]> git.proxmox.com Git - qemu.git/blame - block/qcow2-cluster.c
qcow2: Finalise interface of handle_alloc()
[qemu.git] / block / qcow2-cluster.c
CommitLineData
45aba42f
KW
1/*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25#include <zlib.h>
26
27#include "qemu-common.h"
737e150e 28#include "block/block_int.h"
45aba42f 29#include "block/qcow2.h"
3cce16f4 30#include "trace.h"
45aba42f 31
72893756 32int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size)
45aba42f
KW
33{
34 BDRVQcowState *s = bs->opaque;
35 int new_l1_size, new_l1_size2, ret, i;
36 uint64_t *new_l1_table;
5d757b56 37 int64_t new_l1_table_offset;
45aba42f
KW
38 uint8_t data[12];
39
72893756 40 if (min_size <= s->l1_size)
45aba42f 41 return 0;
72893756
SH
42
43 if (exact_size) {
44 new_l1_size = min_size;
45 } else {
46 /* Bump size up to reduce the number of times we have to grow */
47 new_l1_size = s->l1_size;
48 if (new_l1_size == 0) {
49 new_l1_size = 1;
50 }
51 while (min_size > new_l1_size) {
52 new_l1_size = (new_l1_size * 3 + 1) / 2;
53 }
45aba42f 54 }
72893756 55
45aba42f 56#ifdef DEBUG_ALLOC2
35ee5e39 57 fprintf(stderr, "grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
45aba42f
KW
58#endif
59
60 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
7267c094 61 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
45aba42f
KW
62 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
63
64 /* write new table (align to cluster) */
66f82cee 65 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
ed6ccf0f 66 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
5d757b56 67 if (new_l1_table_offset < 0) {
7267c094 68 g_free(new_l1_table);
5d757b56
KW
69 return new_l1_table_offset;
70 }
29c1a730
KW
71
72 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
73 if (ret < 0) {
80fa3341 74 goto fail;
29c1a730 75 }
45aba42f 76
66f82cee 77 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
45aba42f
KW
78 for(i = 0; i < s->l1_size; i++)
79 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
8b3b7206
KW
80 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
81 if (ret < 0)
45aba42f
KW
82 goto fail;
83 for(i = 0; i < s->l1_size; i++)
84 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
85
86 /* set new table */
66f82cee 87 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
45aba42f 88 cpu_to_be32w((uint32_t*)data, new_l1_size);
653df36b 89 cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
8b3b7206
KW
90 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
91 if (ret < 0) {
45aba42f 92 goto fail;
fb8fa77c 93 }
7267c094 94 g_free(s->l1_table);
ed6ccf0f 95 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
45aba42f
KW
96 s->l1_table_offset = new_l1_table_offset;
97 s->l1_table = new_l1_table;
98 s->l1_size = new_l1_size;
99 return 0;
100 fail:
7267c094 101 g_free(new_l1_table);
fb8fa77c 102 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
8b3b7206 103 return ret;
45aba42f
KW
104}
105
45aba42f
KW
106/*
107 * l2_load
108 *
109 * Loads a L2 table into memory. If the table is in the cache, the cache
110 * is used; otherwise the L2 table is loaded from the image file.
111 *
112 * Returns a pointer to the L2 table on success, or NULL if the read from
113 * the image file failed.
114 */
115
55c17e98
KW
116static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
117 uint64_t **l2_table)
45aba42f
KW
118{
119 BDRVQcowState *s = bs->opaque;
55c17e98 120 int ret;
45aba42f 121
29c1a730 122 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
45aba42f 123
29c1a730 124 return ret;
45aba42f
KW
125}
126
6583e3c7
KW
127/*
128 * Writes one sector of the L1 table to the disk (can't update single entries
129 * and we really don't want bdrv_pread to perform a read-modify-write)
130 */
131#define L1_ENTRIES_PER_SECTOR (512 / 8)
66f82cee 132static int write_l1_entry(BlockDriverState *bs, int l1_index)
6583e3c7 133{
66f82cee 134 BDRVQcowState *s = bs->opaque;
6583e3c7
KW
135 uint64_t buf[L1_ENTRIES_PER_SECTOR];
136 int l1_start_index;
f7defcb6 137 int i, ret;
6583e3c7
KW
138
139 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
140 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
141 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
142 }
143
66f82cee 144 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
8b3b7206 145 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
f7defcb6
KW
146 buf, sizeof(buf));
147 if (ret < 0) {
148 return ret;
6583e3c7
KW
149 }
150
151 return 0;
152}
153
45aba42f
KW
154/*
155 * l2_allocate
156 *
157 * Allocate a new l2 entry in the file. If l1_index points to an already
158 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
159 * table) copy the contents of the old L2 table into the newly allocated one.
160 * Otherwise the new table is initialized with zeros.
161 *
162 */
163
c46e1167 164static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
45aba42f
KW
165{
166 BDRVQcowState *s = bs->opaque;
6583e3c7 167 uint64_t old_l2_offset;
f4f0d391
KW
168 uint64_t *l2_table;
169 int64_t l2_offset;
c46e1167 170 int ret;
45aba42f
KW
171
172 old_l2_offset = s->l1_table[l1_index];
173
3cce16f4
KW
174 trace_qcow2_l2_allocate(bs, l1_index);
175
45aba42f
KW
176 /* allocate a new l2 entry */
177
ed6ccf0f 178 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
5d757b56 179 if (l2_offset < 0) {
c46e1167 180 return l2_offset;
5d757b56 181 }
29c1a730
KW
182
183 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
184 if (ret < 0) {
185 goto fail;
186 }
45aba42f 187
45aba42f
KW
188 /* allocate a new entry in the l2 cache */
189
3cce16f4 190 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
29c1a730
KW
191 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
192 if (ret < 0) {
193 return ret;
194 }
195
196 l2_table = *table;
45aba42f 197
8e37f681 198 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
45aba42f
KW
199 /* if there was no old l2 table, clear the new table */
200 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
201 } else {
29c1a730
KW
202 uint64_t* old_table;
203
45aba42f 204 /* if there was an old l2 table, read it from the disk */
66f82cee 205 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
8e37f681
KW
206 ret = qcow2_cache_get(bs, s->l2_table_cache,
207 old_l2_offset & L1E_OFFSET_MASK,
29c1a730
KW
208 (void**) &old_table);
209 if (ret < 0) {
210 goto fail;
211 }
212
213 memcpy(l2_table, old_table, s->cluster_size);
214
215 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
c46e1167 216 if (ret < 0) {
175e1152 217 goto fail;
c46e1167 218 }
45aba42f 219 }
29c1a730 220
45aba42f 221 /* write the l2 table to the file */
66f82cee 222 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
29c1a730 223
3cce16f4 224 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
29c1a730
KW
225 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
226 ret = qcow2_cache_flush(bs, s->l2_table_cache);
c46e1167 227 if (ret < 0) {
175e1152
KW
228 goto fail;
229 }
230
231 /* update the L1 entry */
3cce16f4 232 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
175e1152
KW
233 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
234 ret = write_l1_entry(bs, l1_index);
235 if (ret < 0) {
236 goto fail;
c46e1167 237 }
45aba42f 238
c46e1167 239 *table = l2_table;
3cce16f4 240 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
c46e1167 241 return 0;
175e1152
KW
242
243fail:
3cce16f4 244 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
29c1a730 245 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
68dba0bf 246 s->l1_table[l1_index] = old_l2_offset;
175e1152 247 return ret;
45aba42f
KW
248}
249
2bfcc4a0
KW
250/*
251 * Checks how many clusters in a given L2 table are contiguous in the image
252 * file. As soon as one of the flags in the bitmask stop_flags changes compared
253 * to the first cluster, the search is stopped and the cluster is not counted
254 * as contiguous. (This allows it, for example, to stop at the first compressed
255 * cluster which may require a different handling)
256 */
45aba42f 257static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
2bfcc4a0 258 uint64_t *l2_table, uint64_t start, uint64_t stop_flags)
45aba42f
KW
259{
260 int i;
2bfcc4a0
KW
261 uint64_t mask = stop_flags | L2E_OFFSET_MASK;
262 uint64_t offset = be64_to_cpu(l2_table[0]) & mask;
45aba42f
KW
263
264 if (!offset)
265 return 0;
266
2bfcc4a0
KW
267 for (i = start; i < start + nb_clusters; i++) {
268 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
269 if (offset + (uint64_t) i * cluster_size != l2_entry) {
45aba42f 270 break;
2bfcc4a0
KW
271 }
272 }
45aba42f
KW
273
274 return (i - start);
275}
276
277static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
278{
2bfcc4a0
KW
279 int i;
280
281 for (i = 0; i < nb_clusters; i++) {
282 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
45aba42f 283
2bfcc4a0
KW
284 if (type != QCOW2_CLUSTER_UNALLOCATED) {
285 break;
286 }
287 }
45aba42f
KW
288
289 return i;
290}
291
292/* The crypt function is compatible with the linux cryptoloop
293 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
294 supported */
ed6ccf0f
KW
295void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
296 uint8_t *out_buf, const uint8_t *in_buf,
297 int nb_sectors, int enc,
298 const AES_KEY *key)
45aba42f
KW
299{
300 union {
301 uint64_t ll[2];
302 uint8_t b[16];
303 } ivec;
304 int i;
305
306 for(i = 0; i < nb_sectors; i++) {
307 ivec.ll[0] = cpu_to_le64(sector_num);
308 ivec.ll[1] = 0;
309 AES_cbc_encrypt(in_buf, out_buf, 512, key,
310 ivec.b, enc);
311 sector_num++;
312 in_buf += 512;
313 out_buf += 512;
314 }
315}
316
aef4acb6
SH
317static int coroutine_fn copy_sectors(BlockDriverState *bs,
318 uint64_t start_sect,
319 uint64_t cluster_offset,
320 int n_start, int n_end)
45aba42f
KW
321{
322 BDRVQcowState *s = bs->opaque;
aef4acb6
SH
323 QEMUIOVector qiov;
324 struct iovec iov;
45aba42f 325 int n, ret;
1b9f1491
KW
326
327 /*
328 * If this is the last cluster and it is only partially used, we must only
329 * copy until the end of the image, or bdrv_check_request will fail for the
330 * bdrv_read/write calls below.
331 */
332 if (start_sect + n_end > bs->total_sectors) {
333 n_end = bs->total_sectors - start_sect;
334 }
45aba42f
KW
335
336 n = n_end - n_start;
1b9f1491 337 if (n <= 0) {
45aba42f 338 return 0;
1b9f1491
KW
339 }
340
aef4acb6
SH
341 iov.iov_len = n * BDRV_SECTOR_SIZE;
342 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
343
344 qemu_iovec_init_external(&qiov, &iov, 1);
1b9f1491 345
66f82cee 346 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
aef4acb6
SH
347
348 /* Call .bdrv_co_readv() directly instead of using the public block-layer
349 * interface. This avoids double I/O throttling and request tracking,
350 * which can lead to deadlock when block layer copy-on-read is enabled.
351 */
352 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
1b9f1491
KW
353 if (ret < 0) {
354 goto out;
355 }
356
45aba42f 357 if (s->crypt_method) {
ed6ccf0f 358 qcow2_encrypt_sectors(s, start_sect + n_start,
aef4acb6 359 iov.iov_base, iov.iov_base, n, 1,
45aba42f
KW
360 &s->aes_encrypt_key);
361 }
1b9f1491 362
66f82cee 363 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
aef4acb6 364 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
1b9f1491
KW
365 if (ret < 0) {
366 goto out;
367 }
368
369 ret = 0;
370out:
aef4acb6 371 qemu_vfree(iov.iov_base);
1b9f1491 372 return ret;
45aba42f
KW
373}
374
375
376/*
377 * get_cluster_offset
378 *
1c46efaa
KW
379 * For a given offset of the disk image, find the cluster offset in
380 * qcow2 file. The offset is stored in *cluster_offset.
45aba42f 381 *
d57237f2 382 * on entry, *num is the number of contiguous sectors we'd like to
45aba42f
KW
383 * access following offset.
384 *
d57237f2 385 * on exit, *num is the number of contiguous sectors we can read.
45aba42f 386 *
68d000a3
KW
387 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
388 * cases.
45aba42f 389 */
1c46efaa
KW
390int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
391 int *num, uint64_t *cluster_offset)
45aba42f
KW
392{
393 BDRVQcowState *s = bs->opaque;
80ee15a6 394 unsigned int l1_index, l2_index;
1c46efaa 395 uint64_t l2_offset, *l2_table;
45aba42f 396 int l1_bits, c;
80ee15a6
KW
397 unsigned int index_in_cluster, nb_clusters;
398 uint64_t nb_available, nb_needed;
55c17e98 399 int ret;
45aba42f
KW
400
401 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
402 nb_needed = *num + index_in_cluster;
403
404 l1_bits = s->l2_bits + s->cluster_bits;
405
406 /* compute how many bytes there are between the offset and
407 * the end of the l1 entry
408 */
409
80ee15a6 410 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
45aba42f
KW
411
412 /* compute the number of available sectors */
413
414 nb_available = (nb_available >> 9) + index_in_cluster;
415
416 if (nb_needed > nb_available) {
417 nb_needed = nb_available;
418 }
419
1c46efaa 420 *cluster_offset = 0;
45aba42f
KW
421
422 /* seek the the l2 offset in the l1 table */
423
424 l1_index = offset >> l1_bits;
68d000a3
KW
425 if (l1_index >= s->l1_size) {
426 ret = QCOW2_CLUSTER_UNALLOCATED;
45aba42f 427 goto out;
68d000a3 428 }
45aba42f 429
68d000a3
KW
430 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
431 if (!l2_offset) {
432 ret = QCOW2_CLUSTER_UNALLOCATED;
45aba42f 433 goto out;
68d000a3 434 }
45aba42f
KW
435
436 /* load the l2 table in memory */
437
55c17e98
KW
438 ret = l2_load(bs, l2_offset, &l2_table);
439 if (ret < 0) {
440 return ret;
1c46efaa 441 }
45aba42f
KW
442
443 /* find the cluster offset for the given disk offset */
444
445 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
1c46efaa 446 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
45aba42f
KW
447 nb_clusters = size_to_clusters(s, nb_needed << 9);
448
68d000a3
KW
449 ret = qcow2_get_cluster_type(*cluster_offset);
450 switch (ret) {
451 case QCOW2_CLUSTER_COMPRESSED:
452 /* Compressed clusters can only be processed one by one */
453 c = 1;
454 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
455 break;
6377af48 456 case QCOW2_CLUSTER_ZERO:
381b487d
PB
457 if (s->qcow_version < 3) {
458 return -EIO;
459 }
6377af48
KW
460 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
461 &l2_table[l2_index], 0,
462 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
463 *cluster_offset = 0;
464 break;
68d000a3 465 case QCOW2_CLUSTER_UNALLOCATED:
45aba42f
KW
466 /* how many empty clusters ? */
467 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
68d000a3
KW
468 *cluster_offset = 0;
469 break;
470 case QCOW2_CLUSTER_NORMAL:
45aba42f
KW
471 /* how many allocated clusters ? */
472 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
6377af48
KW
473 &l2_table[l2_index], 0,
474 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
68d000a3
KW
475 *cluster_offset &= L2E_OFFSET_MASK;
476 break;
1417d7e4
KW
477 default:
478 abort();
45aba42f
KW
479 }
480
29c1a730
KW
481 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
482
68d000a3
KW
483 nb_available = (c * s->cluster_sectors);
484
45aba42f
KW
485out:
486 if (nb_available > nb_needed)
487 nb_available = nb_needed;
488
489 *num = nb_available - index_in_cluster;
490
68d000a3 491 return ret;
45aba42f
KW
492}
493
494/*
495 * get_cluster_table
496 *
497 * for a given disk offset, load (and allocate if needed)
498 * the l2 table.
499 *
500 * the l2 table offset in the qcow2 file and the cluster index
501 * in the l2 table are given to the caller.
502 *
1e3e8f1a 503 * Returns 0 on success, -errno in failure case
45aba42f 504 */
45aba42f
KW
505static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
506 uint64_t **new_l2_table,
45aba42f
KW
507 int *new_l2_index)
508{
509 BDRVQcowState *s = bs->opaque;
80ee15a6 510 unsigned int l1_index, l2_index;
c46e1167
KW
511 uint64_t l2_offset;
512 uint64_t *l2_table = NULL;
80ee15a6 513 int ret;
45aba42f
KW
514
515 /* seek the the l2 offset in the l1 table */
516
517 l1_index = offset >> (s->l2_bits + s->cluster_bits);
518 if (l1_index >= s->l1_size) {
72893756 519 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
1e3e8f1a
KW
520 if (ret < 0) {
521 return ret;
522 }
45aba42f 523 }
8e37f681
KW
524
525 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
45aba42f
KW
526
527 /* seek the l2 table of the given l2 offset */
528
8e37f681 529 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
45aba42f 530 /* load the l2 table in memory */
55c17e98
KW
531 ret = l2_load(bs, l2_offset, &l2_table);
532 if (ret < 0) {
533 return ret;
1e3e8f1a 534 }
45aba42f 535 } else {
16fde5f2 536 /* First allocate a new L2 table (and do COW if needed) */
c46e1167
KW
537 ret = l2_allocate(bs, l1_index, &l2_table);
538 if (ret < 0) {
539 return ret;
1e3e8f1a 540 }
16fde5f2
KW
541
542 /* Then decrease the refcount of the old table */
543 if (l2_offset) {
544 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
545 }
45aba42f
KW
546 }
547
548 /* find the cluster offset for the given disk offset */
549
550 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
551
552 *new_l2_table = l2_table;
45aba42f
KW
553 *new_l2_index = l2_index;
554
1e3e8f1a 555 return 0;
45aba42f
KW
556}
557
558/*
559 * alloc_compressed_cluster_offset
560 *
561 * For a given offset of the disk image, return cluster offset in
562 * qcow2 file.
563 *
564 * If the offset is not found, allocate a new compressed cluster.
565 *
566 * Return the cluster offset if successful,
567 * Return 0, otherwise.
568 *
569 */
570
ed6ccf0f
KW
571uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
572 uint64_t offset,
573 int compressed_size)
45aba42f
KW
574{
575 BDRVQcowState *s = bs->opaque;
576 int l2_index, ret;
3948d1d4 577 uint64_t *l2_table;
f4f0d391 578 int64_t cluster_offset;
45aba42f
KW
579 int nb_csectors;
580
3948d1d4 581 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1e3e8f1a 582 if (ret < 0) {
45aba42f 583 return 0;
1e3e8f1a 584 }
45aba42f 585
b0b6862e
KW
586 /* Compression can't overwrite anything. Fail if the cluster was already
587 * allocated. */
45aba42f 588 cluster_offset = be64_to_cpu(l2_table[l2_index]);
b0b6862e 589 if (cluster_offset & L2E_OFFSET_MASK) {
8f1efd00
KW
590 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
591 return 0;
592 }
45aba42f 593
ed6ccf0f 594 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
5d757b56 595 if (cluster_offset < 0) {
29c1a730 596 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
5d757b56
KW
597 return 0;
598 }
599
45aba42f
KW
600 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
601 (cluster_offset >> 9);
602
603 cluster_offset |= QCOW_OFLAG_COMPRESSED |
604 ((uint64_t)nb_csectors << s->csize_shift);
605
606 /* update L2 table */
607
608 /* compressed clusters never have the copied flag */
609
66f82cee 610 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
29c1a730 611 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
45aba42f 612 l2_table[l2_index] = cpu_to_be64(cluster_offset);
29c1a730 613 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
79a31189 614 if (ret < 0) {
29c1a730 615 return 0;
4c1612d9
KW
616 }
617
29c1a730 618 return cluster_offset;
4c1612d9
KW
619}
620
593fb83c
KW
621static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
622{
623 BDRVQcowState *s = bs->opaque;
624 int ret;
625
626 if (r->nb_sectors == 0) {
627 return 0;
628 }
629
630 qemu_co_mutex_unlock(&s->lock);
631 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
632 r->offset / BDRV_SECTOR_SIZE,
633 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
634 qemu_co_mutex_lock(&s->lock);
635
636 if (ret < 0) {
637 return ret;
638 }
639
640 /*
641 * Before we update the L2 table to actually point to the new cluster, we
642 * need to be sure that the refcounts have been increased and COW was
643 * handled.
644 */
645 qcow2_cache_depends_on_flush(s->l2_table_cache);
646
647 return 0;
648}
649
148da7ea 650int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
45aba42f
KW
651{
652 BDRVQcowState *s = bs->opaque;
653 int i, j = 0, l2_index, ret;
593fb83c 654 uint64_t *old_cluster, *l2_table;
250196f1 655 uint64_t cluster_offset = m->alloc_offset;
45aba42f 656
3cce16f4 657 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
f50f88b9 658 assert(m->nb_clusters > 0);
45aba42f 659
7267c094 660 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
45aba42f
KW
661
662 /* copy content of unmodified sectors */
593fb83c
KW
663 ret = perform_cow(bs, m, &m->cow_start);
664 if (ret < 0) {
665 goto err;
45aba42f
KW
666 }
667
593fb83c
KW
668 ret = perform_cow(bs, m, &m->cow_end);
669 if (ret < 0) {
670 goto err;
29c1a730
KW
671 }
672
593fb83c 673 /* Update L2 table. */
74c4510a 674 if (s->use_lazy_refcounts) {
280d3735
KW
675 qcow2_mark_dirty(bs);
676 }
bfe8043e
SH
677 if (qcow2_need_accurate_refcounts(s)) {
678 qcow2_cache_set_dependency(bs, s->l2_table_cache,
679 s->refcount_block_cache);
680 }
280d3735 681
3948d1d4 682 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
1e3e8f1a 683 if (ret < 0) {
45aba42f 684 goto err;
1e3e8f1a 685 }
29c1a730 686 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
45aba42f
KW
687
688 for (i = 0; i < m->nb_clusters; i++) {
689 /* if two concurrent writes happen to the same unallocated cluster
690 * each write allocates separate cluster and writes data concurrently.
691 * The first one to complete updates l2 table with pointer to its
692 * cluster the second one has to do RMW (which is done above by
693 * copy_sectors()), update l2 table with its cluster pointer and free
694 * old cluster. This is what this loop does */
695 if(l2_table[l2_index + i] != 0)
696 old_cluster[j++] = l2_table[l2_index + i];
697
698 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
699 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
700 }
701
9f8e668e 702
29c1a730 703 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
c835d00f 704 if (ret < 0) {
45aba42f 705 goto err;
4c1612d9 706 }
45aba42f 707
7ec5e6a4
KW
708 /*
709 * If this was a COW, we need to decrease the refcount of the old cluster.
710 * Also flush bs->file to get the right order for L2 and refcount update.
711 */
712 if (j != 0) {
7ec5e6a4 713 for (i = 0; i < j; i++) {
8e37f681 714 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1);
7ec5e6a4
KW
715 }
716 }
45aba42f
KW
717
718 ret = 0;
719err:
7267c094 720 g_free(old_cluster);
45aba42f
KW
721 return ret;
722 }
723
bf319ece
KW
724/*
725 * Returns the number of contiguous clusters that can be used for an allocating
726 * write, but require COW to be performed (this includes yet unallocated space,
727 * which must copy from the backing file)
728 */
729static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
730 uint64_t *l2_table, int l2_index)
731{
143550a8 732 int i;
bf319ece 733
143550a8
KW
734 for (i = 0; i < nb_clusters; i++) {
735 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
736 int cluster_type = qcow2_get_cluster_type(l2_entry);
737
738 switch(cluster_type) {
739 case QCOW2_CLUSTER_NORMAL:
740 if (l2_entry & QCOW_OFLAG_COPIED) {
741 goto out;
742 }
bf319ece 743 break;
143550a8
KW
744 case QCOW2_CLUSTER_UNALLOCATED:
745 case QCOW2_CLUSTER_COMPRESSED:
6377af48 746 case QCOW2_CLUSTER_ZERO:
bf319ece 747 break;
143550a8
KW
748 default:
749 abort();
750 }
bf319ece
KW
751 }
752
143550a8 753out:
bf319ece
KW
754 assert(i <= nb_clusters);
755 return i;
756}
757
250196f1 758/*
226c3c26
KW
759 * Check if there already is an AIO write request in flight which allocates
760 * the same cluster. In this case we need to wait until the previous
761 * request has completed and updated the L2 table accordingly.
65eb2e35
KW
762 *
763 * Returns:
764 * 0 if there was no dependency. *cur_bytes indicates the number of
765 * bytes from guest_offset that can be read before the next
766 * dependency must be processed (or the request is complete)
767 *
768 * -EAGAIN if we had to wait for another request, previously gathered
769 * information on cluster allocation may be invalid now. The caller
770 * must start over anyway, so consider *cur_bytes undefined.
250196f1 771 */
226c3c26 772static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
65eb2e35 773 uint64_t *cur_bytes)
250196f1
KW
774{
775 BDRVQcowState *s = bs->opaque;
250196f1 776 QCowL2Meta *old_alloc;
65eb2e35 777 uint64_t bytes = *cur_bytes;
250196f1 778
250196f1
KW
779 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
780
65eb2e35
KW
781 uint64_t start = guest_offset;
782 uint64_t end = start + bytes;
783 uint64_t old_start = l2meta_cow_start(old_alloc);
784 uint64_t old_end = l2meta_cow_end(old_alloc);
250196f1 785
d9d74f41 786 if (end <= old_start || start >= old_end) {
250196f1
KW
787 /* No intersection */
788 } else {
789 if (start < old_start) {
790 /* Stop at the start of a running allocation */
65eb2e35 791 bytes = old_start - start;
250196f1 792 } else {
65eb2e35 793 bytes = 0;
250196f1
KW
794 }
795
65eb2e35 796 if (bytes == 0) {
250196f1
KW
797 /* Wait for the dependency to complete. We need to recheck
798 * the free/allocated clusters when we continue. */
799 qemu_co_mutex_unlock(&s->lock);
800 qemu_co_queue_wait(&old_alloc->dependent_requests);
801 qemu_co_mutex_lock(&s->lock);
802 return -EAGAIN;
803 }
804 }
805 }
806
65eb2e35
KW
807 /* Make sure that existing clusters and new allocations are only used up to
808 * the next dependency if we shortened the request above */
809 *cur_bytes = bytes;
250196f1 810
226c3c26
KW
811 return 0;
812}
813
814/*
815 * Allocates new clusters for the given guest_offset.
816 *
817 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
818 * contain the number of clusters that have been allocated and are contiguous
819 * in the image file.
820 *
821 * If *host_offset is non-zero, it specifies the offset in the image file at
822 * which the new clusters must start. *nb_clusters can be 0 on return in this
823 * case if the cluster at host_offset is already in use. If *host_offset is
824 * zero, the clusters can be allocated anywhere in the image file.
825 *
826 * *host_offset is updated to contain the offset into the image file at which
827 * the first allocated cluster starts.
828 *
829 * Return 0 on success and -errno in error cases. -EAGAIN means that the
830 * function has been waiting for another request and the allocation must be
831 * restarted, but the whole request should not be failed.
832 */
833static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
834 uint64_t *host_offset, unsigned int *nb_clusters)
835{
836 BDRVQcowState *s = bs->opaque;
226c3c26
KW
837
838 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
839 *host_offset, *nb_clusters);
840
250196f1
KW
841 /* Allocate new clusters */
842 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
843 if (*host_offset == 0) {
df021791
KW
844 int64_t cluster_offset =
845 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
846 if (cluster_offset < 0) {
847 return cluster_offset;
848 }
849 *host_offset = cluster_offset;
850 return 0;
250196f1 851 } else {
17a71e58 852 int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
df021791
KW
853 if (ret < 0) {
854 return ret;
855 }
856 *nb_clusters = ret;
857 return 0;
250196f1 858 }
250196f1
KW
859}
860
10f0ed8b
KW
861/*
862 * Allocates new clusters for an area that either is yet unallocated or needs a
863 * copy on write. If *host_offset is non-zero, clusters are only allocated if
864 * the new allocation can match the specified host offset.
865 *
866 * Note that guest_offset may not be cluster aligned.
867 *
868 * Returns:
869 * 0: if no clusters could be allocated. *bytes is set to 0,
870 * *host_offset is left unchanged.
871 *
872 * 1: if new clusters were allocated. *bytes may be decreased if the
873 * new allocation doesn't cover all of the requested area.
874 * *host_offset is updated to contain the host offset of the first
875 * newly allocated cluster.
876 *
877 * -errno: in error cases
10f0ed8b
KW
878 */
879static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
c37f4cd7 880 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
10f0ed8b
KW
881{
882 BDRVQcowState *s = bs->opaque;
883 int l2_index;
884 uint64_t *l2_table;
885 uint64_t entry;
f5bc6350 886 unsigned int nb_clusters;
10f0ed8b
KW
887 int ret;
888
889 uint64_t alloc_offset;
890 uint64_t alloc_cluster_offset;
10f0ed8b
KW
891
892 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
893 *bytes);
894 assert(*bytes > 0);
895
f5bc6350
KW
896 /*
897 * Calculate the number of clusters to look for. We stop at L2 table
898 * boundaries to keep things simple.
899 */
c37f4cd7
KW
900 nb_clusters =
901 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
902
f5bc6350 903 l2_index = offset_to_l2_index(s, guest_offset);
c37f4cd7 904 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
f5bc6350 905
10f0ed8b
KW
906 /* Find L2 entry for the first involved cluster */
907 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
908 if (ret < 0) {
909 return ret;
910 }
911
3b8e2e26 912 entry = be64_to_cpu(l2_table[l2_index]);
10f0ed8b
KW
913
914 /* For the moment, overwrite compressed clusters one by one */
915 if (entry & QCOW_OFLAG_COMPRESSED) {
916 nb_clusters = 1;
917 } else {
3b8e2e26 918 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
10f0ed8b
KW
919 }
920
921 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
922 if (ret < 0) {
923 return ret;
924 }
925
926 if (nb_clusters == 0) {
927 *bytes = 0;
928 return 0;
929 }
930
931 /* Calculate start and size of allocation */
3b8e2e26
KW
932 alloc_offset = guest_offset;
933 alloc_cluster_offset = *host_offset;
10f0ed8b
KW
934
935 /* Allocate, if necessary at a given offset in the image file */
936 ret = do_alloc_cluster_offset(bs, alloc_offset, &alloc_cluster_offset,
937 &nb_clusters);
938 if (ret < 0) {
939 goto fail;
940 }
941
942 /* save info needed for meta data update */
943 if (nb_clusters > 0) {
944 /*
945 * requested_sectors: Number of sectors from the start of the first
946 * newly allocated cluster to the end of the (possibly shortened
947 * before) write request.
948 *
949 * avail_sectors: Number of sectors from the start of the first
950 * newly allocated to the end of the last newly allocated cluster.
951 *
952 * nb_sectors: The number of sectors from the start of the first
953 * newly allocated cluster to the end of the aread that the write
954 * request actually writes to (excluding COW at the end)
955 */
c37f4cd7
KW
956 int requested_sectors =
957 (*bytes + offset_into_cluster(s, guest_offset))
958 >> BDRV_SECTOR_BITS;
10f0ed8b
KW
959 int avail_sectors = nb_clusters
960 << (s->cluster_bits - BDRV_SECTOR_BITS);
c37f4cd7
KW
961 int alloc_n_start = offset_into_cluster(s, guest_offset)
962 >> BDRV_SECTOR_BITS;
10f0ed8b
KW
963 int nb_sectors = MIN(requested_sectors, avail_sectors);
964
3b8e2e26 965 if (*host_offset == 0) {
10f0ed8b
KW
966 *host_offset = alloc_cluster_offset;
967 }
968
969 *m = g_malloc0(sizeof(**m));
970
971 **m = (QCowL2Meta) {
972 .alloc_offset = alloc_cluster_offset,
973 .offset = alloc_offset & ~(s->cluster_size - 1),
974 .nb_clusters = nb_clusters,
975 .nb_available = nb_sectors,
976
977 .cow_start = {
978 .offset = 0,
979 .nb_sectors = alloc_n_start,
980 },
981 .cow_end = {
982 .offset = nb_sectors * BDRV_SECTOR_SIZE,
983 .nb_sectors = avail_sectors - nb_sectors,
984 },
985 };
986 qemu_co_queue_init(&(*m)->dependent_requests);
987 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
988
c37f4cd7
KW
989 *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
990 - offset_into_cluster(s, guest_offset));
991 assert(*bytes != 0);
10f0ed8b
KW
992 } else {
993 *bytes = 0;
994 return 0;
995 }
996
997 return 1;
998
999fail:
1000 if (*m && (*m)->nb_clusters > 0) {
1001 QLIST_REMOVE(*m, next_in_flight);
1002 }
1003 return ret;
1004}
1005
45aba42f
KW
1006/*
1007 * alloc_cluster_offset
1008 *
250196f1
KW
1009 * For a given offset on the virtual disk, find the cluster offset in qcow2
1010 * file. If the offset is not found, allocate a new cluster.
45aba42f 1011 *
250196f1 1012 * If the cluster was already allocated, m->nb_clusters is set to 0 and
a7912369 1013 * other fields in m are meaningless.
148da7ea
KW
1014 *
1015 * If the cluster is newly allocated, m->nb_clusters is set to the number of
68d100e9
KW
1016 * contiguous clusters that have been allocated. In this case, the other
1017 * fields of m are valid and contain information about the first allocated
1018 * cluster.
45aba42f 1019 *
68d100e9
KW
1020 * If the request conflicts with another write request in flight, the coroutine
1021 * is queued and will be reentered when the dependency has completed.
148da7ea
KW
1022 *
1023 * Return 0 on success and -errno in error cases
45aba42f 1024 */
f4f0d391 1025int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
f50f88b9 1026 int n_start, int n_end, int *num, uint64_t *host_offset, QCowL2Meta **m)
45aba42f
KW
1027{
1028 BDRVQcowState *s = bs->opaque;
250196f1 1029 int l2_index, ret, sectors;
3948d1d4 1030 uint64_t *l2_table;
250196f1
KW
1031 unsigned int nb_clusters, keep_clusters;
1032 uint64_t cluster_offset;
65eb2e35 1033 uint64_t cur_bytes;
45aba42f 1034
3cce16f4
KW
1035 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
1036 n_start, n_end);
1037
72424114 1038again:
250196f1
KW
1039 /*
1040 * Calculate the number of clusters to look for. We stop at L2 table
1041 * boundaries to keep things simple.
1042 */
17a71e58 1043 l2_index = offset_to_l2_index(s, offset);
250196f1
KW
1044 nb_clusters = MIN(size_to_clusters(s, n_end << BDRV_SECTOR_BITS),
1045 s->l2_size - l2_index);
65eb2e35 1046 n_end = MIN(n_end, nb_clusters * s->cluster_sectors);
45aba42f 1047
17a71e58
KW
1048 /*
1049 * Now start gathering as many contiguous clusters as possible:
1050 *
1051 * 1. Check for overlaps with in-flight allocations
1052 *
1053 * a) Overlap not in the first cluster -> shorten this request and let
1054 * the caller handle the rest in its next loop iteration.
1055 *
1056 * b) Real overlaps of two requests. Yield and restart the search for
1057 * contiguous clusters (the situation could have changed while we
1058 * were sleeping)
1059 *
1060 * c) TODO: Request starts in the same cluster as the in-flight
1061 * allocation ends. Shorten the COW of the in-fight allocation, set
1062 * cluster_offset to write to the same cluster and set up the right
1063 * synchronisation between the in-flight request and the new one.
1064 *
1065 * 2. Count contiguous COPIED clusters.
1066 * TODO: Consider cluster_offset if set in step 1c.
1067 *
1068 * 3. If the request still hasn't completed, allocate new clusters,
1069 * considering any cluster_offset of steps 1c or 2.
1070 */
65eb2e35
KW
1071 cur_bytes = (n_end - n_start) * BDRV_SECTOR_SIZE;
1072 ret = handle_dependencies(bs, offset, &cur_bytes);
17a71e58
KW
1073 if (ret == -EAGAIN) {
1074 goto again;
1075 } else if (ret < 0) {
1076 return ret;
1077 } else {
1078 /* handle_dependencies() may have decreased cur_bytes (shortened
1079 * the allocations below) so that the next dependency is processed
1080 * correctly during the next loop iteration. */
1081 }
1082
65eb2e35
KW
1083 nb_clusters = size_to_clusters(s, offset + cur_bytes)
1084 - (offset >> s->cluster_bits);
1085
17a71e58
KW
1086 /* Find L2 entry for the first involved cluster */
1087 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1088 if (ret < 0) {
1089 return ret;
1090 }
1091
45aba42f
KW
1092 cluster_offset = be64_to_cpu(l2_table[l2_index]);
1093
037689d8 1094 /* Check how many clusters are already allocated and don't need COW */
8e37f681
KW
1095 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
1096 && (cluster_offset & QCOW_OFLAG_COPIED))
1097 {
250196f1 1098 /* We keep all QCOW_OFLAG_COPIED clusters */
6377af48
KW
1099 keep_clusters =
1100 count_contiguous_clusters(nb_clusters, s->cluster_size,
1101 &l2_table[l2_index], 0,
1102 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
250196f1
KW
1103 assert(keep_clusters <= nb_clusters);
1104 nb_clusters -= keep_clusters;
1105 } else {
54e68143
KW
1106 keep_clusters = 0;
1107 cluster_offset = 0;
1108 }
1109
8e37f681 1110 cluster_offset &= L2E_OFFSET_MASK;
f5bc6350 1111 *host_offset = cluster_offset;
45aba42f 1112
72424114
KW
1113 /*
1114 * The L2 table isn't used any more after this. As long as the cache works
1115 * synchronously, it's important to release it before calling
1116 * do_alloc_cluster_offset, which may yield if we need to wait for another
1117 * request to complete. If we still had the reference, we could use up the
1118 * whole cache with sleeping requests.
1119 */
1120 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1121 if (ret < 0) {
1122 return ret;
1123 }
1124
250196f1 1125 /* If there is something left to allocate, do that now */
10f0ed8b
KW
1126 if (nb_clusters == 0) {
1127 goto done;
1128 }
060bee89 1129
3b8e2e26
KW
1130 int alloc_n_start;
1131 int alloc_n_end;
1132
1133 if (keep_clusters != 0) {
1134 offset = start_of_cluster(s, offset
1135 + keep_clusters * s->cluster_size);
1136 cluster_offset = start_of_cluster(s, cluster_offset
1137 + keep_clusters * s->cluster_size);
1138
1139 alloc_n_start = 0;
1140 alloc_n_end = n_end - keep_clusters * s->cluster_sectors;
1141 } else {
1142 alloc_n_start = n_start;
1143 alloc_n_end = n_end;
1144 }
1145
c37f4cd7 1146 cur_bytes = MIN(cur_bytes, ((alloc_n_end - alloc_n_start) << BDRV_SECTOR_BITS));
3b8e2e26 1147
c37f4cd7 1148 ret = handle_alloc(bs, offset, &cluster_offset, &cur_bytes, m);
10f0ed8b
KW
1149 if (ret < 0) {
1150 return ret;
5d757b56 1151 }
45aba42f 1152
f5bc6350
KW
1153 if (!*host_offset) {
1154 *host_offset = cluster_offset;
1155 }
c37f4cd7 1156 nb_clusters = size_to_clusters(s, cur_bytes + offset_into_cluster(s, offset));
10f0ed8b 1157
250196f1 1158 /* Some cleanup work */
10f0ed8b 1159done:
250196f1
KW
1160 sectors = (keep_clusters + nb_clusters) << (s->cluster_bits - 9);
1161 if (sectors > n_end) {
1162 sectors = n_end;
1163 }
45aba42f 1164
250196f1
KW
1165 assert(sectors > n_start);
1166 *num = sectors - n_start;
45aba42f 1167
148da7ea 1168 return 0;
45aba42f
KW
1169}
1170
1171static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1172 const uint8_t *buf, int buf_size)
1173{
1174 z_stream strm1, *strm = &strm1;
1175 int ret, out_len;
1176
1177 memset(strm, 0, sizeof(*strm));
1178
1179 strm->next_in = (uint8_t *)buf;
1180 strm->avail_in = buf_size;
1181 strm->next_out = out_buf;
1182 strm->avail_out = out_buf_size;
1183
1184 ret = inflateInit2(strm, -12);
1185 if (ret != Z_OK)
1186 return -1;
1187 ret = inflate(strm, Z_FINISH);
1188 out_len = strm->next_out - out_buf;
1189 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1190 out_len != out_buf_size) {
1191 inflateEnd(strm);
1192 return -1;
1193 }
1194 inflateEnd(strm);
1195 return 0;
1196}
1197
66f82cee 1198int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
45aba42f 1199{
66f82cee 1200 BDRVQcowState *s = bs->opaque;
45aba42f
KW
1201 int ret, csize, nb_csectors, sector_offset;
1202 uint64_t coffset;
1203
1204 coffset = cluster_offset & s->cluster_offset_mask;
1205 if (s->cluster_cache_offset != coffset) {
1206 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1207 sector_offset = coffset & 511;
1208 csize = nb_csectors * 512 - sector_offset;
66f82cee
KW
1209 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1210 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
45aba42f 1211 if (ret < 0) {
8af36488 1212 return ret;
45aba42f
KW
1213 }
1214 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1215 s->cluster_data + sector_offset, csize) < 0) {
8af36488 1216 return -EIO;
45aba42f
KW
1217 }
1218 s->cluster_cache_offset = coffset;
1219 }
1220 return 0;
1221}
5ea929e3
KW
1222
1223/*
1224 * This discards as many clusters of nb_clusters as possible at once (i.e.
1225 * all clusters in the same L2 table) and returns the number of discarded
1226 * clusters.
1227 */
1228static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1229 unsigned int nb_clusters)
1230{
1231 BDRVQcowState *s = bs->opaque;
3948d1d4 1232 uint64_t *l2_table;
5ea929e3
KW
1233 int l2_index;
1234 int ret;
1235 int i;
1236
3948d1d4 1237 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
5ea929e3
KW
1238 if (ret < 0) {
1239 return ret;
1240 }
1241
1242 /* Limit nb_clusters to one L2 table */
1243 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1244
1245 for (i = 0; i < nb_clusters; i++) {
1246 uint64_t old_offset;
1247
1248 old_offset = be64_to_cpu(l2_table[l2_index + i]);
8e37f681 1249 if ((old_offset & L2E_OFFSET_MASK) == 0) {
5ea929e3
KW
1250 continue;
1251 }
1252
1253 /* First remove L2 entries */
1254 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1255 l2_table[l2_index + i] = cpu_to_be64(0);
1256
1257 /* Then decrease the refcount */
1258 qcow2_free_any_clusters(bs, old_offset, 1);
1259 }
1260
1261 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1262 if (ret < 0) {
1263 return ret;
1264 }
1265
1266 return nb_clusters;
1267}
1268
1269int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1270 int nb_sectors)
1271{
1272 BDRVQcowState *s = bs->opaque;
1273 uint64_t end_offset;
1274 unsigned int nb_clusters;
1275 int ret;
1276
1277 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1278
1279 /* Round start up and end down */
1280 offset = align_offset(offset, s->cluster_size);
1281 end_offset &= ~(s->cluster_size - 1);
1282
1283 if (offset > end_offset) {
1284 return 0;
1285 }
1286
1287 nb_clusters = size_to_clusters(s, end_offset - offset);
1288
1289 /* Each L2 table is handled by its own loop iteration */
1290 while (nb_clusters > 0) {
1291 ret = discard_single_l2(bs, offset, nb_clusters);
1292 if (ret < 0) {
1293 return ret;
1294 }
1295
1296 nb_clusters -= ret;
1297 offset += (ret * s->cluster_size);
1298 }
1299
1300 return 0;
1301}
621f0589
KW
1302
1303/*
1304 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1305 * all clusters in the same L2 table) and returns the number of zeroed
1306 * clusters.
1307 */
1308static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1309 unsigned int nb_clusters)
1310{
1311 BDRVQcowState *s = bs->opaque;
1312 uint64_t *l2_table;
1313 int l2_index;
1314 int ret;
1315 int i;
1316
1317 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1318 if (ret < 0) {
1319 return ret;
1320 }
1321
1322 /* Limit nb_clusters to one L2 table */
1323 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1324
1325 for (i = 0; i < nb_clusters; i++) {
1326 uint64_t old_offset;
1327
1328 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1329
1330 /* Update L2 entries */
1331 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1332 if (old_offset & QCOW_OFLAG_COMPRESSED) {
1333 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1334 qcow2_free_any_clusters(bs, old_offset, 1);
1335 } else {
1336 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1337 }
1338 }
1339
1340 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1341 if (ret < 0) {
1342 return ret;
1343 }
1344
1345 return nb_clusters;
1346}
1347
1348int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1349{
1350 BDRVQcowState *s = bs->opaque;
1351 unsigned int nb_clusters;
1352 int ret;
1353
1354 /* The zero flag is only supported by version 3 and newer */
1355 if (s->qcow_version < 3) {
1356 return -ENOTSUP;
1357 }
1358
1359 /* Each L2 table is handled by its own loop iteration */
1360 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1361
1362 while (nb_clusters > 0) {
1363 ret = zero_single_l2(bs, offset, nb_clusters);
1364 if (ret < 0) {
1365 return ret;
1366 }
1367
1368 nb_clusters -= ret;
1369 offset += (ret * s->cluster_size);
1370 }
1371
1372 return 0;
1373}