]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-mq.c
block: support > 16 byte CDBs for SG_IO
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/mm.h>
13#include <linux/init.h>
14#include <linux/slab.h>
15#include <linux/workqueue.h>
16#include <linux/smp.h>
17#include <linux/llist.h>
18#include <linux/list_sort.h>
19#include <linux/cpu.h>
20#include <linux/cache.h>
21#include <linux/sched/sysctl.h>
22#include <linux/delay.h>
23
24#include <trace/events/block.h>
25
26#include <linux/blk-mq.h>
27#include "blk.h"
28#include "blk-mq.h"
29#include "blk-mq-tag.h"
30
31static DEFINE_MUTEX(all_q_mutex);
32static LIST_HEAD(all_q_list);
33
34static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
35
320ae51f
JA
36/*
37 * Check if any of the ctx's have pending work in this hardware queue
38 */
39static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
40{
41 unsigned int i;
42
1429d7c9
JA
43 for (i = 0; i < hctx->ctx_map.map_size; i++)
44 if (hctx->ctx_map.map[i].word)
320ae51f
JA
45 return true;
46
47 return false;
48}
49
1429d7c9
JA
50static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52{
53 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
54}
55
56#define CTX_TO_BIT(hctx, ctx) \
57 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
58
320ae51f
JA
59/*
60 * Mark this ctx as having pending work in this hardware queue
61 */
62static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
64{
1429d7c9
JA
65 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
66
67 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
68 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
69}
70
71static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
72 struct blk_mq_ctx *ctx)
73{
74 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
75
76 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
320ae51f
JA
77}
78
320ae51f
JA
79static int blk_mq_queue_enter(struct request_queue *q)
80{
add703fd
TH
81 while (true) {
82 int ret;
320ae51f 83
add703fd
TH
84 if (percpu_ref_tryget_live(&q->mq_usage_counter))
85 return 0;
320ae51f 86
add703fd
TH
87 ret = wait_event_interruptible(q->mq_freeze_wq,
88 !q->mq_freeze_depth || blk_queue_dying(q));
89 if (blk_queue_dying(q))
90 return -ENODEV;
91 if (ret)
92 return ret;
93 }
320ae51f
JA
94}
95
96static void blk_mq_queue_exit(struct request_queue *q)
97{
add703fd
TH
98 percpu_ref_put(&q->mq_usage_counter);
99}
100
101static void blk_mq_usage_counter_release(struct percpu_ref *ref)
102{
103 struct request_queue *q =
104 container_of(ref, struct request_queue, mq_usage_counter);
105
106 wake_up_all(&q->mq_freeze_wq);
320ae51f
JA
107}
108
72d6f02a
TH
109/*
110 * Guarantee no request is in use, so we can change any data structure of
111 * the queue afterward.
112 */
113void blk_mq_freeze_queue(struct request_queue *q)
43a5e4e2 114{
cddd5d17
TH
115 bool freeze;
116
72d6f02a 117 spin_lock_irq(q->queue_lock);
cddd5d17 118 freeze = !q->mq_freeze_depth++;
72d6f02a
TH
119 spin_unlock_irq(q->queue_lock);
120
cddd5d17
TH
121 if (freeze) {
122 percpu_ref_kill(&q->mq_usage_counter);
123 blk_mq_run_queues(q, false);
124 }
add703fd 125 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
43a5e4e2
ML
126}
127
320ae51f
JA
128static void blk_mq_unfreeze_queue(struct request_queue *q)
129{
cddd5d17 130 bool wake;
320ae51f
JA
131
132 spin_lock_irq(q->queue_lock);
780db207
TH
133 wake = !--q->mq_freeze_depth;
134 WARN_ON_ONCE(q->mq_freeze_depth < 0);
320ae51f 135 spin_unlock_irq(q->queue_lock);
add703fd
TH
136 if (wake) {
137 percpu_ref_reinit(&q->mq_usage_counter);
320ae51f 138 wake_up_all(&q->mq_freeze_wq);
add703fd 139 }
320ae51f
JA
140}
141
142bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
143{
144 return blk_mq_has_free_tags(hctx->tags);
145}
146EXPORT_SYMBOL(blk_mq_can_queue);
147
94eddfbe
JA
148static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
149 struct request *rq, unsigned int rw_flags)
320ae51f 150{
94eddfbe
JA
151 if (blk_queue_io_stat(q))
152 rw_flags |= REQ_IO_STAT;
153
af76e555
CH
154 INIT_LIST_HEAD(&rq->queuelist);
155 /* csd/requeue_work/fifo_time is initialized before use */
156 rq->q = q;
320ae51f 157 rq->mq_ctx = ctx;
0d2602ca 158 rq->cmd_flags |= rw_flags;
af76e555
CH
159 /* do not touch atomic flags, it needs atomic ops against the timer */
160 rq->cpu = -1;
af76e555
CH
161 INIT_HLIST_NODE(&rq->hash);
162 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
163 rq->rq_disk = NULL;
164 rq->part = NULL;
3ee32372 165 rq->start_time = jiffies;
af76e555
CH
166#ifdef CONFIG_BLK_CGROUP
167 rq->rl = NULL;
0fec08b4 168 set_start_time_ns(rq);
af76e555
CH
169 rq->io_start_time_ns = 0;
170#endif
171 rq->nr_phys_segments = 0;
172#if defined(CONFIG_BLK_DEV_INTEGRITY)
173 rq->nr_integrity_segments = 0;
174#endif
af76e555
CH
175 rq->special = NULL;
176 /* tag was already set */
177 rq->errors = 0;
af76e555
CH
178
179 rq->extra_len = 0;
180 rq->sense_len = 0;
181 rq->resid_len = 0;
182 rq->sense = NULL;
183
af76e555 184 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
185 rq->timeout = 0;
186
af76e555
CH
187 rq->end_io = NULL;
188 rq->end_io_data = NULL;
189 rq->next_rq = NULL;
190
320ae51f
JA
191 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
192}
193
5dee8577 194static struct request *
cb96a42c 195__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
5dee8577
CH
196{
197 struct request *rq;
198 unsigned int tag;
199
cb96a42c 200 tag = blk_mq_get_tag(data);
5dee8577 201 if (tag != BLK_MQ_TAG_FAIL) {
cb96a42c 202 rq = data->hctx->tags->rqs[tag];
5dee8577
CH
203
204 rq->cmd_flags = 0;
cb96a42c 205 if (blk_mq_tag_busy(data->hctx)) {
5dee8577 206 rq->cmd_flags = REQ_MQ_INFLIGHT;
cb96a42c 207 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
208 }
209
210 rq->tag = tag;
cb96a42c 211 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
5dee8577
CH
212 return rq;
213 }
214
215 return NULL;
216}
217
4ce01dd1
CH
218struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
219 bool reserved)
320ae51f 220{
d852564f
CH
221 struct blk_mq_ctx *ctx;
222 struct blk_mq_hw_ctx *hctx;
320ae51f 223 struct request *rq;
cb96a42c 224 struct blk_mq_alloc_data alloc_data;
320ae51f
JA
225
226 if (blk_mq_queue_enter(q))
227 return NULL;
228
d852564f
CH
229 ctx = blk_mq_get_ctx(q);
230 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
231 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
232 reserved, ctx, hctx);
d852564f 233
cb96a42c 234 rq = __blk_mq_alloc_request(&alloc_data, rw);
d852564f
CH
235 if (!rq && (gfp & __GFP_WAIT)) {
236 __blk_mq_run_hw_queue(hctx);
237 blk_mq_put_ctx(ctx);
238
239 ctx = blk_mq_get_ctx(q);
240 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
241 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
242 hctx);
243 rq = __blk_mq_alloc_request(&alloc_data, rw);
244 ctx = alloc_data.ctx;
d852564f
CH
245 }
246 blk_mq_put_ctx(ctx);
320ae51f
JA
247 return rq;
248}
4bb659b1 249EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 250
320ae51f
JA
251static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
252 struct blk_mq_ctx *ctx, struct request *rq)
253{
254 const int tag = rq->tag;
255 struct request_queue *q = rq->q;
256
0d2602ca
JA
257 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
258 atomic_dec(&hctx->nr_active);
259
af76e555 260 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
0d2602ca 261 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
320ae51f
JA
262 blk_mq_queue_exit(q);
263}
264
265void blk_mq_free_request(struct request *rq)
266{
267 struct blk_mq_ctx *ctx = rq->mq_ctx;
268 struct blk_mq_hw_ctx *hctx;
269 struct request_queue *q = rq->q;
270
271 ctx->rq_completed[rq_is_sync(rq)]++;
272
273 hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 __blk_mq_free_request(hctx, ctx, rq);
275}
276
8727af4b
CH
277/*
278 * Clone all relevant state from a request that has been put on hold in
279 * the flush state machine into the preallocated flush request that hangs
280 * off the request queue.
281 *
282 * For a driver the flush request should be invisible, that's why we are
283 * impersonating the original request here.
284 */
285void blk_mq_clone_flush_request(struct request *flush_rq,
286 struct request *orig_rq)
287{
288 struct blk_mq_hw_ctx *hctx =
289 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
290
291 flush_rq->mq_ctx = orig_rq->mq_ctx;
292 flush_rq->tag = orig_rq->tag;
293 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
294 hctx->cmd_size);
295}
296
63151a44 297inline void __blk_mq_end_io(struct request *rq, int error)
320ae51f 298{
0d11e6ac
ML
299 blk_account_io_done(rq);
300
91b63639 301 if (rq->end_io) {
320ae51f 302 rq->end_io(rq, error);
91b63639
CH
303 } else {
304 if (unlikely(blk_bidi_rq(rq)))
305 blk_mq_free_request(rq->next_rq);
320ae51f 306 blk_mq_free_request(rq);
91b63639 307 }
320ae51f 308}
63151a44
CH
309EXPORT_SYMBOL(__blk_mq_end_io);
310
311void blk_mq_end_io(struct request *rq, int error)
312{
313 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
314 BUG();
315 __blk_mq_end_io(rq, error);
316}
317EXPORT_SYMBOL(blk_mq_end_io);
320ae51f 318
30a91cb4 319static void __blk_mq_complete_request_remote(void *data)
320ae51f 320{
3d6efbf6 321 struct request *rq = data;
320ae51f 322
30a91cb4 323 rq->q->softirq_done_fn(rq);
320ae51f 324}
320ae51f 325
ed851860 326static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
327{
328 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 329 bool shared = false;
320ae51f
JA
330 int cpu;
331
38535201 332 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
333 rq->q->softirq_done_fn(rq);
334 return;
335 }
320ae51f
JA
336
337 cpu = get_cpu();
38535201
CH
338 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
339 shared = cpus_share_cache(cpu, ctx->cpu);
340
341 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 342 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
343 rq->csd.info = rq;
344 rq->csd.flags = 0;
c46fff2a 345 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 346 } else {
30a91cb4 347 rq->q->softirq_done_fn(rq);
3d6efbf6 348 }
320ae51f
JA
349 put_cpu();
350}
30a91cb4 351
ed851860
JA
352void __blk_mq_complete_request(struct request *rq)
353{
354 struct request_queue *q = rq->q;
355
356 if (!q->softirq_done_fn)
357 blk_mq_end_io(rq, rq->errors);
358 else
359 blk_mq_ipi_complete_request(rq);
360}
361
30a91cb4
CH
362/**
363 * blk_mq_complete_request - end I/O on a request
364 * @rq: the request being processed
365 *
366 * Description:
367 * Ends all I/O on a request. It does not handle partial completions.
368 * The actual completion happens out-of-order, through a IPI handler.
369 **/
370void blk_mq_complete_request(struct request *rq)
371{
95f09684
JA
372 struct request_queue *q = rq->q;
373
374 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 375 return;
ed851860
JA
376 if (!blk_mark_rq_complete(rq))
377 __blk_mq_complete_request(rq);
30a91cb4
CH
378}
379EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 380
49f5baa5 381static void blk_mq_start_request(struct request *rq, bool last)
320ae51f
JA
382{
383 struct request_queue *q = rq->q;
384
385 trace_block_rq_issue(q, rq);
386
742ee69b 387 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
388 if (unlikely(blk_bidi_rq(rq)))
389 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 390
2b8393b4 391 blk_add_timer(rq);
87ee7b11
JA
392
393 /*
394 * Mark us as started and clear complete. Complete might have been
395 * set if requeue raced with timeout, which then marked it as
396 * complete. So be sure to clear complete again when we start
397 * the request, otherwise we'll ignore the completion event.
398 */
4b570521
JA
399 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
400 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
401 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
402 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
403
404 if (q->dma_drain_size && blk_rq_bytes(rq)) {
405 /*
406 * Make sure space for the drain appears. We know we can do
407 * this because max_hw_segments has been adjusted to be one
408 * fewer than the device can handle.
409 */
410 rq->nr_phys_segments++;
411 }
412
413 /*
414 * Flag the last request in the series so that drivers know when IO
415 * should be kicked off, if they don't do it on a per-request basis.
416 *
417 * Note: the flag isn't the only condition drivers should do kick off.
418 * If drive is busy, the last request might not have the bit set.
419 */
420 if (last)
421 rq->cmd_flags |= REQ_END;
320ae51f
JA
422}
423
ed0791b2 424static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
425{
426 struct request_queue *q = rq->q;
427
428 trace_block_rq_requeue(q, rq);
429 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
49f5baa5
CH
430
431 rq->cmd_flags &= ~REQ_END;
432
433 if (q->dma_drain_size && blk_rq_bytes(rq))
434 rq->nr_phys_segments--;
320ae51f
JA
435}
436
ed0791b2
CH
437void blk_mq_requeue_request(struct request *rq)
438{
ed0791b2
CH
439 __blk_mq_requeue_request(rq);
440 blk_clear_rq_complete(rq);
441
ed0791b2 442 BUG_ON(blk_queued_rq(rq));
6fca6a61 443 blk_mq_add_to_requeue_list(rq, true);
ed0791b2
CH
444}
445EXPORT_SYMBOL(blk_mq_requeue_request);
446
6fca6a61
CH
447static void blk_mq_requeue_work(struct work_struct *work)
448{
449 struct request_queue *q =
450 container_of(work, struct request_queue, requeue_work);
451 LIST_HEAD(rq_list);
452 struct request *rq, *next;
453 unsigned long flags;
454
455 spin_lock_irqsave(&q->requeue_lock, flags);
456 list_splice_init(&q->requeue_list, &rq_list);
457 spin_unlock_irqrestore(&q->requeue_lock, flags);
458
459 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
460 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
461 continue;
462
463 rq->cmd_flags &= ~REQ_SOFTBARRIER;
464 list_del_init(&rq->queuelist);
465 blk_mq_insert_request(rq, true, false, false);
466 }
467
468 while (!list_empty(&rq_list)) {
469 rq = list_entry(rq_list.next, struct request, queuelist);
470 list_del_init(&rq->queuelist);
471 blk_mq_insert_request(rq, false, false, false);
472 }
473
474 blk_mq_run_queues(q, false);
475}
476
477void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
478{
479 struct request_queue *q = rq->q;
480 unsigned long flags;
481
482 /*
483 * We abuse this flag that is otherwise used by the I/O scheduler to
484 * request head insertation from the workqueue.
485 */
486 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
487
488 spin_lock_irqsave(&q->requeue_lock, flags);
489 if (at_head) {
490 rq->cmd_flags |= REQ_SOFTBARRIER;
491 list_add(&rq->queuelist, &q->requeue_list);
492 } else {
493 list_add_tail(&rq->queuelist, &q->requeue_list);
494 }
495 spin_unlock_irqrestore(&q->requeue_lock, flags);
496}
497EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
498
499void blk_mq_kick_requeue_list(struct request_queue *q)
500{
501 kblockd_schedule_work(&q->requeue_work);
502}
503EXPORT_SYMBOL(blk_mq_kick_requeue_list);
504
0e62f51f 505static inline bool is_flush_request(struct request *rq, unsigned int tag)
24d2f903 506{
0e62f51f
JA
507 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
508 rq->q->flush_rq->tag == tag);
509}
510
511struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
512{
513 struct request *rq = tags->rqs[tag];
22302375 514
0e62f51f
JA
515 if (!is_flush_request(rq, tag))
516 return rq;
22302375 517
0e62f51f 518 return rq->q->flush_rq;
24d2f903
CH
519}
520EXPORT_SYMBOL(blk_mq_tag_to_rq);
521
320ae51f
JA
522struct blk_mq_timeout_data {
523 struct blk_mq_hw_ctx *hctx;
524 unsigned long *next;
525 unsigned int *next_set;
526};
527
528static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
529{
530 struct blk_mq_timeout_data *data = __data;
531 struct blk_mq_hw_ctx *hctx = data->hctx;
532 unsigned int tag;
533
534 /* It may not be in flight yet (this is where
535 * the REQ_ATOMIC_STARTED flag comes in). The requests are
536 * statically allocated, so we know it's always safe to access the
537 * memory associated with a bit offset into ->rqs[].
538 */
539 tag = 0;
540 do {
541 struct request *rq;
542
24d2f903
CH
543 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
544 if (tag >= hctx->tags->nr_tags)
320ae51f
JA
545 break;
546
0e62f51f 547 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
24d2f903
CH
548 if (rq->q != hctx->queue)
549 continue;
320ae51f
JA
550 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
551 continue;
552
553 blk_rq_check_expired(rq, data->next, data->next_set);
554 } while (1);
555}
556
557static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
558 unsigned long *next,
559 unsigned int *next_set)
560{
561 struct blk_mq_timeout_data data = {
562 .hctx = hctx,
563 .next = next,
564 .next_set = next_set,
565 };
566
567 /*
568 * Ask the tagging code to iterate busy requests, so we can
569 * check them for timeout.
570 */
571 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
572}
573
87ee7b11
JA
574static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
575{
576 struct request_queue *q = rq->q;
577
578 /*
579 * We know that complete is set at this point. If STARTED isn't set
580 * anymore, then the request isn't active and the "timeout" should
581 * just be ignored. This can happen due to the bitflag ordering.
582 * Timeout first checks if STARTED is set, and if it is, assumes
583 * the request is active. But if we race with completion, then
584 * we both flags will get cleared. So check here again, and ignore
585 * a timeout event with a request that isn't active.
586 */
587 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
588 return BLK_EH_NOT_HANDLED;
589
590 if (!q->mq_ops->timeout)
591 return BLK_EH_RESET_TIMER;
592
593 return q->mq_ops->timeout(rq);
594}
595
320ae51f
JA
596static void blk_mq_rq_timer(unsigned long data)
597{
598 struct request_queue *q = (struct request_queue *) data;
599 struct blk_mq_hw_ctx *hctx;
600 unsigned long next = 0;
601 int i, next_set = 0;
602
484b4061
JA
603 queue_for_each_hw_ctx(q, hctx, i) {
604 /*
605 * If not software queues are currently mapped to this
606 * hardware queue, there's nothing to check
607 */
608 if (!hctx->nr_ctx || !hctx->tags)
609 continue;
610
320ae51f 611 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
484b4061 612 }
320ae51f 613
0d2602ca
JA
614 if (next_set) {
615 next = blk_rq_timeout(round_jiffies_up(next));
616 mod_timer(&q->timeout, next);
617 } else {
618 queue_for_each_hw_ctx(q, hctx, i)
619 blk_mq_tag_idle(hctx);
620 }
320ae51f
JA
621}
622
623/*
624 * Reverse check our software queue for entries that we could potentially
625 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
626 * too much time checking for merges.
627 */
628static bool blk_mq_attempt_merge(struct request_queue *q,
629 struct blk_mq_ctx *ctx, struct bio *bio)
630{
631 struct request *rq;
632 int checked = 8;
633
634 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
635 int el_ret;
636
637 if (!checked--)
638 break;
639
640 if (!blk_rq_merge_ok(rq, bio))
641 continue;
642
643 el_ret = blk_try_merge(rq, bio);
644 if (el_ret == ELEVATOR_BACK_MERGE) {
645 if (bio_attempt_back_merge(q, rq, bio)) {
646 ctx->rq_merged++;
647 return true;
648 }
649 break;
650 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
651 if (bio_attempt_front_merge(q, rq, bio)) {
652 ctx->rq_merged++;
653 return true;
654 }
655 break;
656 }
657 }
658
659 return false;
660}
661
1429d7c9
JA
662/*
663 * Process software queues that have been marked busy, splicing them
664 * to the for-dispatch
665 */
666static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
667{
668 struct blk_mq_ctx *ctx;
669 int i;
670
671 for (i = 0; i < hctx->ctx_map.map_size; i++) {
672 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
673 unsigned int off, bit;
674
675 if (!bm->word)
676 continue;
677
678 bit = 0;
679 off = i * hctx->ctx_map.bits_per_word;
680 do {
681 bit = find_next_bit(&bm->word, bm->depth, bit);
682 if (bit >= bm->depth)
683 break;
684
685 ctx = hctx->ctxs[bit + off];
686 clear_bit(bit, &bm->word);
687 spin_lock(&ctx->lock);
688 list_splice_tail_init(&ctx->rq_list, list);
689 spin_unlock(&ctx->lock);
690
691 bit++;
692 } while (1);
693 }
694}
695
320ae51f
JA
696/*
697 * Run this hardware queue, pulling any software queues mapped to it in.
698 * Note that this function currently has various problems around ordering
699 * of IO. In particular, we'd like FIFO behaviour on handling existing
700 * items on the hctx->dispatch list. Ignore that for now.
701 */
702static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
703{
704 struct request_queue *q = hctx->queue;
320ae51f
JA
705 struct request *rq;
706 LIST_HEAD(rq_list);
1429d7c9 707 int queued;
320ae51f 708
fd1270d5 709 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 710
5d12f905 711 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
712 return;
713
714 hctx->run++;
715
716 /*
717 * Touch any software queue that has pending entries.
718 */
1429d7c9 719 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
720
721 /*
722 * If we have previous entries on our dispatch list, grab them
723 * and stuff them at the front for more fair dispatch.
724 */
725 if (!list_empty_careful(&hctx->dispatch)) {
726 spin_lock(&hctx->lock);
727 if (!list_empty(&hctx->dispatch))
728 list_splice_init(&hctx->dispatch, &rq_list);
729 spin_unlock(&hctx->lock);
730 }
731
320ae51f
JA
732 /*
733 * Now process all the entries, sending them to the driver.
734 */
1429d7c9 735 queued = 0;
320ae51f
JA
736 while (!list_empty(&rq_list)) {
737 int ret;
738
739 rq = list_first_entry(&rq_list, struct request, queuelist);
740 list_del_init(&rq->queuelist);
320ae51f 741
49f5baa5 742 blk_mq_start_request(rq, list_empty(&rq_list));
320ae51f
JA
743
744 ret = q->mq_ops->queue_rq(hctx, rq);
745 switch (ret) {
746 case BLK_MQ_RQ_QUEUE_OK:
747 queued++;
748 continue;
749 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 750 list_add(&rq->queuelist, &rq_list);
ed0791b2 751 __blk_mq_requeue_request(rq);
320ae51f
JA
752 break;
753 default:
754 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 755 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 756 rq->errors = -EIO;
320ae51f
JA
757 blk_mq_end_io(rq, rq->errors);
758 break;
759 }
760
761 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
762 break;
763 }
764
765 if (!queued)
766 hctx->dispatched[0]++;
767 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
768 hctx->dispatched[ilog2(queued) + 1]++;
769
770 /*
771 * Any items that need requeuing? Stuff them into hctx->dispatch,
772 * that is where we will continue on next queue run.
773 */
774 if (!list_empty(&rq_list)) {
775 spin_lock(&hctx->lock);
776 list_splice(&rq_list, &hctx->dispatch);
777 spin_unlock(&hctx->lock);
778 }
779}
780
506e931f
JA
781/*
782 * It'd be great if the workqueue API had a way to pass
783 * in a mask and had some smarts for more clever placement.
784 * For now we just round-robin here, switching for every
785 * BLK_MQ_CPU_WORK_BATCH queued items.
786 */
787static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
788{
789 int cpu = hctx->next_cpu;
790
791 if (--hctx->next_cpu_batch <= 0) {
792 int next_cpu;
793
794 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
795 if (next_cpu >= nr_cpu_ids)
796 next_cpu = cpumask_first(hctx->cpumask);
797
798 hctx->next_cpu = next_cpu;
799 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
800 }
801
802 return cpu;
803}
804
320ae51f
JA
805void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
806{
5d12f905 807 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
808 return;
809
e4043dcf 810 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
320ae51f 811 __blk_mq_run_hw_queue(hctx);
e4043dcf 812 else if (hctx->queue->nr_hw_queues == 1)
70f4db63 813 kblockd_schedule_delayed_work(&hctx->run_work, 0);
e4043dcf
JA
814 else {
815 unsigned int cpu;
816
506e931f 817 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63 818 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
e4043dcf 819 }
320ae51f
JA
820}
821
822void blk_mq_run_queues(struct request_queue *q, bool async)
823{
824 struct blk_mq_hw_ctx *hctx;
825 int i;
826
827 queue_for_each_hw_ctx(q, hctx, i) {
828 if ((!blk_mq_hctx_has_pending(hctx) &&
829 list_empty_careful(&hctx->dispatch)) ||
5d12f905 830 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
831 continue;
832
e4043dcf 833 preempt_disable();
320ae51f 834 blk_mq_run_hw_queue(hctx, async);
e4043dcf 835 preempt_enable();
320ae51f
JA
836 }
837}
838EXPORT_SYMBOL(blk_mq_run_queues);
839
840void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
841{
70f4db63
CH
842 cancel_delayed_work(&hctx->run_work);
843 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
844 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
845}
846EXPORT_SYMBOL(blk_mq_stop_hw_queue);
847
280d45f6
CH
848void blk_mq_stop_hw_queues(struct request_queue *q)
849{
850 struct blk_mq_hw_ctx *hctx;
851 int i;
852
853 queue_for_each_hw_ctx(q, hctx, i)
854 blk_mq_stop_hw_queue(hctx);
855}
856EXPORT_SYMBOL(blk_mq_stop_hw_queues);
857
320ae51f
JA
858void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
859{
860 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf
JA
861
862 preempt_disable();
0ffbce80 863 blk_mq_run_hw_queue(hctx, false);
e4043dcf 864 preempt_enable();
320ae51f
JA
865}
866EXPORT_SYMBOL(blk_mq_start_hw_queue);
867
2f268556
CH
868void blk_mq_start_hw_queues(struct request_queue *q)
869{
870 struct blk_mq_hw_ctx *hctx;
871 int i;
872
873 queue_for_each_hw_ctx(q, hctx, i)
874 blk_mq_start_hw_queue(hctx);
875}
876EXPORT_SYMBOL(blk_mq_start_hw_queues);
877
878
1b4a3258 879void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
880{
881 struct blk_mq_hw_ctx *hctx;
882 int i;
883
884 queue_for_each_hw_ctx(q, hctx, i) {
885 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
886 continue;
887
888 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 889 preempt_disable();
1b4a3258 890 blk_mq_run_hw_queue(hctx, async);
e4043dcf 891 preempt_enable();
320ae51f
JA
892 }
893}
894EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
895
70f4db63 896static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
897{
898 struct blk_mq_hw_ctx *hctx;
899
70f4db63 900 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 901
320ae51f
JA
902 __blk_mq_run_hw_queue(hctx);
903}
904
70f4db63
CH
905static void blk_mq_delay_work_fn(struct work_struct *work)
906{
907 struct blk_mq_hw_ctx *hctx;
908
909 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
910
911 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
912 __blk_mq_run_hw_queue(hctx);
913}
914
915void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
916{
917 unsigned long tmo = msecs_to_jiffies(msecs);
918
919 if (hctx->queue->nr_hw_queues == 1)
920 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
921 else {
922 unsigned int cpu;
923
506e931f 924 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63
CH
925 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
926 }
927}
928EXPORT_SYMBOL(blk_mq_delay_queue);
929
320ae51f 930static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 931 struct request *rq, bool at_head)
320ae51f
JA
932{
933 struct blk_mq_ctx *ctx = rq->mq_ctx;
934
01b983c9
JA
935 trace_block_rq_insert(hctx->queue, rq);
936
72a0a36e
CH
937 if (at_head)
938 list_add(&rq->queuelist, &ctx->rq_list);
939 else
940 list_add_tail(&rq->queuelist, &ctx->rq_list);
4bb659b1 941
320ae51f 942 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
943}
944
eeabc850
CH
945void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
946 bool async)
320ae51f 947{
eeabc850 948 struct request_queue *q = rq->q;
320ae51f 949 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
950 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
951
952 current_ctx = blk_mq_get_ctx(q);
953 if (!cpu_online(ctx->cpu))
954 rq->mq_ctx = ctx = current_ctx;
320ae51f 955
320ae51f
JA
956 hctx = q->mq_ops->map_queue(q, ctx->cpu);
957
eeabc850
CH
958 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
959 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
320ae51f
JA
960 blk_insert_flush(rq);
961 } else {
320ae51f 962 spin_lock(&ctx->lock);
72a0a36e 963 __blk_mq_insert_request(hctx, rq, at_head);
320ae51f 964 spin_unlock(&ctx->lock);
320ae51f
JA
965 }
966
320ae51f
JA
967 if (run_queue)
968 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
969
970 blk_mq_put_ctx(current_ctx);
320ae51f
JA
971}
972
973static void blk_mq_insert_requests(struct request_queue *q,
974 struct blk_mq_ctx *ctx,
975 struct list_head *list,
976 int depth,
977 bool from_schedule)
978
979{
980 struct blk_mq_hw_ctx *hctx;
981 struct blk_mq_ctx *current_ctx;
982
983 trace_block_unplug(q, depth, !from_schedule);
984
985 current_ctx = blk_mq_get_ctx(q);
986
987 if (!cpu_online(ctx->cpu))
988 ctx = current_ctx;
989 hctx = q->mq_ops->map_queue(q, ctx->cpu);
990
991 /*
992 * preemption doesn't flush plug list, so it's possible ctx->cpu is
993 * offline now
994 */
995 spin_lock(&ctx->lock);
996 while (!list_empty(list)) {
997 struct request *rq;
998
999 rq = list_first_entry(list, struct request, queuelist);
1000 list_del_init(&rq->queuelist);
1001 rq->mq_ctx = ctx;
72a0a36e 1002 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
1003 }
1004 spin_unlock(&ctx->lock);
1005
320ae51f 1006 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 1007 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1008}
1009
1010static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1011{
1012 struct request *rqa = container_of(a, struct request, queuelist);
1013 struct request *rqb = container_of(b, struct request, queuelist);
1014
1015 return !(rqa->mq_ctx < rqb->mq_ctx ||
1016 (rqa->mq_ctx == rqb->mq_ctx &&
1017 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1018}
1019
1020void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1021{
1022 struct blk_mq_ctx *this_ctx;
1023 struct request_queue *this_q;
1024 struct request *rq;
1025 LIST_HEAD(list);
1026 LIST_HEAD(ctx_list);
1027 unsigned int depth;
1028
1029 list_splice_init(&plug->mq_list, &list);
1030
1031 list_sort(NULL, &list, plug_ctx_cmp);
1032
1033 this_q = NULL;
1034 this_ctx = NULL;
1035 depth = 0;
1036
1037 while (!list_empty(&list)) {
1038 rq = list_entry_rq(list.next);
1039 list_del_init(&rq->queuelist);
1040 BUG_ON(!rq->q);
1041 if (rq->mq_ctx != this_ctx) {
1042 if (this_ctx) {
1043 blk_mq_insert_requests(this_q, this_ctx,
1044 &ctx_list, depth,
1045 from_schedule);
1046 }
1047
1048 this_ctx = rq->mq_ctx;
1049 this_q = rq->q;
1050 depth = 0;
1051 }
1052
1053 depth++;
1054 list_add_tail(&rq->queuelist, &ctx_list);
1055 }
1056
1057 /*
1058 * If 'this_ctx' is set, we know we have entries to complete
1059 * on 'ctx_list'. Do those.
1060 */
1061 if (this_ctx) {
1062 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1063 from_schedule);
1064 }
1065}
1066
1067static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1068{
1069 init_request_from_bio(rq, bio);
4b570521 1070
3ee32372 1071 if (blk_do_io_stat(rq))
4b570521 1072 blk_account_io_start(rq, 1);
320ae51f
JA
1073}
1074
274a5843
JA
1075static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1076{
1077 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1078 !blk_queue_nomerges(hctx->queue);
1079}
1080
07068d5b
JA
1081static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1082 struct blk_mq_ctx *ctx,
1083 struct request *rq, struct bio *bio)
320ae51f 1084{
274a5843 1085 if (!hctx_allow_merges(hctx)) {
07068d5b
JA
1086 blk_mq_bio_to_request(rq, bio);
1087 spin_lock(&ctx->lock);
1088insert_rq:
1089 __blk_mq_insert_request(hctx, rq, false);
1090 spin_unlock(&ctx->lock);
1091 return false;
1092 } else {
274a5843
JA
1093 struct request_queue *q = hctx->queue;
1094
07068d5b
JA
1095 spin_lock(&ctx->lock);
1096 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1097 blk_mq_bio_to_request(rq, bio);
1098 goto insert_rq;
1099 }
320ae51f 1100
07068d5b
JA
1101 spin_unlock(&ctx->lock);
1102 __blk_mq_free_request(hctx, ctx, rq);
1103 return true;
14ec77f3 1104 }
07068d5b 1105}
14ec77f3 1106
07068d5b
JA
1107struct blk_map_ctx {
1108 struct blk_mq_hw_ctx *hctx;
1109 struct blk_mq_ctx *ctx;
1110};
1111
1112static struct request *blk_mq_map_request(struct request_queue *q,
1113 struct bio *bio,
1114 struct blk_map_ctx *data)
1115{
1116 struct blk_mq_hw_ctx *hctx;
1117 struct blk_mq_ctx *ctx;
1118 struct request *rq;
1119 int rw = bio_data_dir(bio);
cb96a42c 1120 struct blk_mq_alloc_data alloc_data;
320ae51f 1121
07068d5b 1122 if (unlikely(blk_mq_queue_enter(q))) {
320ae51f 1123 bio_endio(bio, -EIO);
07068d5b 1124 return NULL;
320ae51f
JA
1125 }
1126
1127 ctx = blk_mq_get_ctx(q);
1128 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1129
07068d5b 1130 if (rw_is_sync(bio->bi_rw))
27fbf4e8 1131 rw |= REQ_SYNC;
07068d5b 1132
320ae51f 1133 trace_block_getrq(q, bio, rw);
cb96a42c
ML
1134 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1135 hctx);
1136 rq = __blk_mq_alloc_request(&alloc_data, rw);
5dee8577 1137 if (unlikely(!rq)) {
793597a6 1138 __blk_mq_run_hw_queue(hctx);
320ae51f
JA
1139 blk_mq_put_ctx(ctx);
1140 trace_block_sleeprq(q, bio, rw);
793597a6
CH
1141
1142 ctx = blk_mq_get_ctx(q);
320ae51f 1143 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
1144 blk_mq_set_alloc_data(&alloc_data, q,
1145 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1146 rq = __blk_mq_alloc_request(&alloc_data, rw);
1147 ctx = alloc_data.ctx;
1148 hctx = alloc_data.hctx;
320ae51f
JA
1149 }
1150
1151 hctx->queued++;
07068d5b
JA
1152 data->hctx = hctx;
1153 data->ctx = ctx;
1154 return rq;
1155}
1156
1157/*
1158 * Multiple hardware queue variant. This will not use per-process plugs,
1159 * but will attempt to bypass the hctx queueing if we can go straight to
1160 * hardware for SYNC IO.
1161 */
1162static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1163{
1164 const int is_sync = rw_is_sync(bio->bi_rw);
1165 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1166 struct blk_map_ctx data;
1167 struct request *rq;
1168
1169 blk_queue_bounce(q, &bio);
1170
1171 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1172 bio_endio(bio, -EIO);
1173 return;
1174 }
1175
1176 rq = blk_mq_map_request(q, bio, &data);
1177 if (unlikely(!rq))
1178 return;
1179
1180 if (unlikely(is_flush_fua)) {
1181 blk_mq_bio_to_request(rq, bio);
1182 blk_insert_flush(rq);
1183 goto run_queue;
1184 }
1185
1186 if (is_sync) {
1187 int ret;
1188
1189 blk_mq_bio_to_request(rq, bio);
1190 blk_mq_start_request(rq, true);
1191
1192 /*
1193 * For OK queue, we are done. For error, kill it. Any other
1194 * error (busy), just add it to our list as we previously
1195 * would have done
1196 */
1197 ret = q->mq_ops->queue_rq(data.hctx, rq);
1198 if (ret == BLK_MQ_RQ_QUEUE_OK)
1199 goto done;
1200 else {
1201 __blk_mq_requeue_request(rq);
1202
1203 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1204 rq->errors = -EIO;
1205 blk_mq_end_io(rq, rq->errors);
1206 goto done;
1207 }
1208 }
1209 }
1210
1211 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1212 /*
1213 * For a SYNC request, send it to the hardware immediately. For
1214 * an ASYNC request, just ensure that we run it later on. The
1215 * latter allows for merging opportunities and more efficient
1216 * dispatching.
1217 */
1218run_queue:
1219 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1220 }
1221done:
1222 blk_mq_put_ctx(data.ctx);
1223}
1224
1225/*
1226 * Single hardware queue variant. This will attempt to use any per-process
1227 * plug for merging and IO deferral.
1228 */
1229static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1230{
1231 const int is_sync = rw_is_sync(bio->bi_rw);
1232 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1233 unsigned int use_plug, request_count = 0;
1234 struct blk_map_ctx data;
1235 struct request *rq;
1236
1237 /*
1238 * If we have multiple hardware queues, just go directly to
1239 * one of those for sync IO.
1240 */
1241 use_plug = !is_flush_fua && !is_sync;
1242
1243 blk_queue_bounce(q, &bio);
1244
1245 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1246 bio_endio(bio, -EIO);
1247 return;
1248 }
1249
1250 if (use_plug && !blk_queue_nomerges(q) &&
1251 blk_attempt_plug_merge(q, bio, &request_count))
1252 return;
1253
1254 rq = blk_mq_map_request(q, bio, &data);
ff87bcec
JA
1255 if (unlikely(!rq))
1256 return;
320ae51f
JA
1257
1258 if (unlikely(is_flush_fua)) {
1259 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1260 blk_insert_flush(rq);
1261 goto run_queue;
1262 }
1263
1264 /*
1265 * A task plug currently exists. Since this is completely lockless,
1266 * utilize that to temporarily store requests until the task is
1267 * either done or scheduled away.
1268 */
1269 if (use_plug) {
1270 struct blk_plug *plug = current->plug;
1271
1272 if (plug) {
1273 blk_mq_bio_to_request(rq, bio);
92f399c7 1274 if (list_empty(&plug->mq_list))
320ae51f
JA
1275 trace_block_plug(q);
1276 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1277 blk_flush_plug_list(plug, false);
1278 trace_block_plug(q);
1279 }
1280 list_add_tail(&rq->queuelist, &plug->mq_list);
07068d5b 1281 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1282 return;
1283 }
1284 }
1285
07068d5b
JA
1286 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1287 /*
1288 * For a SYNC request, send it to the hardware immediately. For
1289 * an ASYNC request, just ensure that we run it later on. The
1290 * latter allows for merging opportunities and more efficient
1291 * dispatching.
1292 */
1293run_queue:
1294 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1295 }
1296
07068d5b 1297 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1298}
1299
1300/*
1301 * Default mapping to a software queue, since we use one per CPU.
1302 */
1303struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1304{
1305 return q->queue_hw_ctx[q->mq_map[cpu]];
1306}
1307EXPORT_SYMBOL(blk_mq_map_queue);
1308
24d2f903
CH
1309static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1310 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1311{
e9b267d9 1312 struct page *page;
320ae51f 1313
24d2f903 1314 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1315 int i;
320ae51f 1316
24d2f903
CH
1317 for (i = 0; i < tags->nr_tags; i++) {
1318 if (!tags->rqs[i])
e9b267d9 1319 continue;
24d2f903
CH
1320 set->ops->exit_request(set->driver_data, tags->rqs[i],
1321 hctx_idx, i);
e9b267d9 1322 }
320ae51f 1323 }
320ae51f 1324
24d2f903
CH
1325 while (!list_empty(&tags->page_list)) {
1326 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1327 list_del_init(&page->lru);
320ae51f
JA
1328 __free_pages(page, page->private);
1329 }
1330
24d2f903 1331 kfree(tags->rqs);
320ae51f 1332
24d2f903 1333 blk_mq_free_tags(tags);
320ae51f
JA
1334}
1335
1336static size_t order_to_size(unsigned int order)
1337{
4ca08500 1338 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1339}
1340
24d2f903
CH
1341static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1342 unsigned int hctx_idx)
320ae51f 1343{
24d2f903 1344 struct blk_mq_tags *tags;
320ae51f
JA
1345 unsigned int i, j, entries_per_page, max_order = 4;
1346 size_t rq_size, left;
1347
24d2f903
CH
1348 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1349 set->numa_node);
1350 if (!tags)
1351 return NULL;
320ae51f 1352
24d2f903
CH
1353 INIT_LIST_HEAD(&tags->page_list);
1354
1355 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1356 GFP_KERNEL, set->numa_node);
1357 if (!tags->rqs) {
1358 blk_mq_free_tags(tags);
1359 return NULL;
1360 }
320ae51f
JA
1361
1362 /*
1363 * rq_size is the size of the request plus driver payload, rounded
1364 * to the cacheline size
1365 */
24d2f903 1366 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1367 cache_line_size());
24d2f903 1368 left = rq_size * set->queue_depth;
320ae51f 1369
24d2f903 1370 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1371 int this_order = max_order;
1372 struct page *page;
1373 int to_do;
1374 void *p;
1375
1376 while (left < order_to_size(this_order - 1) && this_order)
1377 this_order--;
1378
1379 do {
24d2f903
CH
1380 page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1381 this_order);
320ae51f
JA
1382 if (page)
1383 break;
1384 if (!this_order--)
1385 break;
1386 if (order_to_size(this_order) < rq_size)
1387 break;
1388 } while (1);
1389
1390 if (!page)
24d2f903 1391 goto fail;
320ae51f
JA
1392
1393 page->private = this_order;
24d2f903 1394 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1395
1396 p = page_address(page);
1397 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1398 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1399 left -= to_do * rq_size;
1400 for (j = 0; j < to_do; j++) {
24d2f903
CH
1401 tags->rqs[i] = p;
1402 if (set->ops->init_request) {
1403 if (set->ops->init_request(set->driver_data,
1404 tags->rqs[i], hctx_idx, i,
1405 set->numa_node))
1406 goto fail;
e9b267d9
CH
1407 }
1408
320ae51f
JA
1409 p += rq_size;
1410 i++;
1411 }
1412 }
1413
24d2f903 1414 return tags;
320ae51f 1415
24d2f903
CH
1416fail:
1417 pr_warn("%s: failed to allocate requests\n", __func__);
1418 blk_mq_free_rq_map(set, tags, hctx_idx);
1419 return NULL;
320ae51f
JA
1420}
1421
1429d7c9
JA
1422static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1423{
1424 kfree(bitmap->map);
1425}
1426
1427static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1428{
1429 unsigned int bpw = 8, total, num_maps, i;
1430
1431 bitmap->bits_per_word = bpw;
1432
1433 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1434 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1435 GFP_KERNEL, node);
1436 if (!bitmap->map)
1437 return -ENOMEM;
1438
1439 bitmap->map_size = num_maps;
1440
1441 total = nr_cpu_ids;
1442 for (i = 0; i < num_maps; i++) {
1443 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1444 total -= bitmap->map[i].depth;
1445 }
1446
1447 return 0;
1448}
1449
484b4061
JA
1450static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1451{
1452 struct request_queue *q = hctx->queue;
1453 struct blk_mq_ctx *ctx;
1454 LIST_HEAD(tmp);
1455
1456 /*
1457 * Move ctx entries to new CPU, if this one is going away.
1458 */
1459 ctx = __blk_mq_get_ctx(q, cpu);
1460
1461 spin_lock(&ctx->lock);
1462 if (!list_empty(&ctx->rq_list)) {
1463 list_splice_init(&ctx->rq_list, &tmp);
1464 blk_mq_hctx_clear_pending(hctx, ctx);
1465 }
1466 spin_unlock(&ctx->lock);
1467
1468 if (list_empty(&tmp))
1469 return NOTIFY_OK;
1470
1471 ctx = blk_mq_get_ctx(q);
1472 spin_lock(&ctx->lock);
1473
1474 while (!list_empty(&tmp)) {
1475 struct request *rq;
1476
1477 rq = list_first_entry(&tmp, struct request, queuelist);
1478 rq->mq_ctx = ctx;
1479 list_move_tail(&rq->queuelist, &ctx->rq_list);
1480 }
1481
1482 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1483 blk_mq_hctx_mark_pending(hctx, ctx);
1484
1485 spin_unlock(&ctx->lock);
1486
1487 blk_mq_run_hw_queue(hctx, true);
1488 blk_mq_put_ctx(ctx);
1489 return NOTIFY_OK;
1490}
1491
1492static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1493{
1494 struct request_queue *q = hctx->queue;
1495 struct blk_mq_tag_set *set = q->tag_set;
1496
1497 if (set->tags[hctx->queue_num])
1498 return NOTIFY_OK;
1499
1500 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1501 if (!set->tags[hctx->queue_num])
1502 return NOTIFY_STOP;
1503
1504 hctx->tags = set->tags[hctx->queue_num];
1505 return NOTIFY_OK;
1506}
1507
1508static int blk_mq_hctx_notify(void *data, unsigned long action,
1509 unsigned int cpu)
1510{
1511 struct blk_mq_hw_ctx *hctx = data;
1512
1513 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1514 return blk_mq_hctx_cpu_offline(hctx, cpu);
1515 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1516 return blk_mq_hctx_cpu_online(hctx, cpu);
1517
1518 return NOTIFY_OK;
1519}
1520
624dbe47
ML
1521static void blk_mq_exit_hw_queues(struct request_queue *q,
1522 struct blk_mq_tag_set *set, int nr_queue)
1523{
1524 struct blk_mq_hw_ctx *hctx;
1525 unsigned int i;
1526
1527 queue_for_each_hw_ctx(q, hctx, i) {
1528 if (i == nr_queue)
1529 break;
1530
f899fed4
JA
1531 blk_mq_tag_idle(hctx);
1532
624dbe47
ML
1533 if (set->ops->exit_hctx)
1534 set->ops->exit_hctx(hctx, i);
1535
1536 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1537 kfree(hctx->ctxs);
1538 blk_mq_free_bitmap(&hctx->ctx_map);
1539 }
1540
1541}
1542
1543static void blk_mq_free_hw_queues(struct request_queue *q,
1544 struct blk_mq_tag_set *set)
1545{
1546 struct blk_mq_hw_ctx *hctx;
1547 unsigned int i;
1548
1549 queue_for_each_hw_ctx(q, hctx, i) {
1550 free_cpumask_var(hctx->cpumask);
cdef54dd 1551 kfree(hctx);
624dbe47
ML
1552 }
1553}
1554
320ae51f 1555static int blk_mq_init_hw_queues(struct request_queue *q,
24d2f903 1556 struct blk_mq_tag_set *set)
320ae51f
JA
1557{
1558 struct blk_mq_hw_ctx *hctx;
624dbe47 1559 unsigned int i;
320ae51f
JA
1560
1561 /*
1562 * Initialize hardware queues
1563 */
1564 queue_for_each_hw_ctx(q, hctx, i) {
320ae51f
JA
1565 int node;
1566
1567 node = hctx->numa_node;
1568 if (node == NUMA_NO_NODE)
24d2f903 1569 node = hctx->numa_node = set->numa_node;
320ae51f 1570
70f4db63
CH
1571 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1572 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
320ae51f
JA
1573 spin_lock_init(&hctx->lock);
1574 INIT_LIST_HEAD(&hctx->dispatch);
1575 hctx->queue = q;
1576 hctx->queue_num = i;
24d2f903
CH
1577 hctx->flags = set->flags;
1578 hctx->cmd_size = set->cmd_size;
320ae51f
JA
1579
1580 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1581 blk_mq_hctx_notify, hctx);
1582 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1583
24d2f903 1584 hctx->tags = set->tags[i];
320ae51f
JA
1585
1586 /*
a68aafa5 1587 * Allocate space for all possible cpus to avoid allocation at
320ae51f
JA
1588 * runtime
1589 */
1590 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1591 GFP_KERNEL, node);
1592 if (!hctx->ctxs)
1593 break;
1594
1429d7c9 1595 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
320ae51f
JA
1596 break;
1597
320ae51f
JA
1598 hctx->nr_ctx = 0;
1599
24d2f903
CH
1600 if (set->ops->init_hctx &&
1601 set->ops->init_hctx(hctx, set->driver_data, i))
320ae51f
JA
1602 break;
1603 }
1604
1605 if (i == q->nr_hw_queues)
1606 return 0;
1607
1608 /*
1609 * Init failed
1610 */
624dbe47 1611 blk_mq_exit_hw_queues(q, set, i);
320ae51f
JA
1612
1613 return 1;
1614}
1615
1616static void blk_mq_init_cpu_queues(struct request_queue *q,
1617 unsigned int nr_hw_queues)
1618{
1619 unsigned int i;
1620
1621 for_each_possible_cpu(i) {
1622 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1623 struct blk_mq_hw_ctx *hctx;
1624
1625 memset(__ctx, 0, sizeof(*__ctx));
1626 __ctx->cpu = i;
1627 spin_lock_init(&__ctx->lock);
1628 INIT_LIST_HEAD(&__ctx->rq_list);
1629 __ctx->queue = q;
1630
1631 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1632 if (!cpu_online(i))
1633 continue;
1634
e4043dcf
JA
1635 hctx = q->mq_ops->map_queue(q, i);
1636 cpumask_set_cpu(i, hctx->cpumask);
1637 hctx->nr_ctx++;
1638
320ae51f
JA
1639 /*
1640 * Set local node, IFF we have more than one hw queue. If
1641 * not, we remain on the home node of the device
1642 */
1643 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1644 hctx->numa_node = cpu_to_node(i);
1645 }
1646}
1647
1648static void blk_mq_map_swqueue(struct request_queue *q)
1649{
1650 unsigned int i;
1651 struct blk_mq_hw_ctx *hctx;
1652 struct blk_mq_ctx *ctx;
1653
1654 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1655 cpumask_clear(hctx->cpumask);
320ae51f
JA
1656 hctx->nr_ctx = 0;
1657 }
1658
1659 /*
1660 * Map software to hardware queues
1661 */
1662 queue_for_each_ctx(q, ctx, i) {
1663 /* If the cpu isn't online, the cpu is mapped to first hctx */
e4043dcf
JA
1664 if (!cpu_online(i))
1665 continue;
1666
320ae51f 1667 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1668 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1669 ctx->index_hw = hctx->nr_ctx;
1670 hctx->ctxs[hctx->nr_ctx++] = ctx;
1671 }
506e931f
JA
1672
1673 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 1674 /*
a68aafa5
JA
1675 * If no software queues are mapped to this hardware queue,
1676 * disable it and free the request entries.
484b4061
JA
1677 */
1678 if (!hctx->nr_ctx) {
1679 struct blk_mq_tag_set *set = q->tag_set;
1680
1681 if (set->tags[i]) {
1682 blk_mq_free_rq_map(set, set->tags[i], i);
1683 set->tags[i] = NULL;
1684 hctx->tags = NULL;
1685 }
1686 continue;
1687 }
1688
1689 /*
1690 * Initialize batch roundrobin counts
1691 */
506e931f
JA
1692 hctx->next_cpu = cpumask_first(hctx->cpumask);
1693 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1694 }
320ae51f
JA
1695}
1696
0d2602ca
JA
1697static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1698{
1699 struct blk_mq_hw_ctx *hctx;
1700 struct request_queue *q;
1701 bool shared;
1702 int i;
1703
1704 if (set->tag_list.next == set->tag_list.prev)
1705 shared = false;
1706 else
1707 shared = true;
1708
1709 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1710 blk_mq_freeze_queue(q);
1711
1712 queue_for_each_hw_ctx(q, hctx, i) {
1713 if (shared)
1714 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1715 else
1716 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1717 }
1718 blk_mq_unfreeze_queue(q);
1719 }
1720}
1721
1722static void blk_mq_del_queue_tag_set(struct request_queue *q)
1723{
1724 struct blk_mq_tag_set *set = q->tag_set;
1725
0d2602ca
JA
1726 mutex_lock(&set->tag_list_lock);
1727 list_del_init(&q->tag_set_list);
1728 blk_mq_update_tag_set_depth(set);
1729 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
1730}
1731
1732static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1733 struct request_queue *q)
1734{
1735 q->tag_set = set;
1736
1737 mutex_lock(&set->tag_list_lock);
1738 list_add_tail(&q->tag_set_list, &set->tag_list);
1739 blk_mq_update_tag_set_depth(set);
1740 mutex_unlock(&set->tag_list_lock);
1741}
1742
24d2f903 1743struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
320ae51f
JA
1744{
1745 struct blk_mq_hw_ctx **hctxs;
e6cdb092 1746 struct blk_mq_ctx __percpu *ctx;
320ae51f 1747 struct request_queue *q;
f14bbe77 1748 unsigned int *map;
320ae51f
JA
1749 int i;
1750
320ae51f
JA
1751 ctx = alloc_percpu(struct blk_mq_ctx);
1752 if (!ctx)
1753 return ERR_PTR(-ENOMEM);
1754
24d2f903
CH
1755 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1756 set->numa_node);
320ae51f
JA
1757
1758 if (!hctxs)
1759 goto err_percpu;
1760
f14bbe77
JA
1761 map = blk_mq_make_queue_map(set);
1762 if (!map)
1763 goto err_map;
1764
24d2f903 1765 for (i = 0; i < set->nr_hw_queues; i++) {
f14bbe77
JA
1766 int node = blk_mq_hw_queue_to_node(map, i);
1767
cdef54dd
CH
1768 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1769 GFP_KERNEL, node);
320ae51f
JA
1770 if (!hctxs[i])
1771 goto err_hctxs;
1772
e4043dcf
JA
1773 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1774 goto err_hctxs;
1775
0d2602ca 1776 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 1777 hctxs[i]->numa_node = node;
320ae51f
JA
1778 hctxs[i]->queue_num = i;
1779 }
1780
24d2f903 1781 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
320ae51f
JA
1782 if (!q)
1783 goto err_hctxs;
1784
add703fd 1785 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release))
3d2936f4
ML
1786 goto err_map;
1787
320ae51f
JA
1788 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1789 blk_queue_rq_timeout(q, 30000);
1790
1791 q->nr_queues = nr_cpu_ids;
24d2f903 1792 q->nr_hw_queues = set->nr_hw_queues;
f14bbe77 1793 q->mq_map = map;
320ae51f
JA
1794
1795 q->queue_ctx = ctx;
1796 q->queue_hw_ctx = hctxs;
1797
24d2f903 1798 q->mq_ops = set->ops;
94eddfbe 1799 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1800
05f1dd53
JA
1801 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1802 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1803
1be036e9
CH
1804 q->sg_reserved_size = INT_MAX;
1805
6fca6a61
CH
1806 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1807 INIT_LIST_HEAD(&q->requeue_list);
1808 spin_lock_init(&q->requeue_lock);
1809
07068d5b
JA
1810 if (q->nr_hw_queues > 1)
1811 blk_queue_make_request(q, blk_mq_make_request);
1812 else
1813 blk_queue_make_request(q, blk_sq_make_request);
1814
87ee7b11 1815 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
24d2f903
CH
1816 if (set->timeout)
1817 blk_queue_rq_timeout(q, set->timeout);
320ae51f 1818
eba71768
JA
1819 /*
1820 * Do this after blk_queue_make_request() overrides it...
1821 */
1822 q->nr_requests = set->queue_depth;
1823
24d2f903
CH
1824 if (set->ops->complete)
1825 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 1826
320ae51f 1827 blk_mq_init_flush(q);
24d2f903 1828 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 1829
24d2f903
CH
1830 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1831 set->cmd_size, cache_line_size()),
1832 GFP_KERNEL);
18741986 1833 if (!q->flush_rq)
320ae51f
JA
1834 goto err_hw;
1835
24d2f903 1836 if (blk_mq_init_hw_queues(q, set))
18741986
CH
1837 goto err_flush_rq;
1838
320ae51f
JA
1839 mutex_lock(&all_q_mutex);
1840 list_add_tail(&q->all_q_node, &all_q_list);
1841 mutex_unlock(&all_q_mutex);
1842
0d2602ca
JA
1843 blk_mq_add_queue_tag_set(set, q);
1844
484b4061
JA
1845 blk_mq_map_swqueue(q);
1846
320ae51f 1847 return q;
18741986
CH
1848
1849err_flush_rq:
1850 kfree(q->flush_rq);
320ae51f 1851err_hw:
320ae51f
JA
1852 blk_cleanup_queue(q);
1853err_hctxs:
f14bbe77 1854 kfree(map);
24d2f903 1855 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
1856 if (!hctxs[i])
1857 break;
e4043dcf 1858 free_cpumask_var(hctxs[i]->cpumask);
cdef54dd 1859 kfree(hctxs[i]);
320ae51f 1860 }
f14bbe77 1861err_map:
320ae51f
JA
1862 kfree(hctxs);
1863err_percpu:
1864 free_percpu(ctx);
1865 return ERR_PTR(-ENOMEM);
1866}
1867EXPORT_SYMBOL(blk_mq_init_queue);
1868
1869void blk_mq_free_queue(struct request_queue *q)
1870{
624dbe47 1871 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1872
0d2602ca
JA
1873 blk_mq_del_queue_tag_set(q);
1874
624dbe47
ML
1875 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1876 blk_mq_free_hw_queues(q, set);
320ae51f 1877
add703fd 1878 percpu_ref_exit(&q->mq_usage_counter);
3d2936f4 1879
320ae51f
JA
1880 free_percpu(q->queue_ctx);
1881 kfree(q->queue_hw_ctx);
1882 kfree(q->mq_map);
1883
1884 q->queue_ctx = NULL;
1885 q->queue_hw_ctx = NULL;
1886 q->mq_map = NULL;
1887
1888 mutex_lock(&all_q_mutex);
1889 list_del_init(&q->all_q_node);
1890 mutex_unlock(&all_q_mutex);
1891}
320ae51f
JA
1892
1893/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1894static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1895{
1896 blk_mq_freeze_queue(q);
1897
67aec14c
JA
1898 blk_mq_sysfs_unregister(q);
1899
320ae51f
JA
1900 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1901
1902 /*
1903 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1904 * we should change hctx numa_node according to new topology (this
1905 * involves free and re-allocate memory, worthy doing?)
1906 */
1907
1908 blk_mq_map_swqueue(q);
1909
67aec14c
JA
1910 blk_mq_sysfs_register(q);
1911
320ae51f
JA
1912 blk_mq_unfreeze_queue(q);
1913}
1914
f618ef7c
PG
1915static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1916 unsigned long action, void *hcpu)
320ae51f
JA
1917{
1918 struct request_queue *q;
1919
1920 /*
9fccfed8
JA
1921 * Before new mappings are established, hotadded cpu might already
1922 * start handling requests. This doesn't break anything as we map
1923 * offline CPUs to first hardware queue. We will re-init the queue
1924 * below to get optimal settings.
320ae51f
JA
1925 */
1926 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1927 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1928 return NOTIFY_OK;
1929
1930 mutex_lock(&all_q_mutex);
1931 list_for_each_entry(q, &all_q_list, all_q_node)
1932 blk_mq_queue_reinit(q);
1933 mutex_unlock(&all_q_mutex);
1934 return NOTIFY_OK;
1935}
1936
a4391c64
JA
1937/*
1938 * Alloc a tag set to be associated with one or more request queues.
1939 * May fail with EINVAL for various error conditions. May adjust the
1940 * requested depth down, if if it too large. In that case, the set
1941 * value will be stored in set->queue_depth.
1942 */
24d2f903
CH
1943int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1944{
1945 int i;
1946
1947 if (!set->nr_hw_queues)
1948 return -EINVAL;
a4391c64 1949 if (!set->queue_depth)
24d2f903
CH
1950 return -EINVAL;
1951 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1952 return -EINVAL;
1953
cdef54dd 1954 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
24d2f903
CH
1955 return -EINVAL;
1956
a4391c64
JA
1957 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
1958 pr_info("blk-mq: reduced tag depth to %u\n",
1959 BLK_MQ_MAX_DEPTH);
1960 set->queue_depth = BLK_MQ_MAX_DEPTH;
1961 }
24d2f903 1962
48479005
ML
1963 set->tags = kmalloc_node(set->nr_hw_queues *
1964 sizeof(struct blk_mq_tags *),
24d2f903
CH
1965 GFP_KERNEL, set->numa_node);
1966 if (!set->tags)
1967 goto out;
1968
1969 for (i = 0; i < set->nr_hw_queues; i++) {
1970 set->tags[i] = blk_mq_init_rq_map(set, i);
1971 if (!set->tags[i])
1972 goto out_unwind;
1973 }
1974
0d2602ca
JA
1975 mutex_init(&set->tag_list_lock);
1976 INIT_LIST_HEAD(&set->tag_list);
1977
24d2f903
CH
1978 return 0;
1979
1980out_unwind:
1981 while (--i >= 0)
1982 blk_mq_free_rq_map(set, set->tags[i], i);
1983out:
1984 return -ENOMEM;
1985}
1986EXPORT_SYMBOL(blk_mq_alloc_tag_set);
1987
1988void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
1989{
1990 int i;
1991
484b4061
JA
1992 for (i = 0; i < set->nr_hw_queues; i++) {
1993 if (set->tags[i])
1994 blk_mq_free_rq_map(set, set->tags[i], i);
1995 }
1996
981bd189 1997 kfree(set->tags);
24d2f903
CH
1998}
1999EXPORT_SYMBOL(blk_mq_free_tag_set);
2000
e3a2b3f9
JA
2001int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2002{
2003 struct blk_mq_tag_set *set = q->tag_set;
2004 struct blk_mq_hw_ctx *hctx;
2005 int i, ret;
2006
2007 if (!set || nr > set->queue_depth)
2008 return -EINVAL;
2009
2010 ret = 0;
2011 queue_for_each_hw_ctx(q, hctx, i) {
2012 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2013 if (ret)
2014 break;
2015 }
2016
2017 if (!ret)
2018 q->nr_requests = nr;
2019
2020 return ret;
2021}
2022
676141e4
JA
2023void blk_mq_disable_hotplug(void)
2024{
2025 mutex_lock(&all_q_mutex);
2026}
2027
2028void blk_mq_enable_hotplug(void)
2029{
2030 mutex_unlock(&all_q_mutex);
2031}
2032
320ae51f
JA
2033static int __init blk_mq_init(void)
2034{
320ae51f
JA
2035 blk_mq_cpu_init();
2036
add703fd 2037 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
320ae51f
JA
2038
2039 return 0;
2040}
2041subsys_initcall(blk_mq_init);