]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-mq.c
blk-mq: handle NULL req return from blk_map_request in single queue mode
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/mm.h>
13#include <linux/init.h>
14#include <linux/slab.h>
15#include <linux/workqueue.h>
16#include <linux/smp.h>
17#include <linux/llist.h>
18#include <linux/list_sort.h>
19#include <linux/cpu.h>
20#include <linux/cache.h>
21#include <linux/sched/sysctl.h>
22#include <linux/delay.h>
23
24#include <trace/events/block.h>
25
26#include <linux/blk-mq.h>
27#include "blk.h"
28#include "blk-mq.h"
29#include "blk-mq-tag.h"
30
31static DEFINE_MUTEX(all_q_mutex);
32static LIST_HEAD(all_q_list);
33
34static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
35
320ae51f
JA
36/*
37 * Check if any of the ctx's have pending work in this hardware queue
38 */
39static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
40{
41 unsigned int i;
42
1429d7c9
JA
43 for (i = 0; i < hctx->ctx_map.map_size; i++)
44 if (hctx->ctx_map.map[i].word)
320ae51f
JA
45 return true;
46
47 return false;
48}
49
1429d7c9
JA
50static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52{
53 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
54}
55
56#define CTX_TO_BIT(hctx, ctx) \
57 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
58
320ae51f
JA
59/*
60 * Mark this ctx as having pending work in this hardware queue
61 */
62static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
64{
1429d7c9
JA
65 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
66
67 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
68 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
69}
70
71static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
72 struct blk_mq_ctx *ctx)
73{
74 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
75
76 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
320ae51f
JA
77}
78
320ae51f
JA
79static int blk_mq_queue_enter(struct request_queue *q)
80{
81 int ret;
82
83 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
84 smp_wmb();
85 /* we have problems to freeze the queue if it's initializing */
86 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
87 return 0;
88
89 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
90
91 spin_lock_irq(q->queue_lock);
92 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
43a5e4e2
ML
93 !blk_queue_bypass(q) || blk_queue_dying(q),
94 *q->queue_lock);
320ae51f 95 /* inc usage with lock hold to avoid freeze_queue runs here */
43a5e4e2 96 if (!ret && !blk_queue_dying(q))
320ae51f 97 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
43a5e4e2
ML
98 else if (blk_queue_dying(q))
99 ret = -ENODEV;
320ae51f
JA
100 spin_unlock_irq(q->queue_lock);
101
102 return ret;
103}
104
105static void blk_mq_queue_exit(struct request_queue *q)
106{
107 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
108}
109
43a5e4e2
ML
110static void __blk_mq_drain_queue(struct request_queue *q)
111{
112 while (true) {
113 s64 count;
114
115 spin_lock_irq(q->queue_lock);
116 count = percpu_counter_sum(&q->mq_usage_counter);
117 spin_unlock_irq(q->queue_lock);
118
119 if (count == 0)
120 break;
121 blk_mq_run_queues(q, false);
122 msleep(10);
123 }
124}
125
320ae51f
JA
126/*
127 * Guarantee no request is in use, so we can change any data structure of
128 * the queue afterward.
129 */
130static void blk_mq_freeze_queue(struct request_queue *q)
131{
132 bool drain;
133
134 spin_lock_irq(q->queue_lock);
135 drain = !q->bypass_depth++;
136 queue_flag_set(QUEUE_FLAG_BYPASS, q);
137 spin_unlock_irq(q->queue_lock);
138
43a5e4e2
ML
139 if (drain)
140 __blk_mq_drain_queue(q);
141}
320ae51f 142
43a5e4e2
ML
143void blk_mq_drain_queue(struct request_queue *q)
144{
145 __blk_mq_drain_queue(q);
320ae51f
JA
146}
147
148static void blk_mq_unfreeze_queue(struct request_queue *q)
149{
150 bool wake = false;
151
152 spin_lock_irq(q->queue_lock);
153 if (!--q->bypass_depth) {
154 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
155 wake = true;
156 }
157 WARN_ON_ONCE(q->bypass_depth < 0);
158 spin_unlock_irq(q->queue_lock);
159 if (wake)
160 wake_up_all(&q->mq_freeze_wq);
161}
162
163bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
164{
165 return blk_mq_has_free_tags(hctx->tags);
166}
167EXPORT_SYMBOL(blk_mq_can_queue);
168
94eddfbe
JA
169static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
170 struct request *rq, unsigned int rw_flags)
320ae51f 171{
94eddfbe
JA
172 if (blk_queue_io_stat(q))
173 rw_flags |= REQ_IO_STAT;
174
af76e555
CH
175 INIT_LIST_HEAD(&rq->queuelist);
176 /* csd/requeue_work/fifo_time is initialized before use */
177 rq->q = q;
320ae51f 178 rq->mq_ctx = ctx;
0d2602ca 179 rq->cmd_flags |= rw_flags;
af76e555
CH
180 /* do not touch atomic flags, it needs atomic ops against the timer */
181 rq->cpu = -1;
af76e555
CH
182 INIT_HLIST_NODE(&rq->hash);
183 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
184 rq->rq_disk = NULL;
185 rq->part = NULL;
af76e555
CH
186#ifdef CONFIG_BLK_CGROUP
187 rq->rl = NULL;
0fec08b4 188 set_start_time_ns(rq);
af76e555
CH
189 rq->io_start_time_ns = 0;
190#endif
191 rq->nr_phys_segments = 0;
192#if defined(CONFIG_BLK_DEV_INTEGRITY)
193 rq->nr_integrity_segments = 0;
194#endif
af76e555
CH
195 rq->special = NULL;
196 /* tag was already set */
197 rq->errors = 0;
af76e555
CH
198
199 rq->extra_len = 0;
200 rq->sense_len = 0;
201 rq->resid_len = 0;
202 rq->sense = NULL;
203
af76e555 204 INIT_LIST_HEAD(&rq->timeout_list);
af76e555
CH
205 rq->end_io = NULL;
206 rq->end_io_data = NULL;
207 rq->next_rq = NULL;
208
320ae51f
JA
209 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
210}
211
5dee8577 212static struct request *
cb96a42c 213__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
5dee8577
CH
214{
215 struct request *rq;
216 unsigned int tag;
217
cb96a42c 218 tag = blk_mq_get_tag(data);
5dee8577 219 if (tag != BLK_MQ_TAG_FAIL) {
cb96a42c 220 rq = data->hctx->tags->rqs[tag];
5dee8577
CH
221
222 rq->cmd_flags = 0;
cb96a42c 223 if (blk_mq_tag_busy(data->hctx)) {
5dee8577 224 rq->cmd_flags = REQ_MQ_INFLIGHT;
cb96a42c 225 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
226 }
227
228 rq->tag = tag;
cb96a42c 229 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
5dee8577
CH
230 return rq;
231 }
232
233 return NULL;
234}
235
4ce01dd1
CH
236struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
237 bool reserved)
320ae51f 238{
d852564f
CH
239 struct blk_mq_ctx *ctx;
240 struct blk_mq_hw_ctx *hctx;
320ae51f 241 struct request *rq;
cb96a42c 242 struct blk_mq_alloc_data alloc_data;
320ae51f
JA
243
244 if (blk_mq_queue_enter(q))
245 return NULL;
246
d852564f
CH
247 ctx = blk_mq_get_ctx(q);
248 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
249 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
250 reserved, ctx, hctx);
d852564f 251
cb96a42c 252 rq = __blk_mq_alloc_request(&alloc_data, rw);
d852564f
CH
253 if (!rq && (gfp & __GFP_WAIT)) {
254 __blk_mq_run_hw_queue(hctx);
255 blk_mq_put_ctx(ctx);
256
257 ctx = blk_mq_get_ctx(q);
258 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
259 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
260 hctx);
261 rq = __blk_mq_alloc_request(&alloc_data, rw);
262 ctx = alloc_data.ctx;
d852564f
CH
263 }
264 blk_mq_put_ctx(ctx);
320ae51f
JA
265 return rq;
266}
4bb659b1 267EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 268
320ae51f
JA
269static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
270 struct blk_mq_ctx *ctx, struct request *rq)
271{
272 const int tag = rq->tag;
273 struct request_queue *q = rq->q;
274
0d2602ca
JA
275 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
276 atomic_dec(&hctx->nr_active);
277
af76e555 278 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
0d2602ca 279 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
320ae51f
JA
280 blk_mq_queue_exit(q);
281}
282
283void blk_mq_free_request(struct request *rq)
284{
285 struct blk_mq_ctx *ctx = rq->mq_ctx;
286 struct blk_mq_hw_ctx *hctx;
287 struct request_queue *q = rq->q;
288
289 ctx->rq_completed[rq_is_sync(rq)]++;
290
291 hctx = q->mq_ops->map_queue(q, ctx->cpu);
292 __blk_mq_free_request(hctx, ctx, rq);
293}
294
8727af4b
CH
295/*
296 * Clone all relevant state from a request that has been put on hold in
297 * the flush state machine into the preallocated flush request that hangs
298 * off the request queue.
299 *
300 * For a driver the flush request should be invisible, that's why we are
301 * impersonating the original request here.
302 */
303void blk_mq_clone_flush_request(struct request *flush_rq,
304 struct request *orig_rq)
305{
306 struct blk_mq_hw_ctx *hctx =
307 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
308
309 flush_rq->mq_ctx = orig_rq->mq_ctx;
310 flush_rq->tag = orig_rq->tag;
311 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
312 hctx->cmd_size);
313}
314
63151a44 315inline void __blk_mq_end_io(struct request *rq, int error)
320ae51f 316{
0d11e6ac
ML
317 blk_account_io_done(rq);
318
91b63639 319 if (rq->end_io) {
320ae51f 320 rq->end_io(rq, error);
91b63639
CH
321 } else {
322 if (unlikely(blk_bidi_rq(rq)))
323 blk_mq_free_request(rq->next_rq);
320ae51f 324 blk_mq_free_request(rq);
91b63639 325 }
320ae51f 326}
63151a44
CH
327EXPORT_SYMBOL(__blk_mq_end_io);
328
329void blk_mq_end_io(struct request *rq, int error)
330{
331 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
332 BUG();
333 __blk_mq_end_io(rq, error);
334}
335EXPORT_SYMBOL(blk_mq_end_io);
320ae51f 336
30a91cb4 337static void __blk_mq_complete_request_remote(void *data)
320ae51f 338{
3d6efbf6 339 struct request *rq = data;
320ae51f 340
30a91cb4 341 rq->q->softirq_done_fn(rq);
320ae51f 342}
320ae51f 343
ed851860 344static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
345{
346 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 347 bool shared = false;
320ae51f
JA
348 int cpu;
349
38535201 350 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
351 rq->q->softirq_done_fn(rq);
352 return;
353 }
320ae51f
JA
354
355 cpu = get_cpu();
38535201
CH
356 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
357 shared = cpus_share_cache(cpu, ctx->cpu);
358
359 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 360 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
361 rq->csd.info = rq;
362 rq->csd.flags = 0;
c46fff2a 363 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 364 } else {
30a91cb4 365 rq->q->softirq_done_fn(rq);
3d6efbf6 366 }
320ae51f
JA
367 put_cpu();
368}
30a91cb4 369
ed851860
JA
370void __blk_mq_complete_request(struct request *rq)
371{
372 struct request_queue *q = rq->q;
373
374 if (!q->softirq_done_fn)
375 blk_mq_end_io(rq, rq->errors);
376 else
377 blk_mq_ipi_complete_request(rq);
378}
379
30a91cb4
CH
380/**
381 * blk_mq_complete_request - end I/O on a request
382 * @rq: the request being processed
383 *
384 * Description:
385 * Ends all I/O on a request. It does not handle partial completions.
386 * The actual completion happens out-of-order, through a IPI handler.
387 **/
388void blk_mq_complete_request(struct request *rq)
389{
95f09684
JA
390 struct request_queue *q = rq->q;
391
392 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 393 return;
ed851860
JA
394 if (!blk_mark_rq_complete(rq))
395 __blk_mq_complete_request(rq);
30a91cb4
CH
396}
397EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 398
49f5baa5 399static void blk_mq_start_request(struct request *rq, bool last)
320ae51f
JA
400{
401 struct request_queue *q = rq->q;
402
403 trace_block_rq_issue(q, rq);
404
742ee69b 405 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
406 if (unlikely(blk_bidi_rq(rq)))
407 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 408
320ae51f
JA
409 /*
410 * Just mark start time and set the started bit. Due to memory
411 * ordering, we know we'll see the correct deadline as long as
c22d9d8a
JA
412 * REQ_ATOMIC_STARTED is seen. Use the default queue timeout,
413 * unless one has been set in the request.
320ae51f 414 */
c22d9d8a
JA
415 if (!rq->timeout)
416 rq->deadline = jiffies + q->rq_timeout;
417 else
418 rq->deadline = jiffies + rq->timeout;
87ee7b11
JA
419
420 /*
421 * Mark us as started and clear complete. Complete might have been
422 * set if requeue raced with timeout, which then marked it as
423 * complete. So be sure to clear complete again when we start
424 * the request, otherwise we'll ignore the completion event.
425 */
4b570521
JA
426 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
427 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
428 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
429 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
430
431 if (q->dma_drain_size && blk_rq_bytes(rq)) {
432 /*
433 * Make sure space for the drain appears. We know we can do
434 * this because max_hw_segments has been adjusted to be one
435 * fewer than the device can handle.
436 */
437 rq->nr_phys_segments++;
438 }
439
440 /*
441 * Flag the last request in the series so that drivers know when IO
442 * should be kicked off, if they don't do it on a per-request basis.
443 *
444 * Note: the flag isn't the only condition drivers should do kick off.
445 * If drive is busy, the last request might not have the bit set.
446 */
447 if (last)
448 rq->cmd_flags |= REQ_END;
320ae51f
JA
449}
450
ed0791b2 451static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
452{
453 struct request_queue *q = rq->q;
454
455 trace_block_rq_requeue(q, rq);
456 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
49f5baa5
CH
457
458 rq->cmd_flags &= ~REQ_END;
459
460 if (q->dma_drain_size && blk_rq_bytes(rq))
461 rq->nr_phys_segments--;
320ae51f
JA
462}
463
ed0791b2
CH
464void blk_mq_requeue_request(struct request *rq)
465{
ed0791b2
CH
466 __blk_mq_requeue_request(rq);
467 blk_clear_rq_complete(rq);
468
ed0791b2 469 BUG_ON(blk_queued_rq(rq));
6fca6a61 470 blk_mq_add_to_requeue_list(rq, true);
ed0791b2
CH
471}
472EXPORT_SYMBOL(blk_mq_requeue_request);
473
6fca6a61
CH
474static void blk_mq_requeue_work(struct work_struct *work)
475{
476 struct request_queue *q =
477 container_of(work, struct request_queue, requeue_work);
478 LIST_HEAD(rq_list);
479 struct request *rq, *next;
480 unsigned long flags;
481
482 spin_lock_irqsave(&q->requeue_lock, flags);
483 list_splice_init(&q->requeue_list, &rq_list);
484 spin_unlock_irqrestore(&q->requeue_lock, flags);
485
486 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
487 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
488 continue;
489
490 rq->cmd_flags &= ~REQ_SOFTBARRIER;
491 list_del_init(&rq->queuelist);
492 blk_mq_insert_request(rq, true, false, false);
493 }
494
495 while (!list_empty(&rq_list)) {
496 rq = list_entry(rq_list.next, struct request, queuelist);
497 list_del_init(&rq->queuelist);
498 blk_mq_insert_request(rq, false, false, false);
499 }
500
501 blk_mq_run_queues(q, false);
502}
503
504void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
505{
506 struct request_queue *q = rq->q;
507 unsigned long flags;
508
509 /*
510 * We abuse this flag that is otherwise used by the I/O scheduler to
511 * request head insertation from the workqueue.
512 */
513 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
514
515 spin_lock_irqsave(&q->requeue_lock, flags);
516 if (at_head) {
517 rq->cmd_flags |= REQ_SOFTBARRIER;
518 list_add(&rq->queuelist, &q->requeue_list);
519 } else {
520 list_add_tail(&rq->queuelist, &q->requeue_list);
521 }
522 spin_unlock_irqrestore(&q->requeue_lock, flags);
523}
524EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
525
526void blk_mq_kick_requeue_list(struct request_queue *q)
527{
528 kblockd_schedule_work(&q->requeue_work);
529}
530EXPORT_SYMBOL(blk_mq_kick_requeue_list);
531
22302375 532struct request *blk_mq_tag_to_rq(struct blk_mq_hw_ctx *hctx, unsigned int tag)
24d2f903 533{
22302375
SL
534 struct request_queue *q = hctx->queue;
535
536 if ((q->flush_rq->cmd_flags & REQ_FLUSH_SEQ) &&
537 q->flush_rq->tag == tag)
538 return q->flush_rq;
539
540 return hctx->tags->rqs[tag];
24d2f903
CH
541}
542EXPORT_SYMBOL(blk_mq_tag_to_rq);
543
320ae51f
JA
544struct blk_mq_timeout_data {
545 struct blk_mq_hw_ctx *hctx;
546 unsigned long *next;
547 unsigned int *next_set;
548};
549
550static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
551{
552 struct blk_mq_timeout_data *data = __data;
553 struct blk_mq_hw_ctx *hctx = data->hctx;
554 unsigned int tag;
555
556 /* It may not be in flight yet (this is where
557 * the REQ_ATOMIC_STARTED flag comes in). The requests are
558 * statically allocated, so we know it's always safe to access the
559 * memory associated with a bit offset into ->rqs[].
560 */
561 tag = 0;
562 do {
563 struct request *rq;
564
24d2f903
CH
565 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
566 if (tag >= hctx->tags->nr_tags)
320ae51f
JA
567 break;
568
22302375 569 rq = blk_mq_tag_to_rq(hctx, tag++);
24d2f903
CH
570 if (rq->q != hctx->queue)
571 continue;
320ae51f
JA
572 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
573 continue;
574
575 blk_rq_check_expired(rq, data->next, data->next_set);
576 } while (1);
577}
578
579static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
580 unsigned long *next,
581 unsigned int *next_set)
582{
583 struct blk_mq_timeout_data data = {
584 .hctx = hctx,
585 .next = next,
586 .next_set = next_set,
587 };
588
589 /*
590 * Ask the tagging code to iterate busy requests, so we can
591 * check them for timeout.
592 */
593 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
594}
595
87ee7b11
JA
596static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
597{
598 struct request_queue *q = rq->q;
599
600 /*
601 * We know that complete is set at this point. If STARTED isn't set
602 * anymore, then the request isn't active and the "timeout" should
603 * just be ignored. This can happen due to the bitflag ordering.
604 * Timeout first checks if STARTED is set, and if it is, assumes
605 * the request is active. But if we race with completion, then
606 * we both flags will get cleared. So check here again, and ignore
607 * a timeout event with a request that isn't active.
608 */
609 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
610 return BLK_EH_NOT_HANDLED;
611
612 if (!q->mq_ops->timeout)
613 return BLK_EH_RESET_TIMER;
614
615 return q->mq_ops->timeout(rq);
616}
617
320ae51f
JA
618static void blk_mq_rq_timer(unsigned long data)
619{
620 struct request_queue *q = (struct request_queue *) data;
621 struct blk_mq_hw_ctx *hctx;
622 unsigned long next = 0;
623 int i, next_set = 0;
624
484b4061
JA
625 queue_for_each_hw_ctx(q, hctx, i) {
626 /*
627 * If not software queues are currently mapped to this
628 * hardware queue, there's nothing to check
629 */
630 if (!hctx->nr_ctx || !hctx->tags)
631 continue;
632
320ae51f 633 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
484b4061 634 }
320ae51f 635
0d2602ca
JA
636 if (next_set) {
637 next = blk_rq_timeout(round_jiffies_up(next));
638 mod_timer(&q->timeout, next);
639 } else {
640 queue_for_each_hw_ctx(q, hctx, i)
641 blk_mq_tag_idle(hctx);
642 }
320ae51f
JA
643}
644
645/*
646 * Reverse check our software queue for entries that we could potentially
647 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
648 * too much time checking for merges.
649 */
650static bool blk_mq_attempt_merge(struct request_queue *q,
651 struct blk_mq_ctx *ctx, struct bio *bio)
652{
653 struct request *rq;
654 int checked = 8;
655
656 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
657 int el_ret;
658
659 if (!checked--)
660 break;
661
662 if (!blk_rq_merge_ok(rq, bio))
663 continue;
664
665 el_ret = blk_try_merge(rq, bio);
666 if (el_ret == ELEVATOR_BACK_MERGE) {
667 if (bio_attempt_back_merge(q, rq, bio)) {
668 ctx->rq_merged++;
669 return true;
670 }
671 break;
672 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
673 if (bio_attempt_front_merge(q, rq, bio)) {
674 ctx->rq_merged++;
675 return true;
676 }
677 break;
678 }
679 }
680
681 return false;
682}
683
1429d7c9
JA
684/*
685 * Process software queues that have been marked busy, splicing them
686 * to the for-dispatch
687 */
688static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
689{
690 struct blk_mq_ctx *ctx;
691 int i;
692
693 for (i = 0; i < hctx->ctx_map.map_size; i++) {
694 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
695 unsigned int off, bit;
696
697 if (!bm->word)
698 continue;
699
700 bit = 0;
701 off = i * hctx->ctx_map.bits_per_word;
702 do {
703 bit = find_next_bit(&bm->word, bm->depth, bit);
704 if (bit >= bm->depth)
705 break;
706
707 ctx = hctx->ctxs[bit + off];
708 clear_bit(bit, &bm->word);
709 spin_lock(&ctx->lock);
710 list_splice_tail_init(&ctx->rq_list, list);
711 spin_unlock(&ctx->lock);
712
713 bit++;
714 } while (1);
715 }
716}
717
320ae51f
JA
718/*
719 * Run this hardware queue, pulling any software queues mapped to it in.
720 * Note that this function currently has various problems around ordering
721 * of IO. In particular, we'd like FIFO behaviour on handling existing
722 * items on the hctx->dispatch list. Ignore that for now.
723 */
724static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
725{
726 struct request_queue *q = hctx->queue;
320ae51f
JA
727 struct request *rq;
728 LIST_HEAD(rq_list);
1429d7c9 729 int queued;
320ae51f 730
fd1270d5 731 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 732
5d12f905 733 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
734 return;
735
736 hctx->run++;
737
738 /*
739 * Touch any software queue that has pending entries.
740 */
1429d7c9 741 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
742
743 /*
744 * If we have previous entries on our dispatch list, grab them
745 * and stuff them at the front for more fair dispatch.
746 */
747 if (!list_empty_careful(&hctx->dispatch)) {
748 spin_lock(&hctx->lock);
749 if (!list_empty(&hctx->dispatch))
750 list_splice_init(&hctx->dispatch, &rq_list);
751 spin_unlock(&hctx->lock);
752 }
753
320ae51f
JA
754 /*
755 * Now process all the entries, sending them to the driver.
756 */
1429d7c9 757 queued = 0;
320ae51f
JA
758 while (!list_empty(&rq_list)) {
759 int ret;
760
761 rq = list_first_entry(&rq_list, struct request, queuelist);
762 list_del_init(&rq->queuelist);
320ae51f 763
49f5baa5 764 blk_mq_start_request(rq, list_empty(&rq_list));
320ae51f
JA
765
766 ret = q->mq_ops->queue_rq(hctx, rq);
767 switch (ret) {
768 case BLK_MQ_RQ_QUEUE_OK:
769 queued++;
770 continue;
771 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 772 list_add(&rq->queuelist, &rq_list);
ed0791b2 773 __blk_mq_requeue_request(rq);
320ae51f
JA
774 break;
775 default:
776 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 777 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 778 rq->errors = -EIO;
320ae51f
JA
779 blk_mq_end_io(rq, rq->errors);
780 break;
781 }
782
783 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
784 break;
785 }
786
787 if (!queued)
788 hctx->dispatched[0]++;
789 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
790 hctx->dispatched[ilog2(queued) + 1]++;
791
792 /*
793 * Any items that need requeuing? Stuff them into hctx->dispatch,
794 * that is where we will continue on next queue run.
795 */
796 if (!list_empty(&rq_list)) {
797 spin_lock(&hctx->lock);
798 list_splice(&rq_list, &hctx->dispatch);
799 spin_unlock(&hctx->lock);
800 }
801}
802
506e931f
JA
803/*
804 * It'd be great if the workqueue API had a way to pass
805 * in a mask and had some smarts for more clever placement.
806 * For now we just round-robin here, switching for every
807 * BLK_MQ_CPU_WORK_BATCH queued items.
808 */
809static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
810{
811 int cpu = hctx->next_cpu;
812
813 if (--hctx->next_cpu_batch <= 0) {
814 int next_cpu;
815
816 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
817 if (next_cpu >= nr_cpu_ids)
818 next_cpu = cpumask_first(hctx->cpumask);
819
820 hctx->next_cpu = next_cpu;
821 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
822 }
823
824 return cpu;
825}
826
320ae51f
JA
827void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
828{
5d12f905 829 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
830 return;
831
e4043dcf 832 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
320ae51f 833 __blk_mq_run_hw_queue(hctx);
e4043dcf 834 else if (hctx->queue->nr_hw_queues == 1)
70f4db63 835 kblockd_schedule_delayed_work(&hctx->run_work, 0);
e4043dcf
JA
836 else {
837 unsigned int cpu;
838
506e931f 839 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63 840 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
e4043dcf 841 }
320ae51f
JA
842}
843
844void blk_mq_run_queues(struct request_queue *q, bool async)
845{
846 struct blk_mq_hw_ctx *hctx;
847 int i;
848
849 queue_for_each_hw_ctx(q, hctx, i) {
850 if ((!blk_mq_hctx_has_pending(hctx) &&
851 list_empty_careful(&hctx->dispatch)) ||
5d12f905 852 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
853 continue;
854
e4043dcf 855 preempt_disable();
320ae51f 856 blk_mq_run_hw_queue(hctx, async);
e4043dcf 857 preempt_enable();
320ae51f
JA
858 }
859}
860EXPORT_SYMBOL(blk_mq_run_queues);
861
862void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
863{
70f4db63
CH
864 cancel_delayed_work(&hctx->run_work);
865 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
866 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
867}
868EXPORT_SYMBOL(blk_mq_stop_hw_queue);
869
280d45f6
CH
870void blk_mq_stop_hw_queues(struct request_queue *q)
871{
872 struct blk_mq_hw_ctx *hctx;
873 int i;
874
875 queue_for_each_hw_ctx(q, hctx, i)
876 blk_mq_stop_hw_queue(hctx);
877}
878EXPORT_SYMBOL(blk_mq_stop_hw_queues);
879
320ae51f
JA
880void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
881{
882 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf
JA
883
884 preempt_disable();
320ae51f 885 __blk_mq_run_hw_queue(hctx);
e4043dcf 886 preempt_enable();
320ae51f
JA
887}
888EXPORT_SYMBOL(blk_mq_start_hw_queue);
889
2f268556
CH
890void blk_mq_start_hw_queues(struct request_queue *q)
891{
892 struct blk_mq_hw_ctx *hctx;
893 int i;
894
895 queue_for_each_hw_ctx(q, hctx, i)
896 blk_mq_start_hw_queue(hctx);
897}
898EXPORT_SYMBOL(blk_mq_start_hw_queues);
899
900
1b4a3258 901void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
902{
903 struct blk_mq_hw_ctx *hctx;
904 int i;
905
906 queue_for_each_hw_ctx(q, hctx, i) {
907 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
908 continue;
909
910 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 911 preempt_disable();
1b4a3258 912 blk_mq_run_hw_queue(hctx, async);
e4043dcf 913 preempt_enable();
320ae51f
JA
914 }
915}
916EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
917
70f4db63 918static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
919{
920 struct blk_mq_hw_ctx *hctx;
921
70f4db63 922 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 923
320ae51f
JA
924 __blk_mq_run_hw_queue(hctx);
925}
926
70f4db63
CH
927static void blk_mq_delay_work_fn(struct work_struct *work)
928{
929 struct blk_mq_hw_ctx *hctx;
930
931 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
932
933 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
934 __blk_mq_run_hw_queue(hctx);
935}
936
937void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
938{
939 unsigned long tmo = msecs_to_jiffies(msecs);
940
941 if (hctx->queue->nr_hw_queues == 1)
942 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
943 else {
944 unsigned int cpu;
945
506e931f 946 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63
CH
947 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
948 }
949}
950EXPORT_SYMBOL(blk_mq_delay_queue);
951
320ae51f 952static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 953 struct request *rq, bool at_head)
320ae51f
JA
954{
955 struct blk_mq_ctx *ctx = rq->mq_ctx;
956
01b983c9
JA
957 trace_block_rq_insert(hctx->queue, rq);
958
72a0a36e
CH
959 if (at_head)
960 list_add(&rq->queuelist, &ctx->rq_list);
961 else
962 list_add_tail(&rq->queuelist, &ctx->rq_list);
4bb659b1 963
320ae51f
JA
964 blk_mq_hctx_mark_pending(hctx, ctx);
965
966 /*
967 * We do this early, to ensure we are on the right CPU.
968 */
87ee7b11 969 blk_add_timer(rq);
320ae51f
JA
970}
971
eeabc850
CH
972void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
973 bool async)
320ae51f 974{
eeabc850 975 struct request_queue *q = rq->q;
320ae51f 976 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
977 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
978
979 current_ctx = blk_mq_get_ctx(q);
980 if (!cpu_online(ctx->cpu))
981 rq->mq_ctx = ctx = current_ctx;
320ae51f 982
320ae51f
JA
983 hctx = q->mq_ops->map_queue(q, ctx->cpu);
984
eeabc850
CH
985 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
986 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
320ae51f
JA
987 blk_insert_flush(rq);
988 } else {
320ae51f 989 spin_lock(&ctx->lock);
72a0a36e 990 __blk_mq_insert_request(hctx, rq, at_head);
320ae51f 991 spin_unlock(&ctx->lock);
320ae51f
JA
992 }
993
320ae51f
JA
994 if (run_queue)
995 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
996
997 blk_mq_put_ctx(current_ctx);
320ae51f
JA
998}
999
1000static void blk_mq_insert_requests(struct request_queue *q,
1001 struct blk_mq_ctx *ctx,
1002 struct list_head *list,
1003 int depth,
1004 bool from_schedule)
1005
1006{
1007 struct blk_mq_hw_ctx *hctx;
1008 struct blk_mq_ctx *current_ctx;
1009
1010 trace_block_unplug(q, depth, !from_schedule);
1011
1012 current_ctx = blk_mq_get_ctx(q);
1013
1014 if (!cpu_online(ctx->cpu))
1015 ctx = current_ctx;
1016 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1017
1018 /*
1019 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1020 * offline now
1021 */
1022 spin_lock(&ctx->lock);
1023 while (!list_empty(list)) {
1024 struct request *rq;
1025
1026 rq = list_first_entry(list, struct request, queuelist);
1027 list_del_init(&rq->queuelist);
1028 rq->mq_ctx = ctx;
72a0a36e 1029 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
1030 }
1031 spin_unlock(&ctx->lock);
1032
320ae51f 1033 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 1034 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1035}
1036
1037static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1038{
1039 struct request *rqa = container_of(a, struct request, queuelist);
1040 struct request *rqb = container_of(b, struct request, queuelist);
1041
1042 return !(rqa->mq_ctx < rqb->mq_ctx ||
1043 (rqa->mq_ctx == rqb->mq_ctx &&
1044 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1045}
1046
1047void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1048{
1049 struct blk_mq_ctx *this_ctx;
1050 struct request_queue *this_q;
1051 struct request *rq;
1052 LIST_HEAD(list);
1053 LIST_HEAD(ctx_list);
1054 unsigned int depth;
1055
1056 list_splice_init(&plug->mq_list, &list);
1057
1058 list_sort(NULL, &list, plug_ctx_cmp);
1059
1060 this_q = NULL;
1061 this_ctx = NULL;
1062 depth = 0;
1063
1064 while (!list_empty(&list)) {
1065 rq = list_entry_rq(list.next);
1066 list_del_init(&rq->queuelist);
1067 BUG_ON(!rq->q);
1068 if (rq->mq_ctx != this_ctx) {
1069 if (this_ctx) {
1070 blk_mq_insert_requests(this_q, this_ctx,
1071 &ctx_list, depth,
1072 from_schedule);
1073 }
1074
1075 this_ctx = rq->mq_ctx;
1076 this_q = rq->q;
1077 depth = 0;
1078 }
1079
1080 depth++;
1081 list_add_tail(&rq->queuelist, &ctx_list);
1082 }
1083
1084 /*
1085 * If 'this_ctx' is set, we know we have entries to complete
1086 * on 'ctx_list'. Do those.
1087 */
1088 if (this_ctx) {
1089 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1090 from_schedule);
1091 }
1092}
1093
1094static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1095{
1096 init_request_from_bio(rq, bio);
4b570521
JA
1097
1098 if (blk_do_io_stat(rq)) {
1099 rq->start_time = jiffies;
1100 blk_account_io_start(rq, 1);
1101 }
320ae51f
JA
1102}
1103
07068d5b
JA
1104static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1105 struct blk_mq_ctx *ctx,
1106 struct request *rq, struct bio *bio)
320ae51f 1107{
07068d5b 1108 struct request_queue *q = hctx->queue;
320ae51f 1109
07068d5b
JA
1110 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
1111 blk_mq_bio_to_request(rq, bio);
1112 spin_lock(&ctx->lock);
1113insert_rq:
1114 __blk_mq_insert_request(hctx, rq, false);
1115 spin_unlock(&ctx->lock);
1116 return false;
1117 } else {
1118 spin_lock(&ctx->lock);
1119 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1120 blk_mq_bio_to_request(rq, bio);
1121 goto insert_rq;
1122 }
320ae51f 1123
07068d5b
JA
1124 spin_unlock(&ctx->lock);
1125 __blk_mq_free_request(hctx, ctx, rq);
1126 return true;
14ec77f3 1127 }
07068d5b 1128}
14ec77f3 1129
07068d5b
JA
1130struct blk_map_ctx {
1131 struct blk_mq_hw_ctx *hctx;
1132 struct blk_mq_ctx *ctx;
1133};
1134
1135static struct request *blk_mq_map_request(struct request_queue *q,
1136 struct bio *bio,
1137 struct blk_map_ctx *data)
1138{
1139 struct blk_mq_hw_ctx *hctx;
1140 struct blk_mq_ctx *ctx;
1141 struct request *rq;
1142 int rw = bio_data_dir(bio);
cb96a42c 1143 struct blk_mq_alloc_data alloc_data;
320ae51f 1144
07068d5b 1145 if (unlikely(blk_mq_queue_enter(q))) {
320ae51f 1146 bio_endio(bio, -EIO);
07068d5b 1147 return NULL;
320ae51f
JA
1148 }
1149
1150 ctx = blk_mq_get_ctx(q);
1151 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1152
07068d5b 1153 if (rw_is_sync(bio->bi_rw))
27fbf4e8 1154 rw |= REQ_SYNC;
07068d5b 1155
320ae51f 1156 trace_block_getrq(q, bio, rw);
cb96a42c
ML
1157 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1158 hctx);
1159 rq = __blk_mq_alloc_request(&alloc_data, rw);
5dee8577 1160 if (unlikely(!rq)) {
793597a6 1161 __blk_mq_run_hw_queue(hctx);
320ae51f
JA
1162 blk_mq_put_ctx(ctx);
1163 trace_block_sleeprq(q, bio, rw);
793597a6
CH
1164
1165 ctx = blk_mq_get_ctx(q);
320ae51f 1166 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
1167 blk_mq_set_alloc_data(&alloc_data, q,
1168 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1169 rq = __blk_mq_alloc_request(&alloc_data, rw);
1170 ctx = alloc_data.ctx;
1171 hctx = alloc_data.hctx;
320ae51f
JA
1172 }
1173
1174 hctx->queued++;
07068d5b
JA
1175 data->hctx = hctx;
1176 data->ctx = ctx;
1177 return rq;
1178}
1179
1180/*
1181 * Multiple hardware queue variant. This will not use per-process plugs,
1182 * but will attempt to bypass the hctx queueing if we can go straight to
1183 * hardware for SYNC IO.
1184 */
1185static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1186{
1187 const int is_sync = rw_is_sync(bio->bi_rw);
1188 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1189 struct blk_map_ctx data;
1190 struct request *rq;
1191
1192 blk_queue_bounce(q, &bio);
1193
1194 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1195 bio_endio(bio, -EIO);
1196 return;
1197 }
1198
1199 rq = blk_mq_map_request(q, bio, &data);
1200 if (unlikely(!rq))
1201 return;
1202
1203 if (unlikely(is_flush_fua)) {
1204 blk_mq_bio_to_request(rq, bio);
1205 blk_insert_flush(rq);
1206 goto run_queue;
1207 }
1208
1209 if (is_sync) {
1210 int ret;
1211
1212 blk_mq_bio_to_request(rq, bio);
1213 blk_mq_start_request(rq, true);
feff6894 1214 blk_add_timer(rq);
07068d5b
JA
1215
1216 /*
1217 * For OK queue, we are done. For error, kill it. Any other
1218 * error (busy), just add it to our list as we previously
1219 * would have done
1220 */
1221 ret = q->mq_ops->queue_rq(data.hctx, rq);
1222 if (ret == BLK_MQ_RQ_QUEUE_OK)
1223 goto done;
1224 else {
1225 __blk_mq_requeue_request(rq);
1226
1227 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1228 rq->errors = -EIO;
1229 blk_mq_end_io(rq, rq->errors);
1230 goto done;
1231 }
1232 }
1233 }
1234
1235 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1236 /*
1237 * For a SYNC request, send it to the hardware immediately. For
1238 * an ASYNC request, just ensure that we run it later on. The
1239 * latter allows for merging opportunities and more efficient
1240 * dispatching.
1241 */
1242run_queue:
1243 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1244 }
1245done:
1246 blk_mq_put_ctx(data.ctx);
1247}
1248
1249/*
1250 * Single hardware queue variant. This will attempt to use any per-process
1251 * plug for merging and IO deferral.
1252 */
1253static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1254{
1255 const int is_sync = rw_is_sync(bio->bi_rw);
1256 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1257 unsigned int use_plug, request_count = 0;
1258 struct blk_map_ctx data;
1259 struct request *rq;
1260
1261 /*
1262 * If we have multiple hardware queues, just go directly to
1263 * one of those for sync IO.
1264 */
1265 use_plug = !is_flush_fua && !is_sync;
1266
1267 blk_queue_bounce(q, &bio);
1268
1269 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1270 bio_endio(bio, -EIO);
1271 return;
1272 }
1273
1274 if (use_plug && !blk_queue_nomerges(q) &&
1275 blk_attempt_plug_merge(q, bio, &request_count))
1276 return;
1277
1278 rq = blk_mq_map_request(q, bio, &data);
ff87bcec
JA
1279 if (unlikely(!rq))
1280 return;
320ae51f
JA
1281
1282 if (unlikely(is_flush_fua)) {
1283 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1284 blk_insert_flush(rq);
1285 goto run_queue;
1286 }
1287
1288 /*
1289 * A task plug currently exists. Since this is completely lockless,
1290 * utilize that to temporarily store requests until the task is
1291 * either done or scheduled away.
1292 */
1293 if (use_plug) {
1294 struct blk_plug *plug = current->plug;
1295
1296 if (plug) {
1297 blk_mq_bio_to_request(rq, bio);
92f399c7 1298 if (list_empty(&plug->mq_list))
320ae51f
JA
1299 trace_block_plug(q);
1300 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1301 blk_flush_plug_list(plug, false);
1302 trace_block_plug(q);
1303 }
1304 list_add_tail(&rq->queuelist, &plug->mq_list);
07068d5b 1305 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1306 return;
1307 }
1308 }
1309
07068d5b
JA
1310 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1311 /*
1312 * For a SYNC request, send it to the hardware immediately. For
1313 * an ASYNC request, just ensure that we run it later on. The
1314 * latter allows for merging opportunities and more efficient
1315 * dispatching.
1316 */
1317run_queue:
1318 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1319 }
1320
07068d5b 1321 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1322}
1323
1324/*
1325 * Default mapping to a software queue, since we use one per CPU.
1326 */
1327struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1328{
1329 return q->queue_hw_ctx[q->mq_map[cpu]];
1330}
1331EXPORT_SYMBOL(blk_mq_map_queue);
1332
24d2f903
CH
1333static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1334 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1335{
e9b267d9 1336 struct page *page;
320ae51f 1337
24d2f903 1338 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1339 int i;
320ae51f 1340
24d2f903
CH
1341 for (i = 0; i < tags->nr_tags; i++) {
1342 if (!tags->rqs[i])
e9b267d9 1343 continue;
24d2f903
CH
1344 set->ops->exit_request(set->driver_data, tags->rqs[i],
1345 hctx_idx, i);
e9b267d9 1346 }
320ae51f 1347 }
320ae51f 1348
24d2f903
CH
1349 while (!list_empty(&tags->page_list)) {
1350 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1351 list_del_init(&page->lru);
320ae51f
JA
1352 __free_pages(page, page->private);
1353 }
1354
24d2f903 1355 kfree(tags->rqs);
320ae51f 1356
24d2f903 1357 blk_mq_free_tags(tags);
320ae51f
JA
1358}
1359
1360static size_t order_to_size(unsigned int order)
1361{
4ca08500 1362 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1363}
1364
24d2f903
CH
1365static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1366 unsigned int hctx_idx)
320ae51f 1367{
24d2f903 1368 struct blk_mq_tags *tags;
320ae51f
JA
1369 unsigned int i, j, entries_per_page, max_order = 4;
1370 size_t rq_size, left;
1371
24d2f903
CH
1372 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1373 set->numa_node);
1374 if (!tags)
1375 return NULL;
320ae51f 1376
24d2f903
CH
1377 INIT_LIST_HEAD(&tags->page_list);
1378
1379 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1380 GFP_KERNEL, set->numa_node);
1381 if (!tags->rqs) {
1382 blk_mq_free_tags(tags);
1383 return NULL;
1384 }
320ae51f
JA
1385
1386 /*
1387 * rq_size is the size of the request plus driver payload, rounded
1388 * to the cacheline size
1389 */
24d2f903 1390 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1391 cache_line_size());
24d2f903 1392 left = rq_size * set->queue_depth;
320ae51f 1393
24d2f903 1394 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1395 int this_order = max_order;
1396 struct page *page;
1397 int to_do;
1398 void *p;
1399
1400 while (left < order_to_size(this_order - 1) && this_order)
1401 this_order--;
1402
1403 do {
24d2f903
CH
1404 page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1405 this_order);
320ae51f
JA
1406 if (page)
1407 break;
1408 if (!this_order--)
1409 break;
1410 if (order_to_size(this_order) < rq_size)
1411 break;
1412 } while (1);
1413
1414 if (!page)
24d2f903 1415 goto fail;
320ae51f
JA
1416
1417 page->private = this_order;
24d2f903 1418 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1419
1420 p = page_address(page);
1421 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1422 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1423 left -= to_do * rq_size;
1424 for (j = 0; j < to_do; j++) {
24d2f903
CH
1425 tags->rqs[i] = p;
1426 if (set->ops->init_request) {
1427 if (set->ops->init_request(set->driver_data,
1428 tags->rqs[i], hctx_idx, i,
1429 set->numa_node))
1430 goto fail;
e9b267d9
CH
1431 }
1432
320ae51f
JA
1433 p += rq_size;
1434 i++;
1435 }
1436 }
1437
24d2f903 1438 return tags;
320ae51f 1439
24d2f903
CH
1440fail:
1441 pr_warn("%s: failed to allocate requests\n", __func__);
1442 blk_mq_free_rq_map(set, tags, hctx_idx);
1443 return NULL;
320ae51f
JA
1444}
1445
1429d7c9
JA
1446static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1447{
1448 kfree(bitmap->map);
1449}
1450
1451static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1452{
1453 unsigned int bpw = 8, total, num_maps, i;
1454
1455 bitmap->bits_per_word = bpw;
1456
1457 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1458 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1459 GFP_KERNEL, node);
1460 if (!bitmap->map)
1461 return -ENOMEM;
1462
1463 bitmap->map_size = num_maps;
1464
1465 total = nr_cpu_ids;
1466 for (i = 0; i < num_maps; i++) {
1467 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1468 total -= bitmap->map[i].depth;
1469 }
1470
1471 return 0;
1472}
1473
484b4061
JA
1474static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1475{
1476 struct request_queue *q = hctx->queue;
1477 struct blk_mq_ctx *ctx;
1478 LIST_HEAD(tmp);
1479
1480 /*
1481 * Move ctx entries to new CPU, if this one is going away.
1482 */
1483 ctx = __blk_mq_get_ctx(q, cpu);
1484
1485 spin_lock(&ctx->lock);
1486 if (!list_empty(&ctx->rq_list)) {
1487 list_splice_init(&ctx->rq_list, &tmp);
1488 blk_mq_hctx_clear_pending(hctx, ctx);
1489 }
1490 spin_unlock(&ctx->lock);
1491
1492 if (list_empty(&tmp))
1493 return NOTIFY_OK;
1494
1495 ctx = blk_mq_get_ctx(q);
1496 spin_lock(&ctx->lock);
1497
1498 while (!list_empty(&tmp)) {
1499 struct request *rq;
1500
1501 rq = list_first_entry(&tmp, struct request, queuelist);
1502 rq->mq_ctx = ctx;
1503 list_move_tail(&rq->queuelist, &ctx->rq_list);
1504 }
1505
1506 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1507 blk_mq_hctx_mark_pending(hctx, ctx);
1508
1509 spin_unlock(&ctx->lock);
1510
1511 blk_mq_run_hw_queue(hctx, true);
1512 blk_mq_put_ctx(ctx);
1513 return NOTIFY_OK;
1514}
1515
1516static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1517{
1518 struct request_queue *q = hctx->queue;
1519 struct blk_mq_tag_set *set = q->tag_set;
1520
1521 if (set->tags[hctx->queue_num])
1522 return NOTIFY_OK;
1523
1524 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1525 if (!set->tags[hctx->queue_num])
1526 return NOTIFY_STOP;
1527
1528 hctx->tags = set->tags[hctx->queue_num];
1529 return NOTIFY_OK;
1530}
1531
1532static int blk_mq_hctx_notify(void *data, unsigned long action,
1533 unsigned int cpu)
1534{
1535 struct blk_mq_hw_ctx *hctx = data;
1536
1537 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1538 return blk_mq_hctx_cpu_offline(hctx, cpu);
1539 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1540 return blk_mq_hctx_cpu_online(hctx, cpu);
1541
1542 return NOTIFY_OK;
1543}
1544
624dbe47
ML
1545static void blk_mq_exit_hw_queues(struct request_queue *q,
1546 struct blk_mq_tag_set *set, int nr_queue)
1547{
1548 struct blk_mq_hw_ctx *hctx;
1549 unsigned int i;
1550
1551 queue_for_each_hw_ctx(q, hctx, i) {
1552 if (i == nr_queue)
1553 break;
1554
1555 if (set->ops->exit_hctx)
1556 set->ops->exit_hctx(hctx, i);
1557
1558 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1559 kfree(hctx->ctxs);
1560 blk_mq_free_bitmap(&hctx->ctx_map);
1561 }
1562
1563}
1564
1565static void blk_mq_free_hw_queues(struct request_queue *q,
1566 struct blk_mq_tag_set *set)
1567{
1568 struct blk_mq_hw_ctx *hctx;
1569 unsigned int i;
1570
1571 queue_for_each_hw_ctx(q, hctx, i) {
1572 free_cpumask_var(hctx->cpumask);
cdef54dd 1573 kfree(hctx);
624dbe47
ML
1574 }
1575}
1576
320ae51f 1577static int blk_mq_init_hw_queues(struct request_queue *q,
24d2f903 1578 struct blk_mq_tag_set *set)
320ae51f
JA
1579{
1580 struct blk_mq_hw_ctx *hctx;
624dbe47 1581 unsigned int i;
320ae51f
JA
1582
1583 /*
1584 * Initialize hardware queues
1585 */
1586 queue_for_each_hw_ctx(q, hctx, i) {
320ae51f
JA
1587 int node;
1588
1589 node = hctx->numa_node;
1590 if (node == NUMA_NO_NODE)
24d2f903 1591 node = hctx->numa_node = set->numa_node;
320ae51f 1592
70f4db63
CH
1593 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1594 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
320ae51f
JA
1595 spin_lock_init(&hctx->lock);
1596 INIT_LIST_HEAD(&hctx->dispatch);
1597 hctx->queue = q;
1598 hctx->queue_num = i;
24d2f903
CH
1599 hctx->flags = set->flags;
1600 hctx->cmd_size = set->cmd_size;
320ae51f
JA
1601
1602 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1603 blk_mq_hctx_notify, hctx);
1604 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1605
24d2f903 1606 hctx->tags = set->tags[i];
320ae51f
JA
1607
1608 /*
1609 * Allocate space for all possible cpus to avoid allocation in
1610 * runtime
1611 */
1612 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1613 GFP_KERNEL, node);
1614 if (!hctx->ctxs)
1615 break;
1616
1429d7c9 1617 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
320ae51f
JA
1618 break;
1619
320ae51f
JA
1620 hctx->nr_ctx = 0;
1621
24d2f903
CH
1622 if (set->ops->init_hctx &&
1623 set->ops->init_hctx(hctx, set->driver_data, i))
320ae51f
JA
1624 break;
1625 }
1626
1627 if (i == q->nr_hw_queues)
1628 return 0;
1629
1630 /*
1631 * Init failed
1632 */
624dbe47 1633 blk_mq_exit_hw_queues(q, set, i);
320ae51f
JA
1634
1635 return 1;
1636}
1637
1638static void blk_mq_init_cpu_queues(struct request_queue *q,
1639 unsigned int nr_hw_queues)
1640{
1641 unsigned int i;
1642
1643 for_each_possible_cpu(i) {
1644 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1645 struct blk_mq_hw_ctx *hctx;
1646
1647 memset(__ctx, 0, sizeof(*__ctx));
1648 __ctx->cpu = i;
1649 spin_lock_init(&__ctx->lock);
1650 INIT_LIST_HEAD(&__ctx->rq_list);
1651 __ctx->queue = q;
1652
1653 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1654 if (!cpu_online(i))
1655 continue;
1656
e4043dcf
JA
1657 hctx = q->mq_ops->map_queue(q, i);
1658 cpumask_set_cpu(i, hctx->cpumask);
1659 hctx->nr_ctx++;
1660
320ae51f
JA
1661 /*
1662 * Set local node, IFF we have more than one hw queue. If
1663 * not, we remain on the home node of the device
1664 */
1665 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1666 hctx->numa_node = cpu_to_node(i);
1667 }
1668}
1669
1670static void blk_mq_map_swqueue(struct request_queue *q)
1671{
1672 unsigned int i;
1673 struct blk_mq_hw_ctx *hctx;
1674 struct blk_mq_ctx *ctx;
1675
1676 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1677 cpumask_clear(hctx->cpumask);
320ae51f
JA
1678 hctx->nr_ctx = 0;
1679 }
1680
1681 /*
1682 * Map software to hardware queues
1683 */
1684 queue_for_each_ctx(q, ctx, i) {
1685 /* If the cpu isn't online, the cpu is mapped to first hctx */
e4043dcf
JA
1686 if (!cpu_online(i))
1687 continue;
1688
320ae51f 1689 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1690 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1691 ctx->index_hw = hctx->nr_ctx;
1692 hctx->ctxs[hctx->nr_ctx++] = ctx;
1693 }
506e931f
JA
1694
1695 queue_for_each_hw_ctx(q, hctx, i) {
484b4061
JA
1696 /*
1697 * If not software queues are mapped to this hardware queue,
1698 * disable it and free the request entries
1699 */
1700 if (!hctx->nr_ctx) {
1701 struct blk_mq_tag_set *set = q->tag_set;
1702
1703 if (set->tags[i]) {
1704 blk_mq_free_rq_map(set, set->tags[i], i);
1705 set->tags[i] = NULL;
1706 hctx->tags = NULL;
1707 }
1708 continue;
1709 }
1710
1711 /*
1712 * Initialize batch roundrobin counts
1713 */
506e931f
JA
1714 hctx->next_cpu = cpumask_first(hctx->cpumask);
1715 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1716 }
320ae51f
JA
1717}
1718
0d2602ca
JA
1719static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1720{
1721 struct blk_mq_hw_ctx *hctx;
1722 struct request_queue *q;
1723 bool shared;
1724 int i;
1725
1726 if (set->tag_list.next == set->tag_list.prev)
1727 shared = false;
1728 else
1729 shared = true;
1730
1731 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1732 blk_mq_freeze_queue(q);
1733
1734 queue_for_each_hw_ctx(q, hctx, i) {
1735 if (shared)
1736 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1737 else
1738 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1739 }
1740 blk_mq_unfreeze_queue(q);
1741 }
1742}
1743
1744static void blk_mq_del_queue_tag_set(struct request_queue *q)
1745{
1746 struct blk_mq_tag_set *set = q->tag_set;
1747
1748 blk_mq_freeze_queue(q);
1749
1750 mutex_lock(&set->tag_list_lock);
1751 list_del_init(&q->tag_set_list);
1752 blk_mq_update_tag_set_depth(set);
1753 mutex_unlock(&set->tag_list_lock);
1754
1755 blk_mq_unfreeze_queue(q);
1756}
1757
1758static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1759 struct request_queue *q)
1760{
1761 q->tag_set = set;
1762
1763 mutex_lock(&set->tag_list_lock);
1764 list_add_tail(&q->tag_set_list, &set->tag_list);
1765 blk_mq_update_tag_set_depth(set);
1766 mutex_unlock(&set->tag_list_lock);
1767}
1768
24d2f903 1769struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
320ae51f
JA
1770{
1771 struct blk_mq_hw_ctx **hctxs;
e6cdb092 1772 struct blk_mq_ctx __percpu *ctx;
320ae51f 1773 struct request_queue *q;
f14bbe77 1774 unsigned int *map;
320ae51f
JA
1775 int i;
1776
320ae51f
JA
1777 ctx = alloc_percpu(struct blk_mq_ctx);
1778 if (!ctx)
1779 return ERR_PTR(-ENOMEM);
1780
24d2f903
CH
1781 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1782 set->numa_node);
320ae51f
JA
1783
1784 if (!hctxs)
1785 goto err_percpu;
1786
f14bbe77
JA
1787 map = blk_mq_make_queue_map(set);
1788 if (!map)
1789 goto err_map;
1790
24d2f903 1791 for (i = 0; i < set->nr_hw_queues; i++) {
f14bbe77
JA
1792 int node = blk_mq_hw_queue_to_node(map, i);
1793
cdef54dd
CH
1794 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1795 GFP_KERNEL, node);
320ae51f
JA
1796 if (!hctxs[i])
1797 goto err_hctxs;
1798
e4043dcf
JA
1799 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1800 goto err_hctxs;
1801
0d2602ca 1802 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 1803 hctxs[i]->numa_node = node;
320ae51f
JA
1804 hctxs[i]->queue_num = i;
1805 }
1806
24d2f903 1807 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
320ae51f
JA
1808 if (!q)
1809 goto err_hctxs;
1810
3d2936f4
ML
1811 if (percpu_counter_init(&q->mq_usage_counter, 0))
1812 goto err_map;
1813
320ae51f
JA
1814 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1815 blk_queue_rq_timeout(q, 30000);
1816
1817 q->nr_queues = nr_cpu_ids;
24d2f903 1818 q->nr_hw_queues = set->nr_hw_queues;
f14bbe77 1819 q->mq_map = map;
320ae51f
JA
1820
1821 q->queue_ctx = ctx;
1822 q->queue_hw_ctx = hctxs;
1823
24d2f903 1824 q->mq_ops = set->ops;
94eddfbe 1825 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1826
05f1dd53
JA
1827 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1828 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1829
1be036e9
CH
1830 q->sg_reserved_size = INT_MAX;
1831
6fca6a61
CH
1832 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1833 INIT_LIST_HEAD(&q->requeue_list);
1834 spin_lock_init(&q->requeue_lock);
1835
07068d5b
JA
1836 if (q->nr_hw_queues > 1)
1837 blk_queue_make_request(q, blk_mq_make_request);
1838 else
1839 blk_queue_make_request(q, blk_sq_make_request);
1840
87ee7b11 1841 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
24d2f903
CH
1842 if (set->timeout)
1843 blk_queue_rq_timeout(q, set->timeout);
320ae51f 1844
eba71768
JA
1845 /*
1846 * Do this after blk_queue_make_request() overrides it...
1847 */
1848 q->nr_requests = set->queue_depth;
1849
24d2f903
CH
1850 if (set->ops->complete)
1851 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 1852
320ae51f 1853 blk_mq_init_flush(q);
24d2f903 1854 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 1855
24d2f903
CH
1856 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1857 set->cmd_size, cache_line_size()),
1858 GFP_KERNEL);
18741986 1859 if (!q->flush_rq)
320ae51f
JA
1860 goto err_hw;
1861
24d2f903 1862 if (blk_mq_init_hw_queues(q, set))
18741986
CH
1863 goto err_flush_rq;
1864
320ae51f
JA
1865 mutex_lock(&all_q_mutex);
1866 list_add_tail(&q->all_q_node, &all_q_list);
1867 mutex_unlock(&all_q_mutex);
1868
0d2602ca
JA
1869 blk_mq_add_queue_tag_set(set, q);
1870
484b4061
JA
1871 blk_mq_map_swqueue(q);
1872
320ae51f 1873 return q;
18741986
CH
1874
1875err_flush_rq:
1876 kfree(q->flush_rq);
320ae51f 1877err_hw:
320ae51f
JA
1878 blk_cleanup_queue(q);
1879err_hctxs:
f14bbe77 1880 kfree(map);
24d2f903 1881 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
1882 if (!hctxs[i])
1883 break;
e4043dcf 1884 free_cpumask_var(hctxs[i]->cpumask);
cdef54dd 1885 kfree(hctxs[i]);
320ae51f 1886 }
f14bbe77 1887err_map:
320ae51f
JA
1888 kfree(hctxs);
1889err_percpu:
1890 free_percpu(ctx);
1891 return ERR_PTR(-ENOMEM);
1892}
1893EXPORT_SYMBOL(blk_mq_init_queue);
1894
1895void blk_mq_free_queue(struct request_queue *q)
1896{
624dbe47 1897 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1898
0d2602ca
JA
1899 blk_mq_del_queue_tag_set(q);
1900
624dbe47
ML
1901 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1902 blk_mq_free_hw_queues(q, set);
320ae51f 1903
3d2936f4
ML
1904 percpu_counter_destroy(&q->mq_usage_counter);
1905
320ae51f
JA
1906 free_percpu(q->queue_ctx);
1907 kfree(q->queue_hw_ctx);
1908 kfree(q->mq_map);
1909
1910 q->queue_ctx = NULL;
1911 q->queue_hw_ctx = NULL;
1912 q->mq_map = NULL;
1913
1914 mutex_lock(&all_q_mutex);
1915 list_del_init(&q->all_q_node);
1916 mutex_unlock(&all_q_mutex);
1917}
320ae51f
JA
1918
1919/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1920static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1921{
1922 blk_mq_freeze_queue(q);
1923
67aec14c
JA
1924 blk_mq_sysfs_unregister(q);
1925
320ae51f
JA
1926 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1927
1928 /*
1929 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1930 * we should change hctx numa_node according to new topology (this
1931 * involves free and re-allocate memory, worthy doing?)
1932 */
1933
1934 blk_mq_map_swqueue(q);
1935
67aec14c
JA
1936 blk_mq_sysfs_register(q);
1937
320ae51f
JA
1938 blk_mq_unfreeze_queue(q);
1939}
1940
f618ef7c
PG
1941static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1942 unsigned long action, void *hcpu)
320ae51f
JA
1943{
1944 struct request_queue *q;
1945
1946 /*
9fccfed8
JA
1947 * Before new mappings are established, hotadded cpu might already
1948 * start handling requests. This doesn't break anything as we map
1949 * offline CPUs to first hardware queue. We will re-init the queue
1950 * below to get optimal settings.
320ae51f
JA
1951 */
1952 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1953 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1954 return NOTIFY_OK;
1955
1956 mutex_lock(&all_q_mutex);
1957 list_for_each_entry(q, &all_q_list, all_q_node)
1958 blk_mq_queue_reinit(q);
1959 mutex_unlock(&all_q_mutex);
1960 return NOTIFY_OK;
1961}
1962
24d2f903
CH
1963int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1964{
1965 int i;
1966
1967 if (!set->nr_hw_queues)
1968 return -EINVAL;
1969 if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
1970 return -EINVAL;
1971 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1972 return -EINVAL;
1973
cdef54dd 1974 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
24d2f903
CH
1975 return -EINVAL;
1976
1977
48479005
ML
1978 set->tags = kmalloc_node(set->nr_hw_queues *
1979 sizeof(struct blk_mq_tags *),
24d2f903
CH
1980 GFP_KERNEL, set->numa_node);
1981 if (!set->tags)
1982 goto out;
1983
1984 for (i = 0; i < set->nr_hw_queues; i++) {
1985 set->tags[i] = blk_mq_init_rq_map(set, i);
1986 if (!set->tags[i])
1987 goto out_unwind;
1988 }
1989
0d2602ca
JA
1990 mutex_init(&set->tag_list_lock);
1991 INIT_LIST_HEAD(&set->tag_list);
1992
24d2f903
CH
1993 return 0;
1994
1995out_unwind:
1996 while (--i >= 0)
1997 blk_mq_free_rq_map(set, set->tags[i], i);
1998out:
1999 return -ENOMEM;
2000}
2001EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2002
2003void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2004{
2005 int i;
2006
484b4061
JA
2007 for (i = 0; i < set->nr_hw_queues; i++) {
2008 if (set->tags[i])
2009 blk_mq_free_rq_map(set, set->tags[i], i);
2010 }
2011
981bd189 2012 kfree(set->tags);
24d2f903
CH
2013}
2014EXPORT_SYMBOL(blk_mq_free_tag_set);
2015
e3a2b3f9
JA
2016int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2017{
2018 struct blk_mq_tag_set *set = q->tag_set;
2019 struct blk_mq_hw_ctx *hctx;
2020 int i, ret;
2021
2022 if (!set || nr > set->queue_depth)
2023 return -EINVAL;
2024
2025 ret = 0;
2026 queue_for_each_hw_ctx(q, hctx, i) {
2027 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2028 if (ret)
2029 break;
2030 }
2031
2032 if (!ret)
2033 q->nr_requests = nr;
2034
2035 return ret;
2036}
2037
676141e4
JA
2038void blk_mq_disable_hotplug(void)
2039{
2040 mutex_lock(&all_q_mutex);
2041}
2042
2043void blk_mq_enable_hotplug(void)
2044{
2045 mutex_unlock(&all_q_mutex);
2046}
2047
320ae51f
JA
2048static int __init blk_mq_init(void)
2049{
320ae51f
JA
2050 blk_mq_cpu_init();
2051
2052 /* Must be called after percpu_counter_hotcpu_callback() */
2053 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
2054
2055 return 0;
2056}
2057subsys_initcall(blk_mq_init);