]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/cfq-iosched.c
[S390] qdio: 2nd stage retry on SIGA-W busy conditions
[mirror_ubuntu-artful-kernel.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
5a0e3ad6 10#include <linux/slab.h>
1cc9be68
AV
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
ad5ebd2f 13#include <linux/jiffies.h>
1da177e4 14#include <linux/rbtree.h>
22e2c507 15#include <linux/ioprio.h>
7b679138 16#include <linux/blktrace_api.h>
e98ef89b 17#include "cfq.h"
1da177e4
LT
18
19/*
20 * tunables
21 */
fe094d98 22/* max queue in one round of service */
abc3c744 23static const int cfq_quantum = 8;
64100099 24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
64100099 29static const int cfq_slice_sync = HZ / 10;
3b18152c 30static int cfq_slice_async = HZ / 25;
64100099 31static const int cfq_slice_async_rq = 2;
caaa5f9f 32static int cfq_slice_idle = HZ / 125;
80bdf0c7 33static int cfq_group_idle = HZ / 125;
5db5d642
CZ
34static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35static const int cfq_hist_divisor = 4;
22e2c507 36
d9e7620e 37/*
0871714e 38 * offset from end of service tree
d9e7620e 39 */
0871714e 40#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
41
42/*
43 * below this threshold, we consider thinktime immediate
44 */
45#define CFQ_MIN_TT (2)
46
22e2c507 47#define CFQ_SLICE_SCALE (5)
45333d5a 48#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 49#define CFQ_SERVICE_SHIFT 12
22e2c507 50
3dde36dd 51#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 52#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 53#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 54#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 55
fe094d98 56#define RQ_CIC(rq) \
c186794d
MS
57 ((struct cfq_io_context *) (rq)->elevator_private[0])
58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
1da177e4 60
e18b890b
CL
61static struct kmem_cache *cfq_pool;
62static struct kmem_cache *cfq_ioc_pool;
1da177e4 63
245b2e70 64static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 65static struct completion *ioc_gone;
9a11b4ed 66static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 67
80b15c73
KK
68static DEFINE_SPINLOCK(cic_index_lock);
69static DEFINE_IDA(cic_index_ida);
70
22e2c507
JA
71#define CFQ_PRIO_LISTS IOPRIO_BE_NR
72#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
73#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
206dc69b 75#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 76#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 77
cc09e299
JA
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
aa6f6a3d 87 unsigned count;
73e9ffdd 88 unsigned total_weight;
1fa8f6d6 89 u64 min_vdisktime;
f5f2b6ce 90 struct cfq_ttime ttime;
cc09e299 91};
f5f2b6ce
SL
92#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
93 .ttime = {.last_end_request = jiffies,},}
cc09e299 94
6118b70b
JA
95/*
96 * Per process-grouping structure
97 */
98struct cfq_queue {
99 /* reference count */
30d7b944 100 int ref;
6118b70b
JA
101 /* various state flags, see below */
102 unsigned int flags;
103 /* parent cfq_data */
104 struct cfq_data *cfqd;
105 /* service_tree member */
106 struct rb_node rb_node;
107 /* service_tree key */
108 unsigned long rb_key;
109 /* prio tree member */
110 struct rb_node p_node;
111 /* prio tree root we belong to, if any */
112 struct rb_root *p_root;
113 /* sorted list of pending requests */
114 struct rb_root sort_list;
115 /* if fifo isn't expired, next request to serve */
116 struct request *next_rq;
117 /* requests queued in sort_list */
118 int queued[2];
119 /* currently allocated requests */
120 int allocated[2];
121 /* fifo list of requests in sort_list */
122 struct list_head fifo;
123
dae739eb
VG
124 /* time when queue got scheduled in to dispatch first request. */
125 unsigned long dispatch_start;
f75edf2d 126 unsigned int allocated_slice;
c4081ba5 127 unsigned int slice_dispatch;
dae739eb
VG
128 /* time when first request from queue completed and slice started. */
129 unsigned long slice_start;
6118b70b
JA
130 unsigned long slice_end;
131 long slice_resid;
6118b70b 132
6118b70b
JA
133 /* number of requests that are on the dispatch list or inside driver */
134 int dispatched;
135
136 /* io prio of this group */
137 unsigned short ioprio, org_ioprio;
4aede84b 138 unsigned short ioprio_class;
6118b70b 139
c4081ba5
RK
140 pid_t pid;
141
3dde36dd 142 u32 seek_history;
b2c18e1e
JM
143 sector_t last_request_pos;
144
aa6f6a3d 145 struct cfq_rb_root *service_tree;
df5fe3e8 146 struct cfq_queue *new_cfqq;
cdb16e8f 147 struct cfq_group *cfqg;
c4e7893e
VG
148 /* Number of sectors dispatched from queue in single dispatch round */
149 unsigned long nr_sectors;
6118b70b
JA
150};
151
c0324a02 152/*
718eee05 153 * First index in the service_trees.
c0324a02
CZ
154 * IDLE is handled separately, so it has negative index
155 */
156enum wl_prio_t {
c0324a02 157 BE_WORKLOAD = 0,
615f0259
VG
158 RT_WORKLOAD = 1,
159 IDLE_WORKLOAD = 2,
b4627321 160 CFQ_PRIO_NR,
c0324a02
CZ
161};
162
718eee05
CZ
163/*
164 * Second index in the service_trees.
165 */
166enum wl_type_t {
167 ASYNC_WORKLOAD = 0,
168 SYNC_NOIDLE_WORKLOAD = 1,
169 SYNC_WORKLOAD = 2
170};
171
cdb16e8f
VG
172/* This is per cgroup per device grouping structure */
173struct cfq_group {
1fa8f6d6
VG
174 /* group service_tree member */
175 struct rb_node rb_node;
176
177 /* group service_tree key */
178 u64 vdisktime;
25bc6b07 179 unsigned int weight;
8184f93e
JT
180 unsigned int new_weight;
181 bool needs_update;
1fa8f6d6
VG
182
183 /* number of cfqq currently on this group */
184 int nr_cfqq;
185
cdb16e8f 186 /*
4495a7d4 187 * Per group busy queues average. Useful for workload slice calc. We
b4627321
VG
188 * create the array for each prio class but at run time it is used
189 * only for RT and BE class and slot for IDLE class remains unused.
190 * This is primarily done to avoid confusion and a gcc warning.
191 */
192 unsigned int busy_queues_avg[CFQ_PRIO_NR];
193 /*
194 * rr lists of queues with requests. We maintain service trees for
195 * RT and BE classes. These trees are subdivided in subclasses
196 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
197 * class there is no subclassification and all the cfq queues go on
198 * a single tree service_tree_idle.
cdb16e8f
VG
199 * Counts are embedded in the cfq_rb_root
200 */
201 struct cfq_rb_root service_trees[2][3];
202 struct cfq_rb_root service_tree_idle;
dae739eb
VG
203
204 unsigned long saved_workload_slice;
205 enum wl_type_t saved_workload;
206 enum wl_prio_t saved_serving_prio;
25fb5169
VG
207 struct blkio_group blkg;
208#ifdef CONFIG_CFQ_GROUP_IOSCHED
209 struct hlist_node cfqd_node;
329a6781 210 int ref;
25fb5169 211#endif
80bdf0c7
VG
212 /* number of requests that are on the dispatch list or inside driver */
213 int dispatched;
7700fc4f 214 struct cfq_ttime ttime;
cdb16e8f 215};
718eee05 216
22e2c507
JA
217/*
218 * Per block device queue structure
219 */
1da177e4 220struct cfq_data {
165125e1 221 struct request_queue *queue;
1fa8f6d6
VG
222 /* Root service tree for cfq_groups */
223 struct cfq_rb_root grp_service_tree;
cdb16e8f 224 struct cfq_group root_group;
22e2c507 225
c0324a02
CZ
226 /*
227 * The priority currently being served
22e2c507 228 */
c0324a02 229 enum wl_prio_t serving_prio;
718eee05
CZ
230 enum wl_type_t serving_type;
231 unsigned long workload_expires;
cdb16e8f 232 struct cfq_group *serving_group;
a36e71f9
JA
233
234 /*
235 * Each priority tree is sorted by next_request position. These
236 * trees are used when determining if two or more queues are
237 * interleaving requests (see cfq_close_cooperator).
238 */
239 struct rb_root prio_trees[CFQ_PRIO_LISTS];
240
22e2c507 241 unsigned int busy_queues;
ef8a41df 242 unsigned int busy_sync_queues;
22e2c507 243
53c583d2
CZ
244 int rq_in_driver;
245 int rq_in_flight[2];
45333d5a
AC
246
247 /*
248 * queue-depth detection
249 */
250 int rq_queued;
25776e35 251 int hw_tag;
e459dd08
CZ
252 /*
253 * hw_tag can be
254 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
255 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
256 * 0 => no NCQ
257 */
258 int hw_tag_est_depth;
259 unsigned int hw_tag_samples;
1da177e4 260
22e2c507
JA
261 /*
262 * idle window management
263 */
264 struct timer_list idle_slice_timer;
23e018a1 265 struct work_struct unplug_work;
1da177e4 266
22e2c507
JA
267 struct cfq_queue *active_queue;
268 struct cfq_io_context *active_cic;
22e2c507 269
c2dea2d1
VT
270 /*
271 * async queue for each priority case
272 */
273 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
274 struct cfq_queue *async_idle_cfqq;
15c31be4 275
6d048f53 276 sector_t last_position;
1da177e4 277
1da177e4
LT
278 /*
279 * tunables, see top of file
280 */
281 unsigned int cfq_quantum;
22e2c507 282 unsigned int cfq_fifo_expire[2];
1da177e4
LT
283 unsigned int cfq_back_penalty;
284 unsigned int cfq_back_max;
22e2c507
JA
285 unsigned int cfq_slice[2];
286 unsigned int cfq_slice_async_rq;
287 unsigned int cfq_slice_idle;
80bdf0c7 288 unsigned int cfq_group_idle;
963b72fc 289 unsigned int cfq_latency;
d9ff4187 290
80b15c73 291 unsigned int cic_index;
d9ff4187 292 struct list_head cic_list;
1da177e4 293
6118b70b
JA
294 /*
295 * Fallback dummy cfqq for extreme OOM conditions
296 */
297 struct cfq_queue oom_cfqq;
365722bb 298
573412b2 299 unsigned long last_delayed_sync;
25fb5169
VG
300
301 /* List of cfq groups being managed on this device*/
302 struct hlist_head cfqg_list;
56edf7d7
VG
303
304 /* Number of groups which are on blkcg->blkg_list */
305 unsigned int nr_blkcg_linked_grps;
1da177e4
LT
306};
307
25fb5169
VG
308static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
309
cdb16e8f
VG
310static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
311 enum wl_prio_t prio,
65b32a57 312 enum wl_type_t type)
c0324a02 313{
1fa8f6d6
VG
314 if (!cfqg)
315 return NULL;
316
c0324a02 317 if (prio == IDLE_WORKLOAD)
cdb16e8f 318 return &cfqg->service_tree_idle;
c0324a02 319
cdb16e8f 320 return &cfqg->service_trees[prio][type];
c0324a02
CZ
321}
322
3b18152c 323enum cfqq_state_flags {
b0b8d749
JA
324 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
325 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 326 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 327 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
328 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
329 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
330 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 331 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 332 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 333 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 334 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 335 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 336 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
337};
338
339#define CFQ_CFQQ_FNS(name) \
340static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
341{ \
fe094d98 342 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
343} \
344static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
345{ \
fe094d98 346 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
347} \
348static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
349{ \
fe094d98 350 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
351}
352
353CFQ_CFQQ_FNS(on_rr);
354CFQ_CFQQ_FNS(wait_request);
b029195d 355CFQ_CFQQ_FNS(must_dispatch);
3b18152c 356CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
357CFQ_CFQQ_FNS(fifo_expire);
358CFQ_CFQQ_FNS(idle_window);
359CFQ_CFQQ_FNS(prio_changed);
44f7c160 360CFQ_CFQQ_FNS(slice_new);
91fac317 361CFQ_CFQQ_FNS(sync);
a36e71f9 362CFQ_CFQQ_FNS(coop);
ae54abed 363CFQ_CFQQ_FNS(split_coop);
76280aff 364CFQ_CFQQ_FNS(deep);
f75edf2d 365CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
366#undef CFQ_CFQQ_FNS
367
afc24d49 368#ifdef CONFIG_CFQ_GROUP_IOSCHED
2868ef7b
VG
369#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
370 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
371 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
4495a7d4 372 blkg_path(&(cfqq)->cfqg->blkg), ##args)
2868ef7b
VG
373
374#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
375 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
4495a7d4 376 blkg_path(&(cfqg)->blkg), ##args) \
2868ef7b
VG
377
378#else
7b679138
JA
379#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
380 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
4495a7d4 381#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
2868ef7b 382#endif
7b679138
JA
383#define cfq_log(cfqd, fmt, args...) \
384 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
385
615f0259
VG
386/* Traverses through cfq group service trees */
387#define for_each_cfqg_st(cfqg, i, j, st) \
388 for (i = 0; i <= IDLE_WORKLOAD; i++) \
389 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
390 : &cfqg->service_tree_idle; \
391 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
392 (i == IDLE_WORKLOAD && j == 0); \
393 j++, st = i < IDLE_WORKLOAD ? \
394 &cfqg->service_trees[i][j]: NULL) \
395
f5f2b6ce
SL
396static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
397 struct cfq_ttime *ttime, bool group_idle)
398{
399 unsigned long slice;
400 if (!sample_valid(ttime->ttime_samples))
401 return false;
402 if (group_idle)
403 slice = cfqd->cfq_group_idle;
404 else
405 slice = cfqd->cfq_slice_idle;
406 return ttime->ttime_mean > slice;
407}
615f0259 408
02b35081
VG
409static inline bool iops_mode(struct cfq_data *cfqd)
410{
411 /*
412 * If we are not idling on queues and it is a NCQ drive, parallel
413 * execution of requests is on and measuring time is not possible
414 * in most of the cases until and unless we drive shallower queue
415 * depths and that becomes a performance bottleneck. In such cases
416 * switch to start providing fairness in terms of number of IOs.
417 */
418 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
419 return true;
420 else
421 return false;
422}
423
c0324a02
CZ
424static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
425{
426 if (cfq_class_idle(cfqq))
427 return IDLE_WORKLOAD;
428 if (cfq_class_rt(cfqq))
429 return RT_WORKLOAD;
430 return BE_WORKLOAD;
431}
432
718eee05
CZ
433
434static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
435{
436 if (!cfq_cfqq_sync(cfqq))
437 return ASYNC_WORKLOAD;
438 if (!cfq_cfqq_idle_window(cfqq))
439 return SYNC_NOIDLE_WORKLOAD;
440 return SYNC_WORKLOAD;
441}
442
58ff82f3
VG
443static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
444 struct cfq_data *cfqd,
445 struct cfq_group *cfqg)
c0324a02
CZ
446{
447 if (wl == IDLE_WORKLOAD)
cdb16e8f 448 return cfqg->service_tree_idle.count;
c0324a02 449
cdb16e8f
VG
450 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
451 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
452 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
453}
454
f26bd1f0
VG
455static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
456 struct cfq_group *cfqg)
457{
458 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
459 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
460}
461
165125e1 462static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 463static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 464 struct io_context *, gfp_t);
4ac845a2 465static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
466 struct io_context *);
467
468static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 469 bool is_sync)
91fac317 470{
a6151c3a 471 return cic->cfqq[is_sync];
91fac317
VT
472}
473
474static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 475 struct cfq_queue *cfqq, bool is_sync)
91fac317 476{
a6151c3a 477 cic->cfqq[is_sync] = cfqq;
91fac317
VT
478}
479
bca4b914 480#define CIC_DEAD_KEY 1ul
80b15c73 481#define CIC_DEAD_INDEX_SHIFT 1
bca4b914
KK
482
483static inline void *cfqd_dead_key(struct cfq_data *cfqd)
484{
80b15c73 485 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
bca4b914
KK
486}
487
488static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
489{
490 struct cfq_data *cfqd = cic->key;
491
492 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
493 return NULL;
494
495 return cfqd;
496}
497
91fac317
VT
498/*
499 * We regard a request as SYNC, if it's either a read or has the SYNC bit
500 * set (in which case it could also be direct WRITE).
501 */
a6151c3a 502static inline bool cfq_bio_sync(struct bio *bio)
91fac317 503{
7b6d91da 504 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
91fac317 505}
1da177e4 506
99f95e52
AM
507/*
508 * scheduler run of queue, if there are requests pending and no one in the
509 * driver that will restart queueing
510 */
23e018a1 511static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 512{
7b679138
JA
513 if (cfqd->busy_queues) {
514 cfq_log(cfqd, "schedule dispatch");
23e018a1 515 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 516 }
99f95e52
AM
517}
518
44f7c160
JA
519/*
520 * Scale schedule slice based on io priority. Use the sync time slice only
521 * if a queue is marked sync and has sync io queued. A sync queue with async
522 * io only, should not get full sync slice length.
523 */
a6151c3a 524static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 525 unsigned short prio)
44f7c160 526{
d9e7620e 527 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 528
d9e7620e
JA
529 WARN_ON(prio >= IOPRIO_BE_NR);
530
531 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
532}
44f7c160 533
d9e7620e
JA
534static inline int
535cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
536{
537 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
538}
539
25bc6b07
VG
540static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
541{
542 u64 d = delta << CFQ_SERVICE_SHIFT;
543
544 d = d * BLKIO_WEIGHT_DEFAULT;
545 do_div(d, cfqg->weight);
546 return d;
547}
548
549static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
550{
551 s64 delta = (s64)(vdisktime - min_vdisktime);
552 if (delta > 0)
553 min_vdisktime = vdisktime;
554
555 return min_vdisktime;
556}
557
558static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
559{
560 s64 delta = (s64)(vdisktime - min_vdisktime);
561 if (delta < 0)
562 min_vdisktime = vdisktime;
563
564 return min_vdisktime;
565}
566
567static void update_min_vdisktime(struct cfq_rb_root *st)
568{
25bc6b07
VG
569 struct cfq_group *cfqg;
570
25bc6b07
VG
571 if (st->left) {
572 cfqg = rb_entry_cfqg(st->left);
a6032710
GJ
573 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
574 cfqg->vdisktime);
25bc6b07 575 }
25bc6b07
VG
576}
577
5db5d642
CZ
578/*
579 * get averaged number of queues of RT/BE priority.
580 * average is updated, with a formula that gives more weight to higher numbers,
581 * to quickly follows sudden increases and decrease slowly
582 */
583
58ff82f3
VG
584static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
585 struct cfq_group *cfqg, bool rt)
5869619c 586{
5db5d642
CZ
587 unsigned min_q, max_q;
588 unsigned mult = cfq_hist_divisor - 1;
589 unsigned round = cfq_hist_divisor / 2;
58ff82f3 590 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 591
58ff82f3
VG
592 min_q = min(cfqg->busy_queues_avg[rt], busy);
593 max_q = max(cfqg->busy_queues_avg[rt], busy);
594 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 595 cfq_hist_divisor;
58ff82f3
VG
596 return cfqg->busy_queues_avg[rt];
597}
598
599static inline unsigned
600cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
601{
602 struct cfq_rb_root *st = &cfqd->grp_service_tree;
603
604 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
605}
606
c553f8e3 607static inline unsigned
ba5bd520 608cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
44f7c160 609{
5db5d642
CZ
610 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
611 if (cfqd->cfq_latency) {
58ff82f3
VG
612 /*
613 * interested queues (we consider only the ones with the same
614 * priority class in the cfq group)
615 */
616 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
617 cfq_class_rt(cfqq));
5db5d642
CZ
618 unsigned sync_slice = cfqd->cfq_slice[1];
619 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
620 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
621
622 if (expect_latency > group_slice) {
5db5d642
CZ
623 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
624 /* scale low_slice according to IO priority
625 * and sync vs async */
626 unsigned low_slice =
627 min(slice, base_low_slice * slice / sync_slice);
628 /* the adapted slice value is scaled to fit all iqs
629 * into the target latency */
58ff82f3 630 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
631 low_slice);
632 }
633 }
c553f8e3
SL
634 return slice;
635}
636
637static inline void
638cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
639{
ba5bd520 640 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3 641
dae739eb 642 cfqq->slice_start = jiffies;
5db5d642 643 cfqq->slice_end = jiffies + slice;
f75edf2d 644 cfqq->allocated_slice = slice;
7b679138 645 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
646}
647
648/*
649 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
650 * isn't valid until the first request from the dispatch is activated
651 * and the slice time set.
652 */
a6151c3a 653static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
654{
655 if (cfq_cfqq_slice_new(cfqq))
c1e44756 656 return false;
44f7c160 657 if (time_before(jiffies, cfqq->slice_end))
c1e44756 658 return false;
44f7c160 659
c1e44756 660 return true;
44f7c160
JA
661}
662
1da177e4 663/*
5e705374 664 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 665 * We choose the request that is closest to the head right now. Distance
e8a99053 666 * behind the head is penalized and only allowed to a certain extent.
1da177e4 667 */
5e705374 668static struct request *
cf7c25cf 669cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 670{
cf7c25cf 671 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 672 unsigned long back_max;
e8a99053
AM
673#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
674#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
675 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 676
5e705374
JA
677 if (rq1 == NULL || rq1 == rq2)
678 return rq2;
679 if (rq2 == NULL)
680 return rq1;
9c2c38a1 681
229836bd
NK
682 if (rq_is_sync(rq1) != rq_is_sync(rq2))
683 return rq_is_sync(rq1) ? rq1 : rq2;
684
83096ebf
TH
685 s1 = blk_rq_pos(rq1);
686 s2 = blk_rq_pos(rq2);
1da177e4 687
1da177e4
LT
688 /*
689 * by definition, 1KiB is 2 sectors
690 */
691 back_max = cfqd->cfq_back_max * 2;
692
693 /*
694 * Strict one way elevator _except_ in the case where we allow
695 * short backward seeks which are biased as twice the cost of a
696 * similar forward seek.
697 */
698 if (s1 >= last)
699 d1 = s1 - last;
700 else if (s1 + back_max >= last)
701 d1 = (last - s1) * cfqd->cfq_back_penalty;
702 else
e8a99053 703 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
704
705 if (s2 >= last)
706 d2 = s2 - last;
707 else if (s2 + back_max >= last)
708 d2 = (last - s2) * cfqd->cfq_back_penalty;
709 else
e8a99053 710 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
711
712 /* Found required data */
e8a99053
AM
713
714 /*
715 * By doing switch() on the bit mask "wrap" we avoid having to
716 * check two variables for all permutations: --> faster!
717 */
718 switch (wrap) {
5e705374 719 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 720 if (d1 < d2)
5e705374 721 return rq1;
e8a99053 722 else if (d2 < d1)
5e705374 723 return rq2;
e8a99053
AM
724 else {
725 if (s1 >= s2)
5e705374 726 return rq1;
e8a99053 727 else
5e705374 728 return rq2;
e8a99053 729 }
1da177e4 730
e8a99053 731 case CFQ_RQ2_WRAP:
5e705374 732 return rq1;
e8a99053 733 case CFQ_RQ1_WRAP:
5e705374
JA
734 return rq2;
735 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
736 default:
737 /*
738 * Since both rqs are wrapped,
739 * start with the one that's further behind head
740 * (--> only *one* back seek required),
741 * since back seek takes more time than forward.
742 */
743 if (s1 <= s2)
5e705374 744 return rq1;
1da177e4 745 else
5e705374 746 return rq2;
1da177e4
LT
747 }
748}
749
498d3aa2
JA
750/*
751 * The below is leftmost cache rbtree addon
752 */
0871714e 753static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 754{
615f0259
VG
755 /* Service tree is empty */
756 if (!root->count)
757 return NULL;
758
cc09e299
JA
759 if (!root->left)
760 root->left = rb_first(&root->rb);
761
0871714e
JA
762 if (root->left)
763 return rb_entry(root->left, struct cfq_queue, rb_node);
764
765 return NULL;
cc09e299
JA
766}
767
1fa8f6d6
VG
768static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
769{
770 if (!root->left)
771 root->left = rb_first(&root->rb);
772
773 if (root->left)
774 return rb_entry_cfqg(root->left);
775
776 return NULL;
777}
778
a36e71f9
JA
779static void rb_erase_init(struct rb_node *n, struct rb_root *root)
780{
781 rb_erase(n, root);
782 RB_CLEAR_NODE(n);
783}
784
cc09e299
JA
785static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
786{
787 if (root->left == n)
788 root->left = NULL;
a36e71f9 789 rb_erase_init(n, &root->rb);
aa6f6a3d 790 --root->count;
cc09e299
JA
791}
792
1da177e4
LT
793/*
794 * would be nice to take fifo expire time into account as well
795 */
5e705374
JA
796static struct request *
797cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
798 struct request *last)
1da177e4 799{
21183b07
JA
800 struct rb_node *rbnext = rb_next(&last->rb_node);
801 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 802 struct request *next = NULL, *prev = NULL;
1da177e4 803
21183b07 804 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
805
806 if (rbprev)
5e705374 807 prev = rb_entry_rq(rbprev);
1da177e4 808
21183b07 809 if (rbnext)
5e705374 810 next = rb_entry_rq(rbnext);
21183b07
JA
811 else {
812 rbnext = rb_first(&cfqq->sort_list);
813 if (rbnext && rbnext != &last->rb_node)
5e705374 814 next = rb_entry_rq(rbnext);
21183b07 815 }
1da177e4 816
cf7c25cf 817 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
818}
819
d9e7620e
JA
820static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
821 struct cfq_queue *cfqq)
1da177e4 822{
d9e7620e
JA
823 /*
824 * just an approximation, should be ok.
825 */
cdb16e8f 826 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 827 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
828}
829
1fa8f6d6
VG
830static inline s64
831cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
832{
833 return cfqg->vdisktime - st->min_vdisktime;
834}
835
836static void
837__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
838{
839 struct rb_node **node = &st->rb.rb_node;
840 struct rb_node *parent = NULL;
841 struct cfq_group *__cfqg;
842 s64 key = cfqg_key(st, cfqg);
843 int left = 1;
844
845 while (*node != NULL) {
846 parent = *node;
847 __cfqg = rb_entry_cfqg(parent);
848
849 if (key < cfqg_key(st, __cfqg))
850 node = &parent->rb_left;
851 else {
852 node = &parent->rb_right;
853 left = 0;
854 }
855 }
856
857 if (left)
858 st->left = &cfqg->rb_node;
859
860 rb_link_node(&cfqg->rb_node, parent, node);
861 rb_insert_color(&cfqg->rb_node, &st->rb);
862}
863
864static void
8184f93e
JT
865cfq_update_group_weight(struct cfq_group *cfqg)
866{
867 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
868 if (cfqg->needs_update) {
869 cfqg->weight = cfqg->new_weight;
870 cfqg->needs_update = false;
871 }
872}
873
874static void
875cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
876{
877 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
878
879 cfq_update_group_weight(cfqg);
880 __cfq_group_service_tree_add(st, cfqg);
881 st->total_weight += cfqg->weight;
882}
883
884static void
885cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1fa8f6d6
VG
886{
887 struct cfq_rb_root *st = &cfqd->grp_service_tree;
888 struct cfq_group *__cfqg;
889 struct rb_node *n;
890
891 cfqg->nr_cfqq++;
760701bf 892 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1fa8f6d6
VG
893 return;
894
895 /*
896 * Currently put the group at the end. Later implement something
897 * so that groups get lesser vtime based on their weights, so that
25985edc 898 * if group does not loose all if it was not continuously backlogged.
1fa8f6d6
VG
899 */
900 n = rb_last(&st->rb);
901 if (n) {
902 __cfqg = rb_entry_cfqg(n);
903 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
904 } else
905 cfqg->vdisktime = st->min_vdisktime;
8184f93e
JT
906 cfq_group_service_tree_add(st, cfqg);
907}
1fa8f6d6 908
8184f93e
JT
909static void
910cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
911{
912 st->total_weight -= cfqg->weight;
913 if (!RB_EMPTY_NODE(&cfqg->rb_node))
914 cfq_rb_erase(&cfqg->rb_node, st);
1fa8f6d6
VG
915}
916
917static void
8184f93e 918cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1fa8f6d6
VG
919{
920 struct cfq_rb_root *st = &cfqd->grp_service_tree;
921
922 BUG_ON(cfqg->nr_cfqq < 1);
923 cfqg->nr_cfqq--;
25bc6b07 924
1fa8f6d6
VG
925 /* If there are other cfq queues under this group, don't delete it */
926 if (cfqg->nr_cfqq)
927 return;
928
2868ef7b 929 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
8184f93e 930 cfq_group_service_tree_del(st, cfqg);
dae739eb 931 cfqg->saved_workload_slice = 0;
e98ef89b 932 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
933}
934
167400d3
JT
935static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
936 unsigned int *unaccounted_time)
dae739eb 937{
f75edf2d 938 unsigned int slice_used;
dae739eb
VG
939
940 /*
941 * Queue got expired before even a single request completed or
942 * got expired immediately after first request completion.
943 */
944 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
945 /*
946 * Also charge the seek time incurred to the group, otherwise
947 * if there are mutiple queues in the group, each can dispatch
948 * a single request on seeky media and cause lots of seek time
949 * and group will never know it.
950 */
951 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
952 1);
953 } else {
954 slice_used = jiffies - cfqq->slice_start;
167400d3
JT
955 if (slice_used > cfqq->allocated_slice) {
956 *unaccounted_time = slice_used - cfqq->allocated_slice;
f75edf2d 957 slice_used = cfqq->allocated_slice;
167400d3
JT
958 }
959 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
960 *unaccounted_time += cfqq->slice_start -
961 cfqq->dispatch_start;
dae739eb
VG
962 }
963
dae739eb
VG
964 return slice_used;
965}
966
967static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
e5ff082e 968 struct cfq_queue *cfqq)
dae739eb
VG
969{
970 struct cfq_rb_root *st = &cfqd->grp_service_tree;
167400d3 971 unsigned int used_sl, charge, unaccounted_sl = 0;
f26bd1f0
VG
972 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
973 - cfqg->service_tree_idle.count;
974
975 BUG_ON(nr_sync < 0);
167400d3 976 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
dae739eb 977
02b35081
VG
978 if (iops_mode(cfqd))
979 charge = cfqq->slice_dispatch;
980 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
981 charge = cfqq->allocated_slice;
dae739eb
VG
982
983 /* Can't update vdisktime while group is on service tree */
8184f93e 984 cfq_group_service_tree_del(st, cfqg);
02b35081 985 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
8184f93e
JT
986 /* If a new weight was requested, update now, off tree */
987 cfq_group_service_tree_add(st, cfqg);
dae739eb
VG
988
989 /* This group is being expired. Save the context */
990 if (time_after(cfqd->workload_expires, jiffies)) {
991 cfqg->saved_workload_slice = cfqd->workload_expires
992 - jiffies;
993 cfqg->saved_workload = cfqd->serving_type;
994 cfqg->saved_serving_prio = cfqd->serving_prio;
995 } else
996 cfqg->saved_workload_slice = 0;
2868ef7b
VG
997
998 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
999 st->min_vdisktime);
fd16d263
JP
1000 cfq_log_cfqq(cfqq->cfqd, cfqq,
1001 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1002 used_sl, cfqq->slice_dispatch, charge,
1003 iops_mode(cfqd), cfqq->nr_sectors);
167400d3
JT
1004 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1005 unaccounted_sl);
e98ef89b 1006 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1fa8f6d6
VG
1007}
1008
25fb5169
VG
1009#ifdef CONFIG_CFQ_GROUP_IOSCHED
1010static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1011{
1012 if (blkg)
1013 return container_of(blkg, struct cfq_group, blkg);
1014 return NULL;
1015}
1016
8aea4545
PB
1017static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1018 unsigned int weight)
f8d461d6 1019{
8184f93e
JT
1020 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1021 cfqg->new_weight = weight;
1022 cfqg->needs_update = true;
f8d461d6
VG
1023}
1024
f469a7b4
VG
1025static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1026 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
25fb5169 1027{
22084190
VG
1028 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1029 unsigned int major, minor;
25fb5169 1030
f469a7b4
VG
1031 /*
1032 * Add group onto cgroup list. It might happen that bdi->dev is
1033 * not initialized yet. Initialize this new group without major
1034 * and minor info and this info will be filled in once a new thread
1035 * comes for IO.
1036 */
1037 if (bdi->dev) {
a74b2ada 1038 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
f469a7b4
VG
1039 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1040 (void *)cfqd, MKDEV(major, minor));
1041 } else
1042 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1043 (void *)cfqd, 0);
1044
1045 cfqd->nr_blkcg_linked_grps++;
1046 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1047
1048 /* Add group on cfqd list */
1049 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1050}
1051
1052/*
1053 * Should be called from sleepable context. No request queue lock as per
1054 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1055 * from sleepable context.
1056 */
1057static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1058{
1059 struct cfq_group *cfqg = NULL;
5624a4e4 1060 int i, j, ret;
f469a7b4 1061 struct cfq_rb_root *st;
25fb5169
VG
1062
1063 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1064 if (!cfqg)
f469a7b4 1065 return NULL;
25fb5169 1066
25fb5169
VG
1067 for_each_cfqg_st(cfqg, i, j, st)
1068 *st = CFQ_RB_ROOT;
1069 RB_CLEAR_NODE(&cfqg->rb_node);
1070
7700fc4f
SL
1071 cfqg->ttime.last_end_request = jiffies;
1072
b1c35769
VG
1073 /*
1074 * Take the initial reference that will be released on destroy
1075 * This can be thought of a joint reference by cgroup and
1076 * elevator which will be dropped by either elevator exit
1077 * or cgroup deletion path depending on who is exiting first.
1078 */
329a6781 1079 cfqg->ref = 1;
5624a4e4
VG
1080
1081 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1082 if (ret) {
1083 kfree(cfqg);
1084 return NULL;
1085 }
1086
f469a7b4
VG
1087 return cfqg;
1088}
1089
1090static struct cfq_group *
1091cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1092{
1093 struct cfq_group *cfqg = NULL;
1094 void *key = cfqd;
1095 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1096 unsigned int major, minor;
b1c35769 1097
180be2a0 1098 /*
f469a7b4
VG
1099 * This is the common case when there are no blkio cgroups.
1100 * Avoid lookup in this case
180be2a0 1101 */
f469a7b4
VG
1102 if (blkcg == &blkio_root_cgroup)
1103 cfqg = &cfqd->root_group;
1104 else
1105 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
25fb5169 1106
f469a7b4
VG
1107 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1108 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1109 cfqg->blkg.dev = MKDEV(major, minor);
1110 }
25fb5169 1111
25fb5169
VG
1112 return cfqg;
1113}
1114
1115/*
3e59cf9d
VG
1116 * Search for the cfq group current task belongs to. request_queue lock must
1117 * be held.
25fb5169 1118 */
3e59cf9d 1119static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
25fb5169 1120{
70087dc3 1121 struct blkio_cgroup *blkcg;
f469a7b4
VG
1122 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1123 struct request_queue *q = cfqd->queue;
25fb5169
VG
1124
1125 rcu_read_lock();
70087dc3 1126 blkcg = task_blkio_cgroup(current);
f469a7b4
VG
1127 cfqg = cfq_find_cfqg(cfqd, blkcg);
1128 if (cfqg) {
1129 rcu_read_unlock();
1130 return cfqg;
1131 }
1132
1133 /*
1134 * Need to allocate a group. Allocation of group also needs allocation
1135 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1136 * we need to drop rcu lock and queue_lock before we call alloc.
1137 *
1138 * Not taking any queue reference here and assuming that queue is
1139 * around by the time we return. CFQ queue allocation code does
1140 * the same. It might be racy though.
1141 */
1142
1143 rcu_read_unlock();
1144 spin_unlock_irq(q->queue_lock);
1145
1146 cfqg = cfq_alloc_cfqg(cfqd);
1147
1148 spin_lock_irq(q->queue_lock);
1149
1150 rcu_read_lock();
1151 blkcg = task_blkio_cgroup(current);
1152
1153 /*
1154 * If some other thread already allocated the group while we were
1155 * not holding queue lock, free up the group
1156 */
1157 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1158
1159 if (__cfqg) {
1160 kfree(cfqg);
1161 rcu_read_unlock();
1162 return __cfqg;
1163 }
1164
3e59cf9d 1165 if (!cfqg)
25fb5169 1166 cfqg = &cfqd->root_group;
f469a7b4
VG
1167
1168 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
25fb5169
VG
1169 rcu_read_unlock();
1170 return cfqg;
1171}
1172
7f1dc8a2
VG
1173static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1174{
329a6781 1175 cfqg->ref++;
7f1dc8a2
VG
1176 return cfqg;
1177}
1178
25fb5169
VG
1179static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1180{
1181 /* Currently, all async queues are mapped to root group */
1182 if (!cfq_cfqq_sync(cfqq))
1183 cfqg = &cfqq->cfqd->root_group;
1184
1185 cfqq->cfqg = cfqg;
b1c35769 1186 /* cfqq reference on cfqg */
329a6781 1187 cfqq->cfqg->ref++;
b1c35769
VG
1188}
1189
1190static void cfq_put_cfqg(struct cfq_group *cfqg)
1191{
1192 struct cfq_rb_root *st;
1193 int i, j;
1194
329a6781
SL
1195 BUG_ON(cfqg->ref <= 0);
1196 cfqg->ref--;
1197 if (cfqg->ref)
b1c35769
VG
1198 return;
1199 for_each_cfqg_st(cfqg, i, j, st)
b54ce60e 1200 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
5624a4e4 1201 free_percpu(cfqg->blkg.stats_cpu);
b1c35769
VG
1202 kfree(cfqg);
1203}
1204
1205static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1206{
1207 /* Something wrong if we are trying to remove same group twice */
1208 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1209
1210 hlist_del_init(&cfqg->cfqd_node);
1211
1212 /*
1213 * Put the reference taken at the time of creation so that when all
1214 * queues are gone, group can be destroyed.
1215 */
1216 cfq_put_cfqg(cfqg);
1217}
1218
1219static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1220{
1221 struct hlist_node *pos, *n;
1222 struct cfq_group *cfqg;
1223
1224 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1225 /*
1226 * If cgroup removal path got to blk_group first and removed
1227 * it from cgroup list, then it will take care of destroying
1228 * cfqg also.
1229 */
e98ef89b 1230 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
b1c35769
VG
1231 cfq_destroy_cfqg(cfqd, cfqg);
1232 }
25fb5169 1233}
b1c35769
VG
1234
1235/*
1236 * Blk cgroup controller notification saying that blkio_group object is being
1237 * delinked as associated cgroup object is going away. That also means that
1238 * no new IO will come in this group. So get rid of this group as soon as
1239 * any pending IO in the group is finished.
1240 *
1241 * This function is called under rcu_read_lock(). key is the rcu protected
1242 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1243 * read lock.
1244 *
1245 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1246 * it should not be NULL as even if elevator was exiting, cgroup deltion
1247 * path got to it first.
1248 */
8aea4545 1249static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
b1c35769
VG
1250{
1251 unsigned long flags;
1252 struct cfq_data *cfqd = key;
1253
1254 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1255 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1256 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1257}
1258
25fb5169 1259#else /* GROUP_IOSCHED */
3e59cf9d 1260static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
25fb5169
VG
1261{
1262 return &cfqd->root_group;
1263}
7f1dc8a2
VG
1264
1265static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1266{
50eaeb32 1267 return cfqg;
7f1dc8a2
VG
1268}
1269
25fb5169
VG
1270static inline void
1271cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1272 cfqq->cfqg = cfqg;
1273}
1274
b1c35769
VG
1275static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1276static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1277
25fb5169
VG
1278#endif /* GROUP_IOSCHED */
1279
498d3aa2 1280/*
c0324a02 1281 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1282 * requests waiting to be processed. It is sorted in the order that
1283 * we will service the queues.
1284 */
a36e71f9 1285static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1286 bool add_front)
d9e7620e 1287{
0871714e
JA
1288 struct rb_node **p, *parent;
1289 struct cfq_queue *__cfqq;
d9e7620e 1290 unsigned long rb_key;
c0324a02 1291 struct cfq_rb_root *service_tree;
498d3aa2 1292 int left;
dae739eb 1293 int new_cfqq = 1;
ae30c286 1294
cdb16e8f 1295 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1296 cfqq_type(cfqq));
0871714e
JA
1297 if (cfq_class_idle(cfqq)) {
1298 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1299 parent = rb_last(&service_tree->rb);
0871714e
JA
1300 if (parent && parent != &cfqq->rb_node) {
1301 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1302 rb_key += __cfqq->rb_key;
1303 } else
1304 rb_key += jiffies;
1305 } else if (!add_front) {
b9c8946b
JA
1306 /*
1307 * Get our rb key offset. Subtract any residual slice
1308 * value carried from last service. A negative resid
1309 * count indicates slice overrun, and this should position
1310 * the next service time further away in the tree.
1311 */
edd75ffd 1312 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1313 rb_key -= cfqq->slice_resid;
edd75ffd 1314 cfqq->slice_resid = 0;
48e025e6
CZ
1315 } else {
1316 rb_key = -HZ;
aa6f6a3d 1317 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1318 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1319 }
1da177e4 1320
d9e7620e 1321 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1322 new_cfqq = 0;
99f9628a 1323 /*
d9e7620e 1324 * same position, nothing more to do
99f9628a 1325 */
c0324a02
CZ
1326 if (rb_key == cfqq->rb_key &&
1327 cfqq->service_tree == service_tree)
d9e7620e 1328 return;
1da177e4 1329
aa6f6a3d
CZ
1330 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1331 cfqq->service_tree = NULL;
1da177e4 1332 }
d9e7620e 1333
498d3aa2 1334 left = 1;
0871714e 1335 parent = NULL;
aa6f6a3d
CZ
1336 cfqq->service_tree = service_tree;
1337 p = &service_tree->rb.rb_node;
d9e7620e 1338 while (*p) {
67060e37 1339 struct rb_node **n;
cc09e299 1340
d9e7620e
JA
1341 parent = *p;
1342 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1343
0c534e0a 1344 /*
c0324a02 1345 * sort by key, that represents service time.
0c534e0a 1346 */
c0324a02 1347 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1348 n = &(*p)->rb_left;
c0324a02 1349 else {
67060e37 1350 n = &(*p)->rb_right;
cc09e299 1351 left = 0;
c0324a02 1352 }
67060e37
JA
1353
1354 p = n;
d9e7620e
JA
1355 }
1356
cc09e299 1357 if (left)
aa6f6a3d 1358 service_tree->left = &cfqq->rb_node;
cc09e299 1359
d9e7620e
JA
1360 cfqq->rb_key = rb_key;
1361 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1362 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1363 service_tree->count++;
20359f27 1364 if (add_front || !new_cfqq)
dae739eb 1365 return;
8184f93e 1366 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1da177e4
LT
1367}
1368
a36e71f9 1369static struct cfq_queue *
f2d1f0ae
JA
1370cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1371 sector_t sector, struct rb_node **ret_parent,
1372 struct rb_node ***rb_link)
a36e71f9 1373{
a36e71f9
JA
1374 struct rb_node **p, *parent;
1375 struct cfq_queue *cfqq = NULL;
1376
1377 parent = NULL;
1378 p = &root->rb_node;
1379 while (*p) {
1380 struct rb_node **n;
1381
1382 parent = *p;
1383 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1384
1385 /*
1386 * Sort strictly based on sector. Smallest to the left,
1387 * largest to the right.
1388 */
2e46e8b2 1389 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1390 n = &(*p)->rb_right;
2e46e8b2 1391 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1392 n = &(*p)->rb_left;
1393 else
1394 break;
1395 p = n;
3ac6c9f8 1396 cfqq = NULL;
a36e71f9
JA
1397 }
1398
1399 *ret_parent = parent;
1400 if (rb_link)
1401 *rb_link = p;
3ac6c9f8 1402 return cfqq;
a36e71f9
JA
1403}
1404
1405static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1406{
a36e71f9
JA
1407 struct rb_node **p, *parent;
1408 struct cfq_queue *__cfqq;
1409
f2d1f0ae
JA
1410 if (cfqq->p_root) {
1411 rb_erase(&cfqq->p_node, cfqq->p_root);
1412 cfqq->p_root = NULL;
1413 }
a36e71f9
JA
1414
1415 if (cfq_class_idle(cfqq))
1416 return;
1417 if (!cfqq->next_rq)
1418 return;
1419
f2d1f0ae 1420 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1421 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1422 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1423 if (!__cfqq) {
1424 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1425 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1426 } else
1427 cfqq->p_root = NULL;
a36e71f9
JA
1428}
1429
498d3aa2
JA
1430/*
1431 * Update cfqq's position in the service tree.
1432 */
edd75ffd 1433static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1434{
6d048f53
JA
1435 /*
1436 * Resorting requires the cfqq to be on the RR list already.
1437 */
a36e71f9 1438 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1439 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1440 cfq_prio_tree_add(cfqd, cfqq);
1441 }
6d048f53
JA
1442}
1443
1da177e4
LT
1444/*
1445 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1446 * the pending list according to last request service
1da177e4 1447 */
febffd61 1448static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1449{
7b679138 1450 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1451 BUG_ON(cfq_cfqq_on_rr(cfqq));
1452 cfq_mark_cfqq_on_rr(cfqq);
1da177e4 1453 cfqd->busy_queues++;
ef8a41df
SL
1454 if (cfq_cfqq_sync(cfqq))
1455 cfqd->busy_sync_queues++;
1da177e4 1456
edd75ffd 1457 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1458}
1459
498d3aa2
JA
1460/*
1461 * Called when the cfqq no longer has requests pending, remove it from
1462 * the service tree.
1463 */
febffd61 1464static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1465{
7b679138 1466 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1467 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1468 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1469
aa6f6a3d
CZ
1470 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1471 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1472 cfqq->service_tree = NULL;
1473 }
f2d1f0ae
JA
1474 if (cfqq->p_root) {
1475 rb_erase(&cfqq->p_node, cfqq->p_root);
1476 cfqq->p_root = NULL;
1477 }
d9e7620e 1478
8184f93e 1479 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1da177e4
LT
1480 BUG_ON(!cfqd->busy_queues);
1481 cfqd->busy_queues--;
ef8a41df
SL
1482 if (cfq_cfqq_sync(cfqq))
1483 cfqd->busy_sync_queues--;
1da177e4
LT
1484}
1485
1486/*
1487 * rb tree support functions
1488 */
febffd61 1489static void cfq_del_rq_rb(struct request *rq)
1da177e4 1490{
5e705374 1491 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1492 const int sync = rq_is_sync(rq);
1da177e4 1493
b4878f24
JA
1494 BUG_ON(!cfqq->queued[sync]);
1495 cfqq->queued[sync]--;
1da177e4 1496
5e705374 1497 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1498
f04a6424
VG
1499 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1500 /*
1501 * Queue will be deleted from service tree when we actually
1502 * expire it later. Right now just remove it from prio tree
1503 * as it is empty.
1504 */
1505 if (cfqq->p_root) {
1506 rb_erase(&cfqq->p_node, cfqq->p_root);
1507 cfqq->p_root = NULL;
1508 }
1509 }
1da177e4
LT
1510}
1511
5e705374 1512static void cfq_add_rq_rb(struct request *rq)
1da177e4 1513{
5e705374 1514 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1515 struct cfq_data *cfqd = cfqq->cfqd;
796d5116 1516 struct request *prev;
1da177e4 1517
5380a101 1518 cfqq->queued[rq_is_sync(rq)]++;
1da177e4 1519
796d5116 1520 elv_rb_add(&cfqq->sort_list, rq);
5fccbf61
JA
1521
1522 if (!cfq_cfqq_on_rr(cfqq))
1523 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1524
1525 /*
1526 * check if this request is a better next-serve candidate
1527 */
a36e71f9 1528 prev = cfqq->next_rq;
cf7c25cf 1529 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1530
1531 /*
1532 * adjust priority tree position, if ->next_rq changes
1533 */
1534 if (prev != cfqq->next_rq)
1535 cfq_prio_tree_add(cfqd, cfqq);
1536
5044eed4 1537 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1538}
1539
febffd61 1540static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1541{
5380a101
JA
1542 elv_rb_del(&cfqq->sort_list, rq);
1543 cfqq->queued[rq_is_sync(rq)]--;
e98ef89b
VG
1544 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1545 rq_data_dir(rq), rq_is_sync(rq));
5e705374 1546 cfq_add_rq_rb(rq);
e98ef89b 1547 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
7f1dc8a2
VG
1548 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1549 rq_is_sync(rq));
1da177e4
LT
1550}
1551
206dc69b
JA
1552static struct request *
1553cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1554{
206dc69b 1555 struct task_struct *tsk = current;
91fac317 1556 struct cfq_io_context *cic;
206dc69b 1557 struct cfq_queue *cfqq;
1da177e4 1558
4ac845a2 1559 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1560 if (!cic)
1561 return NULL;
1562
1563 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1564 if (cfqq) {
1565 sector_t sector = bio->bi_sector + bio_sectors(bio);
1566
21183b07 1567 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1568 }
1da177e4 1569
1da177e4
LT
1570 return NULL;
1571}
1572
165125e1 1573static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1574{
22e2c507 1575 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1576
53c583d2 1577 cfqd->rq_in_driver++;
7b679138 1578 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1579 cfqd->rq_in_driver);
25776e35 1580
5b93629b 1581 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1582}
1583
165125e1 1584static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1585{
b4878f24
JA
1586 struct cfq_data *cfqd = q->elevator->elevator_data;
1587
53c583d2
CZ
1588 WARN_ON(!cfqd->rq_in_driver);
1589 cfqd->rq_in_driver--;
7b679138 1590 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1591 cfqd->rq_in_driver);
1da177e4
LT
1592}
1593
b4878f24 1594static void cfq_remove_request(struct request *rq)
1da177e4 1595{
5e705374 1596 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1597
5e705374
JA
1598 if (cfqq->next_rq == rq)
1599 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1600
b4878f24 1601 list_del_init(&rq->queuelist);
5e705374 1602 cfq_del_rq_rb(rq);
374f84ac 1603
45333d5a 1604 cfqq->cfqd->rq_queued--;
e98ef89b
VG
1605 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1606 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
1607}
1608
165125e1
JA
1609static int cfq_merge(struct request_queue *q, struct request **req,
1610 struct bio *bio)
1da177e4
LT
1611{
1612 struct cfq_data *cfqd = q->elevator->elevator_data;
1613 struct request *__rq;
1da177e4 1614
206dc69b 1615 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1616 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1617 *req = __rq;
1618 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1619 }
1620
1621 return ELEVATOR_NO_MERGE;
1da177e4
LT
1622}
1623
165125e1 1624static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1625 int type)
1da177e4 1626{
21183b07 1627 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1628 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1629
5e705374 1630 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1631 }
1da177e4
LT
1632}
1633
812d4026
DS
1634static void cfq_bio_merged(struct request_queue *q, struct request *req,
1635 struct bio *bio)
1636{
e98ef89b
VG
1637 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1638 bio_data_dir(bio), cfq_bio_sync(bio));
812d4026
DS
1639}
1640
1da177e4 1641static void
165125e1 1642cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1643 struct request *next)
1644{
cf7c25cf 1645 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1646 /*
1647 * reposition in fifo if next is older than rq
1648 */
1649 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1650 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1651 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1652 rq_set_fifo_time(rq, rq_fifo_time(next));
1653 }
22e2c507 1654
cf7c25cf
CZ
1655 if (cfqq->next_rq == next)
1656 cfqq->next_rq = rq;
b4878f24 1657 cfq_remove_request(next);
e98ef89b
VG
1658 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1659 rq_data_dir(next), rq_is_sync(next));
22e2c507
JA
1660}
1661
165125e1 1662static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1663 struct bio *bio)
1664{
1665 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1666 struct cfq_io_context *cic;
da775265 1667 struct cfq_queue *cfqq;
da775265
JA
1668
1669 /*
ec8acb69 1670 * Disallow merge of a sync bio into an async request.
da775265 1671 */
91fac317 1672 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1673 return false;
da775265
JA
1674
1675 /*
719d3402
JA
1676 * Lookup the cfqq that this bio will be queued with. Allow
1677 * merge only if rq is queued there.
da775265 1678 */
4ac845a2 1679 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1680 if (!cic)
a6151c3a 1681 return false;
719d3402 1682
91fac317 1683 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1684 return cfqq == RQ_CFQQ(rq);
da775265
JA
1685}
1686
812df48d
DS
1687static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1688{
1689 del_timer(&cfqd->idle_slice_timer);
e98ef89b 1690 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
812df48d
DS
1691}
1692
febffd61
JA
1693static void __cfq_set_active_queue(struct cfq_data *cfqd,
1694 struct cfq_queue *cfqq)
22e2c507
JA
1695{
1696 if (cfqq) {
b1ffe737
DS
1697 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1698 cfqd->serving_prio, cfqd->serving_type);
62a37f6b
JT
1699 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1700 cfqq->slice_start = 0;
1701 cfqq->dispatch_start = jiffies;
1702 cfqq->allocated_slice = 0;
1703 cfqq->slice_end = 0;
1704 cfqq->slice_dispatch = 0;
1705 cfqq->nr_sectors = 0;
1706
1707 cfq_clear_cfqq_wait_request(cfqq);
1708 cfq_clear_cfqq_must_dispatch(cfqq);
1709 cfq_clear_cfqq_must_alloc_slice(cfqq);
1710 cfq_clear_cfqq_fifo_expire(cfqq);
1711 cfq_mark_cfqq_slice_new(cfqq);
1712
1713 cfq_del_timer(cfqd, cfqq);
22e2c507
JA
1714 }
1715
1716 cfqd->active_queue = cfqq;
1717}
1718
7b14e3b5
JA
1719/*
1720 * current cfqq expired its slice (or was too idle), select new one
1721 */
1722static void
1723__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e5ff082e 1724 bool timed_out)
7b14e3b5 1725{
7b679138
JA
1726 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1727
7b14e3b5 1728 if (cfq_cfqq_wait_request(cfqq))
812df48d 1729 cfq_del_timer(cfqd, cfqq);
7b14e3b5 1730
7b14e3b5 1731 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1732 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1733
ae54abed
SL
1734 /*
1735 * If this cfqq is shared between multiple processes, check to
1736 * make sure that those processes are still issuing I/Os within
1737 * the mean seek distance. If not, it may be time to break the
1738 * queues apart again.
1739 */
1740 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1741 cfq_mark_cfqq_split_coop(cfqq);
1742
7b14e3b5 1743 /*
6084cdda 1744 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1745 */
c553f8e3
SL
1746 if (timed_out) {
1747 if (cfq_cfqq_slice_new(cfqq))
ba5bd520 1748 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3
SL
1749 else
1750 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1751 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1752 }
7b14e3b5 1753
e5ff082e 1754 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
dae739eb 1755
f04a6424
VG
1756 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1757 cfq_del_cfqq_rr(cfqd, cfqq);
1758
edd75ffd 1759 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1760
1761 if (cfqq == cfqd->active_queue)
1762 cfqd->active_queue = NULL;
1763
1764 if (cfqd->active_cic) {
1765 put_io_context(cfqd->active_cic->ioc);
1766 cfqd->active_cic = NULL;
1767 }
7b14e3b5
JA
1768}
1769
e5ff082e 1770static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1771{
1772 struct cfq_queue *cfqq = cfqd->active_queue;
1773
1774 if (cfqq)
e5ff082e 1775 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1776}
1777
498d3aa2
JA
1778/*
1779 * Get next queue for service. Unless we have a queue preemption,
1780 * we'll simply select the first cfqq in the service tree.
1781 */
6d048f53 1782static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1783{
c0324a02 1784 struct cfq_rb_root *service_tree =
cdb16e8f 1785 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1786 cfqd->serving_type);
d9e7620e 1787
f04a6424
VG
1788 if (!cfqd->rq_queued)
1789 return NULL;
1790
1fa8f6d6
VG
1791 /* There is nothing to dispatch */
1792 if (!service_tree)
1793 return NULL;
c0324a02
CZ
1794 if (RB_EMPTY_ROOT(&service_tree->rb))
1795 return NULL;
1796 return cfq_rb_first(service_tree);
6d048f53
JA
1797}
1798
f04a6424
VG
1799static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1800{
25fb5169 1801 struct cfq_group *cfqg;
f04a6424
VG
1802 struct cfq_queue *cfqq;
1803 int i, j;
1804 struct cfq_rb_root *st;
1805
1806 if (!cfqd->rq_queued)
1807 return NULL;
1808
25fb5169
VG
1809 cfqg = cfq_get_next_cfqg(cfqd);
1810 if (!cfqg)
1811 return NULL;
1812
f04a6424
VG
1813 for_each_cfqg_st(cfqg, i, j, st)
1814 if ((cfqq = cfq_rb_first(st)) != NULL)
1815 return cfqq;
1816 return NULL;
1817}
1818
498d3aa2
JA
1819/*
1820 * Get and set a new active queue for service.
1821 */
a36e71f9
JA
1822static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1823 struct cfq_queue *cfqq)
6d048f53 1824{
e00ef799 1825 if (!cfqq)
a36e71f9 1826 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1827
22e2c507 1828 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1829 return cfqq;
22e2c507
JA
1830}
1831
d9e7620e
JA
1832static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1833 struct request *rq)
1834{
83096ebf
TH
1835 if (blk_rq_pos(rq) >= cfqd->last_position)
1836 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1837 else
83096ebf 1838 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1839}
1840
b2c18e1e 1841static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1842 struct request *rq)
6d048f53 1843{
e9ce335d 1844 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1845}
1846
a36e71f9
JA
1847static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1848 struct cfq_queue *cur_cfqq)
1849{
f2d1f0ae 1850 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1851 struct rb_node *parent, *node;
1852 struct cfq_queue *__cfqq;
1853 sector_t sector = cfqd->last_position;
1854
1855 if (RB_EMPTY_ROOT(root))
1856 return NULL;
1857
1858 /*
1859 * First, if we find a request starting at the end of the last
1860 * request, choose it.
1861 */
f2d1f0ae 1862 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1863 if (__cfqq)
1864 return __cfqq;
1865
1866 /*
1867 * If the exact sector wasn't found, the parent of the NULL leaf
1868 * will contain the closest sector.
1869 */
1870 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1871 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1872 return __cfqq;
1873
2e46e8b2 1874 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1875 node = rb_next(&__cfqq->p_node);
1876 else
1877 node = rb_prev(&__cfqq->p_node);
1878 if (!node)
1879 return NULL;
1880
1881 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1882 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1883 return __cfqq;
1884
1885 return NULL;
1886}
1887
1888/*
1889 * cfqd - obvious
1890 * cur_cfqq - passed in so that we don't decide that the current queue is
1891 * closely cooperating with itself.
1892 *
1893 * So, basically we're assuming that that cur_cfqq has dispatched at least
1894 * one request, and that cfqd->last_position reflects a position on the disk
1895 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1896 * assumption.
1897 */
1898static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1899 struct cfq_queue *cur_cfqq)
6d048f53 1900{
a36e71f9
JA
1901 struct cfq_queue *cfqq;
1902
39c01b21
DS
1903 if (cfq_class_idle(cur_cfqq))
1904 return NULL;
e6c5bc73
JM
1905 if (!cfq_cfqq_sync(cur_cfqq))
1906 return NULL;
1907 if (CFQQ_SEEKY(cur_cfqq))
1908 return NULL;
1909
b9d8f4c7
GJ
1910 /*
1911 * Don't search priority tree if it's the only queue in the group.
1912 */
1913 if (cur_cfqq->cfqg->nr_cfqq == 1)
1914 return NULL;
1915
6d048f53 1916 /*
d9e7620e
JA
1917 * We should notice if some of the queues are cooperating, eg
1918 * working closely on the same area of the disk. In that case,
1919 * we can group them together and don't waste time idling.
6d048f53 1920 */
a36e71f9
JA
1921 cfqq = cfqq_close(cfqd, cur_cfqq);
1922 if (!cfqq)
1923 return NULL;
1924
8682e1f1
VG
1925 /* If new queue belongs to different cfq_group, don't choose it */
1926 if (cur_cfqq->cfqg != cfqq->cfqg)
1927 return NULL;
1928
df5fe3e8
JM
1929 /*
1930 * It only makes sense to merge sync queues.
1931 */
1932 if (!cfq_cfqq_sync(cfqq))
1933 return NULL;
e6c5bc73
JM
1934 if (CFQQ_SEEKY(cfqq))
1935 return NULL;
df5fe3e8 1936
c0324a02
CZ
1937 /*
1938 * Do not merge queues of different priority classes
1939 */
1940 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1941 return NULL;
1942
a36e71f9 1943 return cfqq;
6d048f53
JA
1944}
1945
a6d44e98
CZ
1946/*
1947 * Determine whether we should enforce idle window for this queue.
1948 */
1949
1950static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1951{
1952 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1953 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1954
f04a6424
VG
1955 BUG_ON(!service_tree);
1956 BUG_ON(!service_tree->count);
1957
b6508c16
VG
1958 if (!cfqd->cfq_slice_idle)
1959 return false;
1960
a6d44e98
CZ
1961 /* We never do for idle class queues. */
1962 if (prio == IDLE_WORKLOAD)
1963 return false;
1964
1965 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1966 if (cfq_cfqq_idle_window(cfqq) &&
1967 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1968 return true;
1969
1970 /*
1971 * Otherwise, we do only if they are the last ones
1972 * in their service tree.
1973 */
f5f2b6ce
SL
1974 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
1975 !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
c1e44756 1976 return true;
b1ffe737
DS
1977 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1978 service_tree->count);
c1e44756 1979 return false;
a6d44e98
CZ
1980}
1981
6d048f53 1982static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1983{
1792669c 1984 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1985 struct cfq_io_context *cic;
80bdf0c7 1986 unsigned long sl, group_idle = 0;
7b14e3b5 1987
a68bbddb 1988 /*
f7d7b7a7
JA
1989 * SSD device without seek penalty, disable idling. But only do so
1990 * for devices that support queuing, otherwise we still have a problem
1991 * with sync vs async workloads.
a68bbddb 1992 */
f7d7b7a7 1993 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1994 return;
1995
dd67d051 1996 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1997 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1998
1999 /*
2000 * idle is disabled, either manually or by past process history
2001 */
80bdf0c7
VG
2002 if (!cfq_should_idle(cfqd, cfqq)) {
2003 /* no queue idling. Check for group idling */
2004 if (cfqd->cfq_group_idle)
2005 group_idle = cfqd->cfq_group_idle;
2006 else
2007 return;
2008 }
6d048f53 2009
7b679138 2010 /*
8e550632 2011 * still active requests from this queue, don't idle
7b679138 2012 */
8e550632 2013 if (cfqq->dispatched)
7b679138
JA
2014 return;
2015
22e2c507
JA
2016 /*
2017 * task has exited, don't wait
2018 */
206dc69b 2019 cic = cfqd->active_cic;
66dac98e 2020 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
2021 return;
2022
355b659c
CZ
2023 /*
2024 * If our average think time is larger than the remaining time
2025 * slice, then don't idle. This avoids overrunning the allotted
2026 * time slice.
2027 */
383cd721
SL
2028 if (sample_valid(cic->ttime.ttime_samples) &&
2029 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
fd16d263 2030 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
383cd721 2031 cic->ttime.ttime_mean);
355b659c 2032 return;
b1ffe737 2033 }
355b659c 2034
80bdf0c7
VG
2035 /* There are other queues in the group, don't do group idle */
2036 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2037 return;
2038
3b18152c 2039 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 2040
80bdf0c7
VG
2041 if (group_idle)
2042 sl = cfqd->cfq_group_idle;
2043 else
2044 sl = cfqd->cfq_slice_idle;
206dc69b 2045
7b14e3b5 2046 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
e98ef89b 2047 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
80bdf0c7
VG
2048 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2049 group_idle ? 1 : 0);
1da177e4
LT
2050}
2051
498d3aa2
JA
2052/*
2053 * Move request from internal lists to the request queue dispatch list.
2054 */
165125e1 2055static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 2056{
3ed9a296 2057 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2058 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2059
7b679138
JA
2060 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2061
06d21886 2062 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 2063 cfq_remove_request(rq);
6d048f53 2064 cfqq->dispatched++;
80bdf0c7 2065 (RQ_CFQG(rq))->dispatched++;
5380a101 2066 elv_dispatch_sort(q, rq);
3ed9a296 2067
53c583d2 2068 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
c4e7893e 2069 cfqq->nr_sectors += blk_rq_sectors(rq);
e98ef89b 2070 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
84c124da 2071 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
2072}
2073
2074/*
2075 * return expired entry, or NULL to just start from scratch in rbtree
2076 */
febffd61 2077static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 2078{
30996f40 2079 struct request *rq = NULL;
1da177e4 2080
3b18152c 2081 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 2082 return NULL;
cb887411
JA
2083
2084 cfq_mark_cfqq_fifo_expire(cfqq);
2085
89850f7e
JA
2086 if (list_empty(&cfqq->fifo))
2087 return NULL;
1da177e4 2088
89850f7e 2089 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 2090 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 2091 rq = NULL;
1da177e4 2092
30996f40 2093 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 2094 return rq;
1da177e4
LT
2095}
2096
22e2c507
JA
2097static inline int
2098cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2099{
2100 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 2101
22e2c507 2102 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 2103
b9f8ce05 2104 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
1da177e4
LT
2105}
2106
df5fe3e8
JM
2107/*
2108 * Must be called with the queue_lock held.
2109 */
2110static int cfqq_process_refs(struct cfq_queue *cfqq)
2111{
2112 int process_refs, io_refs;
2113
2114 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
30d7b944 2115 process_refs = cfqq->ref - io_refs;
df5fe3e8
JM
2116 BUG_ON(process_refs < 0);
2117 return process_refs;
2118}
2119
2120static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2121{
e6c5bc73 2122 int process_refs, new_process_refs;
df5fe3e8
JM
2123 struct cfq_queue *__cfqq;
2124
c10b61f0
JM
2125 /*
2126 * If there are no process references on the new_cfqq, then it is
2127 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2128 * chain may have dropped their last reference (not just their
2129 * last process reference).
2130 */
2131 if (!cfqq_process_refs(new_cfqq))
2132 return;
2133
df5fe3e8
JM
2134 /* Avoid a circular list and skip interim queue merges */
2135 while ((__cfqq = new_cfqq->new_cfqq)) {
2136 if (__cfqq == cfqq)
2137 return;
2138 new_cfqq = __cfqq;
2139 }
2140
2141 process_refs = cfqq_process_refs(cfqq);
c10b61f0 2142 new_process_refs = cfqq_process_refs(new_cfqq);
df5fe3e8
JM
2143 /*
2144 * If the process for the cfqq has gone away, there is no
2145 * sense in merging the queues.
2146 */
c10b61f0 2147 if (process_refs == 0 || new_process_refs == 0)
df5fe3e8
JM
2148 return;
2149
e6c5bc73
JM
2150 /*
2151 * Merge in the direction of the lesser amount of work.
2152 */
e6c5bc73
JM
2153 if (new_process_refs >= process_refs) {
2154 cfqq->new_cfqq = new_cfqq;
30d7b944 2155 new_cfqq->ref += process_refs;
e6c5bc73
JM
2156 } else {
2157 new_cfqq->new_cfqq = cfqq;
30d7b944 2158 cfqq->ref += new_process_refs;
e6c5bc73 2159 }
df5fe3e8
JM
2160}
2161
cdb16e8f 2162static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 2163 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
2164{
2165 struct cfq_queue *queue;
2166 int i;
2167 bool key_valid = false;
2168 unsigned long lowest_key = 0;
2169 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2170
65b32a57
VG
2171 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2172 /* select the one with lowest rb_key */
2173 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
2174 if (queue &&
2175 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2176 lowest_key = queue->rb_key;
2177 cur_best = i;
2178 key_valid = true;
2179 }
2180 }
2181
2182 return cur_best;
2183}
2184
cdb16e8f 2185static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 2186{
718eee05
CZ
2187 unsigned slice;
2188 unsigned count;
cdb16e8f 2189 struct cfq_rb_root *st;
58ff82f3 2190 unsigned group_slice;
e4ea0c16 2191 enum wl_prio_t original_prio = cfqd->serving_prio;
1fa8f6d6 2192
718eee05 2193 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2194 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2195 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2196 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2197 cfqd->serving_prio = BE_WORKLOAD;
2198 else {
2199 cfqd->serving_prio = IDLE_WORKLOAD;
2200 cfqd->workload_expires = jiffies + 1;
2201 return;
2202 }
2203
e4ea0c16
SL
2204 if (original_prio != cfqd->serving_prio)
2205 goto new_workload;
2206
718eee05
CZ
2207 /*
2208 * For RT and BE, we have to choose also the type
2209 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2210 * expiration time
2211 */
65b32a57 2212 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2213 count = st->count;
718eee05
CZ
2214
2215 /*
65b32a57 2216 * check workload expiration, and that we still have other queues ready
718eee05 2217 */
65b32a57 2218 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2219 return;
2220
e4ea0c16 2221new_workload:
718eee05
CZ
2222 /* otherwise select new workload type */
2223 cfqd->serving_type =
65b32a57
VG
2224 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2225 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2226 count = st->count;
718eee05
CZ
2227
2228 /*
2229 * the workload slice is computed as a fraction of target latency
2230 * proportional to the number of queues in that workload, over
2231 * all the queues in the same priority class
2232 */
58ff82f3
VG
2233 group_slice = cfq_group_slice(cfqd, cfqg);
2234
2235 slice = group_slice * count /
2236 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2237 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2238
f26bd1f0
VG
2239 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2240 unsigned int tmp;
2241
2242 /*
2243 * Async queues are currently system wide. Just taking
2244 * proportion of queues with-in same group will lead to higher
2245 * async ratio system wide as generally root group is going
2246 * to have higher weight. A more accurate thing would be to
2247 * calculate system wide asnc/sync ratio.
2248 */
2249 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2250 tmp = tmp/cfqd->busy_queues;
2251 slice = min_t(unsigned, slice, tmp);
2252
718eee05
CZ
2253 /* async workload slice is scaled down according to
2254 * the sync/async slice ratio. */
2255 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2256 } else
718eee05
CZ
2257 /* sync workload slice is at least 2 * cfq_slice_idle */
2258 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2259
2260 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2261 cfq_log(cfqd, "workload slice:%d", slice);
718eee05
CZ
2262 cfqd->workload_expires = jiffies + slice;
2263}
2264
1fa8f6d6
VG
2265static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2266{
2267 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2268 struct cfq_group *cfqg;
1fa8f6d6
VG
2269
2270 if (RB_EMPTY_ROOT(&st->rb))
2271 return NULL;
25bc6b07 2272 cfqg = cfq_rb_first_group(st);
25bc6b07
VG
2273 update_min_vdisktime(st);
2274 return cfqg;
1fa8f6d6
VG
2275}
2276
cdb16e8f
VG
2277static void cfq_choose_cfqg(struct cfq_data *cfqd)
2278{
1fa8f6d6
VG
2279 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2280
2281 cfqd->serving_group = cfqg;
dae739eb
VG
2282
2283 /* Restore the workload type data */
2284 if (cfqg->saved_workload_slice) {
2285 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2286 cfqd->serving_type = cfqg->saved_workload;
2287 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2288 } else
2289 cfqd->workload_expires = jiffies - 1;
2290
1fa8f6d6 2291 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2292}
2293
22e2c507 2294/*
498d3aa2
JA
2295 * Select a queue for service. If we have a current active queue,
2296 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2297 */
1b5ed5e1 2298static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2299{
a36e71f9 2300 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2301
22e2c507
JA
2302 cfqq = cfqd->active_queue;
2303 if (!cfqq)
2304 goto new_queue;
1da177e4 2305
f04a6424
VG
2306 if (!cfqd->rq_queued)
2307 return NULL;
c244bb50
VG
2308
2309 /*
2310 * We were waiting for group to get backlogged. Expire the queue
2311 */
2312 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2313 goto expire;
2314
22e2c507 2315 /*
6d048f53 2316 * The active queue has run out of time, expire it and select new.
22e2c507 2317 */
7667aa06
VG
2318 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2319 /*
2320 * If slice had not expired at the completion of last request
2321 * we might not have turned on wait_busy flag. Don't expire
2322 * the queue yet. Allow the group to get backlogged.
2323 *
2324 * The very fact that we have used the slice, that means we
2325 * have been idling all along on this queue and it should be
2326 * ok to wait for this request to complete.
2327 */
82bbbf28
VG
2328 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2329 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2330 cfqq = NULL;
7667aa06 2331 goto keep_queue;
82bbbf28 2332 } else
80bdf0c7 2333 goto check_group_idle;
7667aa06 2334 }
1da177e4 2335
22e2c507 2336 /*
6d048f53
JA
2337 * The active queue has requests and isn't expired, allow it to
2338 * dispatch.
22e2c507 2339 */
dd67d051 2340 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2341 goto keep_queue;
6d048f53 2342
a36e71f9
JA
2343 /*
2344 * If another queue has a request waiting within our mean seek
2345 * distance, let it run. The expire code will check for close
2346 * cooperators and put the close queue at the front of the service
df5fe3e8 2347 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2348 */
b3b6d040 2349 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2350 if (new_cfqq) {
2351 if (!cfqq->new_cfqq)
2352 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2353 goto expire;
df5fe3e8 2354 }
a36e71f9 2355
6d048f53
JA
2356 /*
2357 * No requests pending. If the active queue still has requests in
2358 * flight or is idling for a new request, allow either of these
2359 * conditions to happen (or time out) before selecting a new queue.
2360 */
80bdf0c7
VG
2361 if (timer_pending(&cfqd->idle_slice_timer)) {
2362 cfqq = NULL;
2363 goto keep_queue;
2364 }
2365
8e1ac665
SL
2366 /*
2367 * This is a deep seek queue, but the device is much faster than
2368 * the queue can deliver, don't idle
2369 **/
2370 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2371 (cfq_cfqq_slice_new(cfqq) ||
2372 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2373 cfq_clear_cfqq_deep(cfqq);
2374 cfq_clear_cfqq_idle_window(cfqq);
2375 }
2376
80bdf0c7
VG
2377 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2378 cfqq = NULL;
2379 goto keep_queue;
2380 }
2381
2382 /*
2383 * If group idle is enabled and there are requests dispatched from
2384 * this group, wait for requests to complete.
2385 */
2386check_group_idle:
7700fc4f
SL
2387 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2388 cfqq->cfqg->dispatched &&
2389 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
caaa5f9f
JA
2390 cfqq = NULL;
2391 goto keep_queue;
22e2c507
JA
2392 }
2393
3b18152c 2394expire:
e5ff082e 2395 cfq_slice_expired(cfqd, 0);
3b18152c 2396new_queue:
718eee05
CZ
2397 /*
2398 * Current queue expired. Check if we have to switch to a new
2399 * service tree
2400 */
2401 if (!new_cfqq)
cdb16e8f 2402 cfq_choose_cfqg(cfqd);
718eee05 2403
a36e71f9 2404 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2405keep_queue:
3b18152c 2406 return cfqq;
22e2c507
JA
2407}
2408
febffd61 2409static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2410{
2411 int dispatched = 0;
2412
2413 while (cfqq->next_rq) {
2414 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2415 dispatched++;
2416 }
2417
2418 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2419
2420 /* By default cfqq is not expired if it is empty. Do it explicitly */
e5ff082e 2421 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2422 return dispatched;
2423}
2424
498d3aa2
JA
2425/*
2426 * Drain our current requests. Used for barriers and when switching
2427 * io schedulers on-the-fly.
2428 */
d9e7620e 2429static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2430{
0871714e 2431 struct cfq_queue *cfqq;
d9e7620e 2432 int dispatched = 0;
cdb16e8f 2433
3440c49f 2434 /* Expire the timeslice of the current active queue first */
e5ff082e 2435 cfq_slice_expired(cfqd, 0);
3440c49f
DS
2436 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2437 __cfq_set_active_queue(cfqd, cfqq);
f04a6424 2438 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3440c49f 2439 }
1b5ed5e1 2440
1b5ed5e1
TH
2441 BUG_ON(cfqd->busy_queues);
2442
6923715a 2443 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2444 return dispatched;
2445}
2446
abc3c744
SL
2447static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2448 struct cfq_queue *cfqq)
2449{
2450 /* the queue hasn't finished any request, can't estimate */
2451 if (cfq_cfqq_slice_new(cfqq))
c1e44756 2452 return true;
abc3c744
SL
2453 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2454 cfqq->slice_end))
c1e44756 2455 return true;
abc3c744 2456
c1e44756 2457 return false;
abc3c744
SL
2458}
2459
0b182d61 2460static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2461{
2f5cb738 2462 unsigned int max_dispatch;
22e2c507 2463
5ad531db
JA
2464 /*
2465 * Drain async requests before we start sync IO
2466 */
53c583d2 2467 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2468 return false;
5ad531db 2469
2f5cb738
JA
2470 /*
2471 * If this is an async queue and we have sync IO in flight, let it wait
2472 */
53c583d2 2473 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2474 return false;
2f5cb738 2475
abc3c744 2476 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2477 if (cfq_class_idle(cfqq))
2478 max_dispatch = 1;
b4878f24 2479
2f5cb738
JA
2480 /*
2481 * Does this cfqq already have too much IO in flight?
2482 */
2483 if (cfqq->dispatched >= max_dispatch) {
ef8a41df 2484 bool promote_sync = false;
2f5cb738
JA
2485 /*
2486 * idle queue must always only have a single IO in flight
2487 */
3ed9a296 2488 if (cfq_class_idle(cfqq))
0b182d61 2489 return false;
3ed9a296 2490
ef8a41df 2491 /*
c4ade94f
LS
2492 * If there is only one sync queue
2493 * we can ignore async queue here and give the sync
ef8a41df
SL
2494 * queue no dispatch limit. The reason is a sync queue can
2495 * preempt async queue, limiting the sync queue doesn't make
2496 * sense. This is useful for aiostress test.
2497 */
c4ade94f
LS
2498 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2499 promote_sync = true;
ef8a41df 2500
2f5cb738
JA
2501 /*
2502 * We have other queues, don't allow more IO from this one
2503 */
ef8a41df
SL
2504 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2505 !promote_sync)
0b182d61 2506 return false;
9ede209e 2507
365722bb 2508 /*
474b18cc 2509 * Sole queue user, no limit
365722bb 2510 */
ef8a41df 2511 if (cfqd->busy_queues == 1 || promote_sync)
abc3c744
SL
2512 max_dispatch = -1;
2513 else
2514 /*
2515 * Normally we start throttling cfqq when cfq_quantum/2
2516 * requests have been dispatched. But we can drive
2517 * deeper queue depths at the beginning of slice
2518 * subjected to upper limit of cfq_quantum.
2519 * */
2520 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2521 }
2522
2523 /*
2524 * Async queues must wait a bit before being allowed dispatch.
2525 * We also ramp up the dispatch depth gradually for async IO,
2526 * based on the last sync IO we serviced
2527 */
963b72fc 2528 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2529 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2530 unsigned int depth;
365722bb 2531
61f0c1dc 2532 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2533 if (!depth && !cfqq->dispatched)
2534 depth = 1;
8e296755
JA
2535 if (depth < max_dispatch)
2536 max_dispatch = depth;
2f5cb738 2537 }
3ed9a296 2538
0b182d61
JA
2539 /*
2540 * If we're below the current max, allow a dispatch
2541 */
2542 return cfqq->dispatched < max_dispatch;
2543}
2544
2545/*
2546 * Dispatch a request from cfqq, moving them to the request queue
2547 * dispatch list.
2548 */
2549static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2550{
2551 struct request *rq;
2552
2553 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2554
2555 if (!cfq_may_dispatch(cfqd, cfqq))
2556 return false;
2557
2558 /*
2559 * follow expired path, else get first next available
2560 */
2561 rq = cfq_check_fifo(cfqq);
2562 if (!rq)
2563 rq = cfqq->next_rq;
2564
2565 /*
2566 * insert request into driver dispatch list
2567 */
2568 cfq_dispatch_insert(cfqd->queue, rq);
2569
2570 if (!cfqd->active_cic) {
2571 struct cfq_io_context *cic = RQ_CIC(rq);
2572
2573 atomic_long_inc(&cic->ioc->refcount);
2574 cfqd->active_cic = cic;
2575 }
2576
2577 return true;
2578}
2579
2580/*
2581 * Find the cfqq that we need to service and move a request from that to the
2582 * dispatch list
2583 */
2584static int cfq_dispatch_requests(struct request_queue *q, int force)
2585{
2586 struct cfq_data *cfqd = q->elevator->elevator_data;
2587 struct cfq_queue *cfqq;
2588
2589 if (!cfqd->busy_queues)
2590 return 0;
2591
2592 if (unlikely(force))
2593 return cfq_forced_dispatch(cfqd);
2594
2595 cfqq = cfq_select_queue(cfqd);
2596 if (!cfqq)
8e296755
JA
2597 return 0;
2598
2f5cb738 2599 /*
0b182d61 2600 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2601 */
0b182d61
JA
2602 if (!cfq_dispatch_request(cfqd, cfqq))
2603 return 0;
2604
2f5cb738 2605 cfqq->slice_dispatch++;
b029195d 2606 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2607
2f5cb738
JA
2608 /*
2609 * expire an async queue immediately if it has used up its slice. idle
2610 * queue always expire after 1 dispatch round.
2611 */
2612 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2613 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2614 cfq_class_idle(cfqq))) {
2615 cfqq->slice_end = jiffies + 1;
e5ff082e 2616 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2617 }
2618
b217a903 2619 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2620 return 1;
1da177e4
LT
2621}
2622
1da177e4 2623/*
5e705374
JA
2624 * task holds one reference to the queue, dropped when task exits. each rq
2625 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2626 *
b1c35769 2627 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2628 * queue lock must be held here.
2629 */
2630static void cfq_put_queue(struct cfq_queue *cfqq)
2631{
22e2c507 2632 struct cfq_data *cfqd = cfqq->cfqd;
0bbfeb83 2633 struct cfq_group *cfqg;
22e2c507 2634
30d7b944 2635 BUG_ON(cfqq->ref <= 0);
1da177e4 2636
30d7b944
SL
2637 cfqq->ref--;
2638 if (cfqq->ref)
1da177e4
LT
2639 return;
2640
7b679138 2641 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2642 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2643 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2644 cfqg = cfqq->cfqg;
1da177e4 2645
28f95cbc 2646 if (unlikely(cfqd->active_queue == cfqq)) {
e5ff082e 2647 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2648 cfq_schedule_dispatch(cfqd);
28f95cbc 2649 }
22e2c507 2650
f04a6424 2651 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2652 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2653 cfq_put_cfqg(cfqg);
1da177e4
LT
2654}
2655
d6de8be7 2656/*
5f45c695 2657 * Call func for each cic attached to this ioc.
d6de8be7 2658 */
07416d29 2659static void
5f45c695
JA
2660call_for_each_cic(struct io_context *ioc,
2661 void (*func)(struct io_context *, struct cfq_io_context *))
07416d29
JA
2662{
2663 struct cfq_io_context *cic;
2664 struct hlist_node *n;
2665
5f45c695
JA
2666 rcu_read_lock();
2667
07416d29
JA
2668 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2669 func(ioc, cic);
07416d29 2670
4ac845a2 2671 rcu_read_unlock();
34e6bbf2
FC
2672}
2673
2674static void cfq_cic_free_rcu(struct rcu_head *head)
2675{
2676 struct cfq_io_context *cic;
2677
2678 cic = container_of(head, struct cfq_io_context, rcu_head);
2679
2680 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2681 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2682
9a11b4ed
JA
2683 if (ioc_gone) {
2684 /*
2685 * CFQ scheduler is exiting, grab exit lock and check
2686 * the pending io context count. If it hits zero,
2687 * complete ioc_gone and set it back to NULL
2688 */
2689 spin_lock(&ioc_gone_lock);
245b2e70 2690 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2691 complete(ioc_gone);
2692 ioc_gone = NULL;
2693 }
2694 spin_unlock(&ioc_gone_lock);
2695 }
34e6bbf2 2696}
4ac845a2 2697
34e6bbf2
FC
2698static void cfq_cic_free(struct cfq_io_context *cic)
2699{
2700 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2701}
2702
2703static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2704{
2705 unsigned long flags;
bca4b914 2706 unsigned long dead_key = (unsigned long) cic->key;
4ac845a2 2707
bca4b914 2708 BUG_ON(!(dead_key & CIC_DEAD_KEY));
4ac845a2
JA
2709
2710 spin_lock_irqsave(&ioc->lock, flags);
80b15c73 2711 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
ffc4e759 2712 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2713 spin_unlock_irqrestore(&ioc->lock, flags);
2714
34e6bbf2 2715 cfq_cic_free(cic);
4ac845a2
JA
2716}
2717
d6de8be7
JA
2718/*
2719 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2720 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2721 * and ->trim() which is called with the task lock held
2722 */
4ac845a2
JA
2723static void cfq_free_io_context(struct io_context *ioc)
2724{
4ac845a2 2725 /*
34e6bbf2
FC
2726 * ioc->refcount is zero here, or we are called from elv_unregister(),
2727 * so no more cic's are allowed to be linked into this ioc. So it
2728 * should be ok to iterate over the known list, we will see all cic's
2729 * since no new ones are added.
4ac845a2 2730 */
5f45c695 2731 call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2732}
2733
d02a2c07 2734static void cfq_put_cooperator(struct cfq_queue *cfqq)
1da177e4 2735{
df5fe3e8
JM
2736 struct cfq_queue *__cfqq, *next;
2737
df5fe3e8
JM
2738 /*
2739 * If this queue was scheduled to merge with another queue, be
2740 * sure to drop the reference taken on that queue (and others in
2741 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2742 */
2743 __cfqq = cfqq->new_cfqq;
2744 while (__cfqq) {
2745 if (__cfqq == cfqq) {
2746 WARN(1, "cfqq->new_cfqq loop detected\n");
2747 break;
2748 }
2749 next = __cfqq->new_cfqq;
2750 cfq_put_queue(__cfqq);
2751 __cfqq = next;
2752 }
d02a2c07
SL
2753}
2754
2755static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2756{
2757 if (unlikely(cfqq == cfqd->active_queue)) {
2758 __cfq_slice_expired(cfqd, cfqq, 0);
2759 cfq_schedule_dispatch(cfqd);
2760 }
2761
2762 cfq_put_cooperator(cfqq);
df5fe3e8 2763
89850f7e
JA
2764 cfq_put_queue(cfqq);
2765}
22e2c507 2766
89850f7e
JA
2767static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2768 struct cfq_io_context *cic)
2769{
4faa3c81
FC
2770 struct io_context *ioc = cic->ioc;
2771
fc46379d 2772 list_del_init(&cic->queue_list);
4ac845a2
JA
2773
2774 /*
bca4b914 2775 * Make sure dead mark is seen for dead queues
4ac845a2 2776 */
fc46379d 2777 smp_wmb();
bca4b914 2778 cic->key = cfqd_dead_key(cfqd);
fc46379d 2779
3181faa8 2780 rcu_read_lock();
9b50902d 2781 if (rcu_dereference(ioc->ioc_data) == cic) {
3181faa8 2782 rcu_read_unlock();
9b50902d 2783 spin_lock(&ioc->lock);
4faa3c81 2784 rcu_assign_pointer(ioc->ioc_data, NULL);
9b50902d 2785 spin_unlock(&ioc->lock);
3181faa8
SL
2786 } else
2787 rcu_read_unlock();
4faa3c81 2788
ff6657c6
JA
2789 if (cic->cfqq[BLK_RW_ASYNC]) {
2790 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2791 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2792 }
2793
ff6657c6
JA
2794 if (cic->cfqq[BLK_RW_SYNC]) {
2795 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2796 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2797 }
89850f7e
JA
2798}
2799
4ac845a2
JA
2800static void cfq_exit_single_io_context(struct io_context *ioc,
2801 struct cfq_io_context *cic)
89850f7e 2802{
bca4b914 2803 struct cfq_data *cfqd = cic_to_cfqd(cic);
89850f7e 2804
89850f7e 2805 if (cfqd) {
165125e1 2806 struct request_queue *q = cfqd->queue;
4ac845a2 2807 unsigned long flags;
89850f7e 2808
4ac845a2 2809 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2810
2811 /*
2812 * Ensure we get a fresh copy of the ->key to prevent
2813 * race between exiting task and queue
2814 */
2815 smp_read_barrier_depends();
bca4b914 2816 if (cic->key == cfqd)
62c1fe9d
JA
2817 __cfq_exit_single_io_context(cfqd, cic);
2818
4ac845a2 2819 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2820 }
1da177e4
LT
2821}
2822
498d3aa2
JA
2823/*
2824 * The process that ioc belongs to has exited, we need to clean up
2825 * and put the internal structures we have that belongs to that process.
2826 */
e2d74ac0 2827static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2828{
4ac845a2 2829 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2830}
2831
22e2c507 2832static struct cfq_io_context *
8267e268 2833cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2834{
b5deef90 2835 struct cfq_io_context *cic;
1da177e4 2836
94f6030c
CL
2837 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2838 cfqd->queue->node);
1da177e4 2839 if (cic) {
383cd721 2840 cic->ttime.last_end_request = jiffies;
553698f9 2841 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2842 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2843 cic->dtor = cfq_free_io_context;
2844 cic->exit = cfq_exit_io_context;
245b2e70 2845 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2846 }
2847
2848 return cic;
2849}
2850
fd0928df 2851static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2852{
2853 struct task_struct *tsk = current;
2854 int ioprio_class;
2855
3b18152c 2856 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2857 return;
2858
fd0928df 2859 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2860 switch (ioprio_class) {
fe094d98
JA
2861 default:
2862 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2863 case IOPRIO_CLASS_NONE:
2864 /*
6d63c275 2865 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2866 */
2867 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2868 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2869 break;
2870 case IOPRIO_CLASS_RT:
2871 cfqq->ioprio = task_ioprio(ioc);
2872 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2873 break;
2874 case IOPRIO_CLASS_BE:
2875 cfqq->ioprio = task_ioprio(ioc);
2876 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2877 break;
2878 case IOPRIO_CLASS_IDLE:
2879 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2880 cfqq->ioprio = 7;
2881 cfq_clear_cfqq_idle_window(cfqq);
2882 break;
22e2c507
JA
2883 }
2884
2885 /*
2886 * keep track of original prio settings in case we have to temporarily
2887 * elevate the priority of this queue
2888 */
2889 cfqq->org_ioprio = cfqq->ioprio;
3b18152c 2890 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2891}
2892
febffd61 2893static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2894{
bca4b914 2895 struct cfq_data *cfqd = cic_to_cfqd(cic);
478a82b0 2896 struct cfq_queue *cfqq;
c1b707d2 2897 unsigned long flags;
35e6077c 2898
caaa5f9f
JA
2899 if (unlikely(!cfqd))
2900 return;
2901
c1b707d2 2902 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2903
ff6657c6 2904 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2905 if (cfqq) {
2906 struct cfq_queue *new_cfqq;
ff6657c6
JA
2907 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2908 GFP_ATOMIC);
caaa5f9f 2909 if (new_cfqq) {
ff6657c6 2910 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2911 cfq_put_queue(cfqq);
2912 }
22e2c507 2913 }
caaa5f9f 2914
ff6657c6 2915 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2916 if (cfqq)
2917 cfq_mark_cfqq_prio_changed(cfqq);
2918
c1b707d2 2919 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2920}
2921
fc46379d 2922static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2923{
4ac845a2 2924 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2925 ioc->ioprio_changed = 0;
22e2c507
JA
2926}
2927
d5036d77 2928static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2929 pid_t pid, bool is_sync)
d5036d77
JA
2930{
2931 RB_CLEAR_NODE(&cfqq->rb_node);
2932 RB_CLEAR_NODE(&cfqq->p_node);
2933 INIT_LIST_HEAD(&cfqq->fifo);
2934
30d7b944 2935 cfqq->ref = 0;
d5036d77
JA
2936 cfqq->cfqd = cfqd;
2937
2938 cfq_mark_cfqq_prio_changed(cfqq);
2939
2940 if (is_sync) {
2941 if (!cfq_class_idle(cfqq))
2942 cfq_mark_cfqq_idle_window(cfqq);
2943 cfq_mark_cfqq_sync(cfqq);
2944 }
2945 cfqq->pid = pid;
2946}
2947
24610333
VG
2948#ifdef CONFIG_CFQ_GROUP_IOSCHED
2949static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2950{
2951 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
bca4b914 2952 struct cfq_data *cfqd = cic_to_cfqd(cic);
24610333
VG
2953 unsigned long flags;
2954 struct request_queue *q;
2955
2956 if (unlikely(!cfqd))
2957 return;
2958
2959 q = cfqd->queue;
2960
2961 spin_lock_irqsave(q->queue_lock, flags);
2962
2963 if (sync_cfqq) {
2964 /*
2965 * Drop reference to sync queue. A new sync queue will be
2966 * assigned in new group upon arrival of a fresh request.
2967 */
2968 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2969 cic_set_cfqq(cic, NULL, 1);
2970 cfq_put_queue(sync_cfqq);
2971 }
2972
2973 spin_unlock_irqrestore(q->queue_lock, flags);
2974}
2975
2976static void cfq_ioc_set_cgroup(struct io_context *ioc)
2977{
2978 call_for_each_cic(ioc, changed_cgroup);
2979 ioc->cgroup_changed = 0;
2980}
2981#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2982
22e2c507 2983static struct cfq_queue *
a6151c3a 2984cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2985 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2986{
22e2c507 2987 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2988 struct cfq_io_context *cic;
cdb16e8f 2989 struct cfq_group *cfqg;
22e2c507
JA
2990
2991retry:
3e59cf9d 2992 cfqg = cfq_get_cfqg(cfqd);
4ac845a2 2993 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2994 /* cic always exists here */
2995 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2996
6118b70b
JA
2997 /*
2998 * Always try a new alloc if we fell back to the OOM cfqq
2999 * originally, since it should just be a temporary situation.
3000 */
3001 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3002 cfqq = NULL;
22e2c507
JA
3003 if (new_cfqq) {
3004 cfqq = new_cfqq;
3005 new_cfqq = NULL;
3006 } else if (gfp_mask & __GFP_WAIT) {
3007 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 3008 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 3009 gfp_mask | __GFP_ZERO,
94f6030c 3010 cfqd->queue->node);
22e2c507 3011 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
3012 if (new_cfqq)
3013 goto retry;
22e2c507 3014 } else {
94f6030c
CL
3015 cfqq = kmem_cache_alloc_node(cfq_pool,
3016 gfp_mask | __GFP_ZERO,
3017 cfqd->queue->node);
22e2c507
JA
3018 }
3019
6118b70b
JA
3020 if (cfqq) {
3021 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3022 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 3023 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
3024 cfq_log_cfqq(cfqd, cfqq, "alloced");
3025 } else
3026 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
3027 }
3028
3029 if (new_cfqq)
3030 kmem_cache_free(cfq_pool, new_cfqq);
3031
22e2c507
JA
3032 return cfqq;
3033}
3034
c2dea2d1
VT
3035static struct cfq_queue **
3036cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3037{
fe094d98 3038 switch (ioprio_class) {
c2dea2d1
VT
3039 case IOPRIO_CLASS_RT:
3040 return &cfqd->async_cfqq[0][ioprio];
3041 case IOPRIO_CLASS_BE:
3042 return &cfqd->async_cfqq[1][ioprio];
3043 case IOPRIO_CLASS_IDLE:
3044 return &cfqd->async_idle_cfqq;
3045 default:
3046 BUG();
3047 }
3048}
3049
15c31be4 3050static struct cfq_queue *
a6151c3a 3051cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
3052 gfp_t gfp_mask)
3053{
fd0928df
JA
3054 const int ioprio = task_ioprio(ioc);
3055 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 3056 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
3057 struct cfq_queue *cfqq = NULL;
3058
c2dea2d1
VT
3059 if (!is_sync) {
3060 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3061 cfqq = *async_cfqq;
3062 }
3063
6118b70b 3064 if (!cfqq)
fd0928df 3065 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
3066
3067 /*
3068 * pin the queue now that it's allocated, scheduler exit will prune it
3069 */
c2dea2d1 3070 if (!is_sync && !(*async_cfqq)) {
30d7b944 3071 cfqq->ref++;
c2dea2d1 3072 *async_cfqq = cfqq;
15c31be4
JA
3073 }
3074
30d7b944 3075 cfqq->ref++;
15c31be4
JA
3076 return cfqq;
3077}
3078
498d3aa2
JA
3079/*
3080 * We drop cfq io contexts lazily, so we may find a dead one.
3081 */
dbecf3ab 3082static void
4ac845a2
JA
3083cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3084 struct cfq_io_context *cic)
dbecf3ab 3085{
4ac845a2
JA
3086 unsigned long flags;
3087
fc46379d 3088 WARN_ON(!list_empty(&cic->queue_list));
bca4b914 3089 BUG_ON(cic->key != cfqd_dead_key(cfqd));
597bc485 3090
4ac845a2
JA
3091 spin_lock_irqsave(&ioc->lock, flags);
3092
726e99ab
SL
3093 BUG_ON(rcu_dereference_check(ioc->ioc_data,
3094 lockdep_is_held(&ioc->lock)) == cic);
597bc485 3095
80b15c73 3096 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
ffc4e759 3097 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
3098 spin_unlock_irqrestore(&ioc->lock, flags);
3099
3100 cfq_cic_free(cic);
dbecf3ab
OH
3101}
3102
e2d74ac0 3103static struct cfq_io_context *
4ac845a2 3104cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 3105{
e2d74ac0 3106 struct cfq_io_context *cic;
d6de8be7 3107 unsigned long flags;
e2d74ac0 3108
91fac317
VT
3109 if (unlikely(!ioc))
3110 return NULL;
3111
d6de8be7
JA
3112 rcu_read_lock();
3113
597bc485
JA
3114 /*
3115 * we maintain a last-hit cache, to avoid browsing over the tree
3116 */
4ac845a2 3117 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
3118 if (cic && cic->key == cfqd) {
3119 rcu_read_unlock();
597bc485 3120 return cic;
d6de8be7 3121 }
597bc485 3122
4ac845a2 3123 do {
80b15c73 3124 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
4ac845a2
JA
3125 rcu_read_unlock();
3126 if (!cic)
3127 break;
bca4b914 3128 if (unlikely(cic->key != cfqd)) {
4ac845a2 3129 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 3130 rcu_read_lock();
4ac845a2 3131 continue;
dbecf3ab 3132 }
e2d74ac0 3133
d6de8be7 3134 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 3135 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 3136 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
3137 break;
3138 } while (1);
e2d74ac0 3139
4ac845a2 3140 return cic;
e2d74ac0
JA
3141}
3142
4ac845a2
JA
3143/*
3144 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3145 * the process specific cfq io context when entered from the block layer.
3146 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3147 */
febffd61
JA
3148static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3149 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 3150{
0261d688 3151 unsigned long flags;
4ac845a2 3152 int ret;
e2d74ac0 3153
4ac845a2
JA
3154 ret = radix_tree_preload(gfp_mask);
3155 if (!ret) {
3156 cic->ioc = ioc;
3157 cic->key = cfqd;
e2d74ac0 3158
4ac845a2
JA
3159 spin_lock_irqsave(&ioc->lock, flags);
3160 ret = radix_tree_insert(&ioc->radix_root,
80b15c73 3161 cfqd->cic_index, cic);
ffc4e759
JA
3162 if (!ret)
3163 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 3164 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 3165
4ac845a2
JA
3166 radix_tree_preload_end();
3167
3168 if (!ret) {
3169 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3170 list_add(&cic->queue_list, &cfqd->cic_list);
3171 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3172 }
e2d74ac0
JA
3173 }
3174
4ac845a2
JA
3175 if (ret)
3176 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 3177
4ac845a2 3178 return ret;
e2d74ac0
JA
3179}
3180
1da177e4
LT
3181/*
3182 * Setup general io context and cfq io context. There can be several cfq
3183 * io contexts per general io context, if this process is doing io to more
e2d74ac0 3184 * than one device managed by cfq.
1da177e4
LT
3185 */
3186static struct cfq_io_context *
e2d74ac0 3187cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 3188{
22e2c507 3189 struct io_context *ioc = NULL;
1da177e4 3190 struct cfq_io_context *cic;
1da177e4 3191
22e2c507 3192 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 3193
b5deef90 3194 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
3195 if (!ioc)
3196 return NULL;
3197
4ac845a2 3198 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
3199 if (cic)
3200 goto out;
1da177e4 3201
e2d74ac0
JA
3202 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3203 if (cic == NULL)
3204 goto err;
1da177e4 3205
4ac845a2
JA
3206 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3207 goto err_free;
3208
1da177e4 3209out:
fc46379d
JA
3210 smp_read_barrier_depends();
3211 if (unlikely(ioc->ioprio_changed))
3212 cfq_ioc_set_ioprio(ioc);
3213
24610333
VG
3214#ifdef CONFIG_CFQ_GROUP_IOSCHED
3215 if (unlikely(ioc->cgroup_changed))
3216 cfq_ioc_set_cgroup(ioc);
3217#endif
1da177e4 3218 return cic;
4ac845a2
JA
3219err_free:
3220 cfq_cic_free(cic);
1da177e4
LT
3221err:
3222 put_io_context(ioc);
3223 return NULL;
3224}
3225
22e2c507 3226static void
383cd721 3227__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
1da177e4 3228{
383cd721
SL
3229 unsigned long elapsed = jiffies - ttime->last_end_request;
3230 elapsed = min(elapsed, 2UL * slice_idle);
db3b5848 3231
383cd721
SL
3232 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3233 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3234 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3235}
3236
3237static void
3238cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3239 struct cfq_io_context *cic)
3240{
f5f2b6ce 3241 if (cfq_cfqq_sync(cfqq)) {
383cd721 3242 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
f5f2b6ce
SL
3243 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3244 cfqd->cfq_slice_idle);
3245 }
7700fc4f
SL
3246#ifdef CONFIG_CFQ_GROUP_IOSCHED
3247 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3248#endif
22e2c507 3249}
1da177e4 3250
206dc69b 3251static void
b2c18e1e 3252cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 3253 struct request *rq)
206dc69b 3254{
3dde36dd 3255 sector_t sdist = 0;
41647e7a 3256 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
3257 if (cfqq->last_request_pos) {
3258 if (cfqq->last_request_pos < blk_rq_pos(rq))
3259 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3260 else
3261 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3262 }
206dc69b 3263
3dde36dd 3264 cfqq->seek_history <<= 1;
41647e7a
CZ
3265 if (blk_queue_nonrot(cfqd->queue))
3266 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3267 else
3268 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3269}
1da177e4 3270
22e2c507
JA
3271/*
3272 * Disable idle window if the process thinks too long or seeks so much that
3273 * it doesn't matter
3274 */
3275static void
3276cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3277 struct cfq_io_context *cic)
3278{
7b679138 3279 int old_idle, enable_idle;
1be92f2f 3280
0871714e
JA
3281 /*
3282 * Don't idle for async or idle io prio class
3283 */
3284 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3285 return;
3286
c265a7f4 3287 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3288
76280aff
CZ
3289 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3290 cfq_mark_cfqq_deep(cfqq);
3291
749ef9f8
CZ
3292 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3293 enable_idle = 0;
3294 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3295 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507 3296 enable_idle = 0;
383cd721
SL
3297 else if (sample_valid(cic->ttime.ttime_samples)) {
3298 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3299 enable_idle = 0;
3300 else
3301 enable_idle = 1;
1da177e4
LT
3302 }
3303
7b679138
JA
3304 if (old_idle != enable_idle) {
3305 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3306 if (enable_idle)
3307 cfq_mark_cfqq_idle_window(cfqq);
3308 else
3309 cfq_clear_cfqq_idle_window(cfqq);
3310 }
22e2c507 3311}
1da177e4 3312
22e2c507
JA
3313/*
3314 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3315 * no or if we aren't sure, a 1 will cause a preempt.
3316 */
a6151c3a 3317static bool
22e2c507 3318cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3319 struct request *rq)
22e2c507 3320{
6d048f53 3321 struct cfq_queue *cfqq;
22e2c507 3322
6d048f53
JA
3323 cfqq = cfqd->active_queue;
3324 if (!cfqq)
a6151c3a 3325 return false;
22e2c507 3326
6d048f53 3327 if (cfq_class_idle(new_cfqq))
a6151c3a 3328 return false;
22e2c507
JA
3329
3330 if (cfq_class_idle(cfqq))
a6151c3a 3331 return true;
1e3335de 3332
875feb63
DS
3333 /*
3334 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3335 */
3336 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3337 return false;
3338
374f84ac
JA
3339 /*
3340 * if the new request is sync, but the currently running queue is
3341 * not, let the sync request have priority.
3342 */
5e705374 3343 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3344 return true;
1e3335de 3345
8682e1f1
VG
3346 if (new_cfqq->cfqg != cfqq->cfqg)
3347 return false;
3348
3349 if (cfq_slice_used(cfqq))
3350 return true;
3351
3352 /* Allow preemption only if we are idling on sync-noidle tree */
3353 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3354 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3355 new_cfqq->service_tree->count == 2 &&
3356 RB_EMPTY_ROOT(&cfqq->sort_list))
3357 return true;
3358
3a9a3f6c
DS
3359 /*
3360 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3361 */
3362 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3363 return true;
3a9a3f6c 3364
d2d59e18
SL
3365 /* An idle queue should not be idle now for some reason */
3366 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3367 return true;
3368
1e3335de 3369 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3370 return false;
1e3335de
JA
3371
3372 /*
3373 * if this request is as-good as one we would expect from the
3374 * current cfqq, let it preempt
3375 */
e9ce335d 3376 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3377 return true;
1e3335de 3378
a6151c3a 3379 return false;
22e2c507
JA
3380}
3381
3382/*
3383 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3384 * let it have half of its nominal slice.
3385 */
3386static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3387{
f8ae6e3e
SL
3388 struct cfq_queue *old_cfqq = cfqd->active_queue;
3389
7b679138 3390 cfq_log_cfqq(cfqd, cfqq, "preempt");
e5ff082e 3391 cfq_slice_expired(cfqd, 1);
22e2c507 3392
f8ae6e3e
SL
3393 /*
3394 * workload type is changed, don't save slice, otherwise preempt
3395 * doesn't happen
3396 */
3397 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3398 cfqq->cfqg->saved_workload_slice = 0;
3399
bf572256
JA
3400 /*
3401 * Put the new queue at the front of the of the current list,
3402 * so we know that it will be selected next.
3403 */
3404 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3405
3406 cfq_service_tree_add(cfqd, cfqq, 1);
eda5e0c9 3407
62a37f6b
JT
3408 cfqq->slice_end = 0;
3409 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3410}
3411
22e2c507 3412/*
5e705374 3413 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3414 * something we should do about it
3415 */
3416static void
5e705374
JA
3417cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3418 struct request *rq)
22e2c507 3419{
5e705374 3420 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3421
45333d5a 3422 cfqd->rq_queued++;
374f84ac 3423
383cd721 3424 cfq_update_io_thinktime(cfqd, cfqq, cic);
b2c18e1e 3425 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3426 cfq_update_idle_window(cfqd, cfqq, cic);
3427
b2c18e1e 3428 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3429
3430 if (cfqq == cfqd->active_queue) {
3431 /*
b029195d
JA
3432 * Remember that we saw a request from this process, but
3433 * don't start queuing just yet. Otherwise we risk seeing lots
3434 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3435 * and merging. If the request is already larger than a single
3436 * page, let it rip immediately. For that case we assume that
2d870722
JA
3437 * merging is already done. Ditto for a busy system that
3438 * has other work pending, don't risk delaying until the
3439 * idle timer unplug to continue working.
22e2c507 3440 */
d6ceb25e 3441 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3442 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3443 cfqd->busy_queues > 1) {
812df48d 3444 cfq_del_timer(cfqd, cfqq);
554554f6 3445 cfq_clear_cfqq_wait_request(cfqq);
24ecfbe2 3446 __blk_run_queue(cfqd->queue);
a11cdaa7 3447 } else {
e98ef89b 3448 cfq_blkiocg_update_idle_time_stats(
a11cdaa7 3449 &cfqq->cfqg->blkg);
bf791937 3450 cfq_mark_cfqq_must_dispatch(cfqq);
a11cdaa7 3451 }
d6ceb25e 3452 }
5e705374 3453 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3454 /*
3455 * not the active queue - expire current slice if it is
3456 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3457 * has some old slice time left and is of higher priority or
3458 * this new queue is RT and the current one is BE
22e2c507
JA
3459 */
3460 cfq_preempt_queue(cfqd, cfqq);
24ecfbe2 3461 __blk_run_queue(cfqd->queue);
22e2c507 3462 }
1da177e4
LT
3463}
3464
165125e1 3465static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3466{
b4878f24 3467 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3468 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3469
7b679138 3470 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3471 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3472
30996f40 3473 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3474 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3475 cfq_add_rq_rb(rq);
e98ef89b 3476 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
cdc1184c
DS
3477 &cfqd->serving_group->blkg, rq_data_dir(rq),
3478 rq_is_sync(rq));
5e705374 3479 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3480}
3481
45333d5a
AC
3482/*
3483 * Update hw_tag based on peak queue depth over 50 samples under
3484 * sufficient load.
3485 */
3486static void cfq_update_hw_tag(struct cfq_data *cfqd)
3487{
1a1238a7
SL
3488 struct cfq_queue *cfqq = cfqd->active_queue;
3489
53c583d2
CZ
3490 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3491 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3492
3493 if (cfqd->hw_tag == 1)
3494 return;
45333d5a
AC
3495
3496 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3497 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3498 return;
3499
1a1238a7
SL
3500 /*
3501 * If active queue hasn't enough requests and can idle, cfq might not
3502 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3503 * case
3504 */
3505 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3506 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3507 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3508 return;
3509
45333d5a
AC
3510 if (cfqd->hw_tag_samples++ < 50)
3511 return;
3512
e459dd08 3513 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3514 cfqd->hw_tag = 1;
3515 else
3516 cfqd->hw_tag = 0;
45333d5a
AC
3517}
3518
7667aa06
VG
3519static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3520{
3521 struct cfq_io_context *cic = cfqd->active_cic;
3522
02a8f01b
JT
3523 /* If the queue already has requests, don't wait */
3524 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3525 return false;
3526
7667aa06
VG
3527 /* If there are other queues in the group, don't wait */
3528 if (cfqq->cfqg->nr_cfqq > 1)
3529 return false;
3530
7700fc4f
SL
3531 /* the only queue in the group, but think time is big */
3532 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3533 return false;
3534
7667aa06
VG
3535 if (cfq_slice_used(cfqq))
3536 return true;
3537
3538 /* if slice left is less than think time, wait busy */
383cd721
SL
3539 if (cic && sample_valid(cic->ttime.ttime_samples)
3540 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
7667aa06
VG
3541 return true;
3542
3543 /*
3544 * If think times is less than a jiffy than ttime_mean=0 and above
3545 * will not be true. It might happen that slice has not expired yet
3546 * but will expire soon (4-5 ns) during select_queue(). To cover the
3547 * case where think time is less than a jiffy, mark the queue wait
3548 * busy if only 1 jiffy is left in the slice.
3549 */
3550 if (cfqq->slice_end - jiffies == 1)
3551 return true;
3552
3553 return false;
3554}
3555
165125e1 3556static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3557{
5e705374 3558 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3559 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3560 const int sync = rq_is_sync(rq);
b4878f24 3561 unsigned long now;
1da177e4 3562
b4878f24 3563 now = jiffies;
33659ebb
CH
3564 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3565 !!(rq->cmd_flags & REQ_NOIDLE));
1da177e4 3566
45333d5a
AC
3567 cfq_update_hw_tag(cfqd);
3568
53c583d2 3569 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3570 WARN_ON(!cfqq->dispatched);
53c583d2 3571 cfqd->rq_in_driver--;
6d048f53 3572 cfqq->dispatched--;
80bdf0c7 3573 (RQ_CFQG(rq))->dispatched--;
e98ef89b
VG
3574 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3575 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3576 rq_data_dir(rq), rq_is_sync(rq));
1da177e4 3577
53c583d2 3578 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3579
365722bb 3580 if (sync) {
f5f2b6ce
SL
3581 struct cfq_rb_root *service_tree;
3582
383cd721 3583 RQ_CIC(rq)->ttime.last_end_request = now;
f5f2b6ce
SL
3584
3585 if (cfq_cfqq_on_rr(cfqq))
3586 service_tree = cfqq->service_tree;
3587 else
3588 service_tree = service_tree_for(cfqq->cfqg,
3589 cfqq_prio(cfqq), cfqq_type(cfqq));
3590 service_tree->ttime.last_end_request = now;
573412b2
CZ
3591 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3592 cfqd->last_delayed_sync = now;
365722bb 3593 }
caaa5f9f 3594
7700fc4f
SL
3595#ifdef CONFIG_CFQ_GROUP_IOSCHED
3596 cfqq->cfqg->ttime.last_end_request = now;
3597#endif
3598
caaa5f9f
JA
3599 /*
3600 * If this is the active queue, check if it needs to be expired,
3601 * or if we want to idle in case it has no pending requests.
3602 */
3603 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3604 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3605
44f7c160
JA
3606 if (cfq_cfqq_slice_new(cfqq)) {
3607 cfq_set_prio_slice(cfqd, cfqq);
3608 cfq_clear_cfqq_slice_new(cfqq);
3609 }
f75edf2d
VG
3610
3611 /*
7667aa06
VG
3612 * Should we wait for next request to come in before we expire
3613 * the queue.
f75edf2d 3614 */
7667aa06 3615 if (cfq_should_wait_busy(cfqd, cfqq)) {
80bdf0c7
VG
3616 unsigned long extend_sl = cfqd->cfq_slice_idle;
3617 if (!cfqd->cfq_slice_idle)
3618 extend_sl = cfqd->cfq_group_idle;
3619 cfqq->slice_end = jiffies + extend_sl;
f75edf2d 3620 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3621 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3622 }
3623
a36e71f9 3624 /*
8e550632
CZ
3625 * Idling is not enabled on:
3626 * - expired queues
3627 * - idle-priority queues
3628 * - async queues
3629 * - queues with still some requests queued
3630 * - when there is a close cooperator
a36e71f9 3631 */
0871714e 3632 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
e5ff082e 3633 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3634 else if (sync && cfqq_empty &&
3635 !cfq_close_cooperator(cfqd, cfqq)) {
749ef9f8 3636 cfq_arm_slice_timer(cfqd);
8e550632 3637 }
caaa5f9f 3638 }
6d048f53 3639
53c583d2 3640 if (!cfqd->rq_in_driver)
23e018a1 3641 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3642}
3643
89850f7e 3644static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3645{
1b379d8d 3646 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3647 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3648 return ELV_MQUEUE_MUST;
3b18152c 3649 }
1da177e4 3650
22e2c507 3651 return ELV_MQUEUE_MAY;
22e2c507
JA
3652}
3653
165125e1 3654static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3655{
3656 struct cfq_data *cfqd = q->elevator->elevator_data;
3657 struct task_struct *tsk = current;
91fac317 3658 struct cfq_io_context *cic;
22e2c507
JA
3659 struct cfq_queue *cfqq;
3660
3661 /*
3662 * don't force setup of a queue from here, as a call to may_queue
3663 * does not necessarily imply that a request actually will be queued.
3664 * so just lookup a possibly existing queue, or return 'may queue'
3665 * if that fails
3666 */
4ac845a2 3667 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3668 if (!cic)
3669 return ELV_MQUEUE_MAY;
3670
b0b78f81 3671 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3672 if (cfqq) {
fd0928df 3673 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507 3674
89850f7e 3675 return __cfq_may_queue(cfqq);
22e2c507
JA
3676 }
3677
3678 return ELV_MQUEUE_MAY;
1da177e4
LT
3679}
3680
1da177e4
LT
3681/*
3682 * queue lock held here
3683 */
bb37b94c 3684static void cfq_put_request(struct request *rq)
1da177e4 3685{
5e705374 3686 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3687
5e705374 3688 if (cfqq) {
22e2c507 3689 const int rw = rq_data_dir(rq);
1da177e4 3690
22e2c507
JA
3691 BUG_ON(!cfqq->allocated[rw]);
3692 cfqq->allocated[rw]--;
1da177e4 3693
5e705374 3694 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3695
c186794d
MS
3696 rq->elevator_private[0] = NULL;
3697 rq->elevator_private[1] = NULL;
1da177e4 3698
7f1dc8a2
VG
3699 /* Put down rq reference on cfqg */
3700 cfq_put_cfqg(RQ_CFQG(rq));
c186794d 3701 rq->elevator_private[2] = NULL;
7f1dc8a2 3702
1da177e4
LT
3703 cfq_put_queue(cfqq);
3704 }
3705}
3706
df5fe3e8
JM
3707static struct cfq_queue *
3708cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3709 struct cfq_queue *cfqq)
3710{
3711 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3712 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3713 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3714 cfq_put_queue(cfqq);
3715 return cic_to_cfqq(cic, 1);
3716}
3717
e6c5bc73
JM
3718/*
3719 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3720 * was the last process referring to said cfqq.
3721 */
3722static struct cfq_queue *
3723split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3724{
3725 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3726 cfqq->pid = current->pid;
3727 cfq_clear_cfqq_coop(cfqq);
ae54abed 3728 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3729 return cfqq;
3730 }
3731
3732 cic_set_cfqq(cic, NULL, 1);
d02a2c07
SL
3733
3734 cfq_put_cooperator(cfqq);
3735
e6c5bc73
JM
3736 cfq_put_queue(cfqq);
3737 return NULL;
3738}
1da177e4 3739/*
22e2c507 3740 * Allocate cfq data structures associated with this request.
1da177e4 3741 */
22e2c507 3742static int
165125e1 3743cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3744{
3745 struct cfq_data *cfqd = q->elevator->elevator_data;
3746 struct cfq_io_context *cic;
3747 const int rw = rq_data_dir(rq);
a6151c3a 3748 const bool is_sync = rq_is_sync(rq);
22e2c507 3749 struct cfq_queue *cfqq;
1da177e4
LT
3750 unsigned long flags;
3751
3752 might_sleep_if(gfp_mask & __GFP_WAIT);
3753
e2d74ac0 3754 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3755
1da177e4
LT
3756 spin_lock_irqsave(q->queue_lock, flags);
3757
22e2c507
JA
3758 if (!cic)
3759 goto queue_fail;
3760
e6c5bc73 3761new_queue:
91fac317 3762 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3763 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3764 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3765 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3766 } else {
e6c5bc73
JM
3767 /*
3768 * If the queue was seeky for too long, break it apart.
3769 */
ae54abed 3770 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3771 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3772 cfqq = split_cfqq(cic, cfqq);
3773 if (!cfqq)
3774 goto new_queue;
3775 }
3776
df5fe3e8
JM
3777 /*
3778 * Check to see if this queue is scheduled to merge with
3779 * another, closely cooperating queue. The merging of
3780 * queues happens here as it must be done in process context.
3781 * The reference on new_cfqq was taken in merge_cfqqs.
3782 */
3783 if (cfqq->new_cfqq)
3784 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3785 }
1da177e4
LT
3786
3787 cfqq->allocated[rw]++;
1da177e4 3788
6fae9c25 3789 cfqq->ref++;
c186794d
MS
3790 rq->elevator_private[0] = cic;
3791 rq->elevator_private[1] = cfqq;
3792 rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
93803e01 3793 spin_unlock_irqrestore(q->queue_lock, flags);
5e705374 3794 return 0;
1da177e4 3795
22e2c507 3796queue_fail:
23e018a1 3797 cfq_schedule_dispatch(cfqd);
1da177e4 3798 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3799 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3800 return 1;
3801}
3802
65f27f38 3803static void cfq_kick_queue(struct work_struct *work)
22e2c507 3804{
65f27f38 3805 struct cfq_data *cfqd =
23e018a1 3806 container_of(work, struct cfq_data, unplug_work);
165125e1 3807 struct request_queue *q = cfqd->queue;
22e2c507 3808
40bb54d1 3809 spin_lock_irq(q->queue_lock);
24ecfbe2 3810 __blk_run_queue(cfqd->queue);
40bb54d1 3811 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3812}
3813
3814/*
3815 * Timer running if the active_queue is currently idling inside its time slice
3816 */
3817static void cfq_idle_slice_timer(unsigned long data)
3818{
3819 struct cfq_data *cfqd = (struct cfq_data *) data;
3820 struct cfq_queue *cfqq;
3821 unsigned long flags;
3c6bd2f8 3822 int timed_out = 1;
22e2c507 3823
7b679138
JA
3824 cfq_log(cfqd, "idle timer fired");
3825
22e2c507
JA
3826 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3827
fe094d98
JA
3828 cfqq = cfqd->active_queue;
3829 if (cfqq) {
3c6bd2f8
JA
3830 timed_out = 0;
3831
b029195d
JA
3832 /*
3833 * We saw a request before the queue expired, let it through
3834 */
3835 if (cfq_cfqq_must_dispatch(cfqq))
3836 goto out_kick;
3837
22e2c507
JA
3838 /*
3839 * expired
3840 */
44f7c160 3841 if (cfq_slice_used(cfqq))
22e2c507
JA
3842 goto expire;
3843
3844 /*
3845 * only expire and reinvoke request handler, if there are
3846 * other queues with pending requests
3847 */
caaa5f9f 3848 if (!cfqd->busy_queues)
22e2c507 3849 goto out_cont;
22e2c507
JA
3850
3851 /*
3852 * not expired and it has a request pending, let it dispatch
3853 */
75e50984 3854 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3855 goto out_kick;
76280aff
CZ
3856
3857 /*
3858 * Queue depth flag is reset only when the idle didn't succeed
3859 */
3860 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3861 }
3862expire:
e5ff082e 3863 cfq_slice_expired(cfqd, timed_out);
22e2c507 3864out_kick:
23e018a1 3865 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3866out_cont:
3867 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3868}
3869
3b18152c
JA
3870static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3871{
3872 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3873 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3874}
22e2c507 3875
c2dea2d1
VT
3876static void cfq_put_async_queues(struct cfq_data *cfqd)
3877{
3878 int i;
3879
3880 for (i = 0; i < IOPRIO_BE_NR; i++) {
3881 if (cfqd->async_cfqq[0][i])
3882 cfq_put_queue(cfqd->async_cfqq[0][i]);
3883 if (cfqd->async_cfqq[1][i])
3884 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3885 }
2389d1ef
ON
3886
3887 if (cfqd->async_idle_cfqq)
3888 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3889}
3890
b374d18a 3891static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3892{
22e2c507 3893 struct cfq_data *cfqd = e->elevator_data;
165125e1 3894 struct request_queue *q = cfqd->queue;
56edf7d7 3895 bool wait = false;
22e2c507 3896
3b18152c 3897 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3898
d9ff4187 3899 spin_lock_irq(q->queue_lock);
e2d74ac0 3900
d9ff4187 3901 if (cfqd->active_queue)
e5ff082e 3902 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3903
3904 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3905 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3906 struct cfq_io_context,
3907 queue_list);
89850f7e
JA
3908
3909 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3910 }
e2d74ac0 3911
c2dea2d1 3912 cfq_put_async_queues(cfqd);
b1c35769 3913 cfq_release_cfq_groups(cfqd);
56edf7d7
VG
3914
3915 /*
3916 * If there are groups which we could not unlink from blkcg list,
3917 * wait for a rcu period for them to be freed.
3918 */
3919 if (cfqd->nr_blkcg_linked_grps)
3920 wait = true;
15c31be4 3921
d9ff4187 3922 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3923
3924 cfq_shutdown_timer_wq(cfqd);
3925
80b15c73
KK
3926 spin_lock(&cic_index_lock);
3927 ida_remove(&cic_index_ida, cfqd->cic_index);
3928 spin_unlock(&cic_index_lock);
3929
56edf7d7
VG
3930 /*
3931 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3932 * Do this wait only if there are other unlinked groups out
3933 * there. This can happen if cgroup deletion path claimed the
3934 * responsibility of cleaning up a group before queue cleanup code
3935 * get to the group.
3936 *
3937 * Do not call synchronize_rcu() unconditionally as there are drivers
3938 * which create/delete request queue hundreds of times during scan/boot
3939 * and synchronize_rcu() can take significant time and slow down boot.
3940 */
3941 if (wait)
3942 synchronize_rcu();
2abae55f
VG
3943
3944#ifdef CONFIG_CFQ_GROUP_IOSCHED
3945 /* Free up per cpu stats for root group */
3946 free_percpu(cfqd->root_group.blkg.stats_cpu);
3947#endif
56edf7d7 3948 kfree(cfqd);
1da177e4
LT
3949}
3950
80b15c73
KK
3951static int cfq_alloc_cic_index(void)
3952{
3953 int index, error;
3954
3955 do {
3956 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3957 return -ENOMEM;
3958
3959 spin_lock(&cic_index_lock);
3960 error = ida_get_new(&cic_index_ida, &index);
3961 spin_unlock(&cic_index_lock);
3962 if (error && error != -EAGAIN)
3963 return error;
3964 } while (error);
3965
3966 return index;
3967}
3968
165125e1 3969static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3970{
3971 struct cfq_data *cfqd;
718eee05 3972 int i, j;
cdb16e8f 3973 struct cfq_group *cfqg;
615f0259 3974 struct cfq_rb_root *st;
1da177e4 3975
80b15c73
KK
3976 i = cfq_alloc_cic_index();
3977 if (i < 0)
3978 return NULL;
3979
94f6030c 3980 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1547010e
NK
3981 if (!cfqd) {
3982 spin_lock(&cic_index_lock);
3983 ida_remove(&cic_index_ida, i);
3984 spin_unlock(&cic_index_lock);
bc1c1169 3985 return NULL;
1547010e 3986 }
1da177e4 3987
30d7b944
SL
3988 /*
3989 * Don't need take queue_lock in the routine, since we are
3990 * initializing the ioscheduler, and nobody is using cfqd
3991 */
80b15c73
KK
3992 cfqd->cic_index = i;
3993
1fa8f6d6
VG
3994 /* Init root service tree */
3995 cfqd->grp_service_tree = CFQ_RB_ROOT;
3996
cdb16e8f
VG
3997 /* Init root group */
3998 cfqg = &cfqd->root_group;
615f0259
VG
3999 for_each_cfqg_st(cfqg, i, j, st)
4000 *st = CFQ_RB_ROOT;
1fa8f6d6 4001 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 4002
25bc6b07
VG
4003 /* Give preference to root group over other groups */
4004 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
4005
25fb5169 4006#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769 4007 /*
56edf7d7
VG
4008 * Set root group reference to 2. One reference will be dropped when
4009 * all groups on cfqd->cfqg_list are being deleted during queue exit.
4010 * Other reference will remain there as we don't want to delete this
4011 * group as it is statically allocated and gets destroyed when
4012 * throtl_data goes away.
b1c35769 4013 */
56edf7d7 4014 cfqg->ref = 2;
5624a4e4
VG
4015
4016 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
4017 kfree(cfqg);
4018 kfree(cfqd);
4019 return NULL;
4020 }
4021
dcf097b2 4022 rcu_read_lock();
5624a4e4 4023
e98ef89b
VG
4024 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
4025 (void *)cfqd, 0);
dcf097b2 4026 rcu_read_unlock();
56edf7d7
VG
4027 cfqd->nr_blkcg_linked_grps++;
4028
4029 /* Add group on cfqd->cfqg_list */
4030 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
25fb5169 4031#endif
26a2ac00
JA
4032 /*
4033 * Not strictly needed (since RB_ROOT just clears the node and we
4034 * zeroed cfqd on alloc), but better be safe in case someone decides
4035 * to add magic to the rb code
4036 */
4037 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4038 cfqd->prio_trees[i] = RB_ROOT;
4039
6118b70b
JA
4040 /*
4041 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4042 * Grab a permanent reference to it, so that the normal code flow
4043 * will not attempt to free it.
4044 */
4045 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
30d7b944 4046 cfqd->oom_cfqq.ref++;
cdb16e8f 4047 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 4048
d9ff4187 4049 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 4050
1da177e4 4051 cfqd->queue = q;
1da177e4 4052
22e2c507
JA
4053 init_timer(&cfqd->idle_slice_timer);
4054 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4055 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4056
23e018a1 4057 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 4058
1da177e4 4059 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
4060 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4061 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
4062 cfqd->cfq_back_max = cfq_back_max;
4063 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
4064 cfqd->cfq_slice[0] = cfq_slice_async;
4065 cfqd->cfq_slice[1] = cfq_slice_sync;
4066 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4067 cfqd->cfq_slice_idle = cfq_slice_idle;
80bdf0c7 4068 cfqd->cfq_group_idle = cfq_group_idle;
963b72fc 4069 cfqd->cfq_latency = 1;
e459dd08 4070 cfqd->hw_tag = -1;
edc71131
CZ
4071 /*
4072 * we optimistically start assuming sync ops weren't delayed in last
4073 * second, in order to have larger depth for async operations.
4074 */
573412b2 4075 cfqd->last_delayed_sync = jiffies - HZ;
bc1c1169 4076 return cfqd;
1da177e4
LT
4077}
4078
4079static void cfq_slab_kill(void)
4080{
d6de8be7
JA
4081 /*
4082 * Caller already ensured that pending RCU callbacks are completed,
4083 * so we should have no busy allocations at this point.
4084 */
1da177e4
LT
4085 if (cfq_pool)
4086 kmem_cache_destroy(cfq_pool);
4087 if (cfq_ioc_pool)
4088 kmem_cache_destroy(cfq_ioc_pool);
4089}
4090
4091static int __init cfq_slab_setup(void)
4092{
0a31bd5f 4093 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
4094 if (!cfq_pool)
4095 goto fail;
4096
34e6bbf2 4097 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
4098 if (!cfq_ioc_pool)
4099 goto fail;
4100
4101 return 0;
4102fail:
4103 cfq_slab_kill();
4104 return -ENOMEM;
4105}
4106
1da177e4
LT
4107/*
4108 * sysfs parts below -->
4109 */
1da177e4
LT
4110static ssize_t
4111cfq_var_show(unsigned int var, char *page)
4112{
4113 return sprintf(page, "%d\n", var);
4114}
4115
4116static ssize_t
4117cfq_var_store(unsigned int *var, const char *page, size_t count)
4118{
4119 char *p = (char *) page;
4120
4121 *var = simple_strtoul(p, &p, 10);
4122 return count;
4123}
4124
1da177e4 4125#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 4126static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 4127{ \
3d1ab40f 4128 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4129 unsigned int __data = __VAR; \
4130 if (__CONV) \
4131 __data = jiffies_to_msecs(__data); \
4132 return cfq_var_show(__data, (page)); \
4133}
4134SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
4135SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4136SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
4137SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4138SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507 4139SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
80bdf0c7 4140SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
22e2c507
JA
4141SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4142SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4143SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 4144SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
4145#undef SHOW_FUNCTION
4146
4147#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 4148static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 4149{ \
3d1ab40f 4150 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4151 unsigned int __data; \
4152 int ret = cfq_var_store(&__data, (page), count); \
4153 if (__data < (MIN)) \
4154 __data = (MIN); \
4155 else if (__data > (MAX)) \
4156 __data = (MAX); \
4157 if (__CONV) \
4158 *(__PTR) = msecs_to_jiffies(__data); \
4159 else \
4160 *(__PTR) = __data; \
4161 return ret; \
4162}
4163STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
4164STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4165 UINT_MAX, 1);
4166STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4167 UINT_MAX, 1);
e572ec7e 4168STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
4169STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4170 UINT_MAX, 0);
22e2c507 4171STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
80bdf0c7 4172STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
22e2c507
JA
4173STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4174STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
4175STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4176 UINT_MAX, 0);
963b72fc 4177STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
4178#undef STORE_FUNCTION
4179
e572ec7e
AV
4180#define CFQ_ATTR(name) \
4181 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4182
4183static struct elv_fs_entry cfq_attrs[] = {
4184 CFQ_ATTR(quantum),
e572ec7e
AV
4185 CFQ_ATTR(fifo_expire_sync),
4186 CFQ_ATTR(fifo_expire_async),
4187 CFQ_ATTR(back_seek_max),
4188 CFQ_ATTR(back_seek_penalty),
4189 CFQ_ATTR(slice_sync),
4190 CFQ_ATTR(slice_async),
4191 CFQ_ATTR(slice_async_rq),
4192 CFQ_ATTR(slice_idle),
80bdf0c7 4193 CFQ_ATTR(group_idle),
963b72fc 4194 CFQ_ATTR(low_latency),
e572ec7e 4195 __ATTR_NULL
1da177e4
LT
4196};
4197
1da177e4
LT
4198static struct elevator_type iosched_cfq = {
4199 .ops = {
4200 .elevator_merge_fn = cfq_merge,
4201 .elevator_merged_fn = cfq_merged_request,
4202 .elevator_merge_req_fn = cfq_merged_requests,
da775265 4203 .elevator_allow_merge_fn = cfq_allow_merge,
812d4026 4204 .elevator_bio_merged_fn = cfq_bio_merged,
b4878f24 4205 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 4206 .elevator_add_req_fn = cfq_insert_request,
b4878f24 4207 .elevator_activate_req_fn = cfq_activate_request,
1da177e4 4208 .elevator_deactivate_req_fn = cfq_deactivate_request,
1da177e4 4209 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
4210 .elevator_former_req_fn = elv_rb_former_request,
4211 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
4212 .elevator_set_req_fn = cfq_set_request,
4213 .elevator_put_req_fn = cfq_put_request,
4214 .elevator_may_queue_fn = cfq_may_queue,
4215 .elevator_init_fn = cfq_init_queue,
4216 .elevator_exit_fn = cfq_exit_queue,
fc46379d 4217 .trim = cfq_free_io_context,
1da177e4 4218 },
3d1ab40f 4219 .elevator_attrs = cfq_attrs,
1da177e4
LT
4220 .elevator_name = "cfq",
4221 .elevator_owner = THIS_MODULE,
4222};
4223
3e252066
VG
4224#ifdef CONFIG_CFQ_GROUP_IOSCHED
4225static struct blkio_policy_type blkio_policy_cfq = {
4226 .ops = {
4227 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4228 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4229 },
062a644d 4230 .plid = BLKIO_POLICY_PROP,
3e252066
VG
4231};
4232#else
4233static struct blkio_policy_type blkio_policy_cfq;
4234#endif
4235
1da177e4
LT
4236static int __init cfq_init(void)
4237{
22e2c507
JA
4238 /*
4239 * could be 0 on HZ < 1000 setups
4240 */
4241 if (!cfq_slice_async)
4242 cfq_slice_async = 1;
4243 if (!cfq_slice_idle)
4244 cfq_slice_idle = 1;
4245
80bdf0c7
VG
4246#ifdef CONFIG_CFQ_GROUP_IOSCHED
4247 if (!cfq_group_idle)
4248 cfq_group_idle = 1;
4249#else
4250 cfq_group_idle = 0;
4251#endif
1da177e4
LT
4252 if (cfq_slab_setup())
4253 return -ENOMEM;
4254
2fdd82bd 4255 elv_register(&iosched_cfq);
3e252066 4256 blkio_policy_register(&blkio_policy_cfq);
1da177e4 4257
2fdd82bd 4258 return 0;
1da177e4
LT
4259}
4260
4261static void __exit cfq_exit(void)
4262{
6e9a4738 4263 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 4264 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 4265 elv_unregister(&iosched_cfq);
334e94de 4266 ioc_gone = &all_gone;
fba82272
OH
4267 /* ioc_gone's update must be visible before reading ioc_count */
4268 smp_wmb();
d6de8be7
JA
4269
4270 /*
4271 * this also protects us from entering cfq_slab_kill() with
4272 * pending RCU callbacks
4273 */
245b2e70 4274 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 4275 wait_for_completion(&all_gone);
80b15c73 4276 ida_destroy(&cic_index_ida);
83521d3e 4277 cfq_slab_kill();
1da177e4
LT
4278}
4279
4280module_init(cfq_init);
4281module_exit(cfq_exit);
4282
4283MODULE_AUTHOR("Jens Axboe");
4284MODULE_LICENSE("GPL");
4285MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");