]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/cfq-iosched.c
Merge tag 'md-3.3-fixes' of git://neil.brown.name/md
[mirror_ubuntu-artful-kernel.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
5a0e3ad6 10#include <linux/slab.h>
1cc9be68
AV
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
ad5ebd2f 13#include <linux/jiffies.h>
1da177e4 14#include <linux/rbtree.h>
22e2c507 15#include <linux/ioprio.h>
7b679138 16#include <linux/blktrace_api.h>
e98ef89b 17#include "cfq.h"
1da177e4
LT
18
19/*
20 * tunables
21 */
fe094d98 22/* max queue in one round of service */
abc3c744 23static const int cfq_quantum = 8;
64100099 24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
64100099 29static const int cfq_slice_sync = HZ / 10;
3b18152c 30static int cfq_slice_async = HZ / 25;
64100099 31static const int cfq_slice_async_rq = 2;
caaa5f9f 32static int cfq_slice_idle = HZ / 125;
80bdf0c7 33static int cfq_group_idle = HZ / 125;
5db5d642
CZ
34static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35static const int cfq_hist_divisor = 4;
22e2c507 36
d9e7620e 37/*
0871714e 38 * offset from end of service tree
d9e7620e 39 */
0871714e 40#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
41
42/*
43 * below this threshold, we consider thinktime immediate
44 */
45#define CFQ_MIN_TT (2)
46
22e2c507 47#define CFQ_SLICE_SCALE (5)
45333d5a 48#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 49#define CFQ_SERVICE_SHIFT 12
22e2c507 50
3dde36dd 51#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 52#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 53#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 54#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 55
fe094d98 56#define RQ_CIC(rq) \
c186794d
MS
57 ((struct cfq_io_context *) (rq)->elevator_private[0])
58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
1da177e4 60
e18b890b
CL
61static struct kmem_cache *cfq_pool;
62static struct kmem_cache *cfq_ioc_pool;
1da177e4 63
245b2e70 64static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 65static struct completion *ioc_gone;
9a11b4ed 66static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 67
80b15c73
KK
68static DEFINE_SPINLOCK(cic_index_lock);
69static DEFINE_IDA(cic_index_ida);
70
22e2c507
JA
71#define CFQ_PRIO_LISTS IOPRIO_BE_NR
72#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
73#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
206dc69b 75#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 76#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 77
cc09e299
JA
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
aa6f6a3d 87 unsigned count;
73e9ffdd 88 unsigned total_weight;
1fa8f6d6 89 u64 min_vdisktime;
f5f2b6ce 90 struct cfq_ttime ttime;
cc09e299 91};
f5f2b6ce
SL
92#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
93 .ttime = {.last_end_request = jiffies,},}
cc09e299 94
6118b70b
JA
95/*
96 * Per process-grouping structure
97 */
98struct cfq_queue {
99 /* reference count */
30d7b944 100 int ref;
6118b70b
JA
101 /* various state flags, see below */
102 unsigned int flags;
103 /* parent cfq_data */
104 struct cfq_data *cfqd;
105 /* service_tree member */
106 struct rb_node rb_node;
107 /* service_tree key */
108 unsigned long rb_key;
109 /* prio tree member */
110 struct rb_node p_node;
111 /* prio tree root we belong to, if any */
112 struct rb_root *p_root;
113 /* sorted list of pending requests */
114 struct rb_root sort_list;
115 /* if fifo isn't expired, next request to serve */
116 struct request *next_rq;
117 /* requests queued in sort_list */
118 int queued[2];
119 /* currently allocated requests */
120 int allocated[2];
121 /* fifo list of requests in sort_list */
122 struct list_head fifo;
123
dae739eb
VG
124 /* time when queue got scheduled in to dispatch first request. */
125 unsigned long dispatch_start;
f75edf2d 126 unsigned int allocated_slice;
c4081ba5 127 unsigned int slice_dispatch;
dae739eb
VG
128 /* time when first request from queue completed and slice started. */
129 unsigned long slice_start;
6118b70b
JA
130 unsigned long slice_end;
131 long slice_resid;
6118b70b 132
65299a3b
CH
133 /* pending priority requests */
134 int prio_pending;
6118b70b
JA
135 /* number of requests that are on the dispatch list or inside driver */
136 int dispatched;
137
138 /* io prio of this group */
139 unsigned short ioprio, org_ioprio;
4aede84b 140 unsigned short ioprio_class;
6118b70b 141
c4081ba5
RK
142 pid_t pid;
143
3dde36dd 144 u32 seek_history;
b2c18e1e
JM
145 sector_t last_request_pos;
146
aa6f6a3d 147 struct cfq_rb_root *service_tree;
df5fe3e8 148 struct cfq_queue *new_cfqq;
cdb16e8f 149 struct cfq_group *cfqg;
c4e7893e
VG
150 /* Number of sectors dispatched from queue in single dispatch round */
151 unsigned long nr_sectors;
6118b70b
JA
152};
153
c0324a02 154/*
718eee05 155 * First index in the service_trees.
c0324a02
CZ
156 * IDLE is handled separately, so it has negative index
157 */
158enum wl_prio_t {
c0324a02 159 BE_WORKLOAD = 0,
615f0259
VG
160 RT_WORKLOAD = 1,
161 IDLE_WORKLOAD = 2,
b4627321 162 CFQ_PRIO_NR,
c0324a02
CZ
163};
164
718eee05
CZ
165/*
166 * Second index in the service_trees.
167 */
168enum wl_type_t {
169 ASYNC_WORKLOAD = 0,
170 SYNC_NOIDLE_WORKLOAD = 1,
171 SYNC_WORKLOAD = 2
172};
173
cdb16e8f
VG
174/* This is per cgroup per device grouping structure */
175struct cfq_group {
1fa8f6d6
VG
176 /* group service_tree member */
177 struct rb_node rb_node;
178
179 /* group service_tree key */
180 u64 vdisktime;
25bc6b07 181 unsigned int weight;
8184f93e
JT
182 unsigned int new_weight;
183 bool needs_update;
1fa8f6d6
VG
184
185 /* number of cfqq currently on this group */
186 int nr_cfqq;
187
cdb16e8f 188 /*
4495a7d4 189 * Per group busy queues average. Useful for workload slice calc. We
b4627321
VG
190 * create the array for each prio class but at run time it is used
191 * only for RT and BE class and slot for IDLE class remains unused.
192 * This is primarily done to avoid confusion and a gcc warning.
193 */
194 unsigned int busy_queues_avg[CFQ_PRIO_NR];
195 /*
196 * rr lists of queues with requests. We maintain service trees for
197 * RT and BE classes. These trees are subdivided in subclasses
198 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
199 * class there is no subclassification and all the cfq queues go on
200 * a single tree service_tree_idle.
cdb16e8f
VG
201 * Counts are embedded in the cfq_rb_root
202 */
203 struct cfq_rb_root service_trees[2][3];
204 struct cfq_rb_root service_tree_idle;
dae739eb
VG
205
206 unsigned long saved_workload_slice;
207 enum wl_type_t saved_workload;
208 enum wl_prio_t saved_serving_prio;
25fb5169
VG
209 struct blkio_group blkg;
210#ifdef CONFIG_CFQ_GROUP_IOSCHED
211 struct hlist_node cfqd_node;
329a6781 212 int ref;
25fb5169 213#endif
80bdf0c7
VG
214 /* number of requests that are on the dispatch list or inside driver */
215 int dispatched;
7700fc4f 216 struct cfq_ttime ttime;
cdb16e8f 217};
718eee05 218
22e2c507
JA
219/*
220 * Per block device queue structure
221 */
1da177e4 222struct cfq_data {
165125e1 223 struct request_queue *queue;
1fa8f6d6
VG
224 /* Root service tree for cfq_groups */
225 struct cfq_rb_root grp_service_tree;
cdb16e8f 226 struct cfq_group root_group;
22e2c507 227
c0324a02
CZ
228 /*
229 * The priority currently being served
22e2c507 230 */
c0324a02 231 enum wl_prio_t serving_prio;
718eee05
CZ
232 enum wl_type_t serving_type;
233 unsigned long workload_expires;
cdb16e8f 234 struct cfq_group *serving_group;
a36e71f9
JA
235
236 /*
237 * Each priority tree is sorted by next_request position. These
238 * trees are used when determining if two or more queues are
239 * interleaving requests (see cfq_close_cooperator).
240 */
241 struct rb_root prio_trees[CFQ_PRIO_LISTS];
242
22e2c507 243 unsigned int busy_queues;
ef8a41df 244 unsigned int busy_sync_queues;
22e2c507 245
53c583d2
CZ
246 int rq_in_driver;
247 int rq_in_flight[2];
45333d5a
AC
248
249 /*
250 * queue-depth detection
251 */
252 int rq_queued;
25776e35 253 int hw_tag;
e459dd08
CZ
254 /*
255 * hw_tag can be
256 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
257 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
258 * 0 => no NCQ
259 */
260 int hw_tag_est_depth;
261 unsigned int hw_tag_samples;
1da177e4 262
22e2c507
JA
263 /*
264 * idle window management
265 */
266 struct timer_list idle_slice_timer;
23e018a1 267 struct work_struct unplug_work;
1da177e4 268
22e2c507
JA
269 struct cfq_queue *active_queue;
270 struct cfq_io_context *active_cic;
22e2c507 271
c2dea2d1
VT
272 /*
273 * async queue for each priority case
274 */
275 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
276 struct cfq_queue *async_idle_cfqq;
15c31be4 277
6d048f53 278 sector_t last_position;
1da177e4 279
1da177e4
LT
280 /*
281 * tunables, see top of file
282 */
283 unsigned int cfq_quantum;
22e2c507 284 unsigned int cfq_fifo_expire[2];
1da177e4
LT
285 unsigned int cfq_back_penalty;
286 unsigned int cfq_back_max;
22e2c507
JA
287 unsigned int cfq_slice[2];
288 unsigned int cfq_slice_async_rq;
289 unsigned int cfq_slice_idle;
80bdf0c7 290 unsigned int cfq_group_idle;
963b72fc 291 unsigned int cfq_latency;
d9ff4187 292
80b15c73 293 unsigned int cic_index;
d9ff4187 294 struct list_head cic_list;
1da177e4 295
6118b70b
JA
296 /*
297 * Fallback dummy cfqq for extreme OOM conditions
298 */
299 struct cfq_queue oom_cfqq;
365722bb 300
573412b2 301 unsigned long last_delayed_sync;
25fb5169
VG
302
303 /* List of cfq groups being managed on this device*/
304 struct hlist_head cfqg_list;
56edf7d7
VG
305
306 /* Number of groups which are on blkcg->blkg_list */
307 unsigned int nr_blkcg_linked_grps;
1da177e4
LT
308};
309
25fb5169
VG
310static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
311
cdb16e8f
VG
312static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
313 enum wl_prio_t prio,
65b32a57 314 enum wl_type_t type)
c0324a02 315{
1fa8f6d6
VG
316 if (!cfqg)
317 return NULL;
318
c0324a02 319 if (prio == IDLE_WORKLOAD)
cdb16e8f 320 return &cfqg->service_tree_idle;
c0324a02 321
cdb16e8f 322 return &cfqg->service_trees[prio][type];
c0324a02
CZ
323}
324
3b18152c 325enum cfqq_state_flags {
b0b8d749
JA
326 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
327 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 328 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 329 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
330 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
331 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
332 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 333 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 334 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 335 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 336 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 337 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 338 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
339};
340
341#define CFQ_CFQQ_FNS(name) \
342static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
343{ \
fe094d98 344 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
345} \
346static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
347{ \
fe094d98 348 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
349} \
350static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
351{ \
fe094d98 352 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
353}
354
355CFQ_CFQQ_FNS(on_rr);
356CFQ_CFQQ_FNS(wait_request);
b029195d 357CFQ_CFQQ_FNS(must_dispatch);
3b18152c 358CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
359CFQ_CFQQ_FNS(fifo_expire);
360CFQ_CFQQ_FNS(idle_window);
361CFQ_CFQQ_FNS(prio_changed);
44f7c160 362CFQ_CFQQ_FNS(slice_new);
91fac317 363CFQ_CFQQ_FNS(sync);
a36e71f9 364CFQ_CFQQ_FNS(coop);
ae54abed 365CFQ_CFQQ_FNS(split_coop);
76280aff 366CFQ_CFQQ_FNS(deep);
f75edf2d 367CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
368#undef CFQ_CFQQ_FNS
369
afc24d49 370#ifdef CONFIG_CFQ_GROUP_IOSCHED
2868ef7b
VG
371#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
372 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
373 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
4495a7d4 374 blkg_path(&(cfqq)->cfqg->blkg), ##args)
2868ef7b
VG
375
376#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
377 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
4495a7d4 378 blkg_path(&(cfqg)->blkg), ##args) \
2868ef7b
VG
379
380#else
7b679138
JA
381#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
382 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
4495a7d4 383#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
2868ef7b 384#endif
7b679138
JA
385#define cfq_log(cfqd, fmt, args...) \
386 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
387
615f0259
VG
388/* Traverses through cfq group service trees */
389#define for_each_cfqg_st(cfqg, i, j, st) \
390 for (i = 0; i <= IDLE_WORKLOAD; i++) \
391 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
392 : &cfqg->service_tree_idle; \
393 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
394 (i == IDLE_WORKLOAD && j == 0); \
395 j++, st = i < IDLE_WORKLOAD ? \
396 &cfqg->service_trees[i][j]: NULL) \
397
f5f2b6ce
SL
398static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
399 struct cfq_ttime *ttime, bool group_idle)
400{
401 unsigned long slice;
402 if (!sample_valid(ttime->ttime_samples))
403 return false;
404 if (group_idle)
405 slice = cfqd->cfq_group_idle;
406 else
407 slice = cfqd->cfq_slice_idle;
408 return ttime->ttime_mean > slice;
409}
615f0259 410
02b35081
VG
411static inline bool iops_mode(struct cfq_data *cfqd)
412{
413 /*
414 * If we are not idling on queues and it is a NCQ drive, parallel
415 * execution of requests is on and measuring time is not possible
416 * in most of the cases until and unless we drive shallower queue
417 * depths and that becomes a performance bottleneck. In such cases
418 * switch to start providing fairness in terms of number of IOs.
419 */
420 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
421 return true;
422 else
423 return false;
424}
425
c0324a02
CZ
426static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
427{
428 if (cfq_class_idle(cfqq))
429 return IDLE_WORKLOAD;
430 if (cfq_class_rt(cfqq))
431 return RT_WORKLOAD;
432 return BE_WORKLOAD;
433}
434
718eee05
CZ
435
436static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
437{
438 if (!cfq_cfqq_sync(cfqq))
439 return ASYNC_WORKLOAD;
440 if (!cfq_cfqq_idle_window(cfqq))
441 return SYNC_NOIDLE_WORKLOAD;
442 return SYNC_WORKLOAD;
443}
444
58ff82f3
VG
445static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
446 struct cfq_data *cfqd,
447 struct cfq_group *cfqg)
c0324a02
CZ
448{
449 if (wl == IDLE_WORKLOAD)
cdb16e8f 450 return cfqg->service_tree_idle.count;
c0324a02 451
cdb16e8f
VG
452 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
453 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
454 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
455}
456
f26bd1f0
VG
457static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
458 struct cfq_group *cfqg)
459{
460 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
461 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
462}
463
165125e1 464static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 465static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 466 struct io_context *, gfp_t);
4ac845a2 467static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
468 struct io_context *);
469
470static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 471 bool is_sync)
91fac317 472{
a6151c3a 473 return cic->cfqq[is_sync];
91fac317
VT
474}
475
476static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 477 struct cfq_queue *cfqq, bool is_sync)
91fac317 478{
a6151c3a 479 cic->cfqq[is_sync] = cfqq;
91fac317
VT
480}
481
bca4b914 482#define CIC_DEAD_KEY 1ul
80b15c73 483#define CIC_DEAD_INDEX_SHIFT 1
bca4b914
KK
484
485static inline void *cfqd_dead_key(struct cfq_data *cfqd)
486{
80b15c73 487 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
bca4b914
KK
488}
489
490static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
491{
492 struct cfq_data *cfqd = cic->key;
493
494 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
495 return NULL;
496
497 return cfqd;
498}
499
91fac317
VT
500/*
501 * We regard a request as SYNC, if it's either a read or has the SYNC bit
502 * set (in which case it could also be direct WRITE).
503 */
a6151c3a 504static inline bool cfq_bio_sync(struct bio *bio)
91fac317 505{
7b6d91da 506 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
91fac317 507}
1da177e4 508
99f95e52
AM
509/*
510 * scheduler run of queue, if there are requests pending and no one in the
511 * driver that will restart queueing
512 */
23e018a1 513static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 514{
7b679138
JA
515 if (cfqd->busy_queues) {
516 cfq_log(cfqd, "schedule dispatch");
23e018a1 517 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 518 }
99f95e52
AM
519}
520
44f7c160
JA
521/*
522 * Scale schedule slice based on io priority. Use the sync time slice only
523 * if a queue is marked sync and has sync io queued. A sync queue with async
524 * io only, should not get full sync slice length.
525 */
a6151c3a 526static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 527 unsigned short prio)
44f7c160 528{
d9e7620e 529 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 530
d9e7620e
JA
531 WARN_ON(prio >= IOPRIO_BE_NR);
532
533 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
534}
44f7c160 535
d9e7620e
JA
536static inline int
537cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
538{
539 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
540}
541
25bc6b07
VG
542static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
543{
544 u64 d = delta << CFQ_SERVICE_SHIFT;
545
546 d = d * BLKIO_WEIGHT_DEFAULT;
547 do_div(d, cfqg->weight);
548 return d;
549}
550
551static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
552{
553 s64 delta = (s64)(vdisktime - min_vdisktime);
554 if (delta > 0)
555 min_vdisktime = vdisktime;
556
557 return min_vdisktime;
558}
559
560static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
561{
562 s64 delta = (s64)(vdisktime - min_vdisktime);
563 if (delta < 0)
564 min_vdisktime = vdisktime;
565
566 return min_vdisktime;
567}
568
569static void update_min_vdisktime(struct cfq_rb_root *st)
570{
25bc6b07
VG
571 struct cfq_group *cfqg;
572
25bc6b07
VG
573 if (st->left) {
574 cfqg = rb_entry_cfqg(st->left);
a6032710
GJ
575 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
576 cfqg->vdisktime);
25bc6b07 577 }
25bc6b07
VG
578}
579
5db5d642
CZ
580/*
581 * get averaged number of queues of RT/BE priority.
582 * average is updated, with a formula that gives more weight to higher numbers,
583 * to quickly follows sudden increases and decrease slowly
584 */
585
58ff82f3
VG
586static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
587 struct cfq_group *cfqg, bool rt)
5869619c 588{
5db5d642
CZ
589 unsigned min_q, max_q;
590 unsigned mult = cfq_hist_divisor - 1;
591 unsigned round = cfq_hist_divisor / 2;
58ff82f3 592 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 593
58ff82f3
VG
594 min_q = min(cfqg->busy_queues_avg[rt], busy);
595 max_q = max(cfqg->busy_queues_avg[rt], busy);
596 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 597 cfq_hist_divisor;
58ff82f3
VG
598 return cfqg->busy_queues_avg[rt];
599}
600
601static inline unsigned
602cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
603{
604 struct cfq_rb_root *st = &cfqd->grp_service_tree;
605
606 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
607}
608
c553f8e3 609static inline unsigned
ba5bd520 610cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
44f7c160 611{
5db5d642
CZ
612 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
613 if (cfqd->cfq_latency) {
58ff82f3
VG
614 /*
615 * interested queues (we consider only the ones with the same
616 * priority class in the cfq group)
617 */
618 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
619 cfq_class_rt(cfqq));
5db5d642
CZ
620 unsigned sync_slice = cfqd->cfq_slice[1];
621 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
622 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
623
624 if (expect_latency > group_slice) {
5db5d642
CZ
625 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
626 /* scale low_slice according to IO priority
627 * and sync vs async */
628 unsigned low_slice =
629 min(slice, base_low_slice * slice / sync_slice);
630 /* the adapted slice value is scaled to fit all iqs
631 * into the target latency */
58ff82f3 632 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
633 low_slice);
634 }
635 }
c553f8e3
SL
636 return slice;
637}
638
639static inline void
640cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
641{
ba5bd520 642 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3 643
dae739eb 644 cfqq->slice_start = jiffies;
5db5d642 645 cfqq->slice_end = jiffies + slice;
f75edf2d 646 cfqq->allocated_slice = slice;
7b679138 647 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
648}
649
650/*
651 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
652 * isn't valid until the first request from the dispatch is activated
653 * and the slice time set.
654 */
a6151c3a 655static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
656{
657 if (cfq_cfqq_slice_new(cfqq))
c1e44756 658 return false;
44f7c160 659 if (time_before(jiffies, cfqq->slice_end))
c1e44756 660 return false;
44f7c160 661
c1e44756 662 return true;
44f7c160
JA
663}
664
1da177e4 665/*
5e705374 666 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 667 * We choose the request that is closest to the head right now. Distance
e8a99053 668 * behind the head is penalized and only allowed to a certain extent.
1da177e4 669 */
5e705374 670static struct request *
cf7c25cf 671cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 672{
cf7c25cf 673 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 674 unsigned long back_max;
e8a99053
AM
675#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
676#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
677 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 678
5e705374
JA
679 if (rq1 == NULL || rq1 == rq2)
680 return rq2;
681 if (rq2 == NULL)
682 return rq1;
9c2c38a1 683
229836bd
NK
684 if (rq_is_sync(rq1) != rq_is_sync(rq2))
685 return rq_is_sync(rq1) ? rq1 : rq2;
686
65299a3b
CH
687 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
688 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
b53d1ed7 689
83096ebf
TH
690 s1 = blk_rq_pos(rq1);
691 s2 = blk_rq_pos(rq2);
1da177e4 692
1da177e4
LT
693 /*
694 * by definition, 1KiB is 2 sectors
695 */
696 back_max = cfqd->cfq_back_max * 2;
697
698 /*
699 * Strict one way elevator _except_ in the case where we allow
700 * short backward seeks which are biased as twice the cost of a
701 * similar forward seek.
702 */
703 if (s1 >= last)
704 d1 = s1 - last;
705 else if (s1 + back_max >= last)
706 d1 = (last - s1) * cfqd->cfq_back_penalty;
707 else
e8a99053 708 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
709
710 if (s2 >= last)
711 d2 = s2 - last;
712 else if (s2 + back_max >= last)
713 d2 = (last - s2) * cfqd->cfq_back_penalty;
714 else
e8a99053 715 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
716
717 /* Found required data */
e8a99053
AM
718
719 /*
720 * By doing switch() on the bit mask "wrap" we avoid having to
721 * check two variables for all permutations: --> faster!
722 */
723 switch (wrap) {
5e705374 724 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 725 if (d1 < d2)
5e705374 726 return rq1;
e8a99053 727 else if (d2 < d1)
5e705374 728 return rq2;
e8a99053
AM
729 else {
730 if (s1 >= s2)
5e705374 731 return rq1;
e8a99053 732 else
5e705374 733 return rq2;
e8a99053 734 }
1da177e4 735
e8a99053 736 case CFQ_RQ2_WRAP:
5e705374 737 return rq1;
e8a99053 738 case CFQ_RQ1_WRAP:
5e705374
JA
739 return rq2;
740 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
741 default:
742 /*
743 * Since both rqs are wrapped,
744 * start with the one that's further behind head
745 * (--> only *one* back seek required),
746 * since back seek takes more time than forward.
747 */
748 if (s1 <= s2)
5e705374 749 return rq1;
1da177e4 750 else
5e705374 751 return rq2;
1da177e4
LT
752 }
753}
754
498d3aa2
JA
755/*
756 * The below is leftmost cache rbtree addon
757 */
0871714e 758static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 759{
615f0259
VG
760 /* Service tree is empty */
761 if (!root->count)
762 return NULL;
763
cc09e299
JA
764 if (!root->left)
765 root->left = rb_first(&root->rb);
766
0871714e
JA
767 if (root->left)
768 return rb_entry(root->left, struct cfq_queue, rb_node);
769
770 return NULL;
cc09e299
JA
771}
772
1fa8f6d6
VG
773static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
774{
775 if (!root->left)
776 root->left = rb_first(&root->rb);
777
778 if (root->left)
779 return rb_entry_cfqg(root->left);
780
781 return NULL;
782}
783
a36e71f9
JA
784static void rb_erase_init(struct rb_node *n, struct rb_root *root)
785{
786 rb_erase(n, root);
787 RB_CLEAR_NODE(n);
788}
789
cc09e299
JA
790static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
791{
792 if (root->left == n)
793 root->left = NULL;
a36e71f9 794 rb_erase_init(n, &root->rb);
aa6f6a3d 795 --root->count;
cc09e299
JA
796}
797
1da177e4
LT
798/*
799 * would be nice to take fifo expire time into account as well
800 */
5e705374
JA
801static struct request *
802cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
803 struct request *last)
1da177e4 804{
21183b07
JA
805 struct rb_node *rbnext = rb_next(&last->rb_node);
806 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 807 struct request *next = NULL, *prev = NULL;
1da177e4 808
21183b07 809 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
810
811 if (rbprev)
5e705374 812 prev = rb_entry_rq(rbprev);
1da177e4 813
21183b07 814 if (rbnext)
5e705374 815 next = rb_entry_rq(rbnext);
21183b07
JA
816 else {
817 rbnext = rb_first(&cfqq->sort_list);
818 if (rbnext && rbnext != &last->rb_node)
5e705374 819 next = rb_entry_rq(rbnext);
21183b07 820 }
1da177e4 821
cf7c25cf 822 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
823}
824
d9e7620e
JA
825static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
826 struct cfq_queue *cfqq)
1da177e4 827{
d9e7620e
JA
828 /*
829 * just an approximation, should be ok.
830 */
cdb16e8f 831 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 832 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
833}
834
1fa8f6d6
VG
835static inline s64
836cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
837{
838 return cfqg->vdisktime - st->min_vdisktime;
839}
840
841static void
842__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
843{
844 struct rb_node **node = &st->rb.rb_node;
845 struct rb_node *parent = NULL;
846 struct cfq_group *__cfqg;
847 s64 key = cfqg_key(st, cfqg);
848 int left = 1;
849
850 while (*node != NULL) {
851 parent = *node;
852 __cfqg = rb_entry_cfqg(parent);
853
854 if (key < cfqg_key(st, __cfqg))
855 node = &parent->rb_left;
856 else {
857 node = &parent->rb_right;
858 left = 0;
859 }
860 }
861
862 if (left)
863 st->left = &cfqg->rb_node;
864
865 rb_link_node(&cfqg->rb_node, parent, node);
866 rb_insert_color(&cfqg->rb_node, &st->rb);
867}
868
869static void
8184f93e
JT
870cfq_update_group_weight(struct cfq_group *cfqg)
871{
872 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
873 if (cfqg->needs_update) {
874 cfqg->weight = cfqg->new_weight;
875 cfqg->needs_update = false;
876 }
877}
878
879static void
880cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
881{
882 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
883
884 cfq_update_group_weight(cfqg);
885 __cfq_group_service_tree_add(st, cfqg);
886 st->total_weight += cfqg->weight;
887}
888
889static void
890cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1fa8f6d6
VG
891{
892 struct cfq_rb_root *st = &cfqd->grp_service_tree;
893 struct cfq_group *__cfqg;
894 struct rb_node *n;
895
896 cfqg->nr_cfqq++;
760701bf 897 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1fa8f6d6
VG
898 return;
899
900 /*
901 * Currently put the group at the end. Later implement something
902 * so that groups get lesser vtime based on their weights, so that
25985edc 903 * if group does not loose all if it was not continuously backlogged.
1fa8f6d6
VG
904 */
905 n = rb_last(&st->rb);
906 if (n) {
907 __cfqg = rb_entry_cfqg(n);
908 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
909 } else
910 cfqg->vdisktime = st->min_vdisktime;
8184f93e
JT
911 cfq_group_service_tree_add(st, cfqg);
912}
1fa8f6d6 913
8184f93e
JT
914static void
915cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
916{
917 st->total_weight -= cfqg->weight;
918 if (!RB_EMPTY_NODE(&cfqg->rb_node))
919 cfq_rb_erase(&cfqg->rb_node, st);
1fa8f6d6
VG
920}
921
922static void
8184f93e 923cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1fa8f6d6
VG
924{
925 struct cfq_rb_root *st = &cfqd->grp_service_tree;
926
927 BUG_ON(cfqg->nr_cfqq < 1);
928 cfqg->nr_cfqq--;
25bc6b07 929
1fa8f6d6
VG
930 /* If there are other cfq queues under this group, don't delete it */
931 if (cfqg->nr_cfqq)
932 return;
933
2868ef7b 934 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
8184f93e 935 cfq_group_service_tree_del(st, cfqg);
dae739eb 936 cfqg->saved_workload_slice = 0;
e98ef89b 937 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
938}
939
167400d3
JT
940static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
941 unsigned int *unaccounted_time)
dae739eb 942{
f75edf2d 943 unsigned int slice_used;
dae739eb
VG
944
945 /*
946 * Queue got expired before even a single request completed or
947 * got expired immediately after first request completion.
948 */
949 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
950 /*
951 * Also charge the seek time incurred to the group, otherwise
952 * if there are mutiple queues in the group, each can dispatch
953 * a single request on seeky media and cause lots of seek time
954 * and group will never know it.
955 */
956 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
957 1);
958 } else {
959 slice_used = jiffies - cfqq->slice_start;
167400d3
JT
960 if (slice_used > cfqq->allocated_slice) {
961 *unaccounted_time = slice_used - cfqq->allocated_slice;
f75edf2d 962 slice_used = cfqq->allocated_slice;
167400d3
JT
963 }
964 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
965 *unaccounted_time += cfqq->slice_start -
966 cfqq->dispatch_start;
dae739eb
VG
967 }
968
dae739eb
VG
969 return slice_used;
970}
971
972static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
e5ff082e 973 struct cfq_queue *cfqq)
dae739eb
VG
974{
975 struct cfq_rb_root *st = &cfqd->grp_service_tree;
167400d3 976 unsigned int used_sl, charge, unaccounted_sl = 0;
f26bd1f0
VG
977 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
978 - cfqg->service_tree_idle.count;
979
980 BUG_ON(nr_sync < 0);
167400d3 981 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
dae739eb 982
02b35081
VG
983 if (iops_mode(cfqd))
984 charge = cfqq->slice_dispatch;
985 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
986 charge = cfqq->allocated_slice;
dae739eb
VG
987
988 /* Can't update vdisktime while group is on service tree */
8184f93e 989 cfq_group_service_tree_del(st, cfqg);
02b35081 990 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
8184f93e
JT
991 /* If a new weight was requested, update now, off tree */
992 cfq_group_service_tree_add(st, cfqg);
dae739eb
VG
993
994 /* This group is being expired. Save the context */
995 if (time_after(cfqd->workload_expires, jiffies)) {
996 cfqg->saved_workload_slice = cfqd->workload_expires
997 - jiffies;
998 cfqg->saved_workload = cfqd->serving_type;
999 cfqg->saved_serving_prio = cfqd->serving_prio;
1000 } else
1001 cfqg->saved_workload_slice = 0;
2868ef7b
VG
1002
1003 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1004 st->min_vdisktime);
fd16d263
JP
1005 cfq_log_cfqq(cfqq->cfqd, cfqq,
1006 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1007 used_sl, cfqq->slice_dispatch, charge,
1008 iops_mode(cfqd), cfqq->nr_sectors);
167400d3
JT
1009 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1010 unaccounted_sl);
e98ef89b 1011 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1fa8f6d6
VG
1012}
1013
25fb5169
VG
1014#ifdef CONFIG_CFQ_GROUP_IOSCHED
1015static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1016{
1017 if (blkg)
1018 return container_of(blkg, struct cfq_group, blkg);
1019 return NULL;
1020}
1021
8aea4545
PB
1022static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1023 unsigned int weight)
f8d461d6 1024{
8184f93e
JT
1025 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1026 cfqg->new_weight = weight;
1027 cfqg->needs_update = true;
f8d461d6
VG
1028}
1029
f469a7b4
VG
1030static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1031 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
25fb5169 1032{
22084190
VG
1033 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1034 unsigned int major, minor;
25fb5169 1035
f469a7b4
VG
1036 /*
1037 * Add group onto cgroup list. It might happen that bdi->dev is
1038 * not initialized yet. Initialize this new group without major
1039 * and minor info and this info will be filled in once a new thread
1040 * comes for IO.
1041 */
1042 if (bdi->dev) {
a74b2ada 1043 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
f469a7b4
VG
1044 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1045 (void *)cfqd, MKDEV(major, minor));
1046 } else
1047 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1048 (void *)cfqd, 0);
1049
1050 cfqd->nr_blkcg_linked_grps++;
1051 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1052
1053 /* Add group on cfqd list */
1054 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1055}
1056
1057/*
1058 * Should be called from sleepable context. No request queue lock as per
1059 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1060 * from sleepable context.
1061 */
1062static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1063{
1064 struct cfq_group *cfqg = NULL;
5624a4e4 1065 int i, j, ret;
f469a7b4 1066 struct cfq_rb_root *st;
25fb5169
VG
1067
1068 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1069 if (!cfqg)
f469a7b4 1070 return NULL;
25fb5169 1071
25fb5169
VG
1072 for_each_cfqg_st(cfqg, i, j, st)
1073 *st = CFQ_RB_ROOT;
1074 RB_CLEAR_NODE(&cfqg->rb_node);
1075
7700fc4f
SL
1076 cfqg->ttime.last_end_request = jiffies;
1077
b1c35769
VG
1078 /*
1079 * Take the initial reference that will be released on destroy
1080 * This can be thought of a joint reference by cgroup and
1081 * elevator which will be dropped by either elevator exit
1082 * or cgroup deletion path depending on who is exiting first.
1083 */
329a6781 1084 cfqg->ref = 1;
5624a4e4
VG
1085
1086 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1087 if (ret) {
1088 kfree(cfqg);
1089 return NULL;
1090 }
1091
f469a7b4
VG
1092 return cfqg;
1093}
1094
1095static struct cfq_group *
1096cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1097{
1098 struct cfq_group *cfqg = NULL;
1099 void *key = cfqd;
1100 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1101 unsigned int major, minor;
b1c35769 1102
180be2a0 1103 /*
f469a7b4
VG
1104 * This is the common case when there are no blkio cgroups.
1105 * Avoid lookup in this case
180be2a0 1106 */
f469a7b4
VG
1107 if (blkcg == &blkio_root_cgroup)
1108 cfqg = &cfqd->root_group;
1109 else
1110 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
25fb5169 1111
f469a7b4
VG
1112 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1113 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1114 cfqg->blkg.dev = MKDEV(major, minor);
1115 }
25fb5169 1116
25fb5169
VG
1117 return cfqg;
1118}
1119
1120/*
3e59cf9d
VG
1121 * Search for the cfq group current task belongs to. request_queue lock must
1122 * be held.
25fb5169 1123 */
3e59cf9d 1124static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
25fb5169 1125{
70087dc3 1126 struct blkio_cgroup *blkcg;
f469a7b4
VG
1127 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1128 struct request_queue *q = cfqd->queue;
25fb5169
VG
1129
1130 rcu_read_lock();
70087dc3 1131 blkcg = task_blkio_cgroup(current);
f469a7b4
VG
1132 cfqg = cfq_find_cfqg(cfqd, blkcg);
1133 if (cfqg) {
1134 rcu_read_unlock();
1135 return cfqg;
1136 }
1137
1138 /*
1139 * Need to allocate a group. Allocation of group also needs allocation
1140 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1141 * we need to drop rcu lock and queue_lock before we call alloc.
1142 *
1143 * Not taking any queue reference here and assuming that queue is
1144 * around by the time we return. CFQ queue allocation code does
1145 * the same. It might be racy though.
1146 */
1147
1148 rcu_read_unlock();
1149 spin_unlock_irq(q->queue_lock);
1150
1151 cfqg = cfq_alloc_cfqg(cfqd);
1152
1153 spin_lock_irq(q->queue_lock);
1154
1155 rcu_read_lock();
1156 blkcg = task_blkio_cgroup(current);
1157
1158 /*
1159 * If some other thread already allocated the group while we were
1160 * not holding queue lock, free up the group
1161 */
1162 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1163
1164 if (__cfqg) {
1165 kfree(cfqg);
1166 rcu_read_unlock();
1167 return __cfqg;
1168 }
1169
3e59cf9d 1170 if (!cfqg)
25fb5169 1171 cfqg = &cfqd->root_group;
f469a7b4
VG
1172
1173 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
25fb5169
VG
1174 rcu_read_unlock();
1175 return cfqg;
1176}
1177
7f1dc8a2
VG
1178static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1179{
329a6781 1180 cfqg->ref++;
7f1dc8a2
VG
1181 return cfqg;
1182}
1183
25fb5169
VG
1184static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1185{
1186 /* Currently, all async queues are mapped to root group */
1187 if (!cfq_cfqq_sync(cfqq))
1188 cfqg = &cfqq->cfqd->root_group;
1189
1190 cfqq->cfqg = cfqg;
b1c35769 1191 /* cfqq reference on cfqg */
329a6781 1192 cfqq->cfqg->ref++;
b1c35769
VG
1193}
1194
1195static void cfq_put_cfqg(struct cfq_group *cfqg)
1196{
1197 struct cfq_rb_root *st;
1198 int i, j;
1199
329a6781
SL
1200 BUG_ON(cfqg->ref <= 0);
1201 cfqg->ref--;
1202 if (cfqg->ref)
b1c35769
VG
1203 return;
1204 for_each_cfqg_st(cfqg, i, j, st)
b54ce60e 1205 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
5624a4e4 1206 free_percpu(cfqg->blkg.stats_cpu);
b1c35769
VG
1207 kfree(cfqg);
1208}
1209
1210static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1211{
1212 /* Something wrong if we are trying to remove same group twice */
1213 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1214
1215 hlist_del_init(&cfqg->cfqd_node);
1216
a5395b83
VG
1217 BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
1218 cfqd->nr_blkcg_linked_grps--;
1219
b1c35769
VG
1220 /*
1221 * Put the reference taken at the time of creation so that when all
1222 * queues are gone, group can be destroyed.
1223 */
1224 cfq_put_cfqg(cfqg);
1225}
1226
1227static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1228{
1229 struct hlist_node *pos, *n;
1230 struct cfq_group *cfqg;
1231
1232 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1233 /*
1234 * If cgroup removal path got to blk_group first and removed
1235 * it from cgroup list, then it will take care of destroying
1236 * cfqg also.
1237 */
e98ef89b 1238 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
b1c35769
VG
1239 cfq_destroy_cfqg(cfqd, cfqg);
1240 }
25fb5169 1241}
b1c35769
VG
1242
1243/*
1244 * Blk cgroup controller notification saying that blkio_group object is being
1245 * delinked as associated cgroup object is going away. That also means that
1246 * no new IO will come in this group. So get rid of this group as soon as
1247 * any pending IO in the group is finished.
1248 *
1249 * This function is called under rcu_read_lock(). key is the rcu protected
1250 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1251 * read lock.
1252 *
1253 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1254 * it should not be NULL as even if elevator was exiting, cgroup deltion
1255 * path got to it first.
1256 */
8aea4545 1257static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
b1c35769
VG
1258{
1259 unsigned long flags;
1260 struct cfq_data *cfqd = key;
1261
1262 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1263 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1264 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1265}
1266
25fb5169 1267#else /* GROUP_IOSCHED */
3e59cf9d 1268static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
25fb5169
VG
1269{
1270 return &cfqd->root_group;
1271}
7f1dc8a2
VG
1272
1273static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1274{
50eaeb32 1275 return cfqg;
7f1dc8a2
VG
1276}
1277
25fb5169
VG
1278static inline void
1279cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1280 cfqq->cfqg = cfqg;
1281}
1282
b1c35769
VG
1283static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1284static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1285
25fb5169
VG
1286#endif /* GROUP_IOSCHED */
1287
498d3aa2 1288/*
c0324a02 1289 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1290 * requests waiting to be processed. It is sorted in the order that
1291 * we will service the queues.
1292 */
a36e71f9 1293static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1294 bool add_front)
d9e7620e 1295{
0871714e
JA
1296 struct rb_node **p, *parent;
1297 struct cfq_queue *__cfqq;
d9e7620e 1298 unsigned long rb_key;
c0324a02 1299 struct cfq_rb_root *service_tree;
498d3aa2 1300 int left;
dae739eb 1301 int new_cfqq = 1;
ae30c286 1302
cdb16e8f 1303 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1304 cfqq_type(cfqq));
0871714e
JA
1305 if (cfq_class_idle(cfqq)) {
1306 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1307 parent = rb_last(&service_tree->rb);
0871714e
JA
1308 if (parent && parent != &cfqq->rb_node) {
1309 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1310 rb_key += __cfqq->rb_key;
1311 } else
1312 rb_key += jiffies;
1313 } else if (!add_front) {
b9c8946b
JA
1314 /*
1315 * Get our rb key offset. Subtract any residual slice
1316 * value carried from last service. A negative resid
1317 * count indicates slice overrun, and this should position
1318 * the next service time further away in the tree.
1319 */
edd75ffd 1320 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1321 rb_key -= cfqq->slice_resid;
edd75ffd 1322 cfqq->slice_resid = 0;
48e025e6
CZ
1323 } else {
1324 rb_key = -HZ;
aa6f6a3d 1325 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1326 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1327 }
1da177e4 1328
d9e7620e 1329 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1330 new_cfqq = 0;
99f9628a 1331 /*
d9e7620e 1332 * same position, nothing more to do
99f9628a 1333 */
c0324a02
CZ
1334 if (rb_key == cfqq->rb_key &&
1335 cfqq->service_tree == service_tree)
d9e7620e 1336 return;
1da177e4 1337
aa6f6a3d
CZ
1338 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1339 cfqq->service_tree = NULL;
1da177e4 1340 }
d9e7620e 1341
498d3aa2 1342 left = 1;
0871714e 1343 parent = NULL;
aa6f6a3d
CZ
1344 cfqq->service_tree = service_tree;
1345 p = &service_tree->rb.rb_node;
d9e7620e 1346 while (*p) {
67060e37 1347 struct rb_node **n;
cc09e299 1348
d9e7620e
JA
1349 parent = *p;
1350 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1351
0c534e0a 1352 /*
c0324a02 1353 * sort by key, that represents service time.
0c534e0a 1354 */
c0324a02 1355 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1356 n = &(*p)->rb_left;
c0324a02 1357 else {
67060e37 1358 n = &(*p)->rb_right;
cc09e299 1359 left = 0;
c0324a02 1360 }
67060e37
JA
1361
1362 p = n;
d9e7620e
JA
1363 }
1364
cc09e299 1365 if (left)
aa6f6a3d 1366 service_tree->left = &cfqq->rb_node;
cc09e299 1367
d9e7620e
JA
1368 cfqq->rb_key = rb_key;
1369 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1370 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1371 service_tree->count++;
20359f27 1372 if (add_front || !new_cfqq)
dae739eb 1373 return;
8184f93e 1374 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1da177e4
LT
1375}
1376
a36e71f9 1377static struct cfq_queue *
f2d1f0ae
JA
1378cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1379 sector_t sector, struct rb_node **ret_parent,
1380 struct rb_node ***rb_link)
a36e71f9 1381{
a36e71f9
JA
1382 struct rb_node **p, *parent;
1383 struct cfq_queue *cfqq = NULL;
1384
1385 parent = NULL;
1386 p = &root->rb_node;
1387 while (*p) {
1388 struct rb_node **n;
1389
1390 parent = *p;
1391 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1392
1393 /*
1394 * Sort strictly based on sector. Smallest to the left,
1395 * largest to the right.
1396 */
2e46e8b2 1397 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1398 n = &(*p)->rb_right;
2e46e8b2 1399 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1400 n = &(*p)->rb_left;
1401 else
1402 break;
1403 p = n;
3ac6c9f8 1404 cfqq = NULL;
a36e71f9
JA
1405 }
1406
1407 *ret_parent = parent;
1408 if (rb_link)
1409 *rb_link = p;
3ac6c9f8 1410 return cfqq;
a36e71f9
JA
1411}
1412
1413static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1414{
a36e71f9
JA
1415 struct rb_node **p, *parent;
1416 struct cfq_queue *__cfqq;
1417
f2d1f0ae
JA
1418 if (cfqq->p_root) {
1419 rb_erase(&cfqq->p_node, cfqq->p_root);
1420 cfqq->p_root = NULL;
1421 }
a36e71f9
JA
1422
1423 if (cfq_class_idle(cfqq))
1424 return;
1425 if (!cfqq->next_rq)
1426 return;
1427
f2d1f0ae 1428 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1429 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1430 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1431 if (!__cfqq) {
1432 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1433 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1434 } else
1435 cfqq->p_root = NULL;
a36e71f9
JA
1436}
1437
498d3aa2
JA
1438/*
1439 * Update cfqq's position in the service tree.
1440 */
edd75ffd 1441static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1442{
6d048f53
JA
1443 /*
1444 * Resorting requires the cfqq to be on the RR list already.
1445 */
a36e71f9 1446 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1447 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1448 cfq_prio_tree_add(cfqd, cfqq);
1449 }
6d048f53
JA
1450}
1451
1da177e4
LT
1452/*
1453 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1454 * the pending list according to last request service
1da177e4 1455 */
febffd61 1456static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1457{
7b679138 1458 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1459 BUG_ON(cfq_cfqq_on_rr(cfqq));
1460 cfq_mark_cfqq_on_rr(cfqq);
1da177e4 1461 cfqd->busy_queues++;
ef8a41df
SL
1462 if (cfq_cfqq_sync(cfqq))
1463 cfqd->busy_sync_queues++;
1da177e4 1464
edd75ffd 1465 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1466}
1467
498d3aa2
JA
1468/*
1469 * Called when the cfqq no longer has requests pending, remove it from
1470 * the service tree.
1471 */
febffd61 1472static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1473{
7b679138 1474 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1475 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1476 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1477
aa6f6a3d
CZ
1478 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1479 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1480 cfqq->service_tree = NULL;
1481 }
f2d1f0ae
JA
1482 if (cfqq->p_root) {
1483 rb_erase(&cfqq->p_node, cfqq->p_root);
1484 cfqq->p_root = NULL;
1485 }
d9e7620e 1486
8184f93e 1487 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1da177e4
LT
1488 BUG_ON(!cfqd->busy_queues);
1489 cfqd->busy_queues--;
ef8a41df
SL
1490 if (cfq_cfqq_sync(cfqq))
1491 cfqd->busy_sync_queues--;
1da177e4
LT
1492}
1493
1494/*
1495 * rb tree support functions
1496 */
febffd61 1497static void cfq_del_rq_rb(struct request *rq)
1da177e4 1498{
5e705374 1499 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1500 const int sync = rq_is_sync(rq);
1da177e4 1501
b4878f24
JA
1502 BUG_ON(!cfqq->queued[sync]);
1503 cfqq->queued[sync]--;
1da177e4 1504
5e705374 1505 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1506
f04a6424
VG
1507 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1508 /*
1509 * Queue will be deleted from service tree when we actually
1510 * expire it later. Right now just remove it from prio tree
1511 * as it is empty.
1512 */
1513 if (cfqq->p_root) {
1514 rb_erase(&cfqq->p_node, cfqq->p_root);
1515 cfqq->p_root = NULL;
1516 }
1517 }
1da177e4
LT
1518}
1519
5e705374 1520static void cfq_add_rq_rb(struct request *rq)
1da177e4 1521{
5e705374 1522 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1523 struct cfq_data *cfqd = cfqq->cfqd;
796d5116 1524 struct request *prev;
1da177e4 1525
5380a101 1526 cfqq->queued[rq_is_sync(rq)]++;
1da177e4 1527
796d5116 1528 elv_rb_add(&cfqq->sort_list, rq);
5fccbf61
JA
1529
1530 if (!cfq_cfqq_on_rr(cfqq))
1531 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1532
1533 /*
1534 * check if this request is a better next-serve candidate
1535 */
a36e71f9 1536 prev = cfqq->next_rq;
cf7c25cf 1537 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1538
1539 /*
1540 * adjust priority tree position, if ->next_rq changes
1541 */
1542 if (prev != cfqq->next_rq)
1543 cfq_prio_tree_add(cfqd, cfqq);
1544
5044eed4 1545 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1546}
1547
febffd61 1548static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1549{
5380a101
JA
1550 elv_rb_del(&cfqq->sort_list, rq);
1551 cfqq->queued[rq_is_sync(rq)]--;
e98ef89b
VG
1552 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1553 rq_data_dir(rq), rq_is_sync(rq));
5e705374 1554 cfq_add_rq_rb(rq);
e98ef89b 1555 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
7f1dc8a2
VG
1556 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1557 rq_is_sync(rq));
1da177e4
LT
1558}
1559
206dc69b
JA
1560static struct request *
1561cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1562{
206dc69b 1563 struct task_struct *tsk = current;
91fac317 1564 struct cfq_io_context *cic;
206dc69b 1565 struct cfq_queue *cfqq;
1da177e4 1566
4ac845a2 1567 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1568 if (!cic)
1569 return NULL;
1570
1571 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1572 if (cfqq) {
1573 sector_t sector = bio->bi_sector + bio_sectors(bio);
1574
21183b07 1575 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1576 }
1da177e4 1577
1da177e4
LT
1578 return NULL;
1579}
1580
165125e1 1581static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1582{
22e2c507 1583 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1584
53c583d2 1585 cfqd->rq_in_driver++;
7b679138 1586 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1587 cfqd->rq_in_driver);
25776e35 1588
5b93629b 1589 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1590}
1591
165125e1 1592static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1593{
b4878f24
JA
1594 struct cfq_data *cfqd = q->elevator->elevator_data;
1595
53c583d2
CZ
1596 WARN_ON(!cfqd->rq_in_driver);
1597 cfqd->rq_in_driver--;
7b679138 1598 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1599 cfqd->rq_in_driver);
1da177e4
LT
1600}
1601
b4878f24 1602static void cfq_remove_request(struct request *rq)
1da177e4 1603{
5e705374 1604 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1605
5e705374
JA
1606 if (cfqq->next_rq == rq)
1607 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1608
b4878f24 1609 list_del_init(&rq->queuelist);
5e705374 1610 cfq_del_rq_rb(rq);
374f84ac 1611
45333d5a 1612 cfqq->cfqd->rq_queued--;
e98ef89b
VG
1613 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1614 rq_data_dir(rq), rq_is_sync(rq));
65299a3b
CH
1615 if (rq->cmd_flags & REQ_PRIO) {
1616 WARN_ON(!cfqq->prio_pending);
1617 cfqq->prio_pending--;
b53d1ed7 1618 }
1da177e4
LT
1619}
1620
165125e1
JA
1621static int cfq_merge(struct request_queue *q, struct request **req,
1622 struct bio *bio)
1da177e4
LT
1623{
1624 struct cfq_data *cfqd = q->elevator->elevator_data;
1625 struct request *__rq;
1da177e4 1626
206dc69b 1627 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1628 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1629 *req = __rq;
1630 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1631 }
1632
1633 return ELEVATOR_NO_MERGE;
1da177e4
LT
1634}
1635
165125e1 1636static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1637 int type)
1da177e4 1638{
21183b07 1639 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1640 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1641
5e705374 1642 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1643 }
1da177e4
LT
1644}
1645
812d4026
DS
1646static void cfq_bio_merged(struct request_queue *q, struct request *req,
1647 struct bio *bio)
1648{
e98ef89b
VG
1649 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1650 bio_data_dir(bio), cfq_bio_sync(bio));
812d4026
DS
1651}
1652
1da177e4 1653static void
165125e1 1654cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1655 struct request *next)
1656{
cf7c25cf 1657 struct cfq_queue *cfqq = RQ_CFQQ(rq);
6ae0516b
SL
1658 struct cfq_data *cfqd = q->elevator->elevator_data;
1659
22e2c507
JA
1660 /*
1661 * reposition in fifo if next is older than rq
1662 */
1663 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1664 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1665 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1666 rq_set_fifo_time(rq, rq_fifo_time(next));
1667 }
22e2c507 1668
cf7c25cf
CZ
1669 if (cfqq->next_rq == next)
1670 cfqq->next_rq = rq;
b4878f24 1671 cfq_remove_request(next);
e98ef89b
VG
1672 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1673 rq_data_dir(next), rq_is_sync(next));
6ae0516b
SL
1674
1675 cfqq = RQ_CFQQ(next);
1676 /*
1677 * all requests of this queue are merged to other queues, delete it
1678 * from the service tree. If it's the active_queue,
1679 * cfq_dispatch_requests() will choose to expire it or do idle
1680 */
1681 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
1682 cfqq != cfqd->active_queue)
1683 cfq_del_cfqq_rr(cfqd, cfqq);
22e2c507
JA
1684}
1685
165125e1 1686static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1687 struct bio *bio)
1688{
1689 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1690 struct cfq_io_context *cic;
da775265 1691 struct cfq_queue *cfqq;
da775265
JA
1692
1693 /*
ec8acb69 1694 * Disallow merge of a sync bio into an async request.
da775265 1695 */
91fac317 1696 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1697 return false;
da775265
JA
1698
1699 /*
719d3402
JA
1700 * Lookup the cfqq that this bio will be queued with. Allow
1701 * merge only if rq is queued there.
da775265 1702 */
4ac845a2 1703 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1704 if (!cic)
a6151c3a 1705 return false;
719d3402 1706
91fac317 1707 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1708 return cfqq == RQ_CFQQ(rq);
da775265
JA
1709}
1710
812df48d
DS
1711static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1712{
1713 del_timer(&cfqd->idle_slice_timer);
e98ef89b 1714 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
812df48d
DS
1715}
1716
febffd61
JA
1717static void __cfq_set_active_queue(struct cfq_data *cfqd,
1718 struct cfq_queue *cfqq)
22e2c507
JA
1719{
1720 if (cfqq) {
b1ffe737
DS
1721 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1722 cfqd->serving_prio, cfqd->serving_type);
62a37f6b
JT
1723 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1724 cfqq->slice_start = 0;
1725 cfqq->dispatch_start = jiffies;
1726 cfqq->allocated_slice = 0;
1727 cfqq->slice_end = 0;
1728 cfqq->slice_dispatch = 0;
1729 cfqq->nr_sectors = 0;
1730
1731 cfq_clear_cfqq_wait_request(cfqq);
1732 cfq_clear_cfqq_must_dispatch(cfqq);
1733 cfq_clear_cfqq_must_alloc_slice(cfqq);
1734 cfq_clear_cfqq_fifo_expire(cfqq);
1735 cfq_mark_cfqq_slice_new(cfqq);
1736
1737 cfq_del_timer(cfqd, cfqq);
22e2c507
JA
1738 }
1739
1740 cfqd->active_queue = cfqq;
1741}
1742
7b14e3b5
JA
1743/*
1744 * current cfqq expired its slice (or was too idle), select new one
1745 */
1746static void
1747__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e5ff082e 1748 bool timed_out)
7b14e3b5 1749{
7b679138
JA
1750 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1751
7b14e3b5 1752 if (cfq_cfqq_wait_request(cfqq))
812df48d 1753 cfq_del_timer(cfqd, cfqq);
7b14e3b5 1754
7b14e3b5 1755 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1756 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1757
ae54abed
SL
1758 /*
1759 * If this cfqq is shared between multiple processes, check to
1760 * make sure that those processes are still issuing I/Os within
1761 * the mean seek distance. If not, it may be time to break the
1762 * queues apart again.
1763 */
1764 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1765 cfq_mark_cfqq_split_coop(cfqq);
1766
7b14e3b5 1767 /*
6084cdda 1768 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1769 */
c553f8e3
SL
1770 if (timed_out) {
1771 if (cfq_cfqq_slice_new(cfqq))
ba5bd520 1772 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3
SL
1773 else
1774 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1775 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1776 }
7b14e3b5 1777
e5ff082e 1778 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
dae739eb 1779
f04a6424
VG
1780 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1781 cfq_del_cfqq_rr(cfqd, cfqq);
1782
edd75ffd 1783 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1784
1785 if (cfqq == cfqd->active_queue)
1786 cfqd->active_queue = NULL;
1787
1788 if (cfqd->active_cic) {
1789 put_io_context(cfqd->active_cic->ioc);
1790 cfqd->active_cic = NULL;
1791 }
7b14e3b5
JA
1792}
1793
e5ff082e 1794static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1795{
1796 struct cfq_queue *cfqq = cfqd->active_queue;
1797
1798 if (cfqq)
e5ff082e 1799 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1800}
1801
498d3aa2
JA
1802/*
1803 * Get next queue for service. Unless we have a queue preemption,
1804 * we'll simply select the first cfqq in the service tree.
1805 */
6d048f53 1806static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1807{
c0324a02 1808 struct cfq_rb_root *service_tree =
cdb16e8f 1809 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1810 cfqd->serving_type);
d9e7620e 1811
f04a6424
VG
1812 if (!cfqd->rq_queued)
1813 return NULL;
1814
1fa8f6d6
VG
1815 /* There is nothing to dispatch */
1816 if (!service_tree)
1817 return NULL;
c0324a02
CZ
1818 if (RB_EMPTY_ROOT(&service_tree->rb))
1819 return NULL;
1820 return cfq_rb_first(service_tree);
6d048f53
JA
1821}
1822
f04a6424
VG
1823static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1824{
25fb5169 1825 struct cfq_group *cfqg;
f04a6424
VG
1826 struct cfq_queue *cfqq;
1827 int i, j;
1828 struct cfq_rb_root *st;
1829
1830 if (!cfqd->rq_queued)
1831 return NULL;
1832
25fb5169
VG
1833 cfqg = cfq_get_next_cfqg(cfqd);
1834 if (!cfqg)
1835 return NULL;
1836
f04a6424
VG
1837 for_each_cfqg_st(cfqg, i, j, st)
1838 if ((cfqq = cfq_rb_first(st)) != NULL)
1839 return cfqq;
1840 return NULL;
1841}
1842
498d3aa2
JA
1843/*
1844 * Get and set a new active queue for service.
1845 */
a36e71f9
JA
1846static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1847 struct cfq_queue *cfqq)
6d048f53 1848{
e00ef799 1849 if (!cfqq)
a36e71f9 1850 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1851
22e2c507 1852 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1853 return cfqq;
22e2c507
JA
1854}
1855
d9e7620e
JA
1856static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1857 struct request *rq)
1858{
83096ebf
TH
1859 if (blk_rq_pos(rq) >= cfqd->last_position)
1860 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1861 else
83096ebf 1862 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1863}
1864
b2c18e1e 1865static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1866 struct request *rq)
6d048f53 1867{
e9ce335d 1868 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1869}
1870
a36e71f9
JA
1871static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1872 struct cfq_queue *cur_cfqq)
1873{
f2d1f0ae 1874 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1875 struct rb_node *parent, *node;
1876 struct cfq_queue *__cfqq;
1877 sector_t sector = cfqd->last_position;
1878
1879 if (RB_EMPTY_ROOT(root))
1880 return NULL;
1881
1882 /*
1883 * First, if we find a request starting at the end of the last
1884 * request, choose it.
1885 */
f2d1f0ae 1886 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1887 if (__cfqq)
1888 return __cfqq;
1889
1890 /*
1891 * If the exact sector wasn't found, the parent of the NULL leaf
1892 * will contain the closest sector.
1893 */
1894 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1895 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1896 return __cfqq;
1897
2e46e8b2 1898 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1899 node = rb_next(&__cfqq->p_node);
1900 else
1901 node = rb_prev(&__cfqq->p_node);
1902 if (!node)
1903 return NULL;
1904
1905 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1906 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1907 return __cfqq;
1908
1909 return NULL;
1910}
1911
1912/*
1913 * cfqd - obvious
1914 * cur_cfqq - passed in so that we don't decide that the current queue is
1915 * closely cooperating with itself.
1916 *
1917 * So, basically we're assuming that that cur_cfqq has dispatched at least
1918 * one request, and that cfqd->last_position reflects a position on the disk
1919 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1920 * assumption.
1921 */
1922static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1923 struct cfq_queue *cur_cfqq)
6d048f53 1924{
a36e71f9
JA
1925 struct cfq_queue *cfqq;
1926
39c01b21
DS
1927 if (cfq_class_idle(cur_cfqq))
1928 return NULL;
e6c5bc73
JM
1929 if (!cfq_cfqq_sync(cur_cfqq))
1930 return NULL;
1931 if (CFQQ_SEEKY(cur_cfqq))
1932 return NULL;
1933
b9d8f4c7
GJ
1934 /*
1935 * Don't search priority tree if it's the only queue in the group.
1936 */
1937 if (cur_cfqq->cfqg->nr_cfqq == 1)
1938 return NULL;
1939
6d048f53 1940 /*
d9e7620e
JA
1941 * We should notice if some of the queues are cooperating, eg
1942 * working closely on the same area of the disk. In that case,
1943 * we can group them together and don't waste time idling.
6d048f53 1944 */
a36e71f9
JA
1945 cfqq = cfqq_close(cfqd, cur_cfqq);
1946 if (!cfqq)
1947 return NULL;
1948
8682e1f1
VG
1949 /* If new queue belongs to different cfq_group, don't choose it */
1950 if (cur_cfqq->cfqg != cfqq->cfqg)
1951 return NULL;
1952
df5fe3e8
JM
1953 /*
1954 * It only makes sense to merge sync queues.
1955 */
1956 if (!cfq_cfqq_sync(cfqq))
1957 return NULL;
e6c5bc73
JM
1958 if (CFQQ_SEEKY(cfqq))
1959 return NULL;
df5fe3e8 1960
c0324a02
CZ
1961 /*
1962 * Do not merge queues of different priority classes
1963 */
1964 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1965 return NULL;
1966
a36e71f9 1967 return cfqq;
6d048f53
JA
1968}
1969
a6d44e98
CZ
1970/*
1971 * Determine whether we should enforce idle window for this queue.
1972 */
1973
1974static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1975{
1976 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1977 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1978
f04a6424
VG
1979 BUG_ON(!service_tree);
1980 BUG_ON(!service_tree->count);
1981
b6508c16
VG
1982 if (!cfqd->cfq_slice_idle)
1983 return false;
1984
a6d44e98
CZ
1985 /* We never do for idle class queues. */
1986 if (prio == IDLE_WORKLOAD)
1987 return false;
1988
1989 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1990 if (cfq_cfqq_idle_window(cfqq) &&
1991 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1992 return true;
1993
1994 /*
1995 * Otherwise, we do only if they are the last ones
1996 * in their service tree.
1997 */
f5f2b6ce
SL
1998 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
1999 !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
c1e44756 2000 return true;
b1ffe737
DS
2001 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
2002 service_tree->count);
c1e44756 2003 return false;
a6d44e98
CZ
2004}
2005
6d048f53 2006static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 2007{
1792669c 2008 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 2009 struct cfq_io_context *cic;
80bdf0c7 2010 unsigned long sl, group_idle = 0;
7b14e3b5 2011
a68bbddb 2012 /*
f7d7b7a7
JA
2013 * SSD device without seek penalty, disable idling. But only do so
2014 * for devices that support queuing, otherwise we still have a problem
2015 * with sync vs async workloads.
a68bbddb 2016 */
f7d7b7a7 2017 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
2018 return;
2019
dd67d051 2020 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 2021 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
2022
2023 /*
2024 * idle is disabled, either manually or by past process history
2025 */
80bdf0c7
VG
2026 if (!cfq_should_idle(cfqd, cfqq)) {
2027 /* no queue idling. Check for group idling */
2028 if (cfqd->cfq_group_idle)
2029 group_idle = cfqd->cfq_group_idle;
2030 else
2031 return;
2032 }
6d048f53 2033
7b679138 2034 /*
8e550632 2035 * still active requests from this queue, don't idle
7b679138 2036 */
8e550632 2037 if (cfqq->dispatched)
7b679138
JA
2038 return;
2039
22e2c507
JA
2040 /*
2041 * task has exited, don't wait
2042 */
206dc69b 2043 cic = cfqd->active_cic;
66dac98e 2044 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
2045 return;
2046
355b659c
CZ
2047 /*
2048 * If our average think time is larger than the remaining time
2049 * slice, then don't idle. This avoids overrunning the allotted
2050 * time slice.
2051 */
383cd721
SL
2052 if (sample_valid(cic->ttime.ttime_samples) &&
2053 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
fd16d263 2054 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
383cd721 2055 cic->ttime.ttime_mean);
355b659c 2056 return;
b1ffe737 2057 }
355b659c 2058
80bdf0c7
VG
2059 /* There are other queues in the group, don't do group idle */
2060 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2061 return;
2062
3b18152c 2063 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 2064
80bdf0c7
VG
2065 if (group_idle)
2066 sl = cfqd->cfq_group_idle;
2067 else
2068 sl = cfqd->cfq_slice_idle;
206dc69b 2069
7b14e3b5 2070 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
e98ef89b 2071 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
80bdf0c7
VG
2072 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2073 group_idle ? 1 : 0);
1da177e4
LT
2074}
2075
498d3aa2
JA
2076/*
2077 * Move request from internal lists to the request queue dispatch list.
2078 */
165125e1 2079static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 2080{
3ed9a296 2081 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2082 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2083
7b679138
JA
2084 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2085
06d21886 2086 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 2087 cfq_remove_request(rq);
6d048f53 2088 cfqq->dispatched++;
80bdf0c7 2089 (RQ_CFQG(rq))->dispatched++;
5380a101 2090 elv_dispatch_sort(q, rq);
3ed9a296 2091
53c583d2 2092 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
c4e7893e 2093 cfqq->nr_sectors += blk_rq_sectors(rq);
e98ef89b 2094 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
84c124da 2095 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
2096}
2097
2098/*
2099 * return expired entry, or NULL to just start from scratch in rbtree
2100 */
febffd61 2101static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 2102{
30996f40 2103 struct request *rq = NULL;
1da177e4 2104
3b18152c 2105 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 2106 return NULL;
cb887411
JA
2107
2108 cfq_mark_cfqq_fifo_expire(cfqq);
2109
89850f7e
JA
2110 if (list_empty(&cfqq->fifo))
2111 return NULL;
1da177e4 2112
89850f7e 2113 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 2114 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 2115 rq = NULL;
1da177e4 2116
30996f40 2117 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 2118 return rq;
1da177e4
LT
2119}
2120
22e2c507
JA
2121static inline int
2122cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2123{
2124 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 2125
22e2c507 2126 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 2127
b9f8ce05 2128 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
1da177e4
LT
2129}
2130
df5fe3e8
JM
2131/*
2132 * Must be called with the queue_lock held.
2133 */
2134static int cfqq_process_refs(struct cfq_queue *cfqq)
2135{
2136 int process_refs, io_refs;
2137
2138 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
30d7b944 2139 process_refs = cfqq->ref - io_refs;
df5fe3e8
JM
2140 BUG_ON(process_refs < 0);
2141 return process_refs;
2142}
2143
2144static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2145{
e6c5bc73 2146 int process_refs, new_process_refs;
df5fe3e8
JM
2147 struct cfq_queue *__cfqq;
2148
c10b61f0
JM
2149 /*
2150 * If there are no process references on the new_cfqq, then it is
2151 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2152 * chain may have dropped their last reference (not just their
2153 * last process reference).
2154 */
2155 if (!cfqq_process_refs(new_cfqq))
2156 return;
2157
df5fe3e8
JM
2158 /* Avoid a circular list and skip interim queue merges */
2159 while ((__cfqq = new_cfqq->new_cfqq)) {
2160 if (__cfqq == cfqq)
2161 return;
2162 new_cfqq = __cfqq;
2163 }
2164
2165 process_refs = cfqq_process_refs(cfqq);
c10b61f0 2166 new_process_refs = cfqq_process_refs(new_cfqq);
df5fe3e8
JM
2167 /*
2168 * If the process for the cfqq has gone away, there is no
2169 * sense in merging the queues.
2170 */
c10b61f0 2171 if (process_refs == 0 || new_process_refs == 0)
df5fe3e8
JM
2172 return;
2173
e6c5bc73
JM
2174 /*
2175 * Merge in the direction of the lesser amount of work.
2176 */
e6c5bc73
JM
2177 if (new_process_refs >= process_refs) {
2178 cfqq->new_cfqq = new_cfqq;
30d7b944 2179 new_cfqq->ref += process_refs;
e6c5bc73
JM
2180 } else {
2181 new_cfqq->new_cfqq = cfqq;
30d7b944 2182 cfqq->ref += new_process_refs;
e6c5bc73 2183 }
df5fe3e8
JM
2184}
2185
cdb16e8f 2186static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 2187 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
2188{
2189 struct cfq_queue *queue;
2190 int i;
2191 bool key_valid = false;
2192 unsigned long lowest_key = 0;
2193 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2194
65b32a57
VG
2195 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2196 /* select the one with lowest rb_key */
2197 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
2198 if (queue &&
2199 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2200 lowest_key = queue->rb_key;
2201 cur_best = i;
2202 key_valid = true;
2203 }
2204 }
2205
2206 return cur_best;
2207}
2208
cdb16e8f 2209static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 2210{
718eee05
CZ
2211 unsigned slice;
2212 unsigned count;
cdb16e8f 2213 struct cfq_rb_root *st;
58ff82f3 2214 unsigned group_slice;
e4ea0c16 2215 enum wl_prio_t original_prio = cfqd->serving_prio;
1fa8f6d6 2216
718eee05 2217 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2218 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2219 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2220 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2221 cfqd->serving_prio = BE_WORKLOAD;
2222 else {
2223 cfqd->serving_prio = IDLE_WORKLOAD;
2224 cfqd->workload_expires = jiffies + 1;
2225 return;
2226 }
2227
e4ea0c16
SL
2228 if (original_prio != cfqd->serving_prio)
2229 goto new_workload;
2230
718eee05
CZ
2231 /*
2232 * For RT and BE, we have to choose also the type
2233 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2234 * expiration time
2235 */
65b32a57 2236 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2237 count = st->count;
718eee05
CZ
2238
2239 /*
65b32a57 2240 * check workload expiration, and that we still have other queues ready
718eee05 2241 */
65b32a57 2242 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2243 return;
2244
e4ea0c16 2245new_workload:
718eee05
CZ
2246 /* otherwise select new workload type */
2247 cfqd->serving_type =
65b32a57
VG
2248 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2249 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2250 count = st->count;
718eee05
CZ
2251
2252 /*
2253 * the workload slice is computed as a fraction of target latency
2254 * proportional to the number of queues in that workload, over
2255 * all the queues in the same priority class
2256 */
58ff82f3
VG
2257 group_slice = cfq_group_slice(cfqd, cfqg);
2258
2259 slice = group_slice * count /
2260 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2261 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2262
f26bd1f0
VG
2263 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2264 unsigned int tmp;
2265
2266 /*
2267 * Async queues are currently system wide. Just taking
2268 * proportion of queues with-in same group will lead to higher
2269 * async ratio system wide as generally root group is going
2270 * to have higher weight. A more accurate thing would be to
2271 * calculate system wide asnc/sync ratio.
2272 */
2273 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2274 tmp = tmp/cfqd->busy_queues;
2275 slice = min_t(unsigned, slice, tmp);
2276
718eee05
CZ
2277 /* async workload slice is scaled down according to
2278 * the sync/async slice ratio. */
2279 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2280 } else
718eee05
CZ
2281 /* sync workload slice is at least 2 * cfq_slice_idle */
2282 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2283
2284 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2285 cfq_log(cfqd, "workload slice:%d", slice);
718eee05
CZ
2286 cfqd->workload_expires = jiffies + slice;
2287}
2288
1fa8f6d6
VG
2289static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2290{
2291 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2292 struct cfq_group *cfqg;
1fa8f6d6
VG
2293
2294 if (RB_EMPTY_ROOT(&st->rb))
2295 return NULL;
25bc6b07 2296 cfqg = cfq_rb_first_group(st);
25bc6b07
VG
2297 update_min_vdisktime(st);
2298 return cfqg;
1fa8f6d6
VG
2299}
2300
cdb16e8f
VG
2301static void cfq_choose_cfqg(struct cfq_data *cfqd)
2302{
1fa8f6d6
VG
2303 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2304
2305 cfqd->serving_group = cfqg;
dae739eb
VG
2306
2307 /* Restore the workload type data */
2308 if (cfqg->saved_workload_slice) {
2309 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2310 cfqd->serving_type = cfqg->saved_workload;
2311 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2312 } else
2313 cfqd->workload_expires = jiffies - 1;
2314
1fa8f6d6 2315 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2316}
2317
22e2c507 2318/*
498d3aa2
JA
2319 * Select a queue for service. If we have a current active queue,
2320 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2321 */
1b5ed5e1 2322static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2323{
a36e71f9 2324 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2325
22e2c507
JA
2326 cfqq = cfqd->active_queue;
2327 if (!cfqq)
2328 goto new_queue;
1da177e4 2329
f04a6424
VG
2330 if (!cfqd->rq_queued)
2331 return NULL;
c244bb50
VG
2332
2333 /*
2334 * We were waiting for group to get backlogged. Expire the queue
2335 */
2336 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2337 goto expire;
2338
22e2c507 2339 /*
6d048f53 2340 * The active queue has run out of time, expire it and select new.
22e2c507 2341 */
7667aa06
VG
2342 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2343 /*
2344 * If slice had not expired at the completion of last request
2345 * we might not have turned on wait_busy flag. Don't expire
2346 * the queue yet. Allow the group to get backlogged.
2347 *
2348 * The very fact that we have used the slice, that means we
2349 * have been idling all along on this queue and it should be
2350 * ok to wait for this request to complete.
2351 */
82bbbf28
VG
2352 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2353 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2354 cfqq = NULL;
7667aa06 2355 goto keep_queue;
82bbbf28 2356 } else
80bdf0c7 2357 goto check_group_idle;
7667aa06 2358 }
1da177e4 2359
22e2c507 2360 /*
6d048f53
JA
2361 * The active queue has requests and isn't expired, allow it to
2362 * dispatch.
22e2c507 2363 */
dd67d051 2364 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2365 goto keep_queue;
6d048f53 2366
a36e71f9
JA
2367 /*
2368 * If another queue has a request waiting within our mean seek
2369 * distance, let it run. The expire code will check for close
2370 * cooperators and put the close queue at the front of the service
df5fe3e8 2371 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2372 */
b3b6d040 2373 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2374 if (new_cfqq) {
2375 if (!cfqq->new_cfqq)
2376 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2377 goto expire;
df5fe3e8 2378 }
a36e71f9 2379
6d048f53
JA
2380 /*
2381 * No requests pending. If the active queue still has requests in
2382 * flight or is idling for a new request, allow either of these
2383 * conditions to happen (or time out) before selecting a new queue.
2384 */
80bdf0c7
VG
2385 if (timer_pending(&cfqd->idle_slice_timer)) {
2386 cfqq = NULL;
2387 goto keep_queue;
2388 }
2389
8e1ac665
SL
2390 /*
2391 * This is a deep seek queue, but the device is much faster than
2392 * the queue can deliver, don't idle
2393 **/
2394 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2395 (cfq_cfqq_slice_new(cfqq) ||
2396 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2397 cfq_clear_cfqq_deep(cfqq);
2398 cfq_clear_cfqq_idle_window(cfqq);
2399 }
2400
80bdf0c7
VG
2401 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2402 cfqq = NULL;
2403 goto keep_queue;
2404 }
2405
2406 /*
2407 * If group idle is enabled and there are requests dispatched from
2408 * this group, wait for requests to complete.
2409 */
2410check_group_idle:
7700fc4f
SL
2411 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2412 cfqq->cfqg->dispatched &&
2413 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
caaa5f9f
JA
2414 cfqq = NULL;
2415 goto keep_queue;
22e2c507
JA
2416 }
2417
3b18152c 2418expire:
e5ff082e 2419 cfq_slice_expired(cfqd, 0);
3b18152c 2420new_queue:
718eee05
CZ
2421 /*
2422 * Current queue expired. Check if we have to switch to a new
2423 * service tree
2424 */
2425 if (!new_cfqq)
cdb16e8f 2426 cfq_choose_cfqg(cfqd);
718eee05 2427
a36e71f9 2428 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2429keep_queue:
3b18152c 2430 return cfqq;
22e2c507
JA
2431}
2432
febffd61 2433static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2434{
2435 int dispatched = 0;
2436
2437 while (cfqq->next_rq) {
2438 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2439 dispatched++;
2440 }
2441
2442 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2443
2444 /* By default cfqq is not expired if it is empty. Do it explicitly */
e5ff082e 2445 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2446 return dispatched;
2447}
2448
498d3aa2
JA
2449/*
2450 * Drain our current requests. Used for barriers and when switching
2451 * io schedulers on-the-fly.
2452 */
d9e7620e 2453static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2454{
0871714e 2455 struct cfq_queue *cfqq;
d9e7620e 2456 int dispatched = 0;
cdb16e8f 2457
3440c49f 2458 /* Expire the timeslice of the current active queue first */
e5ff082e 2459 cfq_slice_expired(cfqd, 0);
3440c49f
DS
2460 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2461 __cfq_set_active_queue(cfqd, cfqq);
f04a6424 2462 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3440c49f 2463 }
1b5ed5e1 2464
1b5ed5e1
TH
2465 BUG_ON(cfqd->busy_queues);
2466
6923715a 2467 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2468 return dispatched;
2469}
2470
abc3c744
SL
2471static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2472 struct cfq_queue *cfqq)
2473{
2474 /* the queue hasn't finished any request, can't estimate */
2475 if (cfq_cfqq_slice_new(cfqq))
c1e44756 2476 return true;
abc3c744
SL
2477 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2478 cfqq->slice_end))
c1e44756 2479 return true;
abc3c744 2480
c1e44756 2481 return false;
abc3c744
SL
2482}
2483
0b182d61 2484static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2485{
2f5cb738 2486 unsigned int max_dispatch;
22e2c507 2487
5ad531db
JA
2488 /*
2489 * Drain async requests before we start sync IO
2490 */
53c583d2 2491 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2492 return false;
5ad531db 2493
2f5cb738
JA
2494 /*
2495 * If this is an async queue and we have sync IO in flight, let it wait
2496 */
53c583d2 2497 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2498 return false;
2f5cb738 2499
abc3c744 2500 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2501 if (cfq_class_idle(cfqq))
2502 max_dispatch = 1;
b4878f24 2503
2f5cb738
JA
2504 /*
2505 * Does this cfqq already have too much IO in flight?
2506 */
2507 if (cfqq->dispatched >= max_dispatch) {
ef8a41df 2508 bool promote_sync = false;
2f5cb738
JA
2509 /*
2510 * idle queue must always only have a single IO in flight
2511 */
3ed9a296 2512 if (cfq_class_idle(cfqq))
0b182d61 2513 return false;
3ed9a296 2514
ef8a41df 2515 /*
c4ade94f
LS
2516 * If there is only one sync queue
2517 * we can ignore async queue here and give the sync
ef8a41df
SL
2518 * queue no dispatch limit. The reason is a sync queue can
2519 * preempt async queue, limiting the sync queue doesn't make
2520 * sense. This is useful for aiostress test.
2521 */
c4ade94f
LS
2522 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2523 promote_sync = true;
ef8a41df 2524
2f5cb738
JA
2525 /*
2526 * We have other queues, don't allow more IO from this one
2527 */
ef8a41df
SL
2528 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2529 !promote_sync)
0b182d61 2530 return false;
9ede209e 2531
365722bb 2532 /*
474b18cc 2533 * Sole queue user, no limit
365722bb 2534 */
ef8a41df 2535 if (cfqd->busy_queues == 1 || promote_sync)
abc3c744
SL
2536 max_dispatch = -1;
2537 else
2538 /*
2539 * Normally we start throttling cfqq when cfq_quantum/2
2540 * requests have been dispatched. But we can drive
2541 * deeper queue depths at the beginning of slice
2542 * subjected to upper limit of cfq_quantum.
2543 * */
2544 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2545 }
2546
2547 /*
2548 * Async queues must wait a bit before being allowed dispatch.
2549 * We also ramp up the dispatch depth gradually for async IO,
2550 * based on the last sync IO we serviced
2551 */
963b72fc 2552 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2553 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2554 unsigned int depth;
365722bb 2555
61f0c1dc 2556 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2557 if (!depth && !cfqq->dispatched)
2558 depth = 1;
8e296755
JA
2559 if (depth < max_dispatch)
2560 max_dispatch = depth;
2f5cb738 2561 }
3ed9a296 2562
0b182d61
JA
2563 /*
2564 * If we're below the current max, allow a dispatch
2565 */
2566 return cfqq->dispatched < max_dispatch;
2567}
2568
2569/*
2570 * Dispatch a request from cfqq, moving them to the request queue
2571 * dispatch list.
2572 */
2573static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2574{
2575 struct request *rq;
2576
2577 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2578
2579 if (!cfq_may_dispatch(cfqd, cfqq))
2580 return false;
2581
2582 /*
2583 * follow expired path, else get first next available
2584 */
2585 rq = cfq_check_fifo(cfqq);
2586 if (!rq)
2587 rq = cfqq->next_rq;
2588
2589 /*
2590 * insert request into driver dispatch list
2591 */
2592 cfq_dispatch_insert(cfqd->queue, rq);
2593
2594 if (!cfqd->active_cic) {
2595 struct cfq_io_context *cic = RQ_CIC(rq);
2596
2597 atomic_long_inc(&cic->ioc->refcount);
2598 cfqd->active_cic = cic;
2599 }
2600
2601 return true;
2602}
2603
2604/*
2605 * Find the cfqq that we need to service and move a request from that to the
2606 * dispatch list
2607 */
2608static int cfq_dispatch_requests(struct request_queue *q, int force)
2609{
2610 struct cfq_data *cfqd = q->elevator->elevator_data;
2611 struct cfq_queue *cfqq;
2612
2613 if (!cfqd->busy_queues)
2614 return 0;
2615
2616 if (unlikely(force))
2617 return cfq_forced_dispatch(cfqd);
2618
2619 cfqq = cfq_select_queue(cfqd);
2620 if (!cfqq)
8e296755
JA
2621 return 0;
2622
2f5cb738 2623 /*
0b182d61 2624 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2625 */
0b182d61
JA
2626 if (!cfq_dispatch_request(cfqd, cfqq))
2627 return 0;
2628
2f5cb738 2629 cfqq->slice_dispatch++;
b029195d 2630 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2631
2f5cb738
JA
2632 /*
2633 * expire an async queue immediately if it has used up its slice. idle
2634 * queue always expire after 1 dispatch round.
2635 */
2636 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2637 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2638 cfq_class_idle(cfqq))) {
2639 cfqq->slice_end = jiffies + 1;
e5ff082e 2640 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2641 }
2642
b217a903 2643 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2644 return 1;
1da177e4
LT
2645}
2646
1da177e4 2647/*
5e705374
JA
2648 * task holds one reference to the queue, dropped when task exits. each rq
2649 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2650 *
b1c35769 2651 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2652 * queue lock must be held here.
2653 */
2654static void cfq_put_queue(struct cfq_queue *cfqq)
2655{
22e2c507 2656 struct cfq_data *cfqd = cfqq->cfqd;
0bbfeb83 2657 struct cfq_group *cfqg;
22e2c507 2658
30d7b944 2659 BUG_ON(cfqq->ref <= 0);
1da177e4 2660
30d7b944
SL
2661 cfqq->ref--;
2662 if (cfqq->ref)
1da177e4
LT
2663 return;
2664
7b679138 2665 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2666 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2667 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2668 cfqg = cfqq->cfqg;
1da177e4 2669
28f95cbc 2670 if (unlikely(cfqd->active_queue == cfqq)) {
e5ff082e 2671 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2672 cfq_schedule_dispatch(cfqd);
28f95cbc 2673 }
22e2c507 2674
f04a6424 2675 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2676 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2677 cfq_put_cfqg(cfqg);
1da177e4
LT
2678}
2679
d6de8be7 2680/*
5f45c695 2681 * Call func for each cic attached to this ioc.
d6de8be7 2682 */
07416d29 2683static void
5f45c695
JA
2684call_for_each_cic(struct io_context *ioc,
2685 void (*func)(struct io_context *, struct cfq_io_context *))
07416d29
JA
2686{
2687 struct cfq_io_context *cic;
2688 struct hlist_node *n;
2689
5f45c695
JA
2690 rcu_read_lock();
2691
07416d29
JA
2692 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2693 func(ioc, cic);
07416d29 2694
4ac845a2 2695 rcu_read_unlock();
34e6bbf2
FC
2696}
2697
2698static void cfq_cic_free_rcu(struct rcu_head *head)
2699{
2700 struct cfq_io_context *cic;
2701
2702 cic = container_of(head, struct cfq_io_context, rcu_head);
2703
2704 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2705 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2706
9a11b4ed
JA
2707 if (ioc_gone) {
2708 /*
2709 * CFQ scheduler is exiting, grab exit lock and check
2710 * the pending io context count. If it hits zero,
2711 * complete ioc_gone and set it back to NULL
2712 */
2713 spin_lock(&ioc_gone_lock);
245b2e70 2714 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2715 complete(ioc_gone);
2716 ioc_gone = NULL;
2717 }
2718 spin_unlock(&ioc_gone_lock);
2719 }
34e6bbf2 2720}
4ac845a2 2721
34e6bbf2
FC
2722static void cfq_cic_free(struct cfq_io_context *cic)
2723{
2724 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2725}
2726
2727static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2728{
2729 unsigned long flags;
bca4b914 2730 unsigned long dead_key = (unsigned long) cic->key;
4ac845a2 2731
bca4b914 2732 BUG_ON(!(dead_key & CIC_DEAD_KEY));
4ac845a2
JA
2733
2734 spin_lock_irqsave(&ioc->lock, flags);
80b15c73 2735 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
ffc4e759 2736 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2737 spin_unlock_irqrestore(&ioc->lock, flags);
2738
34e6bbf2 2739 cfq_cic_free(cic);
4ac845a2
JA
2740}
2741
d6de8be7
JA
2742/*
2743 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2744 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2745 * and ->trim() which is called with the task lock held
2746 */
4ac845a2
JA
2747static void cfq_free_io_context(struct io_context *ioc)
2748{
4ac845a2 2749 /*
34e6bbf2
FC
2750 * ioc->refcount is zero here, or we are called from elv_unregister(),
2751 * so no more cic's are allowed to be linked into this ioc. So it
2752 * should be ok to iterate over the known list, we will see all cic's
2753 * since no new ones are added.
4ac845a2 2754 */
5f45c695 2755 call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2756}
2757
d02a2c07 2758static void cfq_put_cooperator(struct cfq_queue *cfqq)
1da177e4 2759{
df5fe3e8
JM
2760 struct cfq_queue *__cfqq, *next;
2761
df5fe3e8
JM
2762 /*
2763 * If this queue was scheduled to merge with another queue, be
2764 * sure to drop the reference taken on that queue (and others in
2765 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2766 */
2767 __cfqq = cfqq->new_cfqq;
2768 while (__cfqq) {
2769 if (__cfqq == cfqq) {
2770 WARN(1, "cfqq->new_cfqq loop detected\n");
2771 break;
2772 }
2773 next = __cfqq->new_cfqq;
2774 cfq_put_queue(__cfqq);
2775 __cfqq = next;
2776 }
d02a2c07
SL
2777}
2778
2779static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2780{
2781 if (unlikely(cfqq == cfqd->active_queue)) {
2782 __cfq_slice_expired(cfqd, cfqq, 0);
2783 cfq_schedule_dispatch(cfqd);
2784 }
2785
2786 cfq_put_cooperator(cfqq);
df5fe3e8 2787
89850f7e
JA
2788 cfq_put_queue(cfqq);
2789}
22e2c507 2790
89850f7e
JA
2791static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2792 struct cfq_io_context *cic)
2793{
4faa3c81
FC
2794 struct io_context *ioc = cic->ioc;
2795
fc46379d 2796 list_del_init(&cic->queue_list);
4ac845a2
JA
2797
2798 /*
bca4b914 2799 * Make sure dead mark is seen for dead queues
4ac845a2 2800 */
fc46379d 2801 smp_wmb();
bca4b914 2802 cic->key = cfqd_dead_key(cfqd);
fc46379d 2803
3181faa8 2804 rcu_read_lock();
9b50902d 2805 if (rcu_dereference(ioc->ioc_data) == cic) {
3181faa8 2806 rcu_read_unlock();
9b50902d 2807 spin_lock(&ioc->lock);
4faa3c81 2808 rcu_assign_pointer(ioc->ioc_data, NULL);
9b50902d 2809 spin_unlock(&ioc->lock);
3181faa8
SL
2810 } else
2811 rcu_read_unlock();
4faa3c81 2812
ff6657c6
JA
2813 if (cic->cfqq[BLK_RW_ASYNC]) {
2814 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2815 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2816 }
2817
ff6657c6
JA
2818 if (cic->cfqq[BLK_RW_SYNC]) {
2819 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2820 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2821 }
89850f7e
JA
2822}
2823
4ac845a2
JA
2824static void cfq_exit_single_io_context(struct io_context *ioc,
2825 struct cfq_io_context *cic)
89850f7e 2826{
bca4b914 2827 struct cfq_data *cfqd = cic_to_cfqd(cic);
89850f7e 2828
89850f7e 2829 if (cfqd) {
165125e1 2830 struct request_queue *q = cfqd->queue;
4ac845a2 2831 unsigned long flags;
89850f7e 2832
4ac845a2 2833 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2834
2835 /*
2836 * Ensure we get a fresh copy of the ->key to prevent
2837 * race between exiting task and queue
2838 */
2839 smp_read_barrier_depends();
bca4b914 2840 if (cic->key == cfqd)
62c1fe9d
JA
2841 __cfq_exit_single_io_context(cfqd, cic);
2842
4ac845a2 2843 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2844 }
1da177e4
LT
2845}
2846
498d3aa2
JA
2847/*
2848 * The process that ioc belongs to has exited, we need to clean up
2849 * and put the internal structures we have that belongs to that process.
2850 */
e2d74ac0 2851static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2852{
4ac845a2 2853 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2854}
2855
22e2c507 2856static struct cfq_io_context *
8267e268 2857cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2858{
b5deef90 2859 struct cfq_io_context *cic;
1da177e4 2860
94f6030c
CL
2861 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2862 cfqd->queue->node);
1da177e4 2863 if (cic) {
383cd721 2864 cic->ttime.last_end_request = jiffies;
553698f9 2865 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2866 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2867 cic->dtor = cfq_free_io_context;
2868 cic->exit = cfq_exit_io_context;
245b2e70 2869 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2870 }
2871
2872 return cic;
2873}
2874
fd0928df 2875static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2876{
2877 struct task_struct *tsk = current;
2878 int ioprio_class;
2879
3b18152c 2880 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2881 return;
2882
fd0928df 2883 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2884 switch (ioprio_class) {
fe094d98
JA
2885 default:
2886 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2887 case IOPRIO_CLASS_NONE:
2888 /*
6d63c275 2889 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2890 */
2891 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2892 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2893 break;
2894 case IOPRIO_CLASS_RT:
2895 cfqq->ioprio = task_ioprio(ioc);
2896 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2897 break;
2898 case IOPRIO_CLASS_BE:
2899 cfqq->ioprio = task_ioprio(ioc);
2900 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2901 break;
2902 case IOPRIO_CLASS_IDLE:
2903 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2904 cfqq->ioprio = 7;
2905 cfq_clear_cfqq_idle_window(cfqq);
2906 break;
22e2c507
JA
2907 }
2908
2909 /*
2910 * keep track of original prio settings in case we have to temporarily
2911 * elevate the priority of this queue
2912 */
2913 cfqq->org_ioprio = cfqq->ioprio;
3b18152c 2914 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2915}
2916
febffd61 2917static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2918{
bca4b914 2919 struct cfq_data *cfqd = cic_to_cfqd(cic);
478a82b0 2920 struct cfq_queue *cfqq;
c1b707d2 2921 unsigned long flags;
35e6077c 2922
caaa5f9f
JA
2923 if (unlikely(!cfqd))
2924 return;
2925
c1b707d2 2926 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2927
ff6657c6 2928 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2929 if (cfqq) {
2930 struct cfq_queue *new_cfqq;
ff6657c6
JA
2931 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2932 GFP_ATOMIC);
caaa5f9f 2933 if (new_cfqq) {
ff6657c6 2934 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2935 cfq_put_queue(cfqq);
2936 }
22e2c507 2937 }
caaa5f9f 2938
ff6657c6 2939 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2940 if (cfqq)
2941 cfq_mark_cfqq_prio_changed(cfqq);
2942
c1b707d2 2943 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2944}
2945
fc46379d 2946static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2947{
4ac845a2 2948 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2949 ioc->ioprio_changed = 0;
22e2c507
JA
2950}
2951
d5036d77 2952static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2953 pid_t pid, bool is_sync)
d5036d77
JA
2954{
2955 RB_CLEAR_NODE(&cfqq->rb_node);
2956 RB_CLEAR_NODE(&cfqq->p_node);
2957 INIT_LIST_HEAD(&cfqq->fifo);
2958
30d7b944 2959 cfqq->ref = 0;
d5036d77
JA
2960 cfqq->cfqd = cfqd;
2961
2962 cfq_mark_cfqq_prio_changed(cfqq);
2963
2964 if (is_sync) {
2965 if (!cfq_class_idle(cfqq))
2966 cfq_mark_cfqq_idle_window(cfqq);
2967 cfq_mark_cfqq_sync(cfqq);
2968 }
2969 cfqq->pid = pid;
2970}
2971
24610333
VG
2972#ifdef CONFIG_CFQ_GROUP_IOSCHED
2973static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2974{
2975 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
bca4b914 2976 struct cfq_data *cfqd = cic_to_cfqd(cic);
24610333
VG
2977 unsigned long flags;
2978 struct request_queue *q;
2979
2980 if (unlikely(!cfqd))
2981 return;
2982
2983 q = cfqd->queue;
2984
2985 spin_lock_irqsave(q->queue_lock, flags);
2986
2987 if (sync_cfqq) {
2988 /*
2989 * Drop reference to sync queue. A new sync queue will be
2990 * assigned in new group upon arrival of a fresh request.
2991 */
2992 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2993 cic_set_cfqq(cic, NULL, 1);
2994 cfq_put_queue(sync_cfqq);
2995 }
2996
2997 spin_unlock_irqrestore(q->queue_lock, flags);
2998}
2999
3000static void cfq_ioc_set_cgroup(struct io_context *ioc)
3001{
3002 call_for_each_cic(ioc, changed_cgroup);
3003 ioc->cgroup_changed = 0;
3004}
3005#endif /* CONFIG_CFQ_GROUP_IOSCHED */
3006
22e2c507 3007static struct cfq_queue *
a6151c3a 3008cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 3009 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 3010{
22e2c507 3011 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 3012 struct cfq_io_context *cic;
cdb16e8f 3013 struct cfq_group *cfqg;
22e2c507
JA
3014
3015retry:
3e59cf9d 3016 cfqg = cfq_get_cfqg(cfqd);
4ac845a2 3017 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
3018 /* cic always exists here */
3019 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 3020
6118b70b
JA
3021 /*
3022 * Always try a new alloc if we fell back to the OOM cfqq
3023 * originally, since it should just be a temporary situation.
3024 */
3025 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3026 cfqq = NULL;
22e2c507
JA
3027 if (new_cfqq) {
3028 cfqq = new_cfqq;
3029 new_cfqq = NULL;
3030 } else if (gfp_mask & __GFP_WAIT) {
3031 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 3032 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 3033 gfp_mask | __GFP_ZERO,
94f6030c 3034 cfqd->queue->node);
22e2c507 3035 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
3036 if (new_cfqq)
3037 goto retry;
22e2c507 3038 } else {
94f6030c
CL
3039 cfqq = kmem_cache_alloc_node(cfq_pool,
3040 gfp_mask | __GFP_ZERO,
3041 cfqd->queue->node);
22e2c507
JA
3042 }
3043
6118b70b
JA
3044 if (cfqq) {
3045 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3046 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 3047 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
3048 cfq_log_cfqq(cfqd, cfqq, "alloced");
3049 } else
3050 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
3051 }
3052
3053 if (new_cfqq)
3054 kmem_cache_free(cfq_pool, new_cfqq);
3055
22e2c507
JA
3056 return cfqq;
3057}
3058
c2dea2d1
VT
3059static struct cfq_queue **
3060cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3061{
fe094d98 3062 switch (ioprio_class) {
c2dea2d1
VT
3063 case IOPRIO_CLASS_RT:
3064 return &cfqd->async_cfqq[0][ioprio];
3065 case IOPRIO_CLASS_BE:
3066 return &cfqd->async_cfqq[1][ioprio];
3067 case IOPRIO_CLASS_IDLE:
3068 return &cfqd->async_idle_cfqq;
3069 default:
3070 BUG();
3071 }
3072}
3073
15c31be4 3074static struct cfq_queue *
a6151c3a 3075cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
3076 gfp_t gfp_mask)
3077{
fd0928df
JA
3078 const int ioprio = task_ioprio(ioc);
3079 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 3080 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
3081 struct cfq_queue *cfqq = NULL;
3082
c2dea2d1
VT
3083 if (!is_sync) {
3084 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3085 cfqq = *async_cfqq;
3086 }
3087
6118b70b 3088 if (!cfqq)
fd0928df 3089 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
3090
3091 /*
3092 * pin the queue now that it's allocated, scheduler exit will prune it
3093 */
c2dea2d1 3094 if (!is_sync && !(*async_cfqq)) {
30d7b944 3095 cfqq->ref++;
c2dea2d1 3096 *async_cfqq = cfqq;
15c31be4
JA
3097 }
3098
30d7b944 3099 cfqq->ref++;
15c31be4
JA
3100 return cfqq;
3101}
3102
498d3aa2
JA
3103/*
3104 * We drop cfq io contexts lazily, so we may find a dead one.
3105 */
dbecf3ab 3106static void
4ac845a2
JA
3107cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3108 struct cfq_io_context *cic)
dbecf3ab 3109{
4ac845a2
JA
3110 unsigned long flags;
3111
fc46379d 3112 WARN_ON(!list_empty(&cic->queue_list));
bca4b914 3113 BUG_ON(cic->key != cfqd_dead_key(cfqd));
597bc485 3114
4ac845a2
JA
3115 spin_lock_irqsave(&ioc->lock, flags);
3116
726e99ab
SL
3117 BUG_ON(rcu_dereference_check(ioc->ioc_data,
3118 lockdep_is_held(&ioc->lock)) == cic);
597bc485 3119
80b15c73 3120 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
ffc4e759 3121 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
3122 spin_unlock_irqrestore(&ioc->lock, flags);
3123
3124 cfq_cic_free(cic);
dbecf3ab
OH
3125}
3126
e2d74ac0 3127static struct cfq_io_context *
4ac845a2 3128cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 3129{
e2d74ac0 3130 struct cfq_io_context *cic;
d6de8be7 3131 unsigned long flags;
e2d74ac0 3132
91fac317
VT
3133 if (unlikely(!ioc))
3134 return NULL;
3135
d6de8be7
JA
3136 rcu_read_lock();
3137
597bc485
JA
3138 /*
3139 * we maintain a last-hit cache, to avoid browsing over the tree
3140 */
4ac845a2 3141 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
3142 if (cic && cic->key == cfqd) {
3143 rcu_read_unlock();
597bc485 3144 return cic;
d6de8be7 3145 }
597bc485 3146
4ac845a2 3147 do {
80b15c73 3148 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
4ac845a2
JA
3149 rcu_read_unlock();
3150 if (!cic)
3151 break;
bca4b914 3152 if (unlikely(cic->key != cfqd)) {
4ac845a2 3153 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 3154 rcu_read_lock();
4ac845a2 3155 continue;
dbecf3ab 3156 }
e2d74ac0 3157
d6de8be7 3158 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 3159 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 3160 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
3161 break;
3162 } while (1);
e2d74ac0 3163
4ac845a2 3164 return cic;
e2d74ac0
JA
3165}
3166
4ac845a2
JA
3167/*
3168 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3169 * the process specific cfq io context when entered from the block layer.
3170 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3171 */
febffd61
JA
3172static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3173 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 3174{
0261d688 3175 unsigned long flags;
4ac845a2 3176 int ret;
e2d74ac0 3177
4ac845a2
JA
3178 ret = radix_tree_preload(gfp_mask);
3179 if (!ret) {
3180 cic->ioc = ioc;
3181 cic->key = cfqd;
e2d74ac0 3182
4ac845a2
JA
3183 spin_lock_irqsave(&ioc->lock, flags);
3184 ret = radix_tree_insert(&ioc->radix_root,
80b15c73 3185 cfqd->cic_index, cic);
ffc4e759
JA
3186 if (!ret)
3187 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 3188 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 3189
4ac845a2
JA
3190 radix_tree_preload_end();
3191
3192 if (!ret) {
3193 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3194 list_add(&cic->queue_list, &cfqd->cic_list);
3195 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3196 }
e2d74ac0
JA
3197 }
3198
5eb46851 3199 if (ret && ret != -EEXIST)
4ac845a2 3200 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 3201
4ac845a2 3202 return ret;
e2d74ac0
JA
3203}
3204
1da177e4
LT
3205/*
3206 * Setup general io context and cfq io context. There can be several cfq
3207 * io contexts per general io context, if this process is doing io to more
e2d74ac0 3208 * than one device managed by cfq.
1da177e4
LT
3209 */
3210static struct cfq_io_context *
e2d74ac0 3211cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 3212{
22e2c507 3213 struct io_context *ioc = NULL;
1da177e4 3214 struct cfq_io_context *cic;
5eb46851 3215 int ret;
1da177e4 3216
22e2c507 3217 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 3218
b5deef90 3219 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
3220 if (!ioc)
3221 return NULL;
3222
5eb46851 3223retry:
4ac845a2 3224 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
3225 if (cic)
3226 goto out;
1da177e4 3227
e2d74ac0
JA
3228 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3229 if (cic == NULL)
3230 goto err;
1da177e4 3231
5eb46851
YI
3232 ret = cfq_cic_link(cfqd, ioc, cic, gfp_mask);
3233 if (ret == -EEXIST) {
3234 /* someone has linked cic to ioc already */
3235 cfq_cic_free(cic);
3236 goto retry;
3237 } else if (ret)
4ac845a2
JA
3238 goto err_free;
3239
1da177e4 3240out:
fc46379d
JA
3241 smp_read_barrier_depends();
3242 if (unlikely(ioc->ioprio_changed))
3243 cfq_ioc_set_ioprio(ioc);
3244
24610333
VG
3245#ifdef CONFIG_CFQ_GROUP_IOSCHED
3246 if (unlikely(ioc->cgroup_changed))
3247 cfq_ioc_set_cgroup(ioc);
3248#endif
1da177e4 3249 return cic;
4ac845a2
JA
3250err_free:
3251 cfq_cic_free(cic);
1da177e4
LT
3252err:
3253 put_io_context(ioc);
3254 return NULL;
3255}
3256
22e2c507 3257static void
383cd721 3258__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
1da177e4 3259{
383cd721
SL
3260 unsigned long elapsed = jiffies - ttime->last_end_request;
3261 elapsed = min(elapsed, 2UL * slice_idle);
db3b5848 3262
383cd721
SL
3263 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3264 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3265 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3266}
3267
3268static void
3269cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3270 struct cfq_io_context *cic)
3271{
f5f2b6ce 3272 if (cfq_cfqq_sync(cfqq)) {
383cd721 3273 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
f5f2b6ce
SL
3274 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3275 cfqd->cfq_slice_idle);
3276 }
7700fc4f
SL
3277#ifdef CONFIG_CFQ_GROUP_IOSCHED
3278 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3279#endif
22e2c507 3280}
1da177e4 3281
206dc69b 3282static void
b2c18e1e 3283cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 3284 struct request *rq)
206dc69b 3285{
3dde36dd 3286 sector_t sdist = 0;
41647e7a 3287 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
3288 if (cfqq->last_request_pos) {
3289 if (cfqq->last_request_pos < blk_rq_pos(rq))
3290 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3291 else
3292 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3293 }
206dc69b 3294
3dde36dd 3295 cfqq->seek_history <<= 1;
41647e7a
CZ
3296 if (blk_queue_nonrot(cfqd->queue))
3297 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3298 else
3299 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3300}
1da177e4 3301
22e2c507
JA
3302/*
3303 * Disable idle window if the process thinks too long or seeks so much that
3304 * it doesn't matter
3305 */
3306static void
3307cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3308 struct cfq_io_context *cic)
3309{
7b679138 3310 int old_idle, enable_idle;
1be92f2f 3311
0871714e
JA
3312 /*
3313 * Don't idle for async or idle io prio class
3314 */
3315 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3316 return;
3317
c265a7f4 3318 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3319
76280aff
CZ
3320 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3321 cfq_mark_cfqq_deep(cfqq);
3322
749ef9f8
CZ
3323 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3324 enable_idle = 0;
3325 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3326 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507 3327 enable_idle = 0;
383cd721
SL
3328 else if (sample_valid(cic->ttime.ttime_samples)) {
3329 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3330 enable_idle = 0;
3331 else
3332 enable_idle = 1;
1da177e4
LT
3333 }
3334
7b679138
JA
3335 if (old_idle != enable_idle) {
3336 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3337 if (enable_idle)
3338 cfq_mark_cfqq_idle_window(cfqq);
3339 else
3340 cfq_clear_cfqq_idle_window(cfqq);
3341 }
22e2c507 3342}
1da177e4 3343
22e2c507
JA
3344/*
3345 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3346 * no or if we aren't sure, a 1 will cause a preempt.
3347 */
a6151c3a 3348static bool
22e2c507 3349cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3350 struct request *rq)
22e2c507 3351{
6d048f53 3352 struct cfq_queue *cfqq;
22e2c507 3353
6d048f53
JA
3354 cfqq = cfqd->active_queue;
3355 if (!cfqq)
a6151c3a 3356 return false;
22e2c507 3357
6d048f53 3358 if (cfq_class_idle(new_cfqq))
a6151c3a 3359 return false;
22e2c507
JA
3360
3361 if (cfq_class_idle(cfqq))
a6151c3a 3362 return true;
1e3335de 3363
875feb63
DS
3364 /*
3365 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3366 */
3367 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3368 return false;
3369
374f84ac
JA
3370 /*
3371 * if the new request is sync, but the currently running queue is
3372 * not, let the sync request have priority.
3373 */
5e705374 3374 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3375 return true;
1e3335de 3376
8682e1f1
VG
3377 if (new_cfqq->cfqg != cfqq->cfqg)
3378 return false;
3379
3380 if (cfq_slice_used(cfqq))
3381 return true;
3382
3383 /* Allow preemption only if we are idling on sync-noidle tree */
3384 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3385 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3386 new_cfqq->service_tree->count == 2 &&
3387 RB_EMPTY_ROOT(&cfqq->sort_list))
3388 return true;
3389
b53d1ed7
JA
3390 /*
3391 * So both queues are sync. Let the new request get disk time if
3392 * it's a metadata request and the current queue is doing regular IO.
3393 */
65299a3b 3394 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
b53d1ed7
JA
3395 return true;
3396
3a9a3f6c
DS
3397 /*
3398 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3399 */
3400 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3401 return true;
3a9a3f6c 3402
d2d59e18
SL
3403 /* An idle queue should not be idle now for some reason */
3404 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3405 return true;
3406
1e3335de 3407 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3408 return false;
1e3335de
JA
3409
3410 /*
3411 * if this request is as-good as one we would expect from the
3412 * current cfqq, let it preempt
3413 */
e9ce335d 3414 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3415 return true;
1e3335de 3416
a6151c3a 3417 return false;
22e2c507
JA
3418}
3419
3420/*
3421 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3422 * let it have half of its nominal slice.
3423 */
3424static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3425{
f8ae6e3e
SL
3426 struct cfq_queue *old_cfqq = cfqd->active_queue;
3427
7b679138 3428 cfq_log_cfqq(cfqd, cfqq, "preempt");
e5ff082e 3429 cfq_slice_expired(cfqd, 1);
22e2c507 3430
f8ae6e3e
SL
3431 /*
3432 * workload type is changed, don't save slice, otherwise preempt
3433 * doesn't happen
3434 */
3435 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3436 cfqq->cfqg->saved_workload_slice = 0;
3437
bf572256
JA
3438 /*
3439 * Put the new queue at the front of the of the current list,
3440 * so we know that it will be selected next.
3441 */
3442 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3443
3444 cfq_service_tree_add(cfqd, cfqq, 1);
eda5e0c9 3445
62a37f6b
JT
3446 cfqq->slice_end = 0;
3447 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3448}
3449
22e2c507 3450/*
5e705374 3451 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3452 * something we should do about it
3453 */
3454static void
5e705374
JA
3455cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3456 struct request *rq)
22e2c507 3457{
5e705374 3458 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3459
45333d5a 3460 cfqd->rq_queued++;
65299a3b
CH
3461 if (rq->cmd_flags & REQ_PRIO)
3462 cfqq->prio_pending++;
374f84ac 3463
383cd721 3464 cfq_update_io_thinktime(cfqd, cfqq, cic);
b2c18e1e 3465 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3466 cfq_update_idle_window(cfqd, cfqq, cic);
3467
b2c18e1e 3468 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3469
3470 if (cfqq == cfqd->active_queue) {
3471 /*
b029195d
JA
3472 * Remember that we saw a request from this process, but
3473 * don't start queuing just yet. Otherwise we risk seeing lots
3474 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3475 * and merging. If the request is already larger than a single
3476 * page, let it rip immediately. For that case we assume that
2d870722
JA
3477 * merging is already done. Ditto for a busy system that
3478 * has other work pending, don't risk delaying until the
3479 * idle timer unplug to continue working.
22e2c507 3480 */
d6ceb25e 3481 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3482 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3483 cfqd->busy_queues > 1) {
812df48d 3484 cfq_del_timer(cfqd, cfqq);
554554f6 3485 cfq_clear_cfqq_wait_request(cfqq);
24ecfbe2 3486 __blk_run_queue(cfqd->queue);
a11cdaa7 3487 } else {
e98ef89b 3488 cfq_blkiocg_update_idle_time_stats(
a11cdaa7 3489 &cfqq->cfqg->blkg);
bf791937 3490 cfq_mark_cfqq_must_dispatch(cfqq);
a11cdaa7 3491 }
d6ceb25e 3492 }
5e705374 3493 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3494 /*
3495 * not the active queue - expire current slice if it is
3496 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3497 * has some old slice time left and is of higher priority or
3498 * this new queue is RT and the current one is BE
22e2c507
JA
3499 */
3500 cfq_preempt_queue(cfqd, cfqq);
24ecfbe2 3501 __blk_run_queue(cfqd->queue);
22e2c507 3502 }
1da177e4
LT
3503}
3504
165125e1 3505static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3506{
b4878f24 3507 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3508 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3509
7b679138 3510 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3511 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3512
30996f40 3513 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3514 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3515 cfq_add_rq_rb(rq);
e98ef89b 3516 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
cdc1184c
DS
3517 &cfqd->serving_group->blkg, rq_data_dir(rq),
3518 rq_is_sync(rq));
5e705374 3519 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3520}
3521
45333d5a
AC
3522/*
3523 * Update hw_tag based on peak queue depth over 50 samples under
3524 * sufficient load.
3525 */
3526static void cfq_update_hw_tag(struct cfq_data *cfqd)
3527{
1a1238a7
SL
3528 struct cfq_queue *cfqq = cfqd->active_queue;
3529
53c583d2
CZ
3530 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3531 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3532
3533 if (cfqd->hw_tag == 1)
3534 return;
45333d5a
AC
3535
3536 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3537 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3538 return;
3539
1a1238a7
SL
3540 /*
3541 * If active queue hasn't enough requests and can idle, cfq might not
3542 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3543 * case
3544 */
3545 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3546 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3547 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3548 return;
3549
45333d5a
AC
3550 if (cfqd->hw_tag_samples++ < 50)
3551 return;
3552
e459dd08 3553 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3554 cfqd->hw_tag = 1;
3555 else
3556 cfqd->hw_tag = 0;
45333d5a
AC
3557}
3558
7667aa06
VG
3559static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3560{
3561 struct cfq_io_context *cic = cfqd->active_cic;
3562
02a8f01b
JT
3563 /* If the queue already has requests, don't wait */
3564 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3565 return false;
3566
7667aa06
VG
3567 /* If there are other queues in the group, don't wait */
3568 if (cfqq->cfqg->nr_cfqq > 1)
3569 return false;
3570
7700fc4f
SL
3571 /* the only queue in the group, but think time is big */
3572 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3573 return false;
3574
7667aa06
VG
3575 if (cfq_slice_used(cfqq))
3576 return true;
3577
3578 /* if slice left is less than think time, wait busy */
383cd721
SL
3579 if (cic && sample_valid(cic->ttime.ttime_samples)
3580 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
7667aa06
VG
3581 return true;
3582
3583 /*
3584 * If think times is less than a jiffy than ttime_mean=0 and above
3585 * will not be true. It might happen that slice has not expired yet
3586 * but will expire soon (4-5 ns) during select_queue(). To cover the
3587 * case where think time is less than a jiffy, mark the queue wait
3588 * busy if only 1 jiffy is left in the slice.
3589 */
3590 if (cfqq->slice_end - jiffies == 1)
3591 return true;
3592
3593 return false;
3594}
3595
165125e1 3596static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3597{
5e705374 3598 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3599 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3600 const int sync = rq_is_sync(rq);
b4878f24 3601 unsigned long now;
1da177e4 3602
b4878f24 3603 now = jiffies;
33659ebb
CH
3604 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3605 !!(rq->cmd_flags & REQ_NOIDLE));
1da177e4 3606
45333d5a
AC
3607 cfq_update_hw_tag(cfqd);
3608
53c583d2 3609 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3610 WARN_ON(!cfqq->dispatched);
53c583d2 3611 cfqd->rq_in_driver--;
6d048f53 3612 cfqq->dispatched--;
80bdf0c7 3613 (RQ_CFQG(rq))->dispatched--;
e98ef89b
VG
3614 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3615 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3616 rq_data_dir(rq), rq_is_sync(rq));
1da177e4 3617
53c583d2 3618 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3619
365722bb 3620 if (sync) {
f5f2b6ce
SL
3621 struct cfq_rb_root *service_tree;
3622
383cd721 3623 RQ_CIC(rq)->ttime.last_end_request = now;
f5f2b6ce
SL
3624
3625 if (cfq_cfqq_on_rr(cfqq))
3626 service_tree = cfqq->service_tree;
3627 else
3628 service_tree = service_tree_for(cfqq->cfqg,
3629 cfqq_prio(cfqq), cfqq_type(cfqq));
3630 service_tree->ttime.last_end_request = now;
573412b2
CZ
3631 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3632 cfqd->last_delayed_sync = now;
365722bb 3633 }
caaa5f9f 3634
7700fc4f
SL
3635#ifdef CONFIG_CFQ_GROUP_IOSCHED
3636 cfqq->cfqg->ttime.last_end_request = now;
3637#endif
3638
caaa5f9f
JA
3639 /*
3640 * If this is the active queue, check if it needs to be expired,
3641 * or if we want to idle in case it has no pending requests.
3642 */
3643 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3644 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3645
44f7c160
JA
3646 if (cfq_cfqq_slice_new(cfqq)) {
3647 cfq_set_prio_slice(cfqd, cfqq);
3648 cfq_clear_cfqq_slice_new(cfqq);
3649 }
f75edf2d
VG
3650
3651 /*
7667aa06
VG
3652 * Should we wait for next request to come in before we expire
3653 * the queue.
f75edf2d 3654 */
7667aa06 3655 if (cfq_should_wait_busy(cfqd, cfqq)) {
80bdf0c7
VG
3656 unsigned long extend_sl = cfqd->cfq_slice_idle;
3657 if (!cfqd->cfq_slice_idle)
3658 extend_sl = cfqd->cfq_group_idle;
3659 cfqq->slice_end = jiffies + extend_sl;
f75edf2d 3660 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3661 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3662 }
3663
a36e71f9 3664 /*
8e550632
CZ
3665 * Idling is not enabled on:
3666 * - expired queues
3667 * - idle-priority queues
3668 * - async queues
3669 * - queues with still some requests queued
3670 * - when there is a close cooperator
a36e71f9 3671 */
0871714e 3672 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
e5ff082e 3673 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3674 else if (sync && cfqq_empty &&
3675 !cfq_close_cooperator(cfqd, cfqq)) {
749ef9f8 3676 cfq_arm_slice_timer(cfqd);
8e550632 3677 }
caaa5f9f 3678 }
6d048f53 3679
53c583d2 3680 if (!cfqd->rq_in_driver)
23e018a1 3681 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3682}
3683
89850f7e 3684static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3685{
1b379d8d 3686 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3687 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3688 return ELV_MQUEUE_MUST;
3b18152c 3689 }
1da177e4 3690
22e2c507 3691 return ELV_MQUEUE_MAY;
22e2c507
JA
3692}
3693
165125e1 3694static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3695{
3696 struct cfq_data *cfqd = q->elevator->elevator_data;
3697 struct task_struct *tsk = current;
91fac317 3698 struct cfq_io_context *cic;
22e2c507
JA
3699 struct cfq_queue *cfqq;
3700
3701 /*
3702 * don't force setup of a queue from here, as a call to may_queue
3703 * does not necessarily imply that a request actually will be queued.
3704 * so just lookup a possibly existing queue, or return 'may queue'
3705 * if that fails
3706 */
4ac845a2 3707 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3708 if (!cic)
3709 return ELV_MQUEUE_MAY;
3710
b0b78f81 3711 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3712 if (cfqq) {
fd0928df 3713 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507 3714
89850f7e 3715 return __cfq_may_queue(cfqq);
22e2c507
JA
3716 }
3717
3718 return ELV_MQUEUE_MAY;
1da177e4
LT
3719}
3720
1da177e4
LT
3721/*
3722 * queue lock held here
3723 */
bb37b94c 3724static void cfq_put_request(struct request *rq)
1da177e4 3725{
5e705374 3726 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3727
5e705374 3728 if (cfqq) {
22e2c507 3729 const int rw = rq_data_dir(rq);
1da177e4 3730
22e2c507
JA
3731 BUG_ON(!cfqq->allocated[rw]);
3732 cfqq->allocated[rw]--;
1da177e4 3733
5e705374 3734 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3735
c186794d
MS
3736 rq->elevator_private[0] = NULL;
3737 rq->elevator_private[1] = NULL;
1da177e4 3738
7f1dc8a2
VG
3739 /* Put down rq reference on cfqg */
3740 cfq_put_cfqg(RQ_CFQG(rq));
c186794d 3741 rq->elevator_private[2] = NULL;
7f1dc8a2 3742
1da177e4
LT
3743 cfq_put_queue(cfqq);
3744 }
3745}
3746
df5fe3e8
JM
3747static struct cfq_queue *
3748cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3749 struct cfq_queue *cfqq)
3750{
3751 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3752 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3753 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3754 cfq_put_queue(cfqq);
3755 return cic_to_cfqq(cic, 1);
3756}
3757
e6c5bc73
JM
3758/*
3759 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3760 * was the last process referring to said cfqq.
3761 */
3762static struct cfq_queue *
3763split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3764{
3765 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3766 cfqq->pid = current->pid;
3767 cfq_clear_cfqq_coop(cfqq);
ae54abed 3768 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3769 return cfqq;
3770 }
3771
3772 cic_set_cfqq(cic, NULL, 1);
d02a2c07
SL
3773
3774 cfq_put_cooperator(cfqq);
3775
e6c5bc73
JM
3776 cfq_put_queue(cfqq);
3777 return NULL;
3778}
1da177e4 3779/*
22e2c507 3780 * Allocate cfq data structures associated with this request.
1da177e4 3781 */
22e2c507 3782static int
165125e1 3783cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3784{
3785 struct cfq_data *cfqd = q->elevator->elevator_data;
3786 struct cfq_io_context *cic;
3787 const int rw = rq_data_dir(rq);
a6151c3a 3788 const bool is_sync = rq_is_sync(rq);
22e2c507 3789 struct cfq_queue *cfqq;
1da177e4
LT
3790 unsigned long flags;
3791
3792 might_sleep_if(gfp_mask & __GFP_WAIT);
3793
e2d74ac0 3794 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3795
1da177e4
LT
3796 spin_lock_irqsave(q->queue_lock, flags);
3797
22e2c507
JA
3798 if (!cic)
3799 goto queue_fail;
3800
e6c5bc73 3801new_queue:
91fac317 3802 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3803 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3804 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3805 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3806 } else {
e6c5bc73
JM
3807 /*
3808 * If the queue was seeky for too long, break it apart.
3809 */
ae54abed 3810 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3811 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3812 cfqq = split_cfqq(cic, cfqq);
3813 if (!cfqq)
3814 goto new_queue;
3815 }
3816
df5fe3e8
JM
3817 /*
3818 * Check to see if this queue is scheduled to merge with
3819 * another, closely cooperating queue. The merging of
3820 * queues happens here as it must be done in process context.
3821 * The reference on new_cfqq was taken in merge_cfqqs.
3822 */
3823 if (cfqq->new_cfqq)
3824 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3825 }
1da177e4
LT
3826
3827 cfqq->allocated[rw]++;
1da177e4 3828
6fae9c25 3829 cfqq->ref++;
c186794d
MS
3830 rq->elevator_private[0] = cic;
3831 rq->elevator_private[1] = cfqq;
3832 rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
93803e01 3833 spin_unlock_irqrestore(q->queue_lock, flags);
5e705374 3834 return 0;
1da177e4 3835
22e2c507 3836queue_fail:
23e018a1 3837 cfq_schedule_dispatch(cfqd);
1da177e4 3838 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3839 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3840 return 1;
3841}
3842
65f27f38 3843static void cfq_kick_queue(struct work_struct *work)
22e2c507 3844{
65f27f38 3845 struct cfq_data *cfqd =
23e018a1 3846 container_of(work, struct cfq_data, unplug_work);
165125e1 3847 struct request_queue *q = cfqd->queue;
22e2c507 3848
40bb54d1 3849 spin_lock_irq(q->queue_lock);
24ecfbe2 3850 __blk_run_queue(cfqd->queue);
40bb54d1 3851 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3852}
3853
3854/*
3855 * Timer running if the active_queue is currently idling inside its time slice
3856 */
3857static void cfq_idle_slice_timer(unsigned long data)
3858{
3859 struct cfq_data *cfqd = (struct cfq_data *) data;
3860 struct cfq_queue *cfqq;
3861 unsigned long flags;
3c6bd2f8 3862 int timed_out = 1;
22e2c507 3863
7b679138
JA
3864 cfq_log(cfqd, "idle timer fired");
3865
22e2c507
JA
3866 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3867
fe094d98
JA
3868 cfqq = cfqd->active_queue;
3869 if (cfqq) {
3c6bd2f8
JA
3870 timed_out = 0;
3871
b029195d
JA
3872 /*
3873 * We saw a request before the queue expired, let it through
3874 */
3875 if (cfq_cfqq_must_dispatch(cfqq))
3876 goto out_kick;
3877
22e2c507
JA
3878 /*
3879 * expired
3880 */
44f7c160 3881 if (cfq_slice_used(cfqq))
22e2c507
JA
3882 goto expire;
3883
3884 /*
3885 * only expire and reinvoke request handler, if there are
3886 * other queues with pending requests
3887 */
caaa5f9f 3888 if (!cfqd->busy_queues)
22e2c507 3889 goto out_cont;
22e2c507
JA
3890
3891 /*
3892 * not expired and it has a request pending, let it dispatch
3893 */
75e50984 3894 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3895 goto out_kick;
76280aff
CZ
3896
3897 /*
3898 * Queue depth flag is reset only when the idle didn't succeed
3899 */
3900 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3901 }
3902expire:
e5ff082e 3903 cfq_slice_expired(cfqd, timed_out);
22e2c507 3904out_kick:
23e018a1 3905 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3906out_cont:
3907 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3908}
3909
3b18152c
JA
3910static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3911{
3912 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3913 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3914}
22e2c507 3915
c2dea2d1
VT
3916static void cfq_put_async_queues(struct cfq_data *cfqd)
3917{
3918 int i;
3919
3920 for (i = 0; i < IOPRIO_BE_NR; i++) {
3921 if (cfqd->async_cfqq[0][i])
3922 cfq_put_queue(cfqd->async_cfqq[0][i]);
3923 if (cfqd->async_cfqq[1][i])
3924 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3925 }
2389d1ef
ON
3926
3927 if (cfqd->async_idle_cfqq)
3928 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3929}
3930
b374d18a 3931static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3932{
22e2c507 3933 struct cfq_data *cfqd = e->elevator_data;
165125e1 3934 struct request_queue *q = cfqd->queue;
56edf7d7 3935 bool wait = false;
22e2c507 3936
3b18152c 3937 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3938
d9ff4187 3939 spin_lock_irq(q->queue_lock);
e2d74ac0 3940
d9ff4187 3941 if (cfqd->active_queue)
e5ff082e 3942 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3943
3944 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3945 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3946 struct cfq_io_context,
3947 queue_list);
89850f7e
JA
3948
3949 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3950 }
e2d74ac0 3951
c2dea2d1 3952 cfq_put_async_queues(cfqd);
b1c35769 3953 cfq_release_cfq_groups(cfqd);
56edf7d7
VG
3954
3955 /*
3956 * If there are groups which we could not unlink from blkcg list,
3957 * wait for a rcu period for them to be freed.
3958 */
3959 if (cfqd->nr_blkcg_linked_grps)
3960 wait = true;
15c31be4 3961
d9ff4187 3962 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3963
3964 cfq_shutdown_timer_wq(cfqd);
3965
80b15c73
KK
3966 spin_lock(&cic_index_lock);
3967 ida_remove(&cic_index_ida, cfqd->cic_index);
3968 spin_unlock(&cic_index_lock);
3969
56edf7d7
VG
3970 /*
3971 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3972 * Do this wait only if there are other unlinked groups out
3973 * there. This can happen if cgroup deletion path claimed the
3974 * responsibility of cleaning up a group before queue cleanup code
3975 * get to the group.
3976 *
3977 * Do not call synchronize_rcu() unconditionally as there are drivers
3978 * which create/delete request queue hundreds of times during scan/boot
3979 * and synchronize_rcu() can take significant time and slow down boot.
3980 */
3981 if (wait)
3982 synchronize_rcu();
2abae55f
VG
3983
3984#ifdef CONFIG_CFQ_GROUP_IOSCHED
3985 /* Free up per cpu stats for root group */
3986 free_percpu(cfqd->root_group.blkg.stats_cpu);
3987#endif
56edf7d7 3988 kfree(cfqd);
1da177e4
LT
3989}
3990
80b15c73
KK
3991static int cfq_alloc_cic_index(void)
3992{
3993 int index, error;
3994
3995 do {
3996 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3997 return -ENOMEM;
3998
3999 spin_lock(&cic_index_lock);
4000 error = ida_get_new(&cic_index_ida, &index);
4001 spin_unlock(&cic_index_lock);
4002 if (error && error != -EAGAIN)
4003 return error;
4004 } while (error);
4005
4006 return index;
4007}
4008
165125e1 4009static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
4010{
4011 struct cfq_data *cfqd;
718eee05 4012 int i, j;
cdb16e8f 4013 struct cfq_group *cfqg;
615f0259 4014 struct cfq_rb_root *st;
1da177e4 4015
80b15c73
KK
4016 i = cfq_alloc_cic_index();
4017 if (i < 0)
4018 return NULL;
4019
94f6030c 4020 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1547010e
NK
4021 if (!cfqd) {
4022 spin_lock(&cic_index_lock);
4023 ida_remove(&cic_index_ida, i);
4024 spin_unlock(&cic_index_lock);
bc1c1169 4025 return NULL;
1547010e 4026 }
1da177e4 4027
30d7b944
SL
4028 /*
4029 * Don't need take queue_lock in the routine, since we are
4030 * initializing the ioscheduler, and nobody is using cfqd
4031 */
80b15c73
KK
4032 cfqd->cic_index = i;
4033
1fa8f6d6
VG
4034 /* Init root service tree */
4035 cfqd->grp_service_tree = CFQ_RB_ROOT;
4036
cdb16e8f
VG
4037 /* Init root group */
4038 cfqg = &cfqd->root_group;
615f0259
VG
4039 for_each_cfqg_st(cfqg, i, j, st)
4040 *st = CFQ_RB_ROOT;
1fa8f6d6 4041 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 4042
25bc6b07
VG
4043 /* Give preference to root group over other groups */
4044 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
4045
25fb5169 4046#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769 4047 /*
56edf7d7
VG
4048 * Set root group reference to 2. One reference will be dropped when
4049 * all groups on cfqd->cfqg_list are being deleted during queue exit.
4050 * Other reference will remain there as we don't want to delete this
4051 * group as it is statically allocated and gets destroyed when
4052 * throtl_data goes away.
b1c35769 4053 */
56edf7d7 4054 cfqg->ref = 2;
5624a4e4
VG
4055
4056 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
4057 kfree(cfqg);
2984ff38 4058
4059 spin_lock(&cic_index_lock);
4060 ida_remove(&cic_index_ida, cfqd->cic_index);
4061 spin_unlock(&cic_index_lock);
4062
5624a4e4
VG
4063 kfree(cfqd);
4064 return NULL;
4065 }
4066
dcf097b2 4067 rcu_read_lock();
5624a4e4 4068
e98ef89b
VG
4069 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
4070 (void *)cfqd, 0);
dcf097b2 4071 rcu_read_unlock();
56edf7d7
VG
4072 cfqd->nr_blkcg_linked_grps++;
4073
4074 /* Add group on cfqd->cfqg_list */
4075 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
25fb5169 4076#endif
26a2ac00
JA
4077 /*
4078 * Not strictly needed (since RB_ROOT just clears the node and we
4079 * zeroed cfqd on alloc), but better be safe in case someone decides
4080 * to add magic to the rb code
4081 */
4082 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4083 cfqd->prio_trees[i] = RB_ROOT;
4084
6118b70b
JA
4085 /*
4086 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4087 * Grab a permanent reference to it, so that the normal code flow
4088 * will not attempt to free it.
4089 */
4090 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
30d7b944 4091 cfqd->oom_cfqq.ref++;
cdb16e8f 4092 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 4093
d9ff4187 4094 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 4095
1da177e4 4096 cfqd->queue = q;
1da177e4 4097
22e2c507
JA
4098 init_timer(&cfqd->idle_slice_timer);
4099 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4100 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4101
23e018a1 4102 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 4103
1da177e4 4104 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
4105 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4106 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
4107 cfqd->cfq_back_max = cfq_back_max;
4108 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
4109 cfqd->cfq_slice[0] = cfq_slice_async;
4110 cfqd->cfq_slice[1] = cfq_slice_sync;
4111 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4112 cfqd->cfq_slice_idle = cfq_slice_idle;
80bdf0c7 4113 cfqd->cfq_group_idle = cfq_group_idle;
963b72fc 4114 cfqd->cfq_latency = 1;
e459dd08 4115 cfqd->hw_tag = -1;
edc71131
CZ
4116 /*
4117 * we optimistically start assuming sync ops weren't delayed in last
4118 * second, in order to have larger depth for async operations.
4119 */
573412b2 4120 cfqd->last_delayed_sync = jiffies - HZ;
bc1c1169 4121 return cfqd;
1da177e4
LT
4122}
4123
4124static void cfq_slab_kill(void)
4125{
d6de8be7
JA
4126 /*
4127 * Caller already ensured that pending RCU callbacks are completed,
4128 * so we should have no busy allocations at this point.
4129 */
1da177e4
LT
4130 if (cfq_pool)
4131 kmem_cache_destroy(cfq_pool);
4132 if (cfq_ioc_pool)
4133 kmem_cache_destroy(cfq_ioc_pool);
4134}
4135
4136static int __init cfq_slab_setup(void)
4137{
0a31bd5f 4138 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
4139 if (!cfq_pool)
4140 goto fail;
4141
34e6bbf2 4142 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
4143 if (!cfq_ioc_pool)
4144 goto fail;
4145
4146 return 0;
4147fail:
4148 cfq_slab_kill();
4149 return -ENOMEM;
4150}
4151
1da177e4
LT
4152/*
4153 * sysfs parts below -->
4154 */
1da177e4
LT
4155static ssize_t
4156cfq_var_show(unsigned int var, char *page)
4157{
4158 return sprintf(page, "%d\n", var);
4159}
4160
4161static ssize_t
4162cfq_var_store(unsigned int *var, const char *page, size_t count)
4163{
4164 char *p = (char *) page;
4165
4166 *var = simple_strtoul(p, &p, 10);
4167 return count;
4168}
4169
1da177e4 4170#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 4171static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 4172{ \
3d1ab40f 4173 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4174 unsigned int __data = __VAR; \
4175 if (__CONV) \
4176 __data = jiffies_to_msecs(__data); \
4177 return cfq_var_show(__data, (page)); \
4178}
4179SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
4180SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4181SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
4182SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4183SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507 4184SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
80bdf0c7 4185SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
22e2c507
JA
4186SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4187SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4188SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 4189SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
4190#undef SHOW_FUNCTION
4191
4192#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 4193static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 4194{ \
3d1ab40f 4195 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4196 unsigned int __data; \
4197 int ret = cfq_var_store(&__data, (page), count); \
4198 if (__data < (MIN)) \
4199 __data = (MIN); \
4200 else if (__data > (MAX)) \
4201 __data = (MAX); \
4202 if (__CONV) \
4203 *(__PTR) = msecs_to_jiffies(__data); \
4204 else \
4205 *(__PTR) = __data; \
4206 return ret; \
4207}
4208STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
4209STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4210 UINT_MAX, 1);
4211STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4212 UINT_MAX, 1);
e572ec7e 4213STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
4214STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4215 UINT_MAX, 0);
22e2c507 4216STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
80bdf0c7 4217STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
22e2c507
JA
4218STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4219STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
4220STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4221 UINT_MAX, 0);
963b72fc 4222STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
4223#undef STORE_FUNCTION
4224
e572ec7e
AV
4225#define CFQ_ATTR(name) \
4226 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4227
4228static struct elv_fs_entry cfq_attrs[] = {
4229 CFQ_ATTR(quantum),
e572ec7e
AV
4230 CFQ_ATTR(fifo_expire_sync),
4231 CFQ_ATTR(fifo_expire_async),
4232 CFQ_ATTR(back_seek_max),
4233 CFQ_ATTR(back_seek_penalty),
4234 CFQ_ATTR(slice_sync),
4235 CFQ_ATTR(slice_async),
4236 CFQ_ATTR(slice_async_rq),
4237 CFQ_ATTR(slice_idle),
80bdf0c7 4238 CFQ_ATTR(group_idle),
963b72fc 4239 CFQ_ATTR(low_latency),
e572ec7e 4240 __ATTR_NULL
1da177e4
LT
4241};
4242
1da177e4
LT
4243static struct elevator_type iosched_cfq = {
4244 .ops = {
4245 .elevator_merge_fn = cfq_merge,
4246 .elevator_merged_fn = cfq_merged_request,
4247 .elevator_merge_req_fn = cfq_merged_requests,
da775265 4248 .elevator_allow_merge_fn = cfq_allow_merge,
812d4026 4249 .elevator_bio_merged_fn = cfq_bio_merged,
b4878f24 4250 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 4251 .elevator_add_req_fn = cfq_insert_request,
b4878f24 4252 .elevator_activate_req_fn = cfq_activate_request,
1da177e4 4253 .elevator_deactivate_req_fn = cfq_deactivate_request,
1da177e4 4254 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
4255 .elevator_former_req_fn = elv_rb_former_request,
4256 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
4257 .elevator_set_req_fn = cfq_set_request,
4258 .elevator_put_req_fn = cfq_put_request,
4259 .elevator_may_queue_fn = cfq_may_queue,
4260 .elevator_init_fn = cfq_init_queue,
4261 .elevator_exit_fn = cfq_exit_queue,
fc46379d 4262 .trim = cfq_free_io_context,
1da177e4 4263 },
3d1ab40f 4264 .elevator_attrs = cfq_attrs,
1da177e4
LT
4265 .elevator_name = "cfq",
4266 .elevator_owner = THIS_MODULE,
4267};
4268
3e252066
VG
4269#ifdef CONFIG_CFQ_GROUP_IOSCHED
4270static struct blkio_policy_type blkio_policy_cfq = {
4271 .ops = {
4272 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4273 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4274 },
062a644d 4275 .plid = BLKIO_POLICY_PROP,
3e252066
VG
4276};
4277#else
4278static struct blkio_policy_type blkio_policy_cfq;
4279#endif
4280
1da177e4
LT
4281static int __init cfq_init(void)
4282{
22e2c507
JA
4283 /*
4284 * could be 0 on HZ < 1000 setups
4285 */
4286 if (!cfq_slice_async)
4287 cfq_slice_async = 1;
4288 if (!cfq_slice_idle)
4289 cfq_slice_idle = 1;
4290
80bdf0c7
VG
4291#ifdef CONFIG_CFQ_GROUP_IOSCHED
4292 if (!cfq_group_idle)
4293 cfq_group_idle = 1;
4294#else
4295 cfq_group_idle = 0;
4296#endif
1da177e4
LT
4297 if (cfq_slab_setup())
4298 return -ENOMEM;
4299
2fdd82bd 4300 elv_register(&iosched_cfq);
3e252066 4301 blkio_policy_register(&blkio_policy_cfq);
1da177e4 4302
2fdd82bd 4303 return 0;
1da177e4
LT
4304}
4305
4306static void __exit cfq_exit(void)
4307{
6e9a4738 4308 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 4309 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 4310 elv_unregister(&iosched_cfq);
334e94de 4311 ioc_gone = &all_gone;
fba82272
OH
4312 /* ioc_gone's update must be visible before reading ioc_count */
4313 smp_wmb();
d6de8be7
JA
4314
4315 /*
4316 * this also protects us from entering cfq_slab_kill() with
4317 * pending RCU callbacks
4318 */
245b2e70 4319 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 4320 wait_for_completion(&all_gone);
80b15c73 4321 ida_destroy(&cic_index_ida);
83521d3e 4322 cfq_slab_kill();
1da177e4
LT
4323}
4324
4325module_init(cfq_init);
4326module_exit(cfq_exit);
4327
4328MODULE_AUTHOR("Jens Axboe");
4329MODULE_LICENSE("GPL");
4330MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");