
DW
86 /*
87 * In the !blk_mq case we are only calling this to kill the
88 * q_usage_counter, otherwise this increases the freeze depth
89 * and waits for it to return to zero. For this reason there is
90 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
91 * exported to drivers as the only user for unfreeze is blk_mq.
92 */
f3af020b
TH
93 blk_mq_freeze_queue_start(q);
94 blk_mq_freeze_queue_wait(q);
95}
3ef28e83
DW
96
97void blk_mq_freeze_queue(struct request_queue *q)
98{
99 /*
100 * ...just an alias to keep freeze and unfreeze actions balanced
101 * in the blk_mq_* namespace
102 */
103 blk_freeze_queue(q);
104}
c761d96b 105EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 106
b4c6a028 107void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 108{
4ecd4fef 109 int freeze_depth;
320ae51f 110
4ecd4fef
CH
111 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
112 WARN_ON_ONCE(freeze_depth < 0);
113 if (!freeze_depth) {
3ef28e83 114 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 115 wake_up_all(&q->mq_freeze_wq);
add703fd 116 }
320ae51f 117}
b4c6a028 118EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 119
6a83e74d
BVA
120/**
121 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
122 * @q: request queue.
123 *
124 * Note: this function does not prevent that the struct request end_io()
125 * callback function is invoked. Additionally, it is not prevented that
126 * new queue_rq() calls occur unless the queue has been stopped first.
127 */
128void blk_mq_quiesce_queue(struct request_queue *q)
129{
130 struct blk_mq_hw_ctx *hctx;
131 unsigned int i;
132 bool rcu = false;
133
134 blk_mq_stop_hw_queues(q);
135
136 queue_for_each_hw_ctx(q, hctx, i) {
137 if (hctx->flags & BLK_MQ_F_BLOCKING)
138 synchronize_srcu(&hctx->queue_rq_srcu);
139 else
140 rcu = true;
141 }
142 if (rcu)
143 synchronize_rcu();
144}
145EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
146
aed3ea94
JA
147void blk_mq_wake_waiters(struct request_queue *q)
148{
149 struct blk_mq_hw_ctx *hctx;
150 unsigned int i;
151
152 queue_for_each_hw_ctx(q, hctx, i)
153 if (blk_mq_hw_queue_mapped(hctx))
154 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
155
156 /*
157 * If we are called because the queue has now been marked as
158 * dying, we need to ensure that processes currently waiting on
159 * the queue are notified as well.
160 */
161 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
162}
163
320ae51f
JA
164bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
165{
166 return blk_mq_has_free_tags(hctx->tags);
167}
168EXPORT_SYMBOL(blk_mq_can_queue);
169
2c3ad667
JA
170void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
171 struct request *rq, unsigned int op)
320ae51f 172{
af76e555
CH
173 INIT_LIST_HEAD(&rq->queuelist);
174 /* csd/requeue_work/fifo_time is initialized before use */
175 rq->q = q;
320ae51f 176 rq->mq_ctx = ctx;
ef295ecf 177 rq->cmd_flags = op;
e8064021
CH
178 if (blk_queue_io_stat(q))
179 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
180 /* do not touch atomic flags, it needs atomic ops against the timer */
181 rq->cpu = -1;
af76e555
CH
182 INIT_HLIST_NODE(&rq->hash);
183 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
184 rq->rq_disk = NULL;
185 rq->part = NULL;
3ee32372 186 rq->start_time = jiffies;
af76e555
CH
187#ifdef CONFIG_BLK_CGROUP
188 rq->rl = NULL;
0fec08b4 189 set_start_time_ns(rq);
af76e555
CH
190 rq->io_start_time_ns = 0;
191#endif
192 rq->nr_phys_segments = 0;
193#if defined(CONFIG_BLK_DEV_INTEGRITY)
194 rq->nr_integrity_segments = 0;
195#endif
af76e555
CH
196 rq->special = NULL;
197 /* tag was already set */
198 rq->errors = 0;
af76e555 199
6f4a1626
TB
200 rq->cmd = rq->__cmd;
201
af76e555
CH
202 rq->extra_len = 0;
203 rq->sense_len = 0;
204 rq->resid_len = 0;
205 rq->sense = NULL;
206
af76e555 207 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
208 rq->timeout = 0;
209
af76e555
CH
210 rq->end_io = NULL;
211 rq->end_io_data = NULL;
212 rq->next_rq = NULL;
213
ef295ecf 214 ctx->rq_dispatched[op_is_sync(op)]++;
320ae51f 215}
2c3ad667 216EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
320ae51f 217
2c3ad667
JA
218struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
219 unsigned int op)
5dee8577
CH
220{
221 struct request *rq;
222 unsigned int tag;
223
cb96a42c 224 tag = blk_mq_get_tag(data);
5dee8577 225 if (tag != BLK_MQ_TAG_FAIL) {
2af8cbe3 226 rq = data->hctx->tags->static_rqs[tag];
5dee8577 227
cb96a42c 228 if (blk_mq_tag_busy(data->hctx)) {
e8064021 229 rq->rq_flags = RQF_MQ_INFLIGHT;
cb96a42c 230 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
231 }
232
233 rq->tag = tag;
2af8cbe3 234 data->hctx->tags->rqs[tag] = rq;
ef295ecf 235 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
5dee8577
CH
236 return rq;
237 }
238
239 return NULL;
240}
2c3ad667 241EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
5dee8577 242
6f3b0e8b
CH
243struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
244 unsigned int flags)
320ae51f 245{
d852564f
CH
246 struct blk_mq_ctx *ctx;
247 struct blk_mq_hw_ctx *hctx;
320ae51f 248 struct request *rq;
cb96a42c 249 struct blk_mq_alloc_data alloc_data;
a492f075 250 int ret;
320ae51f 251
6f3b0e8b 252 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
253 if (ret)
254 return ERR_PTR(ret);
320ae51f 255
d852564f 256 ctx = blk_mq_get_ctx(q);
7d7e0f90 257 hctx = blk_mq_map_queue(q, ctx->cpu);
6f3b0e8b 258 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
ef295ecf 259 rq = __blk_mq_alloc_request(&alloc_data, rw);
d852564f 260 blk_mq_put_ctx(ctx);
841bac2c 261
c76541a9 262 if (!rq) {
3ef28e83 263 blk_queue_exit(q);
a492f075 264 return ERR_PTR(-EWOULDBLOCK);
c76541a9 265 }
0c4de0f3
CH
266
267 rq->__data_len = 0;
268 rq->__sector = (sector_t) -1;
269 rq->bio = rq->biotail = NULL;
320ae51f
JA
270 return rq;
271}
4bb659b1 272EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 273
1f5bd336
ML
274struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
275 unsigned int flags, unsigned int hctx_idx)
276{
277 struct blk_mq_hw_ctx *hctx;
278 struct blk_mq_ctx *ctx;
279 struct request *rq;
280 struct blk_mq_alloc_data alloc_data;
281 int ret;
282
283 /*
284 * If the tag allocator sleeps we could get an allocation for a
285 * different hardware context. No need to complicate the low level
286 * allocator for this for the rare use case of a command tied to
287 * a specific queue.
288 */
289 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
290 return ERR_PTR(-EINVAL);
291
292 if (hctx_idx >= q->nr_hw_queues)
293 return ERR_PTR(-EIO);
294
295 ret = blk_queue_enter(q, true);
296 if (ret)
297 return ERR_PTR(ret);
298
c8712c6a
CH
299 /*
300 * Check if the hardware context is actually mapped to anything.
301 * If not tell the caller that it should skip this queue.
302 */
1f5bd336 303 hctx = q->queue_hw_ctx[hctx_idx];
c8712c6a
CH
304 if (!blk_mq_hw_queue_mapped(hctx)) {
305 ret = -EXDEV;
306 goto out_queue_exit;
307 }
1f5bd336
ML
308 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
309
310 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
ef295ecf 311 rq = __blk_mq_alloc_request(&alloc_data, rw);
1f5bd336 312 if (!rq) {
c8712c6a
CH
313 ret = -EWOULDBLOCK;
314 goto out_queue_exit;
1f5bd336
ML
315 }
316
317 return rq;
c8712c6a
CH
318
319out_queue_exit:
320 blk_queue_exit(q);
321 return ERR_PTR(ret);
1f5bd336
ML
322}
323EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
324
2c3ad667
JA
325void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
326 struct request *rq)
320ae51f
JA
327{
328 const int tag = rq->tag;
329 struct request_queue *q = rq->q;
330
e8064021 331 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 332 atomic_dec(&hctx->nr_active);
87760e5e
JA
333
334 wbt_done(q->rq_wb, &rq->issue_stat);
e8064021 335 rq->rq_flags = 0;
0d2602ca 336
af76e555 337 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 338 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
4941115b 339 blk_mq_put_tag(hctx, hctx->tags, ctx, tag);
3ef28e83 340 blk_queue_exit(q);
320ae51f
JA
341}
342
16a3c2a7
JA
343static void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx,
344 struct request *rq)
320ae51f
JA
345{
346 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
347
348 ctx->rq_completed[rq_is_sync(rq)]++;
320ae51f 349 __blk_mq_free_request(hctx, ctx, rq);
7c7f2f2b 350}
7c7f2f2b
JA
351
352void blk_mq_free_request(struct request *rq)
353{
7d7e0f90 354 blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
320ae51f 355}
1a3b595a 356EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 357
c8a446ad 358inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 359{
0d11e6ac
ML
360 blk_account_io_done(rq);
361
91b63639 362 if (rq->end_io) {
87760e5e 363 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 364 rq->end_io(rq, error);
91b63639
CH
365 } else {
366 if (unlikely(blk_bidi_rq(rq)))
367 blk_mq_free_request(rq->next_rq);
320ae51f 368 blk_mq_free_request(rq);
91b63639 369 }
320ae51f 370}
c8a446ad 371EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 372
c8a446ad 373void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
374{
375 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
376 BUG();
c8a446ad 377 __blk_mq_end_request(rq, error);
63151a44 378}
c8a446ad 379EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 380
30a91cb4 381static void __blk_mq_complete_request_remote(void *data)
320ae51f 382{
3d6efbf6 383 struct request *rq = data;
320ae51f 384
30a91cb4 385 rq->q->softirq_done_fn(rq);
320ae51f 386}
320ae51f 387
ed851860 388static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
389{
390 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 391 bool shared = false;
320ae51f
JA
392 int cpu;
393
38535201 394 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
395 rq->q->softirq_done_fn(rq);
396 return;
397 }
320ae51f
JA
398
399 cpu = get_cpu();
38535201
CH
400 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
401 shared = cpus_share_cache(cpu, ctx->cpu);
402
403 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 404 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
405 rq->csd.info = rq;
406 rq->csd.flags = 0;
c46fff2a 407 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 408 } else {
30a91cb4 409 rq->q->softirq_done_fn(rq);
3d6efbf6 410 }
320ae51f
JA
411 put_cpu();
412}
30a91cb4 413
cf43e6be
JA
414static void blk_mq_stat_add(struct request *rq)
415{
416 if (rq->rq_flags & RQF_STATS) {
417 /*
418 * We could rq->mq_ctx here, but there's less of a risk
419 * of races if we have the completion event add the stats
420 * to the local software queue.
421 */
422 struct blk_mq_ctx *ctx;
423
424 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
425 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
426 }
427}
428
1fa8cc52 429static void __blk_mq_complete_request(struct request *rq)
ed851860
JA
430{
431 struct request_queue *q = rq->q;
432
cf43e6be
JA
433 blk_mq_stat_add(rq);
434
ed851860 435 if (!q->softirq_done_fn)
c8a446ad 436 blk_mq_end_request(rq, rq->errors);
ed851860
JA
437 else
438 blk_mq_ipi_complete_request(rq);
439}
440
30a91cb4
CH
441/**
442 * blk_mq_complete_request - end I/O on a request
443 * @rq: the request being processed
444 *
445 * Description:
446 * Ends all I/O on a request. It does not handle partial completions.
447 * The actual completion happens out-of-order, through a IPI handler.
448 **/
f4829a9b 449void blk_mq_complete_request(struct request *rq, int error)
30a91cb4 450{
95f09684
JA
451 struct request_queue *q = rq->q;
452
453 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 454 return;
f4829a9b
CH
455 if (!blk_mark_rq_complete(rq)) {
456 rq->errors = error;
ed851860 457 __blk_mq_complete_request(rq);
f4829a9b 458 }
30a91cb4
CH
459}
460EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 461
973c0191
KB
462int blk_mq_request_started(struct request *rq)
463{
464 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
465}
466EXPORT_SYMBOL_GPL(blk_mq_request_started);
467
e2490073 468void blk_mq_start_request(struct request *rq)
320ae51f
JA
469{
470 struct request_queue *q = rq->q;
471
472 trace_block_rq_issue(q, rq);
473
742ee69b 474 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
475 if (unlikely(blk_bidi_rq(rq)))
476 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 477
cf43e6be
JA
478 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
479 blk_stat_set_issue_time(&rq->issue_stat);
480 rq->rq_flags |= RQF_STATS;
87760e5e 481 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
482 }
483
2b8393b4 484 blk_add_timer(rq);
87ee7b11 485
538b7534
JA
486 /*
487 * Ensure that ->deadline is visible before set the started
488 * flag and clear the completed flag.
489 */
490 smp_mb__before_atomic();
491
87ee7b11
JA
492 /*
493 * Mark us as started and clear complete. Complete might have been
494 * set if requeue raced with timeout, which then marked it as
495 * complete. So be sure to clear complete again when we start
496 * the request, otherwise we'll ignore the completion event.
497 */
4b570521
JA
498 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
499 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
500 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
501 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
502
503 if (q->dma_drain_size && blk_rq_bytes(rq)) {
504 /*
505 * Make sure space for the drain appears. We know we can do
506 * this because max_hw_segments has been adjusted to be one
507 * fewer than the device can handle.
508 */
509 rq->nr_phys_segments++;
510 }
320ae51f 511}
e2490073 512EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 513
ed0791b2 514static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
515{
516 struct request_queue *q = rq->q;
517
518 trace_block_rq_requeue(q, rq);
87760e5e 519 wbt_requeue(q->rq_wb, &rq->issue_stat);
49f5baa5 520
e2490073
CH
521 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
522 if (q->dma_drain_size && blk_rq_bytes(rq))
523 rq->nr_phys_segments--;
524 }
320ae51f
JA
525}
526
2b053aca 527void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 528{
ed0791b2 529 __blk_mq_requeue_request(rq);
ed0791b2 530
ed0791b2 531 BUG_ON(blk_queued_rq(rq));
2b053aca 532 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
533}
534EXPORT_SYMBOL(blk_mq_requeue_request);
535
6fca6a61
CH
536static void blk_mq_requeue_work(struct work_struct *work)
537{
538 struct request_queue *q =
2849450a 539 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
540 LIST_HEAD(rq_list);
541 struct request *rq, *next;
542 unsigned long flags;
543
544 spin_lock_irqsave(&q->requeue_lock, flags);
545 list_splice_init(&q->requeue_list, &rq_list);
546 spin_unlock_irqrestore(&q->requeue_lock, flags);
547
548 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 549 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
550 continue;
551
e8064021 552 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61
CH
553 list_del_init(&rq->queuelist);
554 blk_mq_insert_request(rq, true, false, false);
555 }
556
557 while (!list_empty(&rq_list)) {
558 rq = list_entry(rq_list.next, struct request, queuelist);
559 list_del_init(&rq->queuelist);
560 blk_mq_insert_request(rq, false, false, false);
561 }
562
52d7f1b5 563 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
564}
565
2b053aca
BVA
566void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
567 bool kick_requeue_list)
6fca6a61
CH
568{
569 struct request_queue *q = rq->q;
570 unsigned long flags;
571
572 /*
573 * We abuse this flag that is otherwise used by the I/O scheduler to
574 * request head insertation from the workqueue.
575 */
e8064021 576 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
577
578 spin_lock_irqsave(&q->requeue_lock, flags);
579 if (at_head) {
e8064021 580 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
581 list_add(&rq->queuelist, &q->requeue_list);
582 } else {
583 list_add_tail(&rq->queuelist, &q->requeue_list);
584 }
585 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
586
587 if (kick_requeue_list)
588 blk_mq_kick_requeue_list(q);
6fca6a61
CH
589}
590EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
591
592void blk_mq_kick_requeue_list(struct request_queue *q)
593{
2849450a 594 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
595}
596EXPORT_SYMBOL(blk_mq_kick_requeue_list);
597
2849450a
MS
598void blk_mq_delay_kick_requeue_list(struct request_queue *q,
599 unsigned long msecs)
600{
601 kblockd_schedule_delayed_work(&q->requeue_work,
602 msecs_to_jiffies(msecs));
603}
604EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
605
1885b24d
JA
606void blk_mq_abort_requeue_list(struct request_queue *q)
607{
608 unsigned long flags;
609 LIST_HEAD(rq_list);
610
611 spin_lock_irqsave(&q->requeue_lock, flags);
612 list_splice_init(&q->requeue_list, &rq_list);
613 spin_unlock_irqrestore(&q->requeue_lock, flags);
614
615 while (!list_empty(&rq_list)) {
616 struct request *rq;
617
618 rq = list_first_entry(&rq_list, struct request, queuelist);
619 list_del_init(&rq->queuelist);
620 rq->errors = -EIO;
621 blk_mq_end_request(rq, rq->errors);
622 }
623}
624EXPORT_SYMBOL(blk_mq_abort_requeue_list);
625
0e62f51f
JA
626struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
627{
88c7b2b7
JA
628 if (tag < tags->nr_tags) {
629 prefetch(tags->rqs[tag]);
4ee86bab 630 return tags->rqs[tag];
88c7b2b7 631 }
4ee86bab
HR
632
633 return NULL;
24d2f903
CH
634}
635EXPORT_SYMBOL(blk_mq_tag_to_rq);
636
320ae51f 637struct blk_mq_timeout_data {
46f92d42
CH
638 unsigned long next;
639 unsigned int next_set;
320ae51f
JA
640};
641
90415837 642void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 643{
f8a5b122 644 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 645 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
646
647 /*
648 * We know that complete is set at this point. If STARTED isn't set
649 * anymore, then the request isn't active and the "timeout" should
650 * just be ignored. This can happen due to the bitflag ordering.
651 * Timeout first checks if STARTED is set, and if it is, assumes
652 * the request is active. But if we race with completion, then
653 * we both flags will get cleared. So check here again, and ignore
654 * a timeout event with a request that isn't active.
655 */
46f92d42
CH
656 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
657 return;
87ee7b11 658
46f92d42 659 if (ops->timeout)
0152fb6b 660 ret = ops->timeout(req, reserved);
46f92d42
CH
661
662 switch (ret) {
663 case BLK_EH_HANDLED:
664 __blk_mq_complete_request(req);
665 break;
666 case BLK_EH_RESET_TIMER:
667 blk_add_timer(req);
668 blk_clear_rq_complete(req);
669 break;
670 case BLK_EH_NOT_HANDLED:
671 break;
672 default:
673 printk(KERN_ERR "block: bad eh return: %d\n", ret);
674 break;
675 }
87ee7b11 676}
5b3f25fc 677
81481eb4
CH
678static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
679 struct request *rq, void *priv, bool reserved)
680{
681 struct blk_mq_timeout_data *data = priv;
87ee7b11 682
eb130dbf
KB
683 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
684 /*
685 * If a request wasn't started before the queue was
686 * marked dying, kill it here or it'll go unnoticed.
687 */
a59e0f57
KB
688 if (unlikely(blk_queue_dying(rq->q))) {
689 rq->errors = -EIO;
690 blk_mq_end_request(rq, rq->errors);
691 }
46f92d42 692 return;
eb130dbf 693 }
87ee7b11 694
46f92d42
CH
695 if (time_after_eq(jiffies, rq->deadline)) {
696 if (!blk_mark_rq_complete(rq))
0152fb6b 697 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
698 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
699 data->next = rq->deadline;
700 data->next_set = 1;
701 }
87ee7b11
JA
702}
703
287922eb 704static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 705{
287922eb
CH
706 struct request_queue *q =
707 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
708 struct blk_mq_timeout_data data = {
709 .next = 0,
710 .next_set = 0,
711 };
81481eb4 712 int i;
320ae51f 713
71f79fb3
GKB
714 /* A deadlock might occur if a request is stuck requiring a
715 * timeout at the same time a queue freeze is waiting
716 * completion, since the timeout code would not be able to
717 * acquire the queue reference here.
718 *
719 * That's why we don't use blk_queue_enter here; instead, we use
720 * percpu_ref_tryget directly, because we need to be able to
721 * obtain a reference even in the short window between the queue
722 * starting to freeze, by dropping the first reference in
723 * blk_mq_freeze_queue_start, and the moment the last request is
724 * consumed, marked by the instant q_usage_counter reaches
725 * zero.
726 */
727 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
728 return;
729
0bf6cd5b 730 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 731
81481eb4
CH
732 if (data.next_set) {
733 data.next = blk_rq_timeout(round_jiffies_up(data.next));
734 mod_timer(&q->timeout, data.next);
0d2602ca 735 } else {
0bf6cd5b
CH
736 struct blk_mq_hw_ctx *hctx;
737
f054b56c
ML
738 queue_for_each_hw_ctx(q, hctx, i) {
739 /* the hctx may be unmapped, so check it here */
740 if (blk_mq_hw_queue_mapped(hctx))
741 blk_mq_tag_idle(hctx);
742 }
0d2602ca 743 }
287922eb 744 blk_queue_exit(q);
320ae51f
JA
745}
746
747/*
748 * Reverse check our software queue for entries that we could potentially
749 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
750 * too much time checking for merges.
751 */
752static bool blk_mq_attempt_merge(struct request_queue *q,
753 struct blk_mq_ctx *ctx, struct bio *bio)
754{
755 struct request *rq;
756 int checked = 8;
757
758 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
759 int el_ret;
760
761 if (!checked--)
762 break;
763
764 if (!blk_rq_merge_ok(rq, bio))
765 continue;
766
767 el_ret = blk_try_merge(rq, bio);
768 if (el_ret == ELEVATOR_BACK_MERGE) {
769 if (bio_attempt_back_merge(q, rq, bio)) {
770 ctx->rq_merged++;
771 return true;
772 }
773 break;
774 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
775 if (bio_attempt_front_merge(q, rq, bio)) {
776 ctx->rq_merged++;
777 return true;
778 }
779 break;
780 }
781 }
782
783 return false;
784}
785
88459642
OS
786struct flush_busy_ctx_data {
787 struct blk_mq_hw_ctx *hctx;
788 struct list_head *list;
789};
790
791static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
792{
793 struct flush_busy_ctx_data *flush_data = data;
794 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
795 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
796
797 sbitmap_clear_bit(sb, bitnr);
798 spin_lock(&ctx->lock);
799 list_splice_tail_init(&ctx->rq_list, flush_data->list);
800 spin_unlock(&ctx->lock);
801 return true;
802}
803
1429d7c9
JA
804/*
805 * Process software queues that have been marked busy, splicing them
806 * to the for-dispatch
807 */
2c3ad667 808void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 809{
88459642
OS
810 struct flush_busy_ctx_data data = {
811 .hctx = hctx,
812 .list = list,
813 };
1429d7c9 814
88459642 815 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 816}
2c3ad667 817EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 818
703fd1c0
JA
819static inline unsigned int queued_to_index(unsigned int queued)
820{
821 if (!queued)
822 return 0;
1429d7c9 823
703fd1c0 824 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
825}
826
f04c3df3 827bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
320ae51f
JA
828{
829 struct request_queue *q = hctx->queue;
320ae51f 830 struct request *rq;
74c45052
JA
831 LIST_HEAD(driver_list);
832 struct list_head *dptr;
f04c3df3 833 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
320ae51f 834
74c45052
JA
835 /*
836 * Start off with dptr being NULL, so we start the first request
837 * immediately, even if we have more pending.
838 */
839 dptr = NULL;
840
320ae51f
JA
841 /*
842 * Now process all the entries, sending them to the driver.
843 */
1429d7c9 844 queued = 0;
f04c3df3 845 while (!list_empty(list)) {
74c45052 846 struct blk_mq_queue_data bd;
320ae51f 847
f04c3df3 848 rq = list_first_entry(list, struct request, queuelist);
320ae51f 849 list_del_init(&rq->queuelist);
320ae51f 850
74c45052
JA
851 bd.rq = rq;
852 bd.list = dptr;
f04c3df3 853 bd.last = list_empty(list);
74c45052
JA
854
855 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
856 switch (ret) {
857 case BLK_MQ_RQ_QUEUE_OK:
858 queued++;
52b9c330 859 break;
320ae51f 860 case BLK_MQ_RQ_QUEUE_BUSY:
f04c3df3 861 list_add(&rq->queuelist, list);
ed0791b2 862 __blk_mq_requeue_request(rq);
320ae51f
JA
863 break;
864 default:
865 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 866 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 867 rq->errors = -EIO;
c8a446ad 868 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
869 break;
870 }
871
872 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
873 break;
74c45052
JA
874
875 /*
876 * We've done the first request. If we have more than 1
877 * left in the list, set dptr to defer issue.
878 */
f04c3df3 879 if (!dptr && list->next != list->prev)
74c45052 880 dptr = &driver_list;
320ae51f
JA
881 }
882
703fd1c0 883 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
884
885 /*
886 * Any items that need requeuing? Stuff them into hctx->dispatch,
887 * that is where we will continue on next queue run.
888 */
f04c3df3 889 if (!list_empty(list)) {
320ae51f 890 spin_lock(&hctx->lock);
f04c3df3 891 list_splice(list, &hctx->dispatch);
320ae51f 892 spin_unlock(&hctx->lock);
f04c3df3 893
9ba52e58
SL
894 /*
895 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
896 * it's possible the queue is stopped and restarted again
897 * before this. Queue restart will dispatch requests. And since
898 * requests in rq_list aren't added into hctx->dispatch yet,
899 * the requests in rq_list might get lost.
900 *
901 * blk_mq_run_hw_queue() already checks the STOPPED bit
902 **/
903 blk_mq_run_hw_queue(hctx, true);
320ae51f 904 }
f04c3df3
JA
905
906 return ret != BLK_MQ_RQ_QUEUE_BUSY;
907}
908
909/*
910 * Run this hardware queue, pulling any software queues mapped to it in.
911 * Note that this function currently has various problems around ordering
912 * of IO. In particular, we'd like FIFO behaviour on handling existing
913 * items on the hctx->dispatch list. Ignore that for now.
914 */
915static void blk_mq_process_rq_list(struct blk_mq_hw_ctx *hctx)
916{
917 LIST_HEAD(rq_list);
918 LIST_HEAD(driver_list);
919
920 if (unlikely(blk_mq_hctx_stopped(hctx)))
921 return;
922
923 hctx->run++;
924
925 /*
926 * Touch any software queue that has pending entries.
927 */
2c3ad667 928 blk_mq_flush_busy_ctxs(hctx, &rq_list);
f04c3df3
JA
929
930 /*
931 * If we have previous entries on our dispatch list, grab them
932 * and stuff them at the front for more fair dispatch.
933 */
934 if (!list_empty_careful(&hctx->dispatch)) {
935 spin_lock(&hctx->lock);
936 if (!list_empty(&hctx->dispatch))
937 list_splice_init(&hctx->dispatch, &rq_list);
938 spin_unlock(&hctx->lock);
939 }
940
941 blk_mq_dispatch_rq_list(hctx, &rq_list);
320ae51f
JA
942}
943
6a83e74d
BVA
944static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
945{
946 int srcu_idx;
947
948 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
949 cpu_online(hctx->next_cpu));
950
951 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
952 rcu_read_lock();
953 blk_mq_process_rq_list(hctx);
954 rcu_read_unlock();
955 } else {
956 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
957 blk_mq_process_rq_list(hctx);
958 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
959 }
960}
961
506e931f
JA
962/*
963 * It'd be great if the workqueue API had a way to pass
964 * in a mask and had some smarts for more clever placement.
965 * For now we just round-robin here, switching for every
966 * BLK_MQ_CPU_WORK_BATCH queued items.
967 */
968static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
969{
b657d7e6
CH
970 if (hctx->queue->nr_hw_queues == 1)
971 return WORK_CPU_UNBOUND;
506e931f
JA
972
973 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 974 int next_cpu;
506e931f
JA
975
976 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
977 if (next_cpu >= nr_cpu_ids)
978 next_cpu = cpumask_first(hctx->cpumask);
979
980 hctx->next_cpu = next_cpu;
981 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
982 }
983
b657d7e6 984 return hctx->next_cpu;
506e931f
JA
985}
986
320ae51f
JA
987void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
988{
5d1b25c1
BVA
989 if (unlikely(blk_mq_hctx_stopped(hctx) ||
990 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
991 return;
992
1b792f2f 993 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
994 int cpu = get_cpu();
995 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 996 __blk_mq_run_hw_queue(hctx);
2a90d4aa 997 put_cpu();
398205b8
PB
998 return;
999 }
e4043dcf 1000
2a90d4aa 1001 put_cpu();
e4043dcf 1002 }
398205b8 1003
27489a3c 1004 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
320ae51f
JA
1005}
1006
b94ec296 1007void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1008{
1009 struct blk_mq_hw_ctx *hctx;
1010 int i;
1011
1012 queue_for_each_hw_ctx(q, hctx, i) {
1013 if ((!blk_mq_hctx_has_pending(hctx) &&
1014 list_empty_careful(&hctx->dispatch)) ||
5d1b25c1 1015 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1016 continue;
1017
b94ec296 1018 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1019 }
1020}
b94ec296 1021EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1022
fd001443
BVA
1023/**
1024 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1025 * @q: request queue.
1026 *
1027 * The caller is responsible for serializing this function against
1028 * blk_mq_{start,stop}_hw_queue().
1029 */
1030bool blk_mq_queue_stopped(struct request_queue *q)
1031{
1032 struct blk_mq_hw_ctx *hctx;
1033 int i;
1034
1035 queue_for_each_hw_ctx(q, hctx, i)
1036 if (blk_mq_hctx_stopped(hctx))
1037 return true;
1038
1039 return false;
1040}
1041EXPORT_SYMBOL(blk_mq_queue_stopped);
1042
320ae51f
JA
1043void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1044{
27489a3c 1045 cancel_work(&hctx->run_work);
70f4db63 1046 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
1047 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1048}
1049EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1050
280d45f6
CH
1051void blk_mq_stop_hw_queues(struct request_queue *q)
1052{
1053 struct blk_mq_hw_ctx *hctx;
1054 int i;
1055
1056 queue_for_each_hw_ctx(q, hctx, i)
1057 blk_mq_stop_hw_queue(hctx);
1058}
1059EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1060
320ae51f
JA
1061void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1062{
1063 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1064
0ffbce80 1065 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1066}
1067EXPORT_SYMBOL(blk_mq_start_hw_queue);
1068
2f268556
CH
1069void blk_mq_start_hw_queues(struct request_queue *q)
1070{
1071 struct blk_mq_hw_ctx *hctx;
1072 int i;
1073
1074 queue_for_each_hw_ctx(q, hctx, i)
1075 blk_mq_start_hw_queue(hctx);
1076}
1077EXPORT_SYMBOL(blk_mq_start_hw_queues);
1078
ae911c5e
JA
1079void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1080{
1081 if (!blk_mq_hctx_stopped(hctx))
1082 return;
1083
1084 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1085 blk_mq_run_hw_queue(hctx, async);
1086}
1087EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1088
1b4a3258 1089void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1090{
1091 struct blk_mq_hw_ctx *hctx;
1092 int i;
1093
ae911c5e
JA
1094 queue_for_each_hw_ctx(q, hctx, i)
1095 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1096}
1097EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1098
70f4db63 1099static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1100{
1101 struct blk_mq_hw_ctx *hctx;
1102
27489a3c 1103 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
e4043dcf 1104
320ae51f
JA
1105 __blk_mq_run_hw_queue(hctx);
1106}
1107
70f4db63
CH
1108static void blk_mq_delay_work_fn(struct work_struct *work)
1109{
1110 struct blk_mq_hw_ctx *hctx;
1111
1112 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1113
1114 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1115 __blk_mq_run_hw_queue(hctx);
1116}
1117
1118void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1119{
19c66e59
ML
1120 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1121 return;
70f4db63 1122
b657d7e6
CH
1123 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1124 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
1125}
1126EXPORT_SYMBOL(blk_mq_delay_queue);
1127
cfd0c552 1128static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1129 struct request *rq,
1130 bool at_head)
320ae51f 1131{
e57690fe
JA
1132 struct blk_mq_ctx *ctx = rq->mq_ctx;
1133
01b983c9
JA
1134 trace_block_rq_insert(hctx->queue, rq);
1135
72a0a36e
CH
1136 if (at_head)
1137 list_add(&rq->queuelist, &ctx->rq_list);
1138 else
1139 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1140}
4bb659b1 1141
2c3ad667
JA
1142void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1143 bool at_head)
cfd0c552
ML
1144{
1145 struct blk_mq_ctx *ctx = rq->mq_ctx;
1146
e57690fe 1147 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1148 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1149}
1150
eeabc850 1151void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
e57690fe 1152 bool async)
320ae51f 1153{
e57690fe 1154 struct blk_mq_ctx *ctx = rq->mq_ctx;
eeabc850 1155 struct request_queue *q = rq->q;
7d7e0f90 1156 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
320ae51f 1157
a57a178a
CH
1158 spin_lock(&ctx->lock);
1159 __blk_mq_insert_request(hctx, rq, at_head);
1160 spin_unlock(&ctx->lock);
320ae51f 1161
320ae51f
JA
1162 if (run_queue)
1163 blk_mq_run_hw_queue(hctx, async);
1164}
1165
1166static void blk_mq_insert_requests(struct request_queue *q,
1167 struct blk_mq_ctx *ctx,
1168 struct list_head *list,
1169 int depth,
1170 bool from_schedule)
1171
1172{
7d7e0f90 1173 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
320ae51f
JA
1174
1175 trace_block_unplug(q, depth, !from_schedule);
1176
320ae51f
JA
1177 /*
1178 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1179 * offline now
1180 */
1181 spin_lock(&ctx->lock);
1182 while (!list_empty(list)) {
1183 struct request *rq;
1184
1185 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1186 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1187 list_del_init(&rq->queuelist);
e57690fe 1188 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1189 }
cfd0c552 1190 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1191 spin_unlock(&ctx->lock);
1192
320ae51f
JA
1193 blk_mq_run_hw_queue(hctx, from_schedule);
1194}
1195
1196static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1197{
1198 struct request *rqa = container_of(a, struct request, queuelist);
1199 struct request *rqb = container_of(b, struct request, queuelist);
1200
1201 return !(rqa->mq_ctx < rqb->mq_ctx ||
1202 (rqa->mq_ctx == rqb->mq_ctx &&
1203 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1204}
1205
1206void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1207{
1208 struct blk_mq_ctx *this_ctx;
1209 struct request_queue *this_q;
1210 struct request *rq;
1211 LIST_HEAD(list);
1212 LIST_HEAD(ctx_list);
1213 unsigned int depth;
1214
1215 list_splice_init(&plug->mq_list, &list);
1216
1217 list_sort(NULL, &list, plug_ctx_cmp);
1218
1219 this_q = NULL;
1220 this_ctx = NULL;
1221 depth = 0;
1222
1223 while (!list_empty(&list)) {
1224 rq = list_entry_rq(list.next);
1225 list_del_init(&rq->queuelist);
1226 BUG_ON(!rq->q);
1227 if (rq->mq_ctx != this_ctx) {
1228 if (this_ctx) {
1229 blk_mq_insert_requests(this_q, this_ctx,
1230 &ctx_list, depth,
1231 from_schedule);
1232 }
1233
1234 this_ctx = rq->mq_ctx;
1235 this_q = rq->q;
1236 depth = 0;
1237 }
1238
1239 depth++;
1240 list_add_tail(&rq->queuelist, &ctx_list);
1241 }
1242
1243 /*
1244 * If 'this_ctx' is set, we know we have entries to complete
1245 * on 'ctx_list'. Do those.
1246 */
1247 if (this_ctx) {
1248 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1249 from_schedule);
1250 }
1251}
1252
1253static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1254{
1255 init_request_from_bio(rq, bio);
4b570521 1256
6e85eaf3 1257 blk_account_io_start(rq, true);
320ae51f
JA
1258}
1259
274a5843
JA
1260static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1261{
1262 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1263 !blk_queue_nomerges(hctx->queue);
1264}
1265
07068d5b
JA
1266static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1267 struct blk_mq_ctx *ctx,
1268 struct request *rq, struct bio *bio)
320ae51f 1269{
e18378a6 1270 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1271 blk_mq_bio_to_request(rq, bio);
1272 spin_lock(&ctx->lock);
1273insert_rq:
1274 __blk_mq_insert_request(hctx, rq, false);
1275 spin_unlock(&ctx->lock);
1276 return false;
1277 } else {
274a5843
JA
1278 struct request_queue *q = hctx->queue;
1279
07068d5b
JA
1280 spin_lock(&ctx->lock);
1281 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1282 blk_mq_bio_to_request(rq, bio);
1283 goto insert_rq;
1284 }
320ae51f 1285
07068d5b
JA
1286 spin_unlock(&ctx->lock);
1287 __blk_mq_free_request(hctx, ctx, rq);
1288 return true;
14ec77f3 1289 }
07068d5b 1290}
14ec77f3 1291
07068d5b
JA
1292static struct request *blk_mq_map_request(struct request_queue *q,
1293 struct bio *bio,
2552e3f8 1294 struct blk_mq_alloc_data *data)
07068d5b
JA
1295{
1296 struct blk_mq_hw_ctx *hctx;
1297 struct blk_mq_ctx *ctx;
1298 struct request *rq;
320ae51f 1299
3ef28e83 1300 blk_queue_enter_live(q);
320ae51f 1301 ctx = blk_mq_get_ctx(q);
7d7e0f90 1302 hctx = blk_mq_map_queue(q, ctx->cpu);
320ae51f 1303
ef295ecf 1304 trace_block_getrq(q, bio, bio->bi_opf);
2552e3f8 1305 blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
ef295ecf 1306 rq = __blk_mq_alloc_request(data, bio->bi_opf);
320ae51f 1307
7dd2fb68 1308 data->hctx->queued++;
07068d5b
JA
1309 return rq;
1310}
1311
fd2d3326
JA
1312static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1313{
1314 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1315}
1316
066a4a73 1317static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
f984df1f
SL
1318{
1319 int ret;
1320 struct request_queue *q = rq->q;
066a4a73 1321 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
f984df1f
SL
1322 struct blk_mq_queue_data bd = {
1323 .rq = rq,
1324 .list = NULL,
1325 .last = 1
1326 };
fd2d3326 1327 blk_qc_t new_cookie = request_to_qc_t(hctx, rq);
f984df1f 1328
2253efc8
BVA
1329 if (blk_mq_hctx_stopped(hctx))
1330 goto insert;
1331
f984df1f
SL
1332 /*
1333 * For OK queue, we are done. For error, kill it. Any other
1334 * error (busy), just add it to our list as we previously
1335 * would have done
1336 */
1337 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1338 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1339 *cookie = new_cookie;
2253efc8 1340 return;
7b371636 1341 }
f984df1f 1342
7b371636
JA
1343 __blk_mq_requeue_request(rq);
1344
1345 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1346 *cookie = BLK_QC_T_NONE;
1347 rq->errors = -EIO;
1348 blk_mq_end_request(rq, rq->errors);
2253efc8 1349 return;
f984df1f 1350 }
7b371636 1351
2253efc8
BVA
1352insert:
1353 blk_mq_insert_request(rq, false, true, true);
f984df1f
SL
1354}
1355
07068d5b
JA
1356/*
1357 * Multiple hardware queue variant. This will not use per-process plugs,
1358 * but will attempt to bypass the hctx queueing if we can go straight to
1359 * hardware for SYNC IO.
1360 */
dece1635 1361static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1362{
ef295ecf 1363 const int is_sync = op_is_sync(bio->bi_opf);
1eff9d32 1364 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
2552e3f8 1365 struct blk_mq_alloc_data data;
07068d5b 1366 struct request *rq;
6a83e74d 1367 unsigned int request_count = 0, srcu_idx;
f984df1f 1368 struct blk_plug *plug;
5b3f341f 1369 struct request *same_queue_rq = NULL;
7b371636 1370 blk_qc_t cookie;
87760e5e 1371 unsigned int wb_acct;
07068d5b
JA
1372
1373 blk_queue_bounce(q, &bio);
1374
1375 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1376 bio_io_error(bio);
dece1635 1377 return BLK_QC_T_NONE;
07068d5b
JA
1378 }
1379
54efd50b
KO
1380 blk_queue_split(q, &bio, q->bio_split);
1381
87c279e6
OS
1382 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1383 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1384 return BLK_QC_T_NONE;
f984df1f 1385
87760e5e
JA
1386 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1387
07068d5b 1388 rq = blk_mq_map_request(q, bio, &data);
87760e5e
JA
1389 if (unlikely(!rq)) {
1390 __wbt_done(q->rq_wb, wb_acct);
dece1635 1391 return BLK_QC_T_NONE;
87760e5e
JA
1392 }
1393
1394 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1395
fd2d3326 1396 cookie = request_to_qc_t(data.hctx, rq);
07068d5b
JA
1397
1398 if (unlikely(is_flush_fua)) {
1399 blk_mq_bio_to_request(rq, bio);
1400 blk_insert_flush(rq);
1401 goto run_queue;
1402 }
1403
f984df1f 1404 plug = current->plug;
e167dfb5
JA
1405 /*
1406 * If the driver supports defer issued based on 'last', then
1407 * queue it up like normal since we can potentially save some
1408 * CPU this way.
1409 */
f984df1f
SL
1410 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1411 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1412 struct request *old_rq = NULL;
07068d5b
JA
1413
1414 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1415
1416 /*
6a83e74d 1417 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1418 * Otherwise the existing request in the plug list will be
1419 * issued. So the plug list will have one request at most
07068d5b 1420 */
f984df1f 1421 if (plug) {
5b3f341f
SL
1422 /*
1423 * The plug list might get flushed before this. If that
b094f89c
JA
1424 * happens, same_queue_rq is invalid and plug list is
1425 * empty
1426 */
5b3f341f
SL
1427 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1428 old_rq = same_queue_rq;
f984df1f 1429 list_del_init(&old_rq->queuelist);
07068d5b 1430 }
f984df1f
SL
1431 list_add_tail(&rq->queuelist, &plug->mq_list);
1432 } else /* is_sync */
1433 old_rq = rq;
1434 blk_mq_put_ctx(data.ctx);
1435 if (!old_rq)
7b371636 1436 goto done;
6a83e74d
BVA
1437
1438 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1439 rcu_read_lock();
066a4a73 1440 blk_mq_try_issue_directly(old_rq, &cookie);
6a83e74d
BVA
1441 rcu_read_unlock();
1442 } else {
1443 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
066a4a73 1444 blk_mq_try_issue_directly(old_rq, &cookie);
6a83e74d
BVA
1445 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1446 }
7b371636 1447 goto done;
07068d5b
JA
1448 }
1449
1450 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1451 /*
1452 * For a SYNC request, send it to the hardware immediately. For
1453 * an ASYNC request, just ensure that we run it later on. The
1454 * latter allows for merging opportunities and more efficient
1455 * dispatching.
1456 */
1457run_queue:
1458 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1459 }
07068d5b 1460 blk_mq_put_ctx(data.ctx);
7b371636
JA
1461done:
1462 return cookie;
07068d5b
JA
1463}
1464
1465/*
1466 * Single hardware queue variant. This will attempt to use any per-process
1467 * plug for merging and IO deferral.
1468 */
dece1635 1469static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1470{
ef295ecf 1471 const int is_sync = op_is_sync(bio->bi_opf);
1eff9d32 1472 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
e6c4438b
JM
1473 struct blk_plug *plug;
1474 unsigned int request_count = 0;
2552e3f8 1475 struct blk_mq_alloc_data data;
07068d5b 1476 struct request *rq;
7b371636 1477 blk_qc_t cookie;
87760e5e 1478 unsigned int wb_acct;
07068d5b 1479
07068d5b
JA
1480 blk_queue_bounce(q, &bio);
1481
1482 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1483 bio_io_error(bio);
dece1635 1484 return BLK_QC_T_NONE;
07068d5b
JA
1485 }
1486
54efd50b
KO
1487 blk_queue_split(q, &bio, q->bio_split);
1488
87c279e6
OS
1489 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1490 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1491 return BLK_QC_T_NONE;
1492 } else
1493 request_count = blk_plug_queued_count(q);
07068d5b 1494
87760e5e
JA
1495 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1496
07068d5b 1497 rq = blk_mq_map_request(q, bio, &data);
87760e5e
JA
1498 if (unlikely(!rq)) {
1499 __wbt_done(q->rq_wb, wb_acct);
dece1635 1500 return BLK_QC_T_NONE;
87760e5e
JA
1501 }
1502
1503 wbt_track(&rq->issue_stat, wb_acct);
320ae51f 1504
fd2d3326 1505 cookie = request_to_qc_t(data.hctx, rq);
320ae51f
JA
1506
1507 if (unlikely(is_flush_fua)) {
1508 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1509 blk_insert_flush(rq);
1510 goto run_queue;
1511 }
1512
1513 /*
1514 * A task plug currently exists. Since this is completely lockless,
1515 * utilize that to temporarily store requests until the task is
1516 * either done or scheduled away.
1517 */
e6c4438b
JM
1518 plug = current->plug;
1519 if (plug) {
600271d9
SL
1520 struct request *last = NULL;
1521
e6c4438b 1522 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1523
1524 /*
1525 * @request_count may become stale because of schedule
1526 * out, so check the list again.
1527 */
1528 if (list_empty(&plug->mq_list))
1529 request_count = 0;
676d0607 1530 if (!request_count)
e6c4438b 1531 trace_block_plug(q);
600271d9
SL
1532 else
1533 last = list_entry_rq(plug->mq_list.prev);
b094f89c
JA
1534
1535 blk_mq_put_ctx(data.ctx);
1536
600271d9
SL
1537 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1538 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1539 blk_flush_plug_list(plug, false);
1540 trace_block_plug(q);
320ae51f 1541 }
b094f89c 1542
e6c4438b 1543 list_add_tail(&rq->queuelist, &plug->mq_list);
7b371636 1544 return cookie;
320ae51f
JA
1545 }
1546
07068d5b
JA
1547 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1548 /*
1549 * For a SYNC request, send it to the hardware immediately. For
1550 * an ASYNC request, just ensure that we run it later on. The
1551 * latter allows for merging opportunities and more efficient
1552 * dispatching.
1553 */
1554run_queue:
1555 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1556 }
1557
07068d5b 1558 blk_mq_put_ctx(data.ctx);
7b371636 1559 return cookie;
320ae51f
JA
1560}
1561
cc71a6f4
JA
1562void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1563 unsigned int hctx_idx)
95363efd 1564{
e9b267d9 1565 struct page *page;
320ae51f 1566
24d2f903 1567 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1568 int i;
320ae51f 1569
24d2f903 1570 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1571 struct request *rq = tags->static_rqs[i];
1572
1573 if (!rq)
e9b267d9 1574 continue;
2af8cbe3 1575 set->ops->exit_request(set->driver_data, rq,
24d2f903 1576 hctx_idx, i);
2af8cbe3 1577 tags->static_rqs[i] = NULL;
e9b267d9 1578 }
320ae51f 1579 }
320ae51f 1580
24d2f903
CH
1581 while (!list_empty(&tags->page_list)) {
1582 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1583 list_del_init(&page->lru);
f75782e4
CM
1584 /*
1585 * Remove kmemleak object previously allocated in
1586 * blk_mq_init_rq_map().
1587 */
1588 kmemleak_free(page_address(page));
320ae51f
JA
1589 __free_pages(page, page->private);
1590 }
cc71a6f4 1591}
320ae51f 1592
cc71a6f4
JA
1593void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1594{
24d2f903 1595 kfree(tags->rqs);
cc71a6f4 1596 tags->rqs = NULL;
2af8cbe3
JA
1597 kfree(tags->static_rqs);
1598 tags->static_rqs = NULL;
320ae51f 1599
24d2f903 1600 blk_mq_free_tags(tags);
320ae51f
JA
1601}
1602
cc71a6f4
JA
1603struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1604 unsigned int hctx_idx,
1605 unsigned int nr_tags,
1606 unsigned int reserved_tags)
320ae51f 1607{
24d2f903 1608 struct blk_mq_tags *tags;
320ae51f 1609
cc71a6f4 1610 tags = blk_mq_init_tags(nr_tags, reserved_tags,
24391c0d
SL
1611 set->numa_node,
1612 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1613 if (!tags)
1614 return NULL;
320ae51f 1615
cc71a6f4 1616 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1617 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
a5164405 1618 set->numa_node);
24d2f903
CH
1619 if (!tags->rqs) {
1620 blk_mq_free_tags(tags);
1621 return NULL;
1622 }
320ae51f 1623
2af8cbe3
JA
1624 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1625 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1626 set->numa_node);
1627 if (!tags->static_rqs) {
1628 kfree(tags->rqs);
1629 blk_mq_free_tags(tags);
1630 return NULL;
1631 }
1632
cc71a6f4
JA
1633 return tags;
1634}
1635
1636static size_t order_to_size(unsigned int order)
1637{
1638 return (size_t)PAGE_SIZE << order;
1639}
1640
1641int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1642 unsigned int hctx_idx, unsigned int depth)
1643{
1644 unsigned int i, j, entries_per_page, max_order = 4;
1645 size_t rq_size, left;
1646
1647 INIT_LIST_HEAD(&tags->page_list);
1648
320ae51f
JA
1649 /*
1650 * rq_size is the size of the request plus driver payload, rounded
1651 * to the cacheline size
1652 */
24d2f903 1653 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1654 cache_line_size());
cc71a6f4 1655 left = rq_size * depth;
320ae51f 1656
cc71a6f4 1657 for (i = 0; i < depth; ) {
320ae51f
JA
1658 int this_order = max_order;
1659 struct page *page;
1660 int to_do;
1661 void *p;
1662
b3a834b1 1663 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1664 this_order--;
1665
1666 do {
a5164405 1667 page = alloc_pages_node(set->numa_node,
36e1f3d1 1668 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1669 this_order);
320ae51f
JA
1670 if (page)
1671 break;
1672 if (!this_order--)
1673 break;
1674 if (order_to_size(this_order) < rq_size)
1675 break;
1676 } while (1);
1677
1678 if (!page)
24d2f903 1679 goto fail;
320ae51f
JA
1680
1681 page->private = this_order;
24d2f903 1682 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1683
1684 p = page_address(page);
f75782e4
CM
1685 /*
1686 * Allow kmemleak to scan these pages as they contain pointers
1687 * to additional allocations like via ops->init_request().
1688 */
36e1f3d1 1689 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1690 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1691 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1692 left -= to_do * rq_size;
1693 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1694 struct request *rq = p;
1695
1696 tags->static_rqs[i] = rq;
24d2f903
CH
1697 if (set->ops->init_request) {
1698 if (set->ops->init_request(set->driver_data,
2af8cbe3 1699 rq, hctx_idx, i,
a5164405 1700 set->numa_node)) {
2af8cbe3 1701 tags->static_rqs[i] = NULL;
24d2f903 1702 goto fail;
a5164405 1703 }
e9b267d9
CH
1704 }
1705
320ae51f
JA
1706 p += rq_size;
1707 i++;
1708 }
1709 }
cc71a6f4 1710 return 0;
320ae51f 1711
24d2f903 1712fail:
cc71a6f4
JA
1713 blk_mq_free_rqs(set, tags, hctx_idx);
1714 return -ENOMEM;
320ae51f
JA
1715}
1716
e57690fe
JA
1717/*
1718 * 'cpu' is going away. splice any existing rq_list entries from this
1719 * software queue to the hw queue dispatch list, and ensure that it
1720 * gets run.
1721 */
9467f859 1722static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1723{
9467f859 1724 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1725 struct blk_mq_ctx *ctx;
1726 LIST_HEAD(tmp);
1727
9467f859 1728 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1729 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1730
1731 spin_lock(&ctx->lock);
1732 if (!list_empty(&ctx->rq_list)) {
1733 list_splice_init(&ctx->rq_list, &tmp);
1734 blk_mq_hctx_clear_pending(hctx, ctx);
1735 }
1736 spin_unlock(&ctx->lock);
1737
1738 if (list_empty(&tmp))
9467f859 1739 return 0;
484b4061 1740
e57690fe
JA
1741 spin_lock(&hctx->lock);
1742 list_splice_tail_init(&tmp, &hctx->dispatch);
1743 spin_unlock(&hctx->lock);
484b4061
JA
1744
1745 blk_mq_run_hw_queue(hctx, true);
9467f859 1746 return 0;
484b4061
JA
1747}
1748
9467f859 1749static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1750{
9467f859
TG
1751 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1752 &hctx->cpuhp_dead);
484b4061
JA
1753}
1754
c3b4afca 1755/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1756static void blk_mq_exit_hctx(struct request_queue *q,
1757 struct blk_mq_tag_set *set,
1758 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1759{
f70ced09
ML
1760 unsigned flush_start_tag = set->queue_depth;
1761
08e98fc6
ML
1762 blk_mq_tag_idle(hctx);
1763
f70ced09
ML
1764 if (set->ops->exit_request)
1765 set->ops->exit_request(set->driver_data,
1766 hctx->fq->flush_rq, hctx_idx,
1767 flush_start_tag + hctx_idx);
1768
08e98fc6
ML
1769 if (set->ops->exit_hctx)
1770 set->ops->exit_hctx(hctx, hctx_idx);
1771
6a83e74d
BVA
1772 if (hctx->flags & BLK_MQ_F_BLOCKING)
1773 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1774
9467f859 1775 blk_mq_remove_cpuhp(hctx);
f70ced09 1776 blk_free_flush_queue(hctx->fq);
88459642 1777 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1778}
1779
624dbe47
ML
1780static void blk_mq_exit_hw_queues(struct request_queue *q,
1781 struct blk_mq_tag_set *set, int nr_queue)
1782{
1783 struct blk_mq_hw_ctx *hctx;
1784 unsigned int i;
1785
1786 queue_for_each_hw_ctx(q, hctx, i) {
1787 if (i == nr_queue)
1788 break;
08e98fc6 1789 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1790 }
624dbe47
ML
1791}
1792
1793static void blk_mq_free_hw_queues(struct request_queue *q,
1794 struct blk_mq_tag_set *set)
1795{
1796 struct blk_mq_hw_ctx *hctx;
1797 unsigned int i;
1798
e09aae7e 1799 queue_for_each_hw_ctx(q, hctx, i)
624dbe47 1800 free_cpumask_var(hctx->cpumask);
624dbe47
ML
1801}
1802
08e98fc6
ML
1803static int blk_mq_init_hctx(struct request_queue *q,
1804 struct blk_mq_tag_set *set,
1805 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1806{
08e98fc6 1807 int node;
f70ced09 1808 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1809
1810 node = hctx->numa_node;
1811 if (node == NUMA_NO_NODE)
1812 node = hctx->numa_node = set->numa_node;
1813
27489a3c 1814 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1815 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1816 spin_lock_init(&hctx->lock);
1817 INIT_LIST_HEAD(&hctx->dispatch);
1818 hctx->queue = q;
1819 hctx->queue_num = hctx_idx;
2404e607 1820 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1821
9467f859 1822 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1823
1824 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1825
1826 /*
08e98fc6
ML
1827 * Allocate space for all possible cpus to avoid allocation at
1828 * runtime
320ae51f 1829 */
08e98fc6
ML
1830 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1831 GFP_KERNEL, node);
1832 if (!hctx->ctxs)
1833 goto unregister_cpu_notifier;
320ae51f 1834
88459642
OS
1835 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1836 node))
08e98fc6 1837 goto free_ctxs;
320ae51f 1838
08e98fc6 1839 hctx->nr_ctx = 0;
320ae51f 1840
08e98fc6
ML
1841 if (set->ops->init_hctx &&
1842 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1843 goto free_bitmap;
320ae51f 1844
f70ced09
ML
1845 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1846 if (!hctx->fq)
1847 goto exit_hctx;
320ae51f 1848
f70ced09
ML
1849 if (set->ops->init_request &&
1850 set->ops->init_request(set->driver_data,
1851 hctx->fq->flush_rq, hctx_idx,
1852 flush_start_tag + hctx_idx, node))
1853 goto free_fq;
320ae51f 1854
6a83e74d
BVA
1855 if (hctx->flags & BLK_MQ_F_BLOCKING)
1856 init_srcu_struct(&hctx->queue_rq_srcu);
1857
08e98fc6 1858 return 0;
320ae51f 1859
f70ced09
ML
1860 free_fq:
1861 kfree(hctx->fq);
1862 exit_hctx:
1863 if (set->ops->exit_hctx)
1864 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1865 free_bitmap:
88459642 1866 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1867 free_ctxs:
1868 kfree(hctx->ctxs);
1869 unregister_cpu_notifier:
9467f859 1870 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
1871 return -1;
1872}
320ae51f 1873
320ae51f
JA
1874static void blk_mq_init_cpu_queues(struct request_queue *q,
1875 unsigned int nr_hw_queues)
1876{
1877 unsigned int i;
1878
1879 for_each_possible_cpu(i) {
1880 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1881 struct blk_mq_hw_ctx *hctx;
1882
1883 memset(__ctx, 0, sizeof(*__ctx));
1884 __ctx->cpu = i;
1885 spin_lock_init(&__ctx->lock);
1886 INIT_LIST_HEAD(&__ctx->rq_list);
1887 __ctx->queue = q;
cf43e6be
JA
1888 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1889 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
320ae51f
JA
1890
1891 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1892 if (!cpu_online(i))
1893 continue;
1894
7d7e0f90 1895 hctx = blk_mq_map_queue(q, i);
e4043dcf 1896
320ae51f
JA
1897 /*
1898 * Set local node, IFF we have more than one hw queue. If
1899 * not, we remain on the home node of the device
1900 */
1901 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 1902 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
1903 }
1904}
1905
cc71a6f4
JA
1906static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1907{
1908 int ret = 0;
1909
1910 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1911 set->queue_depth, set->reserved_tags);
1912 if (!set->tags[hctx_idx])
1913 return false;
1914
1915 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1916 set->queue_depth);
1917 if (!ret)
1918 return true;
1919
1920 blk_mq_free_rq_map(set->tags[hctx_idx]);
1921 set->tags[hctx_idx] = NULL;
1922 return false;
1923}
1924
1925static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1926 unsigned int hctx_idx)
1927{
1928 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1929 blk_mq_free_rq_map(set->tags[hctx_idx]);
1930 set->tags[hctx_idx] = NULL;
1931}
1932
5778322e
AM
1933static void blk_mq_map_swqueue(struct request_queue *q,
1934 const struct cpumask *online_mask)
320ae51f 1935{
d1b1cea1 1936 unsigned int i, hctx_idx;
320ae51f
JA
1937 struct blk_mq_hw_ctx *hctx;
1938 struct blk_mq_ctx *ctx;
2a34c087 1939 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1940
60de074b
AM
1941 /*
1942 * Avoid others reading imcomplete hctx->cpumask through sysfs
1943 */
1944 mutex_lock(&q->sysfs_lock);
1945
320ae51f 1946 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1947 cpumask_clear(hctx->cpumask);
320ae51f
JA
1948 hctx->nr_ctx = 0;
1949 }
1950
1951 /*
1952 * Map software to hardware queues
1953 */
897bb0c7 1954 for_each_possible_cpu(i) {
320ae51f 1955 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 1956 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
1957 continue;
1958
d1b1cea1
GKB
1959 hctx_idx = q->mq_map[i];
1960 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
1961 if (!set->tags[hctx_idx] &&
1962 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
1963 /*
1964 * If tags initialization fail for some hctx,
1965 * that hctx won't be brought online. In this
1966 * case, remap the current ctx to hctx[0] which
1967 * is guaranteed to always have tags allocated
1968 */
cc71a6f4 1969 q->mq_map[i] = 0;
d1b1cea1
GKB
1970 }
1971
897bb0c7 1972 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 1973 hctx = blk_mq_map_queue(q, i);
868f2f0b 1974
e4043dcf 1975 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1976 ctx->index_hw = hctx->nr_ctx;
1977 hctx->ctxs[hctx->nr_ctx++] = ctx;
1978 }
506e931f 1979
60de074b
AM
1980 mutex_unlock(&q->sysfs_lock);
1981
506e931f 1982 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 1983 /*
a68aafa5
JA
1984 * If no software queues are mapped to this hardware queue,
1985 * disable it and free the request entries.
484b4061
JA
1986 */
1987 if (!hctx->nr_ctx) {
d1b1cea1
GKB
1988 /* Never unmap queue 0. We need it as a
1989 * fallback in case of a new remap fails
1990 * allocation
1991 */
cc71a6f4
JA
1992 if (i && set->tags[i])
1993 blk_mq_free_map_and_requests(set, i);
1994
2a34c087 1995 hctx->tags = NULL;
484b4061
JA
1996 continue;
1997 }
1998
2a34c087
ML
1999 hctx->tags = set->tags[i];
2000 WARN_ON(!hctx->tags);
2001
889fa31f
CY
2002 /*
2003 * Set the map size to the number of mapped software queues.
2004 * This is more accurate and more efficient than looping
2005 * over all possibly mapped software queues.
2006 */
88459642 2007 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2008
484b4061
JA
2009 /*
2010 * Initialize batch roundrobin counts
2011 */
506e931f
JA
2012 hctx->next_cpu = cpumask_first(hctx->cpumask);
2013 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2014 }
320ae51f
JA
2015}
2016
2404e607 2017static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2018{
2019 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2020 int i;
2021
2404e607
JM
2022 queue_for_each_hw_ctx(q, hctx, i) {
2023 if (shared)
2024 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2025 else
2026 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2027 }
2028}
2029
2030static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2031{
2032 struct request_queue *q;
0d2602ca
JA
2033
2034 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2035 blk_mq_freeze_queue(q);
2404e607 2036 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2037 blk_mq_unfreeze_queue(q);
2038 }
2039}
2040
2041static void blk_mq_del_queue_tag_set(struct request_queue *q)
2042{
2043 struct blk_mq_tag_set *set = q->tag_set;
2044
0d2602ca
JA
2045 mutex_lock(&set->tag_list_lock);
2046 list_del_init(&q->tag_set_list);
2404e607
JM
2047 if (list_is_singular(&set->tag_list)) {
2048 /* just transitioned to unshared */
2049 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2050 /* update existing queue */
2051 blk_mq_update_tag_set_depth(set, false);
2052 }
0d2602ca 2053 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
2054}
2055
2056static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2057 struct request_queue *q)
2058{
2059 q->tag_set = set;
2060
2061 mutex_lock(&set->tag_list_lock);
2404e607
JM
2062
2063 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2064 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2065 set->flags |= BLK_MQ_F_TAG_SHARED;
2066 /* update existing queue */
2067 blk_mq_update_tag_set_depth(set, true);
2068 }
2069 if (set->flags & BLK_MQ_F_TAG_SHARED)
2070 queue_set_hctx_shared(q, true);
0d2602ca 2071 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 2072
0d2602ca
JA
2073 mutex_unlock(&set->tag_list_lock);
2074}
2075
e09aae7e
ML
2076/*
2077 * It is the actual release handler for mq, but we do it from
2078 * request queue's release handler for avoiding use-after-free
2079 * and headache because q->mq_kobj shouldn't have been introduced,
2080 * but we can't group ctx/kctx kobj without it.
2081 */
2082void blk_mq_release(struct request_queue *q)
2083{
2084 struct blk_mq_hw_ctx *hctx;
2085 unsigned int i;
2086
2087 /* hctx kobj stays in hctx */
c3b4afca
ML
2088 queue_for_each_hw_ctx(q, hctx, i) {
2089 if (!hctx)
2090 continue;
2091 kfree(hctx->ctxs);
e09aae7e 2092 kfree(hctx);
c3b4afca 2093 }
e09aae7e 2094
a723bab3
AM
2095 q->mq_map = NULL;
2096
e09aae7e
ML
2097 kfree(q->queue_hw_ctx);
2098
2099 /* ctx kobj stays in queue_ctx */
2100 free_percpu(q->queue_ctx);
2101}
2102
24d2f903 2103struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2104{
2105 struct request_queue *uninit_q, *q;
2106
2107 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2108 if (!uninit_q)
2109 return ERR_PTR(-ENOMEM);
2110
2111 q = blk_mq_init_allocated_queue(set, uninit_q);
2112 if (IS_ERR(q))
2113 blk_cleanup_queue(uninit_q);
2114
2115 return q;
2116}
2117EXPORT_SYMBOL(blk_mq_init_queue);
2118
868f2f0b
KB
2119static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2120 struct request_queue *q)
320ae51f 2121{
868f2f0b
KB
2122 int i, j;
2123 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2124
868f2f0b 2125 blk_mq_sysfs_unregister(q);
24d2f903 2126 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2127 int node;
f14bbe77 2128
868f2f0b
KB
2129 if (hctxs[i])
2130 continue;
2131
2132 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2133 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2134 GFP_KERNEL, node);
320ae51f 2135 if (!hctxs[i])
868f2f0b 2136 break;
320ae51f 2137
a86073e4 2138 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2139 node)) {
2140 kfree(hctxs[i]);
2141 hctxs[i] = NULL;
2142 break;
2143 }
e4043dcf 2144
0d2602ca 2145 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2146 hctxs[i]->numa_node = node;
320ae51f 2147 hctxs[i]->queue_num = i;
868f2f0b
KB
2148
2149 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2150 free_cpumask_var(hctxs[i]->cpumask);
2151 kfree(hctxs[i]);
2152 hctxs[i] = NULL;
2153 break;
2154 }
2155 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2156 }
868f2f0b
KB
2157 for (j = i; j < q->nr_hw_queues; j++) {
2158 struct blk_mq_hw_ctx *hctx = hctxs[j];
2159
2160 if (hctx) {
cc71a6f4
JA
2161 if (hctx->tags)
2162 blk_mq_free_map_and_requests(set, j);
868f2f0b
KB
2163 blk_mq_exit_hctx(q, set, hctx, j);
2164 free_cpumask_var(hctx->cpumask);
2165 kobject_put(&hctx->kobj);
2166 kfree(hctx->ctxs);
2167 kfree(hctx);
2168 hctxs[j] = NULL;
2169
2170 }
2171 }
2172 q->nr_hw_queues = i;
2173 blk_mq_sysfs_register(q);
2174}
2175
2176struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2177 struct request_queue *q)
2178{
66841672
ML
2179 /* mark the queue as mq asap */
2180 q->mq_ops = set->ops;
2181
868f2f0b
KB
2182 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2183 if (!q->queue_ctx)
c7de5726 2184 goto err_exit;
868f2f0b
KB
2185
2186 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2187 GFP_KERNEL, set->numa_node);
2188 if (!q->queue_hw_ctx)
2189 goto err_percpu;
2190
bdd17e75 2191 q->mq_map = set->mq_map;
868f2f0b
KB
2192
2193 blk_mq_realloc_hw_ctxs(set, q);
2194 if (!q->nr_hw_queues)
2195 goto err_hctxs;
320ae51f 2196
287922eb 2197 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2198 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2199
2200 q->nr_queues = nr_cpu_ids;
320ae51f 2201
94eddfbe 2202 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2203
05f1dd53
JA
2204 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2205 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2206
1be036e9
CH
2207 q->sg_reserved_size = INT_MAX;
2208
2849450a 2209 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2210 INIT_LIST_HEAD(&q->requeue_list);
2211 spin_lock_init(&q->requeue_lock);
2212
07068d5b
JA
2213 if (q->nr_hw_queues > 1)
2214 blk_queue_make_request(q, blk_mq_make_request);
2215 else
2216 blk_queue_make_request(q, blk_sq_make_request);
2217
eba71768
JA
2218 /*
2219 * Do this after blk_queue_make_request() overrides it...
2220 */
2221 q->nr_requests = set->queue_depth;
2222
64f1c21e
JA
2223 /*
2224 * Default to classic polling
2225 */
2226 q->poll_nsec = -1;
2227
24d2f903
CH
2228 if (set->ops->complete)
2229 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2230
24d2f903 2231 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2232
5778322e 2233 get_online_cpus();
320ae51f 2234 mutex_lock(&all_q_mutex);
320ae51f 2235
4593fdbe 2236 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2237 blk_mq_add_queue_tag_set(set, q);
5778322e 2238 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2239
4593fdbe 2240 mutex_unlock(&all_q_mutex);
5778322e 2241 put_online_cpus();
4593fdbe 2242
320ae51f 2243 return q;
18741986 2244
320ae51f 2245err_hctxs:
868f2f0b 2246 kfree(q->queue_hw_ctx);
320ae51f 2247err_percpu:
868f2f0b 2248 free_percpu(q->queue_ctx);
c7de5726
ML
2249err_exit:
2250 q->mq_ops = NULL;
320ae51f
JA
2251 return ERR_PTR(-ENOMEM);
2252}
b62c21b7 2253EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2254
2255void blk_mq_free_queue(struct request_queue *q)
2256{
624dbe47 2257 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2258
0e626368
AM
2259 mutex_lock(&all_q_mutex);
2260 list_del_init(&q->all_q_node);
2261 mutex_unlock(&all_q_mutex);
2262
87760e5e
JA
2263 wbt_exit(q);
2264
0d2602ca
JA
2265 blk_mq_del_queue_tag_set(q);
2266
624dbe47
ML
2267 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2268 blk_mq_free_hw_queues(q, set);
320ae51f 2269}
320ae51f
JA
2270
2271/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2272static void blk_mq_queue_reinit(struct request_queue *q,
2273 const struct cpumask *online_mask)
320ae51f 2274{
4ecd4fef 2275 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2276
67aec14c
JA
2277 blk_mq_sysfs_unregister(q);
2278
320ae51f
JA
2279 /*
2280 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2281 * we should change hctx numa_node according to new topology (this
2282 * involves free and re-allocate memory, worthy doing?)
2283 */
2284
5778322e 2285 blk_mq_map_swqueue(q, online_mask);
320ae51f 2286
67aec14c 2287 blk_mq_sysfs_register(q);
320ae51f
JA
2288}
2289
65d5291e
SAS
2290/*
2291 * New online cpumask which is going to be set in this hotplug event.
2292 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2293 * one-by-one and dynamically allocating this could result in a failure.
2294 */
2295static struct cpumask cpuhp_online_new;
2296
2297static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2298{
2299 struct request_queue *q;
320ae51f
JA
2300
2301 mutex_lock(&all_q_mutex);
f3af020b
TH
2302 /*
2303 * We need to freeze and reinit all existing queues. Freezing
2304 * involves synchronous wait for an RCU grace period and doing it
2305 * one by one may take a long time. Start freezing all queues in
2306 * one swoop and then wait for the completions so that freezing can
2307 * take place in parallel.
2308 */
2309 list_for_each_entry(q, &all_q_list, all_q_node)
2310 blk_mq_freeze_queue_start(q);
415d3dab 2311 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2312 blk_mq_freeze_queue_wait(q);
2313
320ae51f 2314 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2315 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2316
2317 list_for_each_entry(q, &all_q_list, all_q_node)
2318 blk_mq_unfreeze_queue(q);
2319
320ae51f 2320 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2321}
2322
2323static int blk_mq_queue_reinit_dead(unsigned int cpu)
2324{
97a32864 2325 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2326 blk_mq_queue_reinit_work();
2327 return 0;
2328}
2329
2330/*
2331 * Before hotadded cpu starts handling requests, new mappings must be
2332 * established. Otherwise, these requests in hw queue might never be
2333 * dispatched.
2334 *
2335 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2336 * for CPU0, and ctx1 for CPU1).
2337 *
2338 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2339 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2340 *
2c3ad667
JA
2341 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2342 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2343 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2344 * ignored.
65d5291e
SAS
2345 */
2346static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2347{
2348 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2349 cpumask_set_cpu(cpu, &cpuhp_online_new);
2350 blk_mq_queue_reinit_work();
2351 return 0;
320ae51f
JA
2352}
2353
a5164405
JA
2354static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2355{
2356 int i;
2357
cc71a6f4
JA
2358 for (i = 0; i < set->nr_hw_queues; i++)
2359 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2360 goto out_unwind;
a5164405
JA
2361
2362 return 0;
2363
2364out_unwind:
2365 while (--i >= 0)
cc71a6f4 2366 blk_mq_free_rq_map(set->tags[i]);
a5164405 2367
a5164405
JA
2368 return -ENOMEM;
2369}
2370
2371/*
2372 * Allocate the request maps associated with this tag_set. Note that this
2373 * may reduce the depth asked for, if memory is tight. set->queue_depth
2374 * will be updated to reflect the allocated depth.
2375 */
2376static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2377{
2378 unsigned int depth;
2379 int err;
2380
2381 depth = set->queue_depth;
2382 do {
2383 err = __blk_mq_alloc_rq_maps(set);
2384 if (!err)
2385 break;
2386
2387 set->queue_depth >>= 1;
2388 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2389 err = -ENOMEM;
2390 break;
2391 }
2392 } while (set->queue_depth);
2393
2394 if (!set->queue_depth || err) {
2395 pr_err("blk-mq: failed to allocate request map\n");
2396 return -ENOMEM;
2397 }
2398
2399 if (depth != set->queue_depth)
2400 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2401 depth, set->queue_depth);
2402
2403 return 0;
2404}
2405
a4391c64
JA
2406/*
2407 * Alloc a tag set to be associated with one or more request queues.
2408 * May fail with EINVAL for various error conditions. May adjust the
2409 * requested depth down, if if it too large. In that case, the set
2410 * value will be stored in set->queue_depth.
2411 */
24d2f903
CH
2412int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2413{
da695ba2
CH
2414 int ret;
2415
205fb5f5
BVA
2416 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2417
24d2f903
CH
2418 if (!set->nr_hw_queues)
2419 return -EINVAL;
a4391c64 2420 if (!set->queue_depth)
24d2f903
CH
2421 return -EINVAL;
2422 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2423 return -EINVAL;
2424
7d7e0f90 2425 if (!set->ops->queue_rq)
24d2f903
CH
2426 return -EINVAL;
2427
a4391c64
JA
2428 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2429 pr_info("blk-mq: reduced tag depth to %u\n",
2430 BLK_MQ_MAX_DEPTH);
2431 set->queue_depth = BLK_MQ_MAX_DEPTH;
2432 }
24d2f903 2433
6637fadf
SL
2434 /*
2435 * If a crashdump is active, then we are potentially in a very
2436 * memory constrained environment. Limit us to 1 queue and
2437 * 64 tags to prevent using too much memory.
2438 */
2439 if (is_kdump_kernel()) {
2440 set->nr_hw_queues = 1;
2441 set->queue_depth = min(64U, set->queue_depth);
2442 }
868f2f0b
KB
2443 /*
2444 * There is no use for more h/w queues than cpus.
2445 */
2446 if (set->nr_hw_queues > nr_cpu_ids)
2447 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2448
868f2f0b 2449 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2450 GFP_KERNEL, set->numa_node);
2451 if (!set->tags)
a5164405 2452 return -ENOMEM;
24d2f903 2453
da695ba2
CH
2454 ret = -ENOMEM;
2455 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2456 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2457 if (!set->mq_map)
2458 goto out_free_tags;
2459
da695ba2
CH
2460 if (set->ops->map_queues)
2461 ret = set->ops->map_queues(set);
2462 else
2463 ret = blk_mq_map_queues(set);
2464 if (ret)
2465 goto out_free_mq_map;
2466
2467 ret = blk_mq_alloc_rq_maps(set);
2468 if (ret)
bdd17e75 2469 goto out_free_mq_map;
24d2f903 2470
0d2602ca
JA
2471 mutex_init(&set->tag_list_lock);
2472 INIT_LIST_HEAD(&set->tag_list);
2473
24d2f903 2474 return 0;
bdd17e75
CH
2475
2476out_free_mq_map:
2477 kfree(set->mq_map);
2478 set->mq_map = NULL;
2479out_free_tags:
5676e7b6
RE
2480 kfree(set->tags);
2481 set->tags = NULL;
da695ba2 2482 return ret;
24d2f903
CH
2483}
2484EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2485
2486void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2487{
2488 int i;
2489
cc71a6f4
JA
2490 for (i = 0; i < nr_cpu_ids; i++)
2491 blk_mq_free_map_and_requests(set, i);
484b4061 2492
bdd17e75
CH
2493 kfree(set->mq_map);
2494 set->mq_map = NULL;
2495
981bd189 2496 kfree(set->tags);
5676e7b6 2497 set->tags = NULL;
24d2f903
CH
2498}
2499EXPORT_SYMBOL(blk_mq_free_tag_set);
2500
e3a2b3f9
JA
2501int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2502{
2503 struct blk_mq_tag_set *set = q->tag_set;
2504 struct blk_mq_hw_ctx *hctx;
2505 int i, ret;
2506
2507 if (!set || nr > set->queue_depth)
2508 return -EINVAL;
2509
2510 ret = 0;
2511 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2512 if (!hctx->tags)
2513 continue;
e3a2b3f9
JA
2514 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2515 if (ret)
2516 break;
2517 }
2518
2519 if (!ret)
2520 q->nr_requests = nr;
2521
2522 return ret;
2523}
2524
868f2f0b
KB
2525void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2526{
2527 struct request_queue *q;
2528
2529 if (nr_hw_queues > nr_cpu_ids)
2530 nr_hw_queues = nr_cpu_ids;
2531 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2532 return;
2533
2534 list_for_each_entry(q, &set->tag_list, tag_set_list)
2535 blk_mq_freeze_queue(q);
2536
2537 set->nr_hw_queues = nr_hw_queues;
2538 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2539 blk_mq_realloc_hw_ctxs(set, q);
2540
2541 if (q->nr_hw_queues > 1)
2542 blk_queue_make_request(q, blk_mq_make_request);
2543 else
2544 blk_queue_make_request(q, blk_sq_make_request);
2545
2546 blk_mq_queue_reinit(q, cpu_online_mask);
2547 }
2548
2549 list_for_each_entry(q, &set->tag_list, tag_set_list)
2550 blk_mq_unfreeze_queue(q);
2551}
2552EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2553
64f1c21e
JA
2554static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2555 struct blk_mq_hw_ctx *hctx,
2556 struct request *rq)
2557{
2558 struct blk_rq_stat stat[2];
2559 unsigned long ret = 0;
2560
2561 /*
2562 * If stats collection isn't on, don't sleep but turn it on for
2563 * future users
2564 */
2565 if (!blk_stat_enable(q))
2566 return 0;
2567
2568 /*
2569 * We don't have to do this once per IO, should optimize this
2570 * to just use the current window of stats until it changes
2571 */
2572 memset(&stat, 0, sizeof(stat));
2573 blk_hctx_stat_get(hctx, stat);
2574
2575 /*
2576 * As an optimistic guess, use half of the mean service time
2577 * for this type of request. We can (and should) make this smarter.
2578 * For instance, if the completion latencies are tight, we can
2579 * get closer than just half the mean. This is especially
2580 * important on devices where the completion latencies are longer
2581 * than ~10 usec.
2582 */
2583 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2584 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2585 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2586 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2587
2588 return ret;
2589}
2590
06426adf 2591static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2592 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2593 struct request *rq)
2594{
2595 struct hrtimer_sleeper hs;
2596 enum hrtimer_mode mode;
64f1c21e 2597 unsigned int nsecs;
06426adf
JA
2598 ktime_t kt;
2599
64f1c21e
JA
2600 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2601 return false;
2602
2603 /*
2604 * poll_nsec can be:
2605 *
2606 * -1: don't ever hybrid sleep
2607 * 0: use half of prev avg
2608 * >0: use this specific value
2609 */
2610 if (q->poll_nsec == -1)
2611 return false;
2612 else if (q->poll_nsec > 0)
2613 nsecs = q->poll_nsec;
2614 else
2615 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2616
2617 if (!nsecs)
06426adf
JA
2618 return false;
2619
2620 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2621
2622 /*
2623 * This will be replaced with the stats tracking code, using
2624 * 'avg_completion_time / 2' as the pre-sleep target.
2625 */
8b0e1953 2626 kt = nsecs;
06426adf
JA
2627
2628 mode = HRTIMER_MODE_REL;
2629 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2630 hrtimer_set_expires(&hs.timer, kt);
2631
2632 hrtimer_init_sleeper(&hs, current);
2633 do {
2634 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2635 break;
2636 set_current_state(TASK_UNINTERRUPTIBLE);
2637 hrtimer_start_expires(&hs.timer, mode);
2638 if (hs.task)
2639 io_schedule();
2640 hrtimer_cancel(&hs.timer);
2641 mode = HRTIMER_MODE_ABS;
2642 } while (hs.task && !signal_pending(current));
2643
2644 __set_current_state(TASK_RUNNING);
2645 destroy_hrtimer_on_stack(&hs.timer);
2646 return true;
2647}
2648
bbd7bb70
JA
2649static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2650{
2651 struct request_queue *q = hctx->queue;
2652 long state;
2653
06426adf
JA
2654 /*
2655 * If we sleep, have the caller restart the poll loop to reset
2656 * the state. Like for the other success return cases, the
2657 * caller is responsible for checking if the IO completed. If
2658 * the IO isn't complete, we'll get called again and will go
2659 * straight to the busy poll loop.
2660 */
64f1c21e 2661 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2662 return true;
2663
bbd7bb70
JA
2664 hctx->poll_considered++;
2665
2666 state = current->state;
2667 while (!need_resched()) {
2668 int ret;
2669
2670 hctx->poll_invoked++;
2671
2672 ret = q->mq_ops->poll(hctx, rq->tag);
2673 if (ret > 0) {
2674 hctx->poll_success++;
2675 set_current_state(TASK_RUNNING);
2676 return true;
2677 }
2678
2679 if (signal_pending_state(state, current))
2680 set_current_state(TASK_RUNNING);
2681
2682 if (current->state == TASK_RUNNING)
2683 return true;
2684 if (ret < 0)
2685 break;
2686 cpu_relax();
2687 }
2688
2689 return false;
2690}
2691
2692bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2693{
2694 struct blk_mq_hw_ctx *hctx;
2695 struct blk_plug *plug;
2696 struct request *rq;
2697
2698 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2699 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2700 return false;
2701
2702 plug = current->plug;
2703 if (plug)
2704 blk_flush_plug_list(plug, false);
2705
2706 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2707 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2708
2709 return __blk_mq_poll(hctx, rq);
2710}
2711EXPORT_SYMBOL_GPL(blk_mq_poll);
2712
676141e4
JA
2713void blk_mq_disable_hotplug(void)
2714{
2715 mutex_lock(&all_q_mutex);
2716}
2717
2718void blk_mq_enable_hotplug(void)
2719{
2720 mutex_unlock(&all_q_mutex);
2721}
2722
320ae51f
JA
2723static int __init blk_mq_init(void)
2724{
9467f859
TG
2725 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2726 blk_mq_hctx_notify_dead);
320ae51f 2727
65d5291e
SAS
2728 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2729 blk_mq_queue_reinit_prepare,
2730 blk_mq_queue_reinit_dead);
320ae51f
JA
2731 return 0;
2732}
2733subsys_initcall(blk_mq_init);