]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - block/blk-mq.c
block: don't honor chunk sizes for data-less IO
[mirror_ubuntu-zesty-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/mm.h>
13#include <linux/init.h>
14#include <linux/slab.h>
15#include <linux/workqueue.h>
16#include <linux/smp.h>
17#include <linux/llist.h>
18#include <linux/list_sort.h>
19#include <linux/cpu.h>
20#include <linux/cache.h>
21#include <linux/sched/sysctl.h>
22#include <linux/delay.h>
aedcd72f 23#include <linux/crash_dump.h>
320ae51f
JA
24
25#include <trace/events/block.h>
26
27#include <linux/blk-mq.h>
28#include "blk.h"
29#include "blk-mq.h"
30#include "blk-mq-tag.h"
31
32static DEFINE_MUTEX(all_q_mutex);
33static LIST_HEAD(all_q_list);
34
35static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
320ae51f
JA
37/*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41{
42 unsigned int i;
43
569fd0ce 44 for (i = 0; i < hctx->ctx_map.size; i++)
1429d7c9 45 if (hctx->ctx_map.map[i].word)
320ae51f
JA
46 return true;
47
48 return false;
49}
50
1429d7c9
JA
51static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
53{
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55}
56
57#define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
320ae51f
JA
60/*
61 * Mark this ctx as having pending work in this hardware queue
62 */
63static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
65{
1429d7c9
JA
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70}
71
72static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
74{
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
320ae51f
JA
78}
79
bfd343aa 80static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp)
320ae51f 81{
add703fd
TH
82 while (true) {
83 int ret;
320ae51f 84
add703fd
TH
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
320ae51f 87
bfd343aa
KB
88 if (!(gfp & __GFP_WAIT))
89 return -EBUSY;
90
add703fd 91 ret = wait_event_interruptible(q->mq_freeze_wq,
4ecd4fef
CH
92 !atomic_read(&q->mq_freeze_depth) ||
93 blk_queue_dying(q));
add703fd
TH
94 if (blk_queue_dying(q))
95 return -ENODEV;
96 if (ret)
97 return ret;
98 }
320ae51f
JA
99}
100
101static void blk_mq_queue_exit(struct request_queue *q)
102{
add703fd
TH
103 percpu_ref_put(&q->mq_usage_counter);
104}
105
106static void blk_mq_usage_counter_release(struct percpu_ref *ref)
107{
108 struct request_queue *q =
109 container_of(ref, struct request_queue, mq_usage_counter);
110
111 wake_up_all(&q->mq_freeze_wq);
320ae51f
JA
112}
113
b4c6a028 114void blk_mq_freeze_queue_start(struct request_queue *q)
43a5e4e2 115{
4ecd4fef 116 int freeze_depth;
cddd5d17 117
4ecd4fef
CH
118 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
119 if (freeze_depth == 1) {
9eca8046 120 percpu_ref_kill(&q->mq_usage_counter);
b94ec296 121 blk_mq_run_hw_queues(q, false);
cddd5d17 122 }
f3af020b 123}
b4c6a028 124EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
f3af020b
TH
125
126static void blk_mq_freeze_queue_wait(struct request_queue *q)
127{
add703fd 128 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
43a5e4e2
ML
129}
130
f3af020b
TH
131/*
132 * Guarantee no request is in use, so we can change any data structure of
133 * the queue afterward.
134 */
135void blk_mq_freeze_queue(struct request_queue *q)
136{
137 blk_mq_freeze_queue_start(q);
138 blk_mq_freeze_queue_wait(q);
139}
c761d96b 140EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 141
b4c6a028 142void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 143{
4ecd4fef 144 int freeze_depth;
320ae51f 145
4ecd4fef
CH
146 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
147 WARN_ON_ONCE(freeze_depth < 0);
148 if (!freeze_depth) {
add703fd 149 percpu_ref_reinit(&q->mq_usage_counter);
320ae51f 150 wake_up_all(&q->mq_freeze_wq);
add703fd 151 }
320ae51f 152}
b4c6a028 153EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 154
aed3ea94
JA
155void blk_mq_wake_waiters(struct request_queue *q)
156{
157 struct blk_mq_hw_ctx *hctx;
158 unsigned int i;
159
160 queue_for_each_hw_ctx(q, hctx, i)
161 if (blk_mq_hw_queue_mapped(hctx))
162 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
163
164 /*
165 * If we are called because the queue has now been marked as
166 * dying, we need to ensure that processes currently waiting on
167 * the queue are notified as well.
168 */
169 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
170}
171
320ae51f
JA
172bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
173{
174 return blk_mq_has_free_tags(hctx->tags);
175}
176EXPORT_SYMBOL(blk_mq_can_queue);
177
94eddfbe
JA
178static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
179 struct request *rq, unsigned int rw_flags)
320ae51f 180{
94eddfbe
JA
181 if (blk_queue_io_stat(q))
182 rw_flags |= REQ_IO_STAT;
183
af76e555
CH
184 INIT_LIST_HEAD(&rq->queuelist);
185 /* csd/requeue_work/fifo_time is initialized before use */
186 rq->q = q;
320ae51f 187 rq->mq_ctx = ctx;
0d2602ca 188 rq->cmd_flags |= rw_flags;
af76e555
CH
189 /* do not touch atomic flags, it needs atomic ops against the timer */
190 rq->cpu = -1;
af76e555
CH
191 INIT_HLIST_NODE(&rq->hash);
192 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
193 rq->rq_disk = NULL;
194 rq->part = NULL;
3ee32372 195 rq->start_time = jiffies;
af76e555
CH
196#ifdef CONFIG_BLK_CGROUP
197 rq->rl = NULL;
0fec08b4 198 set_start_time_ns(rq);
af76e555
CH
199 rq->io_start_time_ns = 0;
200#endif
201 rq->nr_phys_segments = 0;
202#if defined(CONFIG_BLK_DEV_INTEGRITY)
203 rq->nr_integrity_segments = 0;
204#endif
af76e555
CH
205 rq->special = NULL;
206 /* tag was already set */
207 rq->errors = 0;
af76e555 208
6f4a1626
TB
209 rq->cmd = rq->__cmd;
210
af76e555
CH
211 rq->extra_len = 0;
212 rq->sense_len = 0;
213 rq->resid_len = 0;
214 rq->sense = NULL;
215
af76e555 216 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
217 rq->timeout = 0;
218
af76e555
CH
219 rq->end_io = NULL;
220 rq->end_io_data = NULL;
221 rq->next_rq = NULL;
222
320ae51f
JA
223 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
224}
225
5dee8577 226static struct request *
cb96a42c 227__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
5dee8577
CH
228{
229 struct request *rq;
230 unsigned int tag;
231
cb96a42c 232 tag = blk_mq_get_tag(data);
5dee8577 233 if (tag != BLK_MQ_TAG_FAIL) {
cb96a42c 234 rq = data->hctx->tags->rqs[tag];
5dee8577 235
cb96a42c 236 if (blk_mq_tag_busy(data->hctx)) {
5dee8577 237 rq->cmd_flags = REQ_MQ_INFLIGHT;
cb96a42c 238 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
239 }
240
241 rq->tag = tag;
cb96a42c 242 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
5dee8577
CH
243 return rq;
244 }
245
246 return NULL;
247}
248
4ce01dd1
CH
249struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
250 bool reserved)
320ae51f 251{
d852564f
CH
252 struct blk_mq_ctx *ctx;
253 struct blk_mq_hw_ctx *hctx;
320ae51f 254 struct request *rq;
cb96a42c 255 struct blk_mq_alloc_data alloc_data;
a492f075 256 int ret;
320ae51f 257
bfd343aa 258 ret = blk_mq_queue_enter(q, gfp);
a492f075
JL
259 if (ret)
260 return ERR_PTR(ret);
320ae51f 261
d852564f
CH
262 ctx = blk_mq_get_ctx(q);
263 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
264 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
265 reserved, ctx, hctx);
d852564f 266
cb96a42c 267 rq = __blk_mq_alloc_request(&alloc_data, rw);
d852564f
CH
268 if (!rq && (gfp & __GFP_WAIT)) {
269 __blk_mq_run_hw_queue(hctx);
270 blk_mq_put_ctx(ctx);
271
272 ctx = blk_mq_get_ctx(q);
273 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
274 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
275 hctx);
276 rq = __blk_mq_alloc_request(&alloc_data, rw);
277 ctx = alloc_data.ctx;
d852564f
CH
278 }
279 blk_mq_put_ctx(ctx);
c76541a9
KB
280 if (!rq) {
281 blk_mq_queue_exit(q);
a492f075 282 return ERR_PTR(-EWOULDBLOCK);
c76541a9 283 }
320ae51f
JA
284 return rq;
285}
4bb659b1 286EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 287
320ae51f
JA
288static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
289 struct blk_mq_ctx *ctx, struct request *rq)
290{
291 const int tag = rq->tag;
292 struct request_queue *q = rq->q;
293
0d2602ca
JA
294 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
295 atomic_dec(&hctx->nr_active);
683d0e12 296 rq->cmd_flags = 0;
0d2602ca 297
af76e555 298 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
0d2602ca 299 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
320ae51f
JA
300 blk_mq_queue_exit(q);
301}
302
7c7f2f2b 303void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
320ae51f
JA
304{
305 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
306
307 ctx->rq_completed[rq_is_sync(rq)]++;
320ae51f 308 __blk_mq_free_request(hctx, ctx, rq);
7c7f2f2b
JA
309
310}
311EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
312
313void blk_mq_free_request(struct request *rq)
314{
315 struct blk_mq_hw_ctx *hctx;
316 struct request_queue *q = rq->q;
317
318 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
319 blk_mq_free_hctx_request(hctx, rq);
320ae51f 320}
1a3b595a 321EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 322
c8a446ad 323inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 324{
0d11e6ac
ML
325 blk_account_io_done(rq);
326
91b63639 327 if (rq->end_io) {
320ae51f 328 rq->end_io(rq, error);
91b63639
CH
329 } else {
330 if (unlikely(blk_bidi_rq(rq)))
331 blk_mq_free_request(rq->next_rq);
320ae51f 332 blk_mq_free_request(rq);
91b63639 333 }
320ae51f 334}
c8a446ad 335EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 336
c8a446ad 337void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
338{
339 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
340 BUG();
c8a446ad 341 __blk_mq_end_request(rq, error);
63151a44 342}
c8a446ad 343EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 344
30a91cb4 345static void __blk_mq_complete_request_remote(void *data)
320ae51f 346{
3d6efbf6 347 struct request *rq = data;
320ae51f 348
30a91cb4 349 rq->q->softirq_done_fn(rq);
320ae51f 350}
320ae51f 351
ed851860 352static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
353{
354 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 355 bool shared = false;
320ae51f
JA
356 int cpu;
357
38535201 358 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
359 rq->q->softirq_done_fn(rq);
360 return;
361 }
320ae51f
JA
362
363 cpu = get_cpu();
38535201
CH
364 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
365 shared = cpus_share_cache(cpu, ctx->cpu);
366
367 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 368 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
369 rq->csd.info = rq;
370 rq->csd.flags = 0;
c46fff2a 371 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 372 } else {
30a91cb4 373 rq->q->softirq_done_fn(rq);
3d6efbf6 374 }
320ae51f
JA
375 put_cpu();
376}
30a91cb4 377
ed851860
JA
378void __blk_mq_complete_request(struct request *rq)
379{
380 struct request_queue *q = rq->q;
381
382 if (!q->softirq_done_fn)
c8a446ad 383 blk_mq_end_request(rq, rq->errors);
ed851860
JA
384 else
385 blk_mq_ipi_complete_request(rq);
386}
387
30a91cb4
CH
388/**
389 * blk_mq_complete_request - end I/O on a request
390 * @rq: the request being processed
391 *
392 * Description:
393 * Ends all I/O on a request. It does not handle partial completions.
394 * The actual completion happens out-of-order, through a IPI handler.
395 **/
396void blk_mq_complete_request(struct request *rq)
397{
95f09684
JA
398 struct request_queue *q = rq->q;
399
400 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 401 return;
ed851860
JA
402 if (!blk_mark_rq_complete(rq))
403 __blk_mq_complete_request(rq);
30a91cb4
CH
404}
405EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 406
973c0191
KB
407int blk_mq_request_started(struct request *rq)
408{
409 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
410}
411EXPORT_SYMBOL_GPL(blk_mq_request_started);
412
e2490073 413void blk_mq_start_request(struct request *rq)
320ae51f
JA
414{
415 struct request_queue *q = rq->q;
416
417 trace_block_rq_issue(q, rq);
418
742ee69b 419 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
420 if (unlikely(blk_bidi_rq(rq)))
421 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 422
2b8393b4 423 blk_add_timer(rq);
87ee7b11 424
538b7534
JA
425 /*
426 * Ensure that ->deadline is visible before set the started
427 * flag and clear the completed flag.
428 */
429 smp_mb__before_atomic();
430
87ee7b11
JA
431 /*
432 * Mark us as started and clear complete. Complete might have been
433 * set if requeue raced with timeout, which then marked it as
434 * complete. So be sure to clear complete again when we start
435 * the request, otherwise we'll ignore the completion event.
436 */
4b570521
JA
437 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
438 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
439 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
440 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
441
442 if (q->dma_drain_size && blk_rq_bytes(rq)) {
443 /*
444 * Make sure space for the drain appears. We know we can do
445 * this because max_hw_segments has been adjusted to be one
446 * fewer than the device can handle.
447 */
448 rq->nr_phys_segments++;
449 }
320ae51f 450}
e2490073 451EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 452
ed0791b2 453static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
454{
455 struct request_queue *q = rq->q;
456
457 trace_block_rq_requeue(q, rq);
49f5baa5 458
e2490073
CH
459 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
460 if (q->dma_drain_size && blk_rq_bytes(rq))
461 rq->nr_phys_segments--;
462 }
320ae51f
JA
463}
464
ed0791b2
CH
465void blk_mq_requeue_request(struct request *rq)
466{
ed0791b2 467 __blk_mq_requeue_request(rq);
ed0791b2 468
ed0791b2 469 BUG_ON(blk_queued_rq(rq));
6fca6a61 470 blk_mq_add_to_requeue_list(rq, true);
ed0791b2
CH
471}
472EXPORT_SYMBOL(blk_mq_requeue_request);
473
6fca6a61
CH
474static void blk_mq_requeue_work(struct work_struct *work)
475{
476 struct request_queue *q =
477 container_of(work, struct request_queue, requeue_work);
478 LIST_HEAD(rq_list);
479 struct request *rq, *next;
480 unsigned long flags;
481
482 spin_lock_irqsave(&q->requeue_lock, flags);
483 list_splice_init(&q->requeue_list, &rq_list);
484 spin_unlock_irqrestore(&q->requeue_lock, flags);
485
486 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
487 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
488 continue;
489
490 rq->cmd_flags &= ~REQ_SOFTBARRIER;
491 list_del_init(&rq->queuelist);
492 blk_mq_insert_request(rq, true, false, false);
493 }
494
495 while (!list_empty(&rq_list)) {
496 rq = list_entry(rq_list.next, struct request, queuelist);
497 list_del_init(&rq->queuelist);
498 blk_mq_insert_request(rq, false, false, false);
499 }
500
8b957415
JA
501 /*
502 * Use the start variant of queue running here, so that running
503 * the requeue work will kick stopped queues.
504 */
505 blk_mq_start_hw_queues(q);
6fca6a61
CH
506}
507
508void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
509{
510 struct request_queue *q = rq->q;
511 unsigned long flags;
512
513 /*
514 * We abuse this flag that is otherwise used by the I/O scheduler to
515 * request head insertation from the workqueue.
516 */
517 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
518
519 spin_lock_irqsave(&q->requeue_lock, flags);
520 if (at_head) {
521 rq->cmd_flags |= REQ_SOFTBARRIER;
522 list_add(&rq->queuelist, &q->requeue_list);
523 } else {
524 list_add_tail(&rq->queuelist, &q->requeue_list);
525 }
526 spin_unlock_irqrestore(&q->requeue_lock, flags);
527}
528EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
529
c68ed59f
KB
530void blk_mq_cancel_requeue_work(struct request_queue *q)
531{
532 cancel_work_sync(&q->requeue_work);
533}
534EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
535
6fca6a61
CH
536void blk_mq_kick_requeue_list(struct request_queue *q)
537{
538 kblockd_schedule_work(&q->requeue_work);
539}
540EXPORT_SYMBOL(blk_mq_kick_requeue_list);
541
1885b24d
JA
542void blk_mq_abort_requeue_list(struct request_queue *q)
543{
544 unsigned long flags;
545 LIST_HEAD(rq_list);
546
547 spin_lock_irqsave(&q->requeue_lock, flags);
548 list_splice_init(&q->requeue_list, &rq_list);
549 spin_unlock_irqrestore(&q->requeue_lock, flags);
550
551 while (!list_empty(&rq_list)) {
552 struct request *rq;
553
554 rq = list_first_entry(&rq_list, struct request, queuelist);
555 list_del_init(&rq->queuelist);
556 rq->errors = -EIO;
557 blk_mq_end_request(rq, rq->errors);
558 }
559}
560EXPORT_SYMBOL(blk_mq_abort_requeue_list);
561
7c94e1c1
ML
562static inline bool is_flush_request(struct request *rq,
563 struct blk_flush_queue *fq, unsigned int tag)
24d2f903 564{
0e62f51f 565 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
7c94e1c1 566 fq->flush_rq->tag == tag);
0e62f51f
JA
567}
568
569struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
570{
571 struct request *rq = tags->rqs[tag];
e97c293c
ML
572 /* mq_ctx of flush rq is always cloned from the corresponding req */
573 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
22302375 574
7c94e1c1 575 if (!is_flush_request(rq, fq, tag))
0e62f51f 576 return rq;
22302375 577
7c94e1c1 578 return fq->flush_rq;
24d2f903
CH
579}
580EXPORT_SYMBOL(blk_mq_tag_to_rq);
581
320ae51f 582struct blk_mq_timeout_data {
46f92d42
CH
583 unsigned long next;
584 unsigned int next_set;
320ae51f
JA
585};
586
90415837 587void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 588{
46f92d42
CH
589 struct blk_mq_ops *ops = req->q->mq_ops;
590 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
591
592 /*
593 * We know that complete is set at this point. If STARTED isn't set
594 * anymore, then the request isn't active and the "timeout" should
595 * just be ignored. This can happen due to the bitflag ordering.
596 * Timeout first checks if STARTED is set, and if it is, assumes
597 * the request is active. But if we race with completion, then
598 * we both flags will get cleared. So check here again, and ignore
599 * a timeout event with a request that isn't active.
600 */
46f92d42
CH
601 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
602 return;
87ee7b11 603
46f92d42 604 if (ops->timeout)
0152fb6b 605 ret = ops->timeout(req, reserved);
46f92d42
CH
606
607 switch (ret) {
608 case BLK_EH_HANDLED:
609 __blk_mq_complete_request(req);
610 break;
611 case BLK_EH_RESET_TIMER:
612 blk_add_timer(req);
613 blk_clear_rq_complete(req);
614 break;
615 case BLK_EH_NOT_HANDLED:
616 break;
617 default:
618 printk(KERN_ERR "block: bad eh return: %d\n", ret);
619 break;
620 }
87ee7b11 621}
5b3f25fc 622
81481eb4
CH
623static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
624 struct request *rq, void *priv, bool reserved)
625{
626 struct blk_mq_timeout_data *data = priv;
87ee7b11 627
eb130dbf
KB
628 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
629 /*
630 * If a request wasn't started before the queue was
631 * marked dying, kill it here or it'll go unnoticed.
632 */
633 if (unlikely(blk_queue_dying(rq->q))) {
634 rq->errors = -EIO;
635 blk_mq_complete_request(rq);
636 }
46f92d42 637 return;
eb130dbf 638 }
5b3f25fc
KB
639 if (rq->cmd_flags & REQ_NO_TIMEOUT)
640 return;
87ee7b11 641
46f92d42
CH
642 if (time_after_eq(jiffies, rq->deadline)) {
643 if (!blk_mark_rq_complete(rq))
0152fb6b 644 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
645 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
646 data->next = rq->deadline;
647 data->next_set = 1;
648 }
87ee7b11
JA
649}
650
81481eb4 651static void blk_mq_rq_timer(unsigned long priv)
320ae51f 652{
81481eb4
CH
653 struct request_queue *q = (struct request_queue *)priv;
654 struct blk_mq_timeout_data data = {
655 .next = 0,
656 .next_set = 0,
657 };
320ae51f 658 struct blk_mq_hw_ctx *hctx;
81481eb4 659 int i;
320ae51f 660
484b4061
JA
661 queue_for_each_hw_ctx(q, hctx, i) {
662 /*
663 * If not software queues are currently mapped to this
664 * hardware queue, there's nothing to check
665 */
19c66e59 666 if (!blk_mq_hw_queue_mapped(hctx))
484b4061
JA
667 continue;
668
81481eb4 669 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
484b4061 670 }
320ae51f 671
81481eb4
CH
672 if (data.next_set) {
673 data.next = blk_rq_timeout(round_jiffies_up(data.next));
674 mod_timer(&q->timeout, data.next);
0d2602ca
JA
675 } else {
676 queue_for_each_hw_ctx(q, hctx, i)
677 blk_mq_tag_idle(hctx);
678 }
320ae51f
JA
679}
680
681/*
682 * Reverse check our software queue for entries that we could potentially
683 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
684 * too much time checking for merges.
685 */
686static bool blk_mq_attempt_merge(struct request_queue *q,
687 struct blk_mq_ctx *ctx, struct bio *bio)
688{
689 struct request *rq;
690 int checked = 8;
691
692 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
693 int el_ret;
694
695 if (!checked--)
696 break;
697
698 if (!blk_rq_merge_ok(rq, bio))
699 continue;
700
701 el_ret = blk_try_merge(rq, bio);
702 if (el_ret == ELEVATOR_BACK_MERGE) {
703 if (bio_attempt_back_merge(q, rq, bio)) {
704 ctx->rq_merged++;
705 return true;
706 }
707 break;
708 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
709 if (bio_attempt_front_merge(q, rq, bio)) {
710 ctx->rq_merged++;
711 return true;
712 }
713 break;
714 }
715 }
716
717 return false;
718}
719
1429d7c9
JA
720/*
721 * Process software queues that have been marked busy, splicing them
722 * to the for-dispatch
723 */
724static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
725{
726 struct blk_mq_ctx *ctx;
727 int i;
728
569fd0ce 729 for (i = 0; i < hctx->ctx_map.size; i++) {
1429d7c9
JA
730 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
731 unsigned int off, bit;
732
733 if (!bm->word)
734 continue;
735
736 bit = 0;
737 off = i * hctx->ctx_map.bits_per_word;
738 do {
739 bit = find_next_bit(&bm->word, bm->depth, bit);
740 if (bit >= bm->depth)
741 break;
742
743 ctx = hctx->ctxs[bit + off];
744 clear_bit(bit, &bm->word);
745 spin_lock(&ctx->lock);
746 list_splice_tail_init(&ctx->rq_list, list);
747 spin_unlock(&ctx->lock);
748
749 bit++;
750 } while (1);
751 }
752}
753
320ae51f
JA
754/*
755 * Run this hardware queue, pulling any software queues mapped to it in.
756 * Note that this function currently has various problems around ordering
757 * of IO. In particular, we'd like FIFO behaviour on handling existing
758 * items on the hctx->dispatch list. Ignore that for now.
759 */
760static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
761{
762 struct request_queue *q = hctx->queue;
320ae51f
JA
763 struct request *rq;
764 LIST_HEAD(rq_list);
74c45052
JA
765 LIST_HEAD(driver_list);
766 struct list_head *dptr;
1429d7c9 767 int queued;
320ae51f 768
fd1270d5 769 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 770
5d12f905 771 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
772 return;
773
774 hctx->run++;
775
776 /*
777 * Touch any software queue that has pending entries.
778 */
1429d7c9 779 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
780
781 /*
782 * If we have previous entries on our dispatch list, grab them
783 * and stuff them at the front for more fair dispatch.
784 */
785 if (!list_empty_careful(&hctx->dispatch)) {
786 spin_lock(&hctx->lock);
787 if (!list_empty(&hctx->dispatch))
788 list_splice_init(&hctx->dispatch, &rq_list);
789 spin_unlock(&hctx->lock);
790 }
791
74c45052
JA
792 /*
793 * Start off with dptr being NULL, so we start the first request
794 * immediately, even if we have more pending.
795 */
796 dptr = NULL;
797
320ae51f
JA
798 /*
799 * Now process all the entries, sending them to the driver.
800 */
1429d7c9 801 queued = 0;
320ae51f 802 while (!list_empty(&rq_list)) {
74c45052 803 struct blk_mq_queue_data bd;
320ae51f
JA
804 int ret;
805
806 rq = list_first_entry(&rq_list, struct request, queuelist);
807 list_del_init(&rq->queuelist);
320ae51f 808
74c45052
JA
809 bd.rq = rq;
810 bd.list = dptr;
811 bd.last = list_empty(&rq_list);
812
813 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
814 switch (ret) {
815 case BLK_MQ_RQ_QUEUE_OK:
816 queued++;
817 continue;
818 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 819 list_add(&rq->queuelist, &rq_list);
ed0791b2 820 __blk_mq_requeue_request(rq);
320ae51f
JA
821 break;
822 default:
823 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 824 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 825 rq->errors = -EIO;
c8a446ad 826 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
827 break;
828 }
829
830 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
831 break;
74c45052
JA
832
833 /*
834 * We've done the first request. If we have more than 1
835 * left in the list, set dptr to defer issue.
836 */
837 if (!dptr && rq_list.next != rq_list.prev)
838 dptr = &driver_list;
320ae51f
JA
839 }
840
841 if (!queued)
842 hctx->dispatched[0]++;
843 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
844 hctx->dispatched[ilog2(queued) + 1]++;
845
846 /*
847 * Any items that need requeuing? Stuff them into hctx->dispatch,
848 * that is where we will continue on next queue run.
849 */
850 if (!list_empty(&rq_list)) {
851 spin_lock(&hctx->lock);
852 list_splice(&rq_list, &hctx->dispatch);
853 spin_unlock(&hctx->lock);
854 }
855}
856
506e931f
JA
857/*
858 * It'd be great if the workqueue API had a way to pass
859 * in a mask and had some smarts for more clever placement.
860 * For now we just round-robin here, switching for every
861 * BLK_MQ_CPU_WORK_BATCH queued items.
862 */
863static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
864{
b657d7e6
CH
865 if (hctx->queue->nr_hw_queues == 1)
866 return WORK_CPU_UNBOUND;
506e931f
JA
867
868 if (--hctx->next_cpu_batch <= 0) {
b657d7e6 869 int cpu = hctx->next_cpu, next_cpu;
506e931f
JA
870
871 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
872 if (next_cpu >= nr_cpu_ids)
873 next_cpu = cpumask_first(hctx->cpumask);
874
875 hctx->next_cpu = next_cpu;
876 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
b657d7e6
CH
877
878 return cpu;
506e931f
JA
879 }
880
b657d7e6 881 return hctx->next_cpu;
506e931f
JA
882}
883
320ae51f
JA
884void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
885{
19c66e59
ML
886 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
887 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
888 return;
889
398205b8 890 if (!async) {
2a90d4aa
PB
891 int cpu = get_cpu();
892 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 893 __blk_mq_run_hw_queue(hctx);
2a90d4aa 894 put_cpu();
398205b8
PB
895 return;
896 }
e4043dcf 897
2a90d4aa 898 put_cpu();
e4043dcf 899 }
398205b8 900
b657d7e6
CH
901 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
902 &hctx->run_work, 0);
320ae51f
JA
903}
904
b94ec296 905void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
906{
907 struct blk_mq_hw_ctx *hctx;
908 int i;
909
910 queue_for_each_hw_ctx(q, hctx, i) {
911 if ((!blk_mq_hctx_has_pending(hctx) &&
912 list_empty_careful(&hctx->dispatch)) ||
5d12f905 913 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
914 continue;
915
b94ec296 916 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
917 }
918}
b94ec296 919EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f
JA
920
921void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
922{
70f4db63
CH
923 cancel_delayed_work(&hctx->run_work);
924 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
925 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
926}
927EXPORT_SYMBOL(blk_mq_stop_hw_queue);
928
280d45f6
CH
929void blk_mq_stop_hw_queues(struct request_queue *q)
930{
931 struct blk_mq_hw_ctx *hctx;
932 int i;
933
934 queue_for_each_hw_ctx(q, hctx, i)
935 blk_mq_stop_hw_queue(hctx);
936}
937EXPORT_SYMBOL(blk_mq_stop_hw_queues);
938
320ae51f
JA
939void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
940{
941 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 942
0ffbce80 943 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
944}
945EXPORT_SYMBOL(blk_mq_start_hw_queue);
946
2f268556
CH
947void blk_mq_start_hw_queues(struct request_queue *q)
948{
949 struct blk_mq_hw_ctx *hctx;
950 int i;
951
952 queue_for_each_hw_ctx(q, hctx, i)
953 blk_mq_start_hw_queue(hctx);
954}
955EXPORT_SYMBOL(blk_mq_start_hw_queues);
956
1b4a3258 957void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
958{
959 struct blk_mq_hw_ctx *hctx;
960 int i;
961
962 queue_for_each_hw_ctx(q, hctx, i) {
963 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
964 continue;
965
966 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1b4a3258 967 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
968 }
969}
970EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
971
70f4db63 972static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
973{
974 struct blk_mq_hw_ctx *hctx;
975
70f4db63 976 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 977
320ae51f
JA
978 __blk_mq_run_hw_queue(hctx);
979}
980
70f4db63
CH
981static void blk_mq_delay_work_fn(struct work_struct *work)
982{
983 struct blk_mq_hw_ctx *hctx;
984
985 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
986
987 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
988 __blk_mq_run_hw_queue(hctx);
989}
990
991void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
992{
19c66e59
ML
993 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
994 return;
70f4db63 995
b657d7e6
CH
996 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
997 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
998}
999EXPORT_SYMBOL(blk_mq_delay_queue);
1000
320ae51f 1001static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 1002 struct request *rq, bool at_head)
320ae51f
JA
1003{
1004 struct blk_mq_ctx *ctx = rq->mq_ctx;
1005
01b983c9
JA
1006 trace_block_rq_insert(hctx->queue, rq);
1007
72a0a36e
CH
1008 if (at_head)
1009 list_add(&rq->queuelist, &ctx->rq_list);
1010 else
1011 list_add_tail(&rq->queuelist, &ctx->rq_list);
4bb659b1 1012
320ae51f 1013 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1014}
1015
eeabc850
CH
1016void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1017 bool async)
320ae51f 1018{
eeabc850 1019 struct request_queue *q = rq->q;
320ae51f 1020 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
1021 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1022
1023 current_ctx = blk_mq_get_ctx(q);
1024 if (!cpu_online(ctx->cpu))
1025 rq->mq_ctx = ctx = current_ctx;
320ae51f 1026
320ae51f
JA
1027 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1028
a57a178a
CH
1029 spin_lock(&ctx->lock);
1030 __blk_mq_insert_request(hctx, rq, at_head);
1031 spin_unlock(&ctx->lock);
320ae51f 1032
320ae51f
JA
1033 if (run_queue)
1034 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
1035
1036 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1037}
1038
1039static void blk_mq_insert_requests(struct request_queue *q,
1040 struct blk_mq_ctx *ctx,
1041 struct list_head *list,
1042 int depth,
1043 bool from_schedule)
1044
1045{
1046 struct blk_mq_hw_ctx *hctx;
1047 struct blk_mq_ctx *current_ctx;
1048
1049 trace_block_unplug(q, depth, !from_schedule);
1050
1051 current_ctx = blk_mq_get_ctx(q);
1052
1053 if (!cpu_online(ctx->cpu))
1054 ctx = current_ctx;
1055 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1056
1057 /*
1058 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1059 * offline now
1060 */
1061 spin_lock(&ctx->lock);
1062 while (!list_empty(list)) {
1063 struct request *rq;
1064
1065 rq = list_first_entry(list, struct request, queuelist);
1066 list_del_init(&rq->queuelist);
1067 rq->mq_ctx = ctx;
72a0a36e 1068 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
1069 }
1070 spin_unlock(&ctx->lock);
1071
320ae51f 1072 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 1073 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1074}
1075
1076static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1077{
1078 struct request *rqa = container_of(a, struct request, queuelist);
1079 struct request *rqb = container_of(b, struct request, queuelist);
1080
1081 return !(rqa->mq_ctx < rqb->mq_ctx ||
1082 (rqa->mq_ctx == rqb->mq_ctx &&
1083 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1084}
1085
1086void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1087{
1088 struct blk_mq_ctx *this_ctx;
1089 struct request_queue *this_q;
1090 struct request *rq;
1091 LIST_HEAD(list);
1092 LIST_HEAD(ctx_list);
1093 unsigned int depth;
1094
1095 list_splice_init(&plug->mq_list, &list);
1096
1097 list_sort(NULL, &list, plug_ctx_cmp);
1098
1099 this_q = NULL;
1100 this_ctx = NULL;
1101 depth = 0;
1102
1103 while (!list_empty(&list)) {
1104 rq = list_entry_rq(list.next);
1105 list_del_init(&rq->queuelist);
1106 BUG_ON(!rq->q);
1107 if (rq->mq_ctx != this_ctx) {
1108 if (this_ctx) {
1109 blk_mq_insert_requests(this_q, this_ctx,
1110 &ctx_list, depth,
1111 from_schedule);
1112 }
1113
1114 this_ctx = rq->mq_ctx;
1115 this_q = rq->q;
1116 depth = 0;
1117 }
1118
1119 depth++;
1120 list_add_tail(&rq->queuelist, &ctx_list);
1121 }
1122
1123 /*
1124 * If 'this_ctx' is set, we know we have entries to complete
1125 * on 'ctx_list'. Do those.
1126 */
1127 if (this_ctx) {
1128 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1129 from_schedule);
1130 }
1131}
1132
1133static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1134{
1135 init_request_from_bio(rq, bio);
4b570521 1136
3ee32372 1137 if (blk_do_io_stat(rq))
4b570521 1138 blk_account_io_start(rq, 1);
320ae51f
JA
1139}
1140
274a5843
JA
1141static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1142{
1143 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1144 !blk_queue_nomerges(hctx->queue);
1145}
1146
07068d5b
JA
1147static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1148 struct blk_mq_ctx *ctx,
1149 struct request *rq, struct bio *bio)
320ae51f 1150{
274a5843 1151 if (!hctx_allow_merges(hctx)) {
07068d5b
JA
1152 blk_mq_bio_to_request(rq, bio);
1153 spin_lock(&ctx->lock);
1154insert_rq:
1155 __blk_mq_insert_request(hctx, rq, false);
1156 spin_unlock(&ctx->lock);
1157 return false;
1158 } else {
274a5843
JA
1159 struct request_queue *q = hctx->queue;
1160
07068d5b
JA
1161 spin_lock(&ctx->lock);
1162 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1163 blk_mq_bio_to_request(rq, bio);
1164 goto insert_rq;
1165 }
320ae51f 1166
07068d5b
JA
1167 spin_unlock(&ctx->lock);
1168 __blk_mq_free_request(hctx, ctx, rq);
1169 return true;
14ec77f3 1170 }
07068d5b 1171}
14ec77f3 1172
07068d5b
JA
1173struct blk_map_ctx {
1174 struct blk_mq_hw_ctx *hctx;
1175 struct blk_mq_ctx *ctx;
1176};
1177
1178static struct request *blk_mq_map_request(struct request_queue *q,
1179 struct bio *bio,
1180 struct blk_map_ctx *data)
1181{
1182 struct blk_mq_hw_ctx *hctx;
1183 struct blk_mq_ctx *ctx;
1184 struct request *rq;
1185 int rw = bio_data_dir(bio);
cb96a42c 1186 struct blk_mq_alloc_data alloc_data;
320ae51f 1187
bfd343aa 1188 if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) {
320ae51f 1189 bio_endio(bio, -EIO);
07068d5b 1190 return NULL;
320ae51f
JA
1191 }
1192
1193 ctx = blk_mq_get_ctx(q);
1194 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1195
07068d5b 1196 if (rw_is_sync(bio->bi_rw))
27fbf4e8 1197 rw |= REQ_SYNC;
07068d5b 1198
320ae51f 1199 trace_block_getrq(q, bio, rw);
cb96a42c
ML
1200 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1201 hctx);
1202 rq = __blk_mq_alloc_request(&alloc_data, rw);
5dee8577 1203 if (unlikely(!rq)) {
793597a6 1204 __blk_mq_run_hw_queue(hctx);
320ae51f
JA
1205 blk_mq_put_ctx(ctx);
1206 trace_block_sleeprq(q, bio, rw);
793597a6
CH
1207
1208 ctx = blk_mq_get_ctx(q);
320ae51f 1209 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
1210 blk_mq_set_alloc_data(&alloc_data, q,
1211 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1212 rq = __blk_mq_alloc_request(&alloc_data, rw);
1213 ctx = alloc_data.ctx;
1214 hctx = alloc_data.hctx;
320ae51f
JA
1215 }
1216
1217 hctx->queued++;
07068d5b
JA
1218 data->hctx = hctx;
1219 data->ctx = ctx;
1220 return rq;
1221}
1222
f984df1f
SL
1223static int blk_mq_direct_issue_request(struct request *rq)
1224{
1225 int ret;
1226 struct request_queue *q = rq->q;
1227 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1228 rq->mq_ctx->cpu);
1229 struct blk_mq_queue_data bd = {
1230 .rq = rq,
1231 .list = NULL,
1232 .last = 1
1233 };
1234
1235 /*
1236 * For OK queue, we are done. For error, kill it. Any other
1237 * error (busy), just add it to our list as we previously
1238 * would have done
1239 */
1240 ret = q->mq_ops->queue_rq(hctx, &bd);
1241 if (ret == BLK_MQ_RQ_QUEUE_OK)
1242 return 0;
1243 else {
1244 __blk_mq_requeue_request(rq);
1245
1246 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1247 rq->errors = -EIO;
1248 blk_mq_end_request(rq, rq->errors);
1249 return 0;
1250 }
1251 return -1;
1252 }
1253}
1254
07068d5b
JA
1255/*
1256 * Multiple hardware queue variant. This will not use per-process plugs,
1257 * but will attempt to bypass the hctx queueing if we can go straight to
1258 * hardware for SYNC IO.
1259 */
1260static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1261{
1262 const int is_sync = rw_is_sync(bio->bi_rw);
1263 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1264 struct blk_map_ctx data;
1265 struct request *rq;
f984df1f
SL
1266 unsigned int request_count = 0;
1267 struct blk_plug *plug;
5b3f341f 1268 struct request *same_queue_rq = NULL;
07068d5b
JA
1269
1270 blk_queue_bounce(q, &bio);
1271
1272 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1273 bio_endio(bio, -EIO);
1274 return;
1275 }
1276
f984df1f 1277 if (!is_flush_fua && !blk_queue_nomerges(q) &&
5b3f341f 1278 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
f984df1f
SL
1279 return;
1280
07068d5b
JA
1281 rq = blk_mq_map_request(q, bio, &data);
1282 if (unlikely(!rq))
1283 return;
1284
1285 if (unlikely(is_flush_fua)) {
1286 blk_mq_bio_to_request(rq, bio);
1287 blk_insert_flush(rq);
1288 goto run_queue;
1289 }
1290
f984df1f 1291 plug = current->plug;
e167dfb5
JA
1292 /*
1293 * If the driver supports defer issued based on 'last', then
1294 * queue it up like normal since we can potentially save some
1295 * CPU this way.
1296 */
f984df1f
SL
1297 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1298 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1299 struct request *old_rq = NULL;
07068d5b
JA
1300
1301 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1302
1303 /*
f984df1f
SL
1304 * we do limited pluging. If bio can be merged, do merge.
1305 * Otherwise the existing request in the plug list will be
1306 * issued. So the plug list will have one request at most
07068d5b 1307 */
f984df1f 1308 if (plug) {
5b3f341f
SL
1309 /*
1310 * The plug list might get flushed before this. If that
1311 * happens, same_queue_rq is invalid and plug list is empty
1312 **/
1313 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1314 old_rq = same_queue_rq;
f984df1f 1315 list_del_init(&old_rq->queuelist);
07068d5b 1316 }
f984df1f
SL
1317 list_add_tail(&rq->queuelist, &plug->mq_list);
1318 } else /* is_sync */
1319 old_rq = rq;
1320 blk_mq_put_ctx(data.ctx);
1321 if (!old_rq)
239ad215 1322 return;
f984df1f
SL
1323 if (!blk_mq_direct_issue_request(old_rq))
1324 return;
1325 blk_mq_insert_request(old_rq, false, true, true);
1326 return;
07068d5b
JA
1327 }
1328
1329 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1330 /*
1331 * For a SYNC request, send it to the hardware immediately. For
1332 * an ASYNC request, just ensure that we run it later on. The
1333 * latter allows for merging opportunities and more efficient
1334 * dispatching.
1335 */
1336run_queue:
1337 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1338 }
07068d5b
JA
1339 blk_mq_put_ctx(data.ctx);
1340}
1341
1342/*
1343 * Single hardware queue variant. This will attempt to use any per-process
1344 * plug for merging and IO deferral.
1345 */
1346static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1347{
1348 const int is_sync = rw_is_sync(bio->bi_rw);
1349 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
e6c4438b
JM
1350 struct blk_plug *plug;
1351 unsigned int request_count = 0;
07068d5b
JA
1352 struct blk_map_ctx data;
1353 struct request *rq;
1354
07068d5b
JA
1355 blk_queue_bounce(q, &bio);
1356
1357 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1358 bio_endio(bio, -EIO);
1359 return;
1360 }
1361
e6c4438b 1362 if (!is_flush_fua && !blk_queue_nomerges(q) &&
5b3f341f 1363 blk_attempt_plug_merge(q, bio, &request_count, NULL))
07068d5b
JA
1364 return;
1365
1366 rq = blk_mq_map_request(q, bio, &data);
ff87bcec
JA
1367 if (unlikely(!rq))
1368 return;
320ae51f
JA
1369
1370 if (unlikely(is_flush_fua)) {
1371 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1372 blk_insert_flush(rq);
1373 goto run_queue;
1374 }
1375
1376 /*
1377 * A task plug currently exists. Since this is completely lockless,
1378 * utilize that to temporarily store requests until the task is
1379 * either done or scheduled away.
1380 */
e6c4438b
JM
1381 plug = current->plug;
1382 if (plug) {
1383 blk_mq_bio_to_request(rq, bio);
1384 if (list_empty(&plug->mq_list))
1385 trace_block_plug(q);
1386 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1387 blk_flush_plug_list(plug, false);
1388 trace_block_plug(q);
320ae51f 1389 }
e6c4438b
JM
1390 list_add_tail(&rq->queuelist, &plug->mq_list);
1391 blk_mq_put_ctx(data.ctx);
1392 return;
320ae51f
JA
1393 }
1394
07068d5b
JA
1395 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1396 /*
1397 * For a SYNC request, send it to the hardware immediately. For
1398 * an ASYNC request, just ensure that we run it later on. The
1399 * latter allows for merging opportunities and more efficient
1400 * dispatching.
1401 */
1402run_queue:
1403 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1404 }
1405
07068d5b 1406 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1407}
1408
1409/*
1410 * Default mapping to a software queue, since we use one per CPU.
1411 */
1412struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1413{
1414 return q->queue_hw_ctx[q->mq_map[cpu]];
1415}
1416EXPORT_SYMBOL(blk_mq_map_queue);
1417
24d2f903
CH
1418static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1419 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1420{
e9b267d9 1421 struct page *page;
320ae51f 1422
24d2f903 1423 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1424 int i;
320ae51f 1425
24d2f903
CH
1426 for (i = 0; i < tags->nr_tags; i++) {
1427 if (!tags->rqs[i])
e9b267d9 1428 continue;
24d2f903
CH
1429 set->ops->exit_request(set->driver_data, tags->rqs[i],
1430 hctx_idx, i);
a5164405 1431 tags->rqs[i] = NULL;
e9b267d9 1432 }
320ae51f 1433 }
320ae51f 1434
24d2f903
CH
1435 while (!list_empty(&tags->page_list)) {
1436 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1437 list_del_init(&page->lru);
320ae51f
JA
1438 __free_pages(page, page->private);
1439 }
1440
24d2f903 1441 kfree(tags->rqs);
320ae51f 1442
24d2f903 1443 blk_mq_free_tags(tags);
320ae51f
JA
1444}
1445
1446static size_t order_to_size(unsigned int order)
1447{
4ca08500 1448 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1449}
1450
24d2f903
CH
1451static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1452 unsigned int hctx_idx)
320ae51f 1453{
24d2f903 1454 struct blk_mq_tags *tags;
320ae51f
JA
1455 unsigned int i, j, entries_per_page, max_order = 4;
1456 size_t rq_size, left;
1457
24d2f903 1458 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
24391c0d
SL
1459 set->numa_node,
1460 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1461 if (!tags)
1462 return NULL;
320ae51f 1463
24d2f903
CH
1464 INIT_LIST_HEAD(&tags->page_list);
1465
a5164405
JA
1466 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1467 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1468 set->numa_node);
24d2f903
CH
1469 if (!tags->rqs) {
1470 blk_mq_free_tags(tags);
1471 return NULL;
1472 }
320ae51f
JA
1473
1474 /*
1475 * rq_size is the size of the request plus driver payload, rounded
1476 * to the cacheline size
1477 */
24d2f903 1478 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1479 cache_line_size());
24d2f903 1480 left = rq_size * set->queue_depth;
320ae51f 1481
24d2f903 1482 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1483 int this_order = max_order;
1484 struct page *page;
1485 int to_do;
1486 void *p;
1487
1488 while (left < order_to_size(this_order - 1) && this_order)
1489 this_order--;
1490
1491 do {
a5164405 1492 page = alloc_pages_node(set->numa_node,
ac211175 1493 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1494 this_order);
320ae51f
JA
1495 if (page)
1496 break;
1497 if (!this_order--)
1498 break;
1499 if (order_to_size(this_order) < rq_size)
1500 break;
1501 } while (1);
1502
1503 if (!page)
24d2f903 1504 goto fail;
320ae51f
JA
1505
1506 page->private = this_order;
24d2f903 1507 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1508
1509 p = page_address(page);
1510 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1511 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1512 left -= to_do * rq_size;
1513 for (j = 0; j < to_do; j++) {
24d2f903
CH
1514 tags->rqs[i] = p;
1515 if (set->ops->init_request) {
1516 if (set->ops->init_request(set->driver_data,
1517 tags->rqs[i], hctx_idx, i,
a5164405
JA
1518 set->numa_node)) {
1519 tags->rqs[i] = NULL;
24d2f903 1520 goto fail;
a5164405 1521 }
e9b267d9
CH
1522 }
1523
320ae51f
JA
1524 p += rq_size;
1525 i++;
1526 }
1527 }
1528
24d2f903 1529 return tags;
320ae51f 1530
24d2f903 1531fail:
24d2f903
CH
1532 blk_mq_free_rq_map(set, tags, hctx_idx);
1533 return NULL;
320ae51f
JA
1534}
1535
1429d7c9
JA
1536static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1537{
1538 kfree(bitmap->map);
1539}
1540
1541static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1542{
1543 unsigned int bpw = 8, total, num_maps, i;
1544
1545 bitmap->bits_per_word = bpw;
1546
1547 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1548 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1549 GFP_KERNEL, node);
1550 if (!bitmap->map)
1551 return -ENOMEM;
1552
1429d7c9
JA
1553 total = nr_cpu_ids;
1554 for (i = 0; i < num_maps; i++) {
1555 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1556 total -= bitmap->map[i].depth;
1557 }
1558
1559 return 0;
1560}
1561
484b4061
JA
1562static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1563{
1564 struct request_queue *q = hctx->queue;
1565 struct blk_mq_ctx *ctx;
1566 LIST_HEAD(tmp);
1567
1568 /*
1569 * Move ctx entries to new CPU, if this one is going away.
1570 */
1571 ctx = __blk_mq_get_ctx(q, cpu);
1572
1573 spin_lock(&ctx->lock);
1574 if (!list_empty(&ctx->rq_list)) {
1575 list_splice_init(&ctx->rq_list, &tmp);
1576 blk_mq_hctx_clear_pending(hctx, ctx);
1577 }
1578 spin_unlock(&ctx->lock);
1579
1580 if (list_empty(&tmp))
1581 return NOTIFY_OK;
1582
1583 ctx = blk_mq_get_ctx(q);
1584 spin_lock(&ctx->lock);
1585
1586 while (!list_empty(&tmp)) {
1587 struct request *rq;
1588
1589 rq = list_first_entry(&tmp, struct request, queuelist);
1590 rq->mq_ctx = ctx;
1591 list_move_tail(&rq->queuelist, &ctx->rq_list);
1592 }
1593
1594 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1595 blk_mq_hctx_mark_pending(hctx, ctx);
1596
1597 spin_unlock(&ctx->lock);
1598
1599 blk_mq_run_hw_queue(hctx, true);
1600 blk_mq_put_ctx(ctx);
1601 return NOTIFY_OK;
1602}
1603
1604static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1605{
1606 struct request_queue *q = hctx->queue;
1607 struct blk_mq_tag_set *set = q->tag_set;
1608
1609 if (set->tags[hctx->queue_num])
1610 return NOTIFY_OK;
1611
1612 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1613 if (!set->tags[hctx->queue_num])
1614 return NOTIFY_STOP;
1615
1616 hctx->tags = set->tags[hctx->queue_num];
1617 return NOTIFY_OK;
1618}
1619
1620static int blk_mq_hctx_notify(void *data, unsigned long action,
1621 unsigned int cpu)
1622{
1623 struct blk_mq_hw_ctx *hctx = data;
1624
1625 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1626 return blk_mq_hctx_cpu_offline(hctx, cpu);
1627 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1628 return blk_mq_hctx_cpu_online(hctx, cpu);
1629
1630 return NOTIFY_OK;
1631}
1632
08e98fc6
ML
1633static void blk_mq_exit_hctx(struct request_queue *q,
1634 struct blk_mq_tag_set *set,
1635 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1636{
f70ced09
ML
1637 unsigned flush_start_tag = set->queue_depth;
1638
08e98fc6
ML
1639 blk_mq_tag_idle(hctx);
1640
f70ced09
ML
1641 if (set->ops->exit_request)
1642 set->ops->exit_request(set->driver_data,
1643 hctx->fq->flush_rq, hctx_idx,
1644 flush_start_tag + hctx_idx);
1645
08e98fc6
ML
1646 if (set->ops->exit_hctx)
1647 set->ops->exit_hctx(hctx, hctx_idx);
1648
1649 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
f70ced09 1650 blk_free_flush_queue(hctx->fq);
08e98fc6
ML
1651 kfree(hctx->ctxs);
1652 blk_mq_free_bitmap(&hctx->ctx_map);
1653}
1654
624dbe47
ML
1655static void blk_mq_exit_hw_queues(struct request_queue *q,
1656 struct blk_mq_tag_set *set, int nr_queue)
1657{
1658 struct blk_mq_hw_ctx *hctx;
1659 unsigned int i;
1660
1661 queue_for_each_hw_ctx(q, hctx, i) {
1662 if (i == nr_queue)
1663 break;
08e98fc6 1664 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1665 }
624dbe47
ML
1666}
1667
1668static void blk_mq_free_hw_queues(struct request_queue *q,
1669 struct blk_mq_tag_set *set)
1670{
1671 struct blk_mq_hw_ctx *hctx;
1672 unsigned int i;
1673
e09aae7e 1674 queue_for_each_hw_ctx(q, hctx, i)
624dbe47 1675 free_cpumask_var(hctx->cpumask);
624dbe47
ML
1676}
1677
08e98fc6
ML
1678static int blk_mq_init_hctx(struct request_queue *q,
1679 struct blk_mq_tag_set *set,
1680 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1681{
08e98fc6 1682 int node;
f70ced09 1683 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1684
1685 node = hctx->numa_node;
1686 if (node == NUMA_NO_NODE)
1687 node = hctx->numa_node = set->numa_node;
1688
1689 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1690 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1691 spin_lock_init(&hctx->lock);
1692 INIT_LIST_HEAD(&hctx->dispatch);
1693 hctx->queue = q;
1694 hctx->queue_num = hctx_idx;
1695 hctx->flags = set->flags;
08e98fc6
ML
1696
1697 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1698 blk_mq_hctx_notify, hctx);
1699 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1700
1701 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1702
1703 /*
08e98fc6
ML
1704 * Allocate space for all possible cpus to avoid allocation at
1705 * runtime
320ae51f 1706 */
08e98fc6
ML
1707 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1708 GFP_KERNEL, node);
1709 if (!hctx->ctxs)
1710 goto unregister_cpu_notifier;
320ae51f 1711
08e98fc6
ML
1712 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1713 goto free_ctxs;
320ae51f 1714
08e98fc6 1715 hctx->nr_ctx = 0;
320ae51f 1716
08e98fc6
ML
1717 if (set->ops->init_hctx &&
1718 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1719 goto free_bitmap;
320ae51f 1720
f70ced09
ML
1721 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1722 if (!hctx->fq)
1723 goto exit_hctx;
320ae51f 1724
f70ced09
ML
1725 if (set->ops->init_request &&
1726 set->ops->init_request(set->driver_data,
1727 hctx->fq->flush_rq, hctx_idx,
1728 flush_start_tag + hctx_idx, node))
1729 goto free_fq;
320ae51f 1730
08e98fc6 1731 return 0;
320ae51f 1732
f70ced09
ML
1733 free_fq:
1734 kfree(hctx->fq);
1735 exit_hctx:
1736 if (set->ops->exit_hctx)
1737 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6
ML
1738 free_bitmap:
1739 blk_mq_free_bitmap(&hctx->ctx_map);
1740 free_ctxs:
1741 kfree(hctx->ctxs);
1742 unregister_cpu_notifier:
1743 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
320ae51f 1744
08e98fc6
ML
1745 return -1;
1746}
320ae51f 1747
08e98fc6
ML
1748static int blk_mq_init_hw_queues(struct request_queue *q,
1749 struct blk_mq_tag_set *set)
1750{
1751 struct blk_mq_hw_ctx *hctx;
1752 unsigned int i;
320ae51f 1753
08e98fc6
ML
1754 /*
1755 * Initialize hardware queues
1756 */
1757 queue_for_each_hw_ctx(q, hctx, i) {
1758 if (blk_mq_init_hctx(q, set, hctx, i))
320ae51f
JA
1759 break;
1760 }
1761
1762 if (i == q->nr_hw_queues)
1763 return 0;
1764
1765 /*
1766 * Init failed
1767 */
624dbe47 1768 blk_mq_exit_hw_queues(q, set, i);
320ae51f
JA
1769
1770 return 1;
1771}
1772
1773static void blk_mq_init_cpu_queues(struct request_queue *q,
1774 unsigned int nr_hw_queues)
1775{
1776 unsigned int i;
1777
1778 for_each_possible_cpu(i) {
1779 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1780 struct blk_mq_hw_ctx *hctx;
1781
1782 memset(__ctx, 0, sizeof(*__ctx));
1783 __ctx->cpu = i;
1784 spin_lock_init(&__ctx->lock);
1785 INIT_LIST_HEAD(&__ctx->rq_list);
1786 __ctx->queue = q;
1787
1788 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1789 if (!cpu_online(i))
1790 continue;
1791
e4043dcf 1792 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1793
320ae51f
JA
1794 /*
1795 * Set local node, IFF we have more than one hw queue. If
1796 * not, we remain on the home node of the device
1797 */
1798 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1799 hctx->numa_node = cpu_to_node(i);
1800 }
1801}
1802
1803static void blk_mq_map_swqueue(struct request_queue *q)
1804{
1805 unsigned int i;
1806 struct blk_mq_hw_ctx *hctx;
1807 struct blk_mq_ctx *ctx;
1808
1809 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1810 cpumask_clear(hctx->cpumask);
320ae51f
JA
1811 hctx->nr_ctx = 0;
1812 }
1813
1814 /*
1815 * Map software to hardware queues
1816 */
1817 queue_for_each_ctx(q, ctx, i) {
1818 /* If the cpu isn't online, the cpu is mapped to first hctx */
e4043dcf
JA
1819 if (!cpu_online(i))
1820 continue;
1821
320ae51f 1822 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1823 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1824 ctx->index_hw = hctx->nr_ctx;
1825 hctx->ctxs[hctx->nr_ctx++] = ctx;
1826 }
506e931f
JA
1827
1828 queue_for_each_hw_ctx(q, hctx, i) {
889fa31f
CY
1829 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1830
484b4061 1831 /*
a68aafa5
JA
1832 * If no software queues are mapped to this hardware queue,
1833 * disable it and free the request entries.
484b4061
JA
1834 */
1835 if (!hctx->nr_ctx) {
1836 struct blk_mq_tag_set *set = q->tag_set;
1837
1838 if (set->tags[i]) {
1839 blk_mq_free_rq_map(set, set->tags[i], i);
1840 set->tags[i] = NULL;
1841 hctx->tags = NULL;
1842 }
1843 continue;
1844 }
1845
889fa31f
CY
1846 /*
1847 * Set the map size to the number of mapped software queues.
1848 * This is more accurate and more efficient than looping
1849 * over all possibly mapped software queues.
1850 */
569fd0ce 1851 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
889fa31f 1852
484b4061
JA
1853 /*
1854 * Initialize batch roundrobin counts
1855 */
506e931f
JA
1856 hctx->next_cpu = cpumask_first(hctx->cpumask);
1857 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1858 }
320ae51f
JA
1859}
1860
0d2602ca
JA
1861static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1862{
1863 struct blk_mq_hw_ctx *hctx;
1864 struct request_queue *q;
1865 bool shared;
1866 int i;
1867
1868 if (set->tag_list.next == set->tag_list.prev)
1869 shared = false;
1870 else
1871 shared = true;
1872
1873 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1874 blk_mq_freeze_queue(q);
1875
1876 queue_for_each_hw_ctx(q, hctx, i) {
1877 if (shared)
1878 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1879 else
1880 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1881 }
1882 blk_mq_unfreeze_queue(q);
1883 }
1884}
1885
1886static void blk_mq_del_queue_tag_set(struct request_queue *q)
1887{
1888 struct blk_mq_tag_set *set = q->tag_set;
1889
0d2602ca
JA
1890 mutex_lock(&set->tag_list_lock);
1891 list_del_init(&q->tag_set_list);
1892 blk_mq_update_tag_set_depth(set);
1893 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
1894}
1895
1896static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1897 struct request_queue *q)
1898{
1899 q->tag_set = set;
1900
1901 mutex_lock(&set->tag_list_lock);
1902 list_add_tail(&q->tag_set_list, &set->tag_list);
1903 blk_mq_update_tag_set_depth(set);
1904 mutex_unlock(&set->tag_list_lock);
1905}
1906
e09aae7e
ML
1907/*
1908 * It is the actual release handler for mq, but we do it from
1909 * request queue's release handler for avoiding use-after-free
1910 * and headache because q->mq_kobj shouldn't have been introduced,
1911 * but we can't group ctx/kctx kobj without it.
1912 */
1913void blk_mq_release(struct request_queue *q)
1914{
1915 struct blk_mq_hw_ctx *hctx;
1916 unsigned int i;
1917
1918 /* hctx kobj stays in hctx */
1919 queue_for_each_hw_ctx(q, hctx, i)
1920 kfree(hctx);
1921
1922 kfree(q->queue_hw_ctx);
1923
1924 /* ctx kobj stays in queue_ctx */
1925 free_percpu(q->queue_ctx);
1926}
1927
24d2f903 1928struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
1929{
1930 struct request_queue *uninit_q, *q;
1931
1932 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1933 if (!uninit_q)
1934 return ERR_PTR(-ENOMEM);
1935
1936 q = blk_mq_init_allocated_queue(set, uninit_q);
1937 if (IS_ERR(q))
1938 blk_cleanup_queue(uninit_q);
1939
1940 return q;
1941}
1942EXPORT_SYMBOL(blk_mq_init_queue);
1943
1944struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1945 struct request_queue *q)
320ae51f
JA
1946{
1947 struct blk_mq_hw_ctx **hctxs;
e6cdb092 1948 struct blk_mq_ctx __percpu *ctx;
f14bbe77 1949 unsigned int *map;
320ae51f
JA
1950 int i;
1951
320ae51f
JA
1952 ctx = alloc_percpu(struct blk_mq_ctx);
1953 if (!ctx)
1954 return ERR_PTR(-ENOMEM);
1955
24d2f903
CH
1956 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1957 set->numa_node);
320ae51f
JA
1958
1959 if (!hctxs)
1960 goto err_percpu;
1961
f14bbe77
JA
1962 map = blk_mq_make_queue_map(set);
1963 if (!map)
1964 goto err_map;
1965
24d2f903 1966 for (i = 0; i < set->nr_hw_queues; i++) {
f14bbe77
JA
1967 int node = blk_mq_hw_queue_to_node(map, i);
1968
cdef54dd
CH
1969 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1970 GFP_KERNEL, node);
320ae51f
JA
1971 if (!hctxs[i])
1972 goto err_hctxs;
1973
a86073e4
JA
1974 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1975 node))
e4043dcf
JA
1976 goto err_hctxs;
1977
0d2602ca 1978 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 1979 hctxs[i]->numa_node = node;
320ae51f
JA
1980 hctxs[i]->queue_num = i;
1981 }
1982
17497acb
TH
1983 /*
1984 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1985 * See blk_register_queue() for details.
1986 */
a34375ef 1987 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
17497acb 1988 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
b62c21b7 1989 goto err_hctxs;
3d2936f4 1990
320ae51f 1991 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
c76cbbcf 1992 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30000);
320ae51f
JA
1993
1994 q->nr_queues = nr_cpu_ids;
24d2f903 1995 q->nr_hw_queues = set->nr_hw_queues;
f14bbe77 1996 q->mq_map = map;
320ae51f
JA
1997
1998 q->queue_ctx = ctx;
1999 q->queue_hw_ctx = hctxs;
2000
24d2f903 2001 q->mq_ops = set->ops;
94eddfbe 2002 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2003
05f1dd53
JA
2004 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2005 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2006
1be036e9
CH
2007 q->sg_reserved_size = INT_MAX;
2008
6fca6a61
CH
2009 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2010 INIT_LIST_HEAD(&q->requeue_list);
2011 spin_lock_init(&q->requeue_lock);
2012
07068d5b
JA
2013 if (q->nr_hw_queues > 1)
2014 blk_queue_make_request(q, blk_mq_make_request);
2015 else
2016 blk_queue_make_request(q, blk_sq_make_request);
2017
eba71768
JA
2018 /*
2019 * Do this after blk_queue_make_request() overrides it...
2020 */
2021 q->nr_requests = set->queue_depth;
2022
24d2f903
CH
2023 if (set->ops->complete)
2024 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2025
24d2f903 2026 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2027
24d2f903 2028 if (blk_mq_init_hw_queues(q, set))
b62c21b7 2029 goto err_hctxs;
18741986 2030
320ae51f
JA
2031 mutex_lock(&all_q_mutex);
2032 list_add_tail(&q->all_q_node, &all_q_list);
2033 mutex_unlock(&all_q_mutex);
2034
0d2602ca
JA
2035 blk_mq_add_queue_tag_set(set, q);
2036
484b4061
JA
2037 blk_mq_map_swqueue(q);
2038
320ae51f 2039 return q;
18741986 2040
320ae51f 2041err_hctxs:
f14bbe77 2042 kfree(map);
24d2f903 2043 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
2044 if (!hctxs[i])
2045 break;
e4043dcf 2046 free_cpumask_var(hctxs[i]->cpumask);
cdef54dd 2047 kfree(hctxs[i]);
320ae51f 2048 }
f14bbe77 2049err_map:
320ae51f
JA
2050 kfree(hctxs);
2051err_percpu:
2052 free_percpu(ctx);
2053 return ERR_PTR(-ENOMEM);
2054}
b62c21b7 2055EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2056
2057void blk_mq_free_queue(struct request_queue *q)
2058{
624dbe47 2059 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2060
0d2602ca
JA
2061 blk_mq_del_queue_tag_set(q);
2062
624dbe47
ML
2063 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2064 blk_mq_free_hw_queues(q, set);
320ae51f 2065
add703fd 2066 percpu_ref_exit(&q->mq_usage_counter);
3d2936f4 2067
320ae51f
JA
2068 kfree(q->mq_map);
2069
320ae51f
JA
2070 q->mq_map = NULL;
2071
2072 mutex_lock(&all_q_mutex);
2073 list_del_init(&q->all_q_node);
2074 mutex_unlock(&all_q_mutex);
2075}
320ae51f
JA
2076
2077/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 2078static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f 2079{
4ecd4fef 2080 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2081
67aec14c
JA
2082 blk_mq_sysfs_unregister(q);
2083
320ae51f
JA
2084 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
2085
2086 /*
2087 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2088 * we should change hctx numa_node according to new topology (this
2089 * involves free and re-allocate memory, worthy doing?)
2090 */
2091
2092 blk_mq_map_swqueue(q);
2093
67aec14c 2094 blk_mq_sysfs_register(q);
320ae51f
JA
2095}
2096
f618ef7c
PG
2097static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2098 unsigned long action, void *hcpu)
320ae51f
JA
2099{
2100 struct request_queue *q;
2101
2102 /*
9fccfed8
JA
2103 * Before new mappings are established, hotadded cpu might already
2104 * start handling requests. This doesn't break anything as we map
2105 * offline CPUs to first hardware queue. We will re-init the queue
2106 * below to get optimal settings.
320ae51f
JA
2107 */
2108 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2109 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2110 return NOTIFY_OK;
2111
2112 mutex_lock(&all_q_mutex);
f3af020b
TH
2113
2114 /*
2115 * We need to freeze and reinit all existing queues. Freezing
2116 * involves synchronous wait for an RCU grace period and doing it
2117 * one by one may take a long time. Start freezing all queues in
2118 * one swoop and then wait for the completions so that freezing can
2119 * take place in parallel.
2120 */
2121 list_for_each_entry(q, &all_q_list, all_q_node)
2122 blk_mq_freeze_queue_start(q);
2123 list_for_each_entry(q, &all_q_list, all_q_node)
2124 blk_mq_freeze_queue_wait(q);
2125
320ae51f
JA
2126 list_for_each_entry(q, &all_q_list, all_q_node)
2127 blk_mq_queue_reinit(q);
f3af020b
TH
2128
2129 list_for_each_entry(q, &all_q_list, all_q_node)
2130 blk_mq_unfreeze_queue(q);
2131
320ae51f
JA
2132 mutex_unlock(&all_q_mutex);
2133 return NOTIFY_OK;
2134}
2135
a5164405
JA
2136static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2137{
2138 int i;
2139
2140 for (i = 0; i < set->nr_hw_queues; i++) {
2141 set->tags[i] = blk_mq_init_rq_map(set, i);
2142 if (!set->tags[i])
2143 goto out_unwind;
2144 }
2145
2146 return 0;
2147
2148out_unwind:
2149 while (--i >= 0)
2150 blk_mq_free_rq_map(set, set->tags[i], i);
2151
a5164405
JA
2152 return -ENOMEM;
2153}
2154
2155/*
2156 * Allocate the request maps associated with this tag_set. Note that this
2157 * may reduce the depth asked for, if memory is tight. set->queue_depth
2158 * will be updated to reflect the allocated depth.
2159 */
2160static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2161{
2162 unsigned int depth;
2163 int err;
2164
2165 depth = set->queue_depth;
2166 do {
2167 err = __blk_mq_alloc_rq_maps(set);
2168 if (!err)
2169 break;
2170
2171 set->queue_depth >>= 1;
2172 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2173 err = -ENOMEM;
2174 break;
2175 }
2176 } while (set->queue_depth);
2177
2178 if (!set->queue_depth || err) {
2179 pr_err("blk-mq: failed to allocate request map\n");
2180 return -ENOMEM;
2181 }
2182
2183 if (depth != set->queue_depth)
2184 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2185 depth, set->queue_depth);
2186
2187 return 0;
2188}
2189
a4391c64
JA
2190/*
2191 * Alloc a tag set to be associated with one or more request queues.
2192 * May fail with EINVAL for various error conditions. May adjust the
2193 * requested depth down, if if it too large. In that case, the set
2194 * value will be stored in set->queue_depth.
2195 */
24d2f903
CH
2196int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2197{
205fb5f5
BVA
2198 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2199
24d2f903
CH
2200 if (!set->nr_hw_queues)
2201 return -EINVAL;
a4391c64 2202 if (!set->queue_depth)
24d2f903
CH
2203 return -EINVAL;
2204 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2205 return -EINVAL;
2206
f9018ac9 2207 if (!set->ops->queue_rq || !set->ops->map_queue)
24d2f903
CH
2208 return -EINVAL;
2209
a4391c64
JA
2210 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2211 pr_info("blk-mq: reduced tag depth to %u\n",
2212 BLK_MQ_MAX_DEPTH);
2213 set->queue_depth = BLK_MQ_MAX_DEPTH;
2214 }
24d2f903 2215
6637fadf
SL
2216 /*
2217 * If a crashdump is active, then we are potentially in a very
2218 * memory constrained environment. Limit us to 1 queue and
2219 * 64 tags to prevent using too much memory.
2220 */
2221 if (is_kdump_kernel()) {
2222 set->nr_hw_queues = 1;
2223 set->queue_depth = min(64U, set->queue_depth);
2224 }
2225
48479005
ML
2226 set->tags = kmalloc_node(set->nr_hw_queues *
2227 sizeof(struct blk_mq_tags *),
24d2f903
CH
2228 GFP_KERNEL, set->numa_node);
2229 if (!set->tags)
a5164405 2230 return -ENOMEM;
24d2f903 2231
a5164405
JA
2232 if (blk_mq_alloc_rq_maps(set))
2233 goto enomem;
24d2f903 2234
0d2602ca
JA
2235 mutex_init(&set->tag_list_lock);
2236 INIT_LIST_HEAD(&set->tag_list);
2237
24d2f903 2238 return 0;
a5164405 2239enomem:
5676e7b6
RE
2240 kfree(set->tags);
2241 set->tags = NULL;
24d2f903
CH
2242 return -ENOMEM;
2243}
2244EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2245
2246void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2247{
2248 int i;
2249
484b4061
JA
2250 for (i = 0; i < set->nr_hw_queues; i++) {
2251 if (set->tags[i])
2252 blk_mq_free_rq_map(set, set->tags[i], i);
2253 }
2254
981bd189 2255 kfree(set->tags);
5676e7b6 2256 set->tags = NULL;
24d2f903
CH
2257}
2258EXPORT_SYMBOL(blk_mq_free_tag_set);
2259
e3a2b3f9
JA
2260int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2261{
2262 struct blk_mq_tag_set *set = q->tag_set;
2263 struct blk_mq_hw_ctx *hctx;
2264 int i, ret;
2265
2266 if (!set || nr > set->queue_depth)
2267 return -EINVAL;
2268
2269 ret = 0;
2270 queue_for_each_hw_ctx(q, hctx, i) {
2271 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2272 if (ret)
2273 break;
2274 }
2275
2276 if (!ret)
2277 q->nr_requests = nr;
2278
2279 return ret;
2280}
2281
676141e4
JA
2282void blk_mq_disable_hotplug(void)
2283{
2284 mutex_lock(&all_q_mutex);
2285}
2286
2287void blk_mq_enable_hotplug(void)
2288{
2289 mutex_unlock(&all_q_mutex);
2290}
2291
320ae51f
JA
2292static int __init blk_mq_init(void)
2293{
320ae51f
JA
2294 blk_mq_cpu_init();
2295
add703fd 2296 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
320ae51f
JA
2297
2298 return 0;
2299}
2300subsys_initcall(blk_mq_init);