]> git.proxmox.com Git - qemu.git/blame - block/qcow2-cluster.c
qcow2: Move cluster gathering to a non-looping loop
[qemu.git] / block / qcow2-cluster.c
CommitLineData
45aba42f
KW
1/*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25#include <zlib.h>
26
27#include "qemu-common.h"
737e150e 28#include "block/block_int.h"
45aba42f 29#include "block/qcow2.h"
3cce16f4 30#include "trace.h"
45aba42f 31
72893756 32int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size)
45aba42f
KW
33{
34 BDRVQcowState *s = bs->opaque;
35 int new_l1_size, new_l1_size2, ret, i;
36 uint64_t *new_l1_table;
5d757b56 37 int64_t new_l1_table_offset;
45aba42f
KW
38 uint8_t data[12];
39
72893756 40 if (min_size <= s->l1_size)
45aba42f 41 return 0;
72893756
SH
42
43 if (exact_size) {
44 new_l1_size = min_size;
45 } else {
46 /* Bump size up to reduce the number of times we have to grow */
47 new_l1_size = s->l1_size;
48 if (new_l1_size == 0) {
49 new_l1_size = 1;
50 }
51 while (min_size > new_l1_size) {
52 new_l1_size = (new_l1_size * 3 + 1) / 2;
53 }
45aba42f 54 }
72893756 55
45aba42f 56#ifdef DEBUG_ALLOC2
35ee5e39 57 fprintf(stderr, "grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
45aba42f
KW
58#endif
59
60 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
7267c094 61 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
45aba42f
KW
62 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
63
64 /* write new table (align to cluster) */
66f82cee 65 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
ed6ccf0f 66 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
5d757b56 67 if (new_l1_table_offset < 0) {
7267c094 68 g_free(new_l1_table);
5d757b56
KW
69 return new_l1_table_offset;
70 }
29c1a730
KW
71
72 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
73 if (ret < 0) {
80fa3341 74 goto fail;
29c1a730 75 }
45aba42f 76
66f82cee 77 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
45aba42f
KW
78 for(i = 0; i < s->l1_size; i++)
79 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
8b3b7206
KW
80 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
81 if (ret < 0)
45aba42f
KW
82 goto fail;
83 for(i = 0; i < s->l1_size; i++)
84 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
85
86 /* set new table */
66f82cee 87 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
45aba42f 88 cpu_to_be32w((uint32_t*)data, new_l1_size);
653df36b 89 cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
8b3b7206
KW
90 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
91 if (ret < 0) {
45aba42f 92 goto fail;
fb8fa77c 93 }
7267c094 94 g_free(s->l1_table);
ed6ccf0f 95 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
45aba42f
KW
96 s->l1_table_offset = new_l1_table_offset;
97 s->l1_table = new_l1_table;
98 s->l1_size = new_l1_size;
99 return 0;
100 fail:
7267c094 101 g_free(new_l1_table);
fb8fa77c 102 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
8b3b7206 103 return ret;
45aba42f
KW
104}
105
45aba42f
KW
106/*
107 * l2_load
108 *
109 * Loads a L2 table into memory. If the table is in the cache, the cache
110 * is used; otherwise the L2 table is loaded from the image file.
111 *
112 * Returns a pointer to the L2 table on success, or NULL if the read from
113 * the image file failed.
114 */
115
55c17e98
KW
116static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
117 uint64_t **l2_table)
45aba42f
KW
118{
119 BDRVQcowState *s = bs->opaque;
55c17e98 120 int ret;
45aba42f 121
29c1a730 122 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
45aba42f 123
29c1a730 124 return ret;
45aba42f
KW
125}
126
6583e3c7
KW
127/*
128 * Writes one sector of the L1 table to the disk (can't update single entries
129 * and we really don't want bdrv_pread to perform a read-modify-write)
130 */
131#define L1_ENTRIES_PER_SECTOR (512 / 8)
66f82cee 132static int write_l1_entry(BlockDriverState *bs, int l1_index)
6583e3c7 133{
66f82cee 134 BDRVQcowState *s = bs->opaque;
6583e3c7
KW
135 uint64_t buf[L1_ENTRIES_PER_SECTOR];
136 int l1_start_index;
f7defcb6 137 int i, ret;
6583e3c7
KW
138
139 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
140 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
141 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
142 }
143
66f82cee 144 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
8b3b7206 145 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
f7defcb6
KW
146 buf, sizeof(buf));
147 if (ret < 0) {
148 return ret;
6583e3c7
KW
149 }
150
151 return 0;
152}
153
45aba42f
KW
154/*
155 * l2_allocate
156 *
157 * Allocate a new l2 entry in the file. If l1_index points to an already
158 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
159 * table) copy the contents of the old L2 table into the newly allocated one.
160 * Otherwise the new table is initialized with zeros.
161 *
162 */
163
c46e1167 164static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
45aba42f
KW
165{
166 BDRVQcowState *s = bs->opaque;
6583e3c7 167 uint64_t old_l2_offset;
f4f0d391
KW
168 uint64_t *l2_table;
169 int64_t l2_offset;
c46e1167 170 int ret;
45aba42f
KW
171
172 old_l2_offset = s->l1_table[l1_index];
173
3cce16f4
KW
174 trace_qcow2_l2_allocate(bs, l1_index);
175
45aba42f
KW
176 /* allocate a new l2 entry */
177
ed6ccf0f 178 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
5d757b56 179 if (l2_offset < 0) {
c46e1167 180 return l2_offset;
5d757b56 181 }
29c1a730
KW
182
183 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
184 if (ret < 0) {
185 goto fail;
186 }
45aba42f 187
45aba42f
KW
188 /* allocate a new entry in the l2 cache */
189
3cce16f4 190 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
29c1a730
KW
191 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
192 if (ret < 0) {
193 return ret;
194 }
195
196 l2_table = *table;
45aba42f 197
8e37f681 198 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
45aba42f
KW
199 /* if there was no old l2 table, clear the new table */
200 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
201 } else {
29c1a730
KW
202 uint64_t* old_table;
203
45aba42f 204 /* if there was an old l2 table, read it from the disk */
66f82cee 205 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
8e37f681
KW
206 ret = qcow2_cache_get(bs, s->l2_table_cache,
207 old_l2_offset & L1E_OFFSET_MASK,
29c1a730
KW
208 (void**) &old_table);
209 if (ret < 0) {
210 goto fail;
211 }
212
213 memcpy(l2_table, old_table, s->cluster_size);
214
215 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
c46e1167 216 if (ret < 0) {
175e1152 217 goto fail;
c46e1167 218 }
45aba42f 219 }
29c1a730 220
45aba42f 221 /* write the l2 table to the file */
66f82cee 222 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
29c1a730 223
3cce16f4 224 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
29c1a730
KW
225 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
226 ret = qcow2_cache_flush(bs, s->l2_table_cache);
c46e1167 227 if (ret < 0) {
175e1152
KW
228 goto fail;
229 }
230
231 /* update the L1 entry */
3cce16f4 232 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
175e1152
KW
233 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
234 ret = write_l1_entry(bs, l1_index);
235 if (ret < 0) {
236 goto fail;
c46e1167 237 }
45aba42f 238
c46e1167 239 *table = l2_table;
3cce16f4 240 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
c46e1167 241 return 0;
175e1152
KW
242
243fail:
3cce16f4 244 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
29c1a730 245 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
68dba0bf 246 s->l1_table[l1_index] = old_l2_offset;
175e1152 247 return ret;
45aba42f
KW
248}
249
2bfcc4a0
KW
250/*
251 * Checks how many clusters in a given L2 table are contiguous in the image
252 * file. As soon as one of the flags in the bitmask stop_flags changes compared
253 * to the first cluster, the search is stopped and the cluster is not counted
254 * as contiguous. (This allows it, for example, to stop at the first compressed
255 * cluster which may require a different handling)
256 */
45aba42f 257static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
2bfcc4a0 258 uint64_t *l2_table, uint64_t start, uint64_t stop_flags)
45aba42f
KW
259{
260 int i;
2bfcc4a0
KW
261 uint64_t mask = stop_flags | L2E_OFFSET_MASK;
262 uint64_t offset = be64_to_cpu(l2_table[0]) & mask;
45aba42f
KW
263
264 if (!offset)
265 return 0;
266
2bfcc4a0
KW
267 for (i = start; i < start + nb_clusters; i++) {
268 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
269 if (offset + (uint64_t) i * cluster_size != l2_entry) {
45aba42f 270 break;
2bfcc4a0
KW
271 }
272 }
45aba42f
KW
273
274 return (i - start);
275}
276
277static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
278{
2bfcc4a0
KW
279 int i;
280
281 for (i = 0; i < nb_clusters; i++) {
282 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
45aba42f 283
2bfcc4a0
KW
284 if (type != QCOW2_CLUSTER_UNALLOCATED) {
285 break;
286 }
287 }
45aba42f
KW
288
289 return i;
290}
291
292/* The crypt function is compatible with the linux cryptoloop
293 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
294 supported */
ed6ccf0f
KW
295void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
296 uint8_t *out_buf, const uint8_t *in_buf,
297 int nb_sectors, int enc,
298 const AES_KEY *key)
45aba42f
KW
299{
300 union {
301 uint64_t ll[2];
302 uint8_t b[16];
303 } ivec;
304 int i;
305
306 for(i = 0; i < nb_sectors; i++) {
307 ivec.ll[0] = cpu_to_le64(sector_num);
308 ivec.ll[1] = 0;
309 AES_cbc_encrypt(in_buf, out_buf, 512, key,
310 ivec.b, enc);
311 sector_num++;
312 in_buf += 512;
313 out_buf += 512;
314 }
315}
316
aef4acb6
SH
317static int coroutine_fn copy_sectors(BlockDriverState *bs,
318 uint64_t start_sect,
319 uint64_t cluster_offset,
320 int n_start, int n_end)
45aba42f
KW
321{
322 BDRVQcowState *s = bs->opaque;
aef4acb6
SH
323 QEMUIOVector qiov;
324 struct iovec iov;
45aba42f 325 int n, ret;
1b9f1491
KW
326
327 /*
328 * If this is the last cluster and it is only partially used, we must only
329 * copy until the end of the image, or bdrv_check_request will fail for the
330 * bdrv_read/write calls below.
331 */
332 if (start_sect + n_end > bs->total_sectors) {
333 n_end = bs->total_sectors - start_sect;
334 }
45aba42f
KW
335
336 n = n_end - n_start;
1b9f1491 337 if (n <= 0) {
45aba42f 338 return 0;
1b9f1491
KW
339 }
340
aef4acb6
SH
341 iov.iov_len = n * BDRV_SECTOR_SIZE;
342 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
343
344 qemu_iovec_init_external(&qiov, &iov, 1);
1b9f1491 345
66f82cee 346 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
aef4acb6
SH
347
348 /* Call .bdrv_co_readv() directly instead of using the public block-layer
349 * interface. This avoids double I/O throttling and request tracking,
350 * which can lead to deadlock when block layer copy-on-read is enabled.
351 */
352 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
1b9f1491
KW
353 if (ret < 0) {
354 goto out;
355 }
356
45aba42f 357 if (s->crypt_method) {
ed6ccf0f 358 qcow2_encrypt_sectors(s, start_sect + n_start,
aef4acb6 359 iov.iov_base, iov.iov_base, n, 1,
45aba42f
KW
360 &s->aes_encrypt_key);
361 }
1b9f1491 362
66f82cee 363 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
aef4acb6 364 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
1b9f1491
KW
365 if (ret < 0) {
366 goto out;
367 }
368
369 ret = 0;
370out:
aef4acb6 371 qemu_vfree(iov.iov_base);
1b9f1491 372 return ret;
45aba42f
KW
373}
374
375
376/*
377 * get_cluster_offset
378 *
1c46efaa
KW
379 * For a given offset of the disk image, find the cluster offset in
380 * qcow2 file. The offset is stored in *cluster_offset.
45aba42f 381 *
d57237f2 382 * on entry, *num is the number of contiguous sectors we'd like to
45aba42f
KW
383 * access following offset.
384 *
d57237f2 385 * on exit, *num is the number of contiguous sectors we can read.
45aba42f 386 *
68d000a3
KW
387 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
388 * cases.
45aba42f 389 */
1c46efaa
KW
390int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
391 int *num, uint64_t *cluster_offset)
45aba42f
KW
392{
393 BDRVQcowState *s = bs->opaque;
80ee15a6 394 unsigned int l1_index, l2_index;
1c46efaa 395 uint64_t l2_offset, *l2_table;
45aba42f 396 int l1_bits, c;
80ee15a6
KW
397 unsigned int index_in_cluster, nb_clusters;
398 uint64_t nb_available, nb_needed;
55c17e98 399 int ret;
45aba42f
KW
400
401 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
402 nb_needed = *num + index_in_cluster;
403
404 l1_bits = s->l2_bits + s->cluster_bits;
405
406 /* compute how many bytes there are between the offset and
407 * the end of the l1 entry
408 */
409
80ee15a6 410 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
45aba42f
KW
411
412 /* compute the number of available sectors */
413
414 nb_available = (nb_available >> 9) + index_in_cluster;
415
416 if (nb_needed > nb_available) {
417 nb_needed = nb_available;
418 }
419
1c46efaa 420 *cluster_offset = 0;
45aba42f
KW
421
422 /* seek the the l2 offset in the l1 table */
423
424 l1_index = offset >> l1_bits;
68d000a3
KW
425 if (l1_index >= s->l1_size) {
426 ret = QCOW2_CLUSTER_UNALLOCATED;
45aba42f 427 goto out;
68d000a3 428 }
45aba42f 429
68d000a3
KW
430 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
431 if (!l2_offset) {
432 ret = QCOW2_CLUSTER_UNALLOCATED;
45aba42f 433 goto out;
68d000a3 434 }
45aba42f
KW
435
436 /* load the l2 table in memory */
437
55c17e98
KW
438 ret = l2_load(bs, l2_offset, &l2_table);
439 if (ret < 0) {
440 return ret;
1c46efaa 441 }
45aba42f
KW
442
443 /* find the cluster offset for the given disk offset */
444
445 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
1c46efaa 446 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
45aba42f
KW
447 nb_clusters = size_to_clusters(s, nb_needed << 9);
448
68d000a3
KW
449 ret = qcow2_get_cluster_type(*cluster_offset);
450 switch (ret) {
451 case QCOW2_CLUSTER_COMPRESSED:
452 /* Compressed clusters can only be processed one by one */
453 c = 1;
454 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
455 break;
6377af48 456 case QCOW2_CLUSTER_ZERO:
381b487d
PB
457 if (s->qcow_version < 3) {
458 return -EIO;
459 }
6377af48
KW
460 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
461 &l2_table[l2_index], 0,
462 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
463 *cluster_offset = 0;
464 break;
68d000a3 465 case QCOW2_CLUSTER_UNALLOCATED:
45aba42f
KW
466 /* how many empty clusters ? */
467 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
68d000a3
KW
468 *cluster_offset = 0;
469 break;
470 case QCOW2_CLUSTER_NORMAL:
45aba42f
KW
471 /* how many allocated clusters ? */
472 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
6377af48
KW
473 &l2_table[l2_index], 0,
474 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
68d000a3
KW
475 *cluster_offset &= L2E_OFFSET_MASK;
476 break;
1417d7e4
KW
477 default:
478 abort();
45aba42f
KW
479 }
480
29c1a730
KW
481 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
482
68d000a3
KW
483 nb_available = (c * s->cluster_sectors);
484
45aba42f
KW
485out:
486 if (nb_available > nb_needed)
487 nb_available = nb_needed;
488
489 *num = nb_available - index_in_cluster;
490
68d000a3 491 return ret;
45aba42f
KW
492}
493
494/*
495 * get_cluster_table
496 *
497 * for a given disk offset, load (and allocate if needed)
498 * the l2 table.
499 *
500 * the l2 table offset in the qcow2 file and the cluster index
501 * in the l2 table are given to the caller.
502 *
1e3e8f1a 503 * Returns 0 on success, -errno in failure case
45aba42f 504 */
45aba42f
KW
505static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
506 uint64_t **new_l2_table,
45aba42f
KW
507 int *new_l2_index)
508{
509 BDRVQcowState *s = bs->opaque;
80ee15a6 510 unsigned int l1_index, l2_index;
c46e1167
KW
511 uint64_t l2_offset;
512 uint64_t *l2_table = NULL;
80ee15a6 513 int ret;
45aba42f
KW
514
515 /* seek the the l2 offset in the l1 table */
516
517 l1_index = offset >> (s->l2_bits + s->cluster_bits);
518 if (l1_index >= s->l1_size) {
72893756 519 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
1e3e8f1a
KW
520 if (ret < 0) {
521 return ret;
522 }
45aba42f 523 }
8e37f681
KW
524
525 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
45aba42f
KW
526
527 /* seek the l2 table of the given l2 offset */
528
8e37f681 529 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
45aba42f 530 /* load the l2 table in memory */
55c17e98
KW
531 ret = l2_load(bs, l2_offset, &l2_table);
532 if (ret < 0) {
533 return ret;
1e3e8f1a 534 }
45aba42f 535 } else {
16fde5f2 536 /* First allocate a new L2 table (and do COW if needed) */
c46e1167
KW
537 ret = l2_allocate(bs, l1_index, &l2_table);
538 if (ret < 0) {
539 return ret;
1e3e8f1a 540 }
16fde5f2
KW
541
542 /* Then decrease the refcount of the old table */
543 if (l2_offset) {
544 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
545 }
45aba42f
KW
546 }
547
548 /* find the cluster offset for the given disk offset */
549
550 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
551
552 *new_l2_table = l2_table;
45aba42f
KW
553 *new_l2_index = l2_index;
554
1e3e8f1a 555 return 0;
45aba42f
KW
556}
557
558/*
559 * alloc_compressed_cluster_offset
560 *
561 * For a given offset of the disk image, return cluster offset in
562 * qcow2 file.
563 *
564 * If the offset is not found, allocate a new compressed cluster.
565 *
566 * Return the cluster offset if successful,
567 * Return 0, otherwise.
568 *
569 */
570
ed6ccf0f
KW
571uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
572 uint64_t offset,
573 int compressed_size)
45aba42f
KW
574{
575 BDRVQcowState *s = bs->opaque;
576 int l2_index, ret;
3948d1d4 577 uint64_t *l2_table;
f4f0d391 578 int64_t cluster_offset;
45aba42f
KW
579 int nb_csectors;
580
3948d1d4 581 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1e3e8f1a 582 if (ret < 0) {
45aba42f 583 return 0;
1e3e8f1a 584 }
45aba42f 585
b0b6862e
KW
586 /* Compression can't overwrite anything. Fail if the cluster was already
587 * allocated. */
45aba42f 588 cluster_offset = be64_to_cpu(l2_table[l2_index]);
b0b6862e 589 if (cluster_offset & L2E_OFFSET_MASK) {
8f1efd00
KW
590 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
591 return 0;
592 }
45aba42f 593
ed6ccf0f 594 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
5d757b56 595 if (cluster_offset < 0) {
29c1a730 596 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
5d757b56
KW
597 return 0;
598 }
599
45aba42f
KW
600 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
601 (cluster_offset >> 9);
602
603 cluster_offset |= QCOW_OFLAG_COMPRESSED |
604 ((uint64_t)nb_csectors << s->csize_shift);
605
606 /* update L2 table */
607
608 /* compressed clusters never have the copied flag */
609
66f82cee 610 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
29c1a730 611 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
45aba42f 612 l2_table[l2_index] = cpu_to_be64(cluster_offset);
29c1a730 613 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
79a31189 614 if (ret < 0) {
29c1a730 615 return 0;
4c1612d9
KW
616 }
617
29c1a730 618 return cluster_offset;
4c1612d9
KW
619}
620
593fb83c
KW
621static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
622{
623 BDRVQcowState *s = bs->opaque;
624 int ret;
625
626 if (r->nb_sectors == 0) {
627 return 0;
628 }
629
630 qemu_co_mutex_unlock(&s->lock);
631 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
632 r->offset / BDRV_SECTOR_SIZE,
633 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
634 qemu_co_mutex_lock(&s->lock);
635
636 if (ret < 0) {
637 return ret;
638 }
639
640 /*
641 * Before we update the L2 table to actually point to the new cluster, we
642 * need to be sure that the refcounts have been increased and COW was
643 * handled.
644 */
645 qcow2_cache_depends_on_flush(s->l2_table_cache);
646
647 return 0;
648}
649
148da7ea 650int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
45aba42f
KW
651{
652 BDRVQcowState *s = bs->opaque;
653 int i, j = 0, l2_index, ret;
593fb83c 654 uint64_t *old_cluster, *l2_table;
250196f1 655 uint64_t cluster_offset = m->alloc_offset;
45aba42f 656
3cce16f4 657 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
f50f88b9 658 assert(m->nb_clusters > 0);
45aba42f 659
7267c094 660 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
45aba42f
KW
661
662 /* copy content of unmodified sectors */
593fb83c
KW
663 ret = perform_cow(bs, m, &m->cow_start);
664 if (ret < 0) {
665 goto err;
45aba42f
KW
666 }
667
593fb83c
KW
668 ret = perform_cow(bs, m, &m->cow_end);
669 if (ret < 0) {
670 goto err;
29c1a730
KW
671 }
672
593fb83c 673 /* Update L2 table. */
74c4510a 674 if (s->use_lazy_refcounts) {
280d3735
KW
675 qcow2_mark_dirty(bs);
676 }
bfe8043e
SH
677 if (qcow2_need_accurate_refcounts(s)) {
678 qcow2_cache_set_dependency(bs, s->l2_table_cache,
679 s->refcount_block_cache);
680 }
280d3735 681
3948d1d4 682 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
1e3e8f1a 683 if (ret < 0) {
45aba42f 684 goto err;
1e3e8f1a 685 }
29c1a730 686 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
45aba42f
KW
687
688 for (i = 0; i < m->nb_clusters; i++) {
689 /* if two concurrent writes happen to the same unallocated cluster
690 * each write allocates separate cluster and writes data concurrently.
691 * The first one to complete updates l2 table with pointer to its
692 * cluster the second one has to do RMW (which is done above by
693 * copy_sectors()), update l2 table with its cluster pointer and free
694 * old cluster. This is what this loop does */
695 if(l2_table[l2_index + i] != 0)
696 old_cluster[j++] = l2_table[l2_index + i];
697
698 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
699 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
700 }
701
9f8e668e 702
29c1a730 703 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
c835d00f 704 if (ret < 0) {
45aba42f 705 goto err;
4c1612d9 706 }
45aba42f 707
7ec5e6a4
KW
708 /*
709 * If this was a COW, we need to decrease the refcount of the old cluster.
710 * Also flush bs->file to get the right order for L2 and refcount update.
711 */
712 if (j != 0) {
7ec5e6a4 713 for (i = 0; i < j; i++) {
8e37f681 714 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1);
7ec5e6a4
KW
715 }
716 }
45aba42f
KW
717
718 ret = 0;
719err:
7267c094 720 g_free(old_cluster);
45aba42f
KW
721 return ret;
722 }
723
bf319ece
KW
724/*
725 * Returns the number of contiguous clusters that can be used for an allocating
726 * write, but require COW to be performed (this includes yet unallocated space,
727 * which must copy from the backing file)
728 */
729static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
730 uint64_t *l2_table, int l2_index)
731{
143550a8 732 int i;
bf319ece 733
143550a8
KW
734 for (i = 0; i < nb_clusters; i++) {
735 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
736 int cluster_type = qcow2_get_cluster_type(l2_entry);
737
738 switch(cluster_type) {
739 case QCOW2_CLUSTER_NORMAL:
740 if (l2_entry & QCOW_OFLAG_COPIED) {
741 goto out;
742 }
bf319ece 743 break;
143550a8
KW
744 case QCOW2_CLUSTER_UNALLOCATED:
745 case QCOW2_CLUSTER_COMPRESSED:
6377af48 746 case QCOW2_CLUSTER_ZERO:
bf319ece 747 break;
143550a8
KW
748 default:
749 abort();
750 }
bf319ece
KW
751 }
752
143550a8 753out:
bf319ece
KW
754 assert(i <= nb_clusters);
755 return i;
756}
757
250196f1 758/*
226c3c26
KW
759 * Check if there already is an AIO write request in flight which allocates
760 * the same cluster. In this case we need to wait until the previous
761 * request has completed and updated the L2 table accordingly.
65eb2e35
KW
762 *
763 * Returns:
764 * 0 if there was no dependency. *cur_bytes indicates the number of
765 * bytes from guest_offset that can be read before the next
766 * dependency must be processed (or the request is complete)
767 *
768 * -EAGAIN if we had to wait for another request, previously gathered
769 * information on cluster allocation may be invalid now. The caller
770 * must start over anyway, so consider *cur_bytes undefined.
250196f1 771 */
226c3c26 772static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
65eb2e35 773 uint64_t *cur_bytes)
250196f1
KW
774{
775 BDRVQcowState *s = bs->opaque;
250196f1 776 QCowL2Meta *old_alloc;
65eb2e35 777 uint64_t bytes = *cur_bytes;
250196f1 778
250196f1
KW
779 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
780
65eb2e35
KW
781 uint64_t start = guest_offset;
782 uint64_t end = start + bytes;
783 uint64_t old_start = l2meta_cow_start(old_alloc);
784 uint64_t old_end = l2meta_cow_end(old_alloc);
250196f1 785
d9d74f41 786 if (end <= old_start || start >= old_end) {
250196f1
KW
787 /* No intersection */
788 } else {
789 if (start < old_start) {
790 /* Stop at the start of a running allocation */
65eb2e35 791 bytes = old_start - start;
250196f1 792 } else {
65eb2e35 793 bytes = 0;
250196f1
KW
794 }
795
65eb2e35 796 if (bytes == 0) {
250196f1
KW
797 /* Wait for the dependency to complete. We need to recheck
798 * the free/allocated clusters when we continue. */
799 qemu_co_mutex_unlock(&s->lock);
800 qemu_co_queue_wait(&old_alloc->dependent_requests);
801 qemu_co_mutex_lock(&s->lock);
802 return -EAGAIN;
803 }
804 }
805 }
806
65eb2e35
KW
807 /* Make sure that existing clusters and new allocations are only used up to
808 * the next dependency if we shortened the request above */
809 *cur_bytes = bytes;
250196f1 810
226c3c26
KW
811 return 0;
812}
813
0af729ec
KW
814/*
815 * Checks how many already allocated clusters that don't require a copy on
816 * write there are at the given guest_offset (up to *bytes). If
817 * *host_offset is not zero, only physically contiguous clusters beginning at
818 * this host offset are counted.
819 *
411d62b0
KW
820 * Note that guest_offset may not be cluster aligned. In this case, the
821 * returned *host_offset points to exact byte referenced by guest_offset and
822 * therefore isn't cluster aligned as well.
0af729ec
KW
823 *
824 * Returns:
825 * 0: if no allocated clusters are available at the given offset.
826 * *bytes is normally unchanged. It is set to 0 if the cluster
827 * is allocated and doesn't need COW, but doesn't have the right
828 * physical offset.
829 *
830 * 1: if allocated clusters that don't require a COW are available at
831 * the requested offset. *bytes may have decreased and describes
832 * the length of the area that can be written to.
833 *
834 * -errno: in error cases
0af729ec
KW
835 */
836static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
c53ede9f 837 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
0af729ec
KW
838{
839 BDRVQcowState *s = bs->opaque;
840 int l2_index;
841 uint64_t cluster_offset;
842 uint64_t *l2_table;
acb0467f 843 unsigned int nb_clusters;
c53ede9f 844 unsigned int keep_clusters;
0af729ec
KW
845 int ret, pret;
846
847 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
848 *bytes);
0af729ec 849
411d62b0
KW
850 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset)
851 == offset_into_cluster(s, *host_offset));
852
acb0467f
KW
853 /*
854 * Calculate the number of clusters to look for. We stop at L2 table
855 * boundaries to keep things simple.
856 */
857 nb_clusters =
858 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
859
860 l2_index = offset_to_l2_index(s, guest_offset);
861 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
862
0af729ec
KW
863 /* Find L2 entry for the first involved cluster */
864 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
865 if (ret < 0) {
866 return ret;
867 }
868
869 cluster_offset = be64_to_cpu(l2_table[l2_index]);
870
871 /* Check how many clusters are already allocated and don't need COW */
872 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
873 && (cluster_offset & QCOW_OFLAG_COPIED))
874 {
e62daaf6
KW
875 /* If a specific host_offset is required, check it */
876 bool offset_matches =
877 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
878
879 if (*host_offset != 0 && !offset_matches) {
880 *bytes = 0;
881 ret = 0;
882 goto out;
883 }
884
0af729ec 885 /* We keep all QCOW_OFLAG_COPIED clusters */
c53ede9f 886 keep_clusters =
acb0467f 887 count_contiguous_clusters(nb_clusters, s->cluster_size,
0af729ec
KW
888 &l2_table[l2_index], 0,
889 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
c53ede9f
KW
890 assert(keep_clusters <= nb_clusters);
891
892 *bytes = MIN(*bytes,
893 keep_clusters * s->cluster_size
894 - offset_into_cluster(s, guest_offset));
0af729ec
KW
895
896 ret = 1;
897 } else {
0af729ec
KW
898 ret = 0;
899 }
900
0af729ec 901 /* Cleanup */
e62daaf6 902out:
0af729ec
KW
903 pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
904 if (pret < 0) {
905 return pret;
906 }
907
e62daaf6
KW
908 /* Only return a host offset if we actually made progress. Otherwise we
909 * would make requirements for handle_alloc() that it can't fulfill */
910 if (ret) {
411d62b0
KW
911 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
912 + offset_into_cluster(s, guest_offset);
e62daaf6
KW
913 }
914
0af729ec
KW
915 return ret;
916}
917
226c3c26
KW
918/*
919 * Allocates new clusters for the given guest_offset.
920 *
921 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
922 * contain the number of clusters that have been allocated and are contiguous
923 * in the image file.
924 *
925 * If *host_offset is non-zero, it specifies the offset in the image file at
926 * which the new clusters must start. *nb_clusters can be 0 on return in this
927 * case if the cluster at host_offset is already in use. If *host_offset is
928 * zero, the clusters can be allocated anywhere in the image file.
929 *
930 * *host_offset is updated to contain the offset into the image file at which
931 * the first allocated cluster starts.
932 *
933 * Return 0 on success and -errno in error cases. -EAGAIN means that the
934 * function has been waiting for another request and the allocation must be
935 * restarted, but the whole request should not be failed.
936 */
937static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
938 uint64_t *host_offset, unsigned int *nb_clusters)
939{
940 BDRVQcowState *s = bs->opaque;
226c3c26
KW
941
942 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
943 *host_offset, *nb_clusters);
944
250196f1
KW
945 /* Allocate new clusters */
946 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
947 if (*host_offset == 0) {
df021791
KW
948 int64_t cluster_offset =
949 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
950 if (cluster_offset < 0) {
951 return cluster_offset;
952 }
953 *host_offset = cluster_offset;
954 return 0;
250196f1 955 } else {
17a71e58 956 int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
df021791
KW
957 if (ret < 0) {
958 return ret;
959 }
960 *nb_clusters = ret;
961 return 0;
250196f1 962 }
250196f1
KW
963}
964
10f0ed8b
KW
965/*
966 * Allocates new clusters for an area that either is yet unallocated or needs a
967 * copy on write. If *host_offset is non-zero, clusters are only allocated if
968 * the new allocation can match the specified host offset.
969 *
411d62b0
KW
970 * Note that guest_offset may not be cluster aligned. In this case, the
971 * returned *host_offset points to exact byte referenced by guest_offset and
972 * therefore isn't cluster aligned as well.
10f0ed8b
KW
973 *
974 * Returns:
975 * 0: if no clusters could be allocated. *bytes is set to 0,
976 * *host_offset is left unchanged.
977 *
978 * 1: if new clusters were allocated. *bytes may be decreased if the
979 * new allocation doesn't cover all of the requested area.
980 * *host_offset is updated to contain the host offset of the first
981 * newly allocated cluster.
982 *
983 * -errno: in error cases
10f0ed8b
KW
984 */
985static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
c37f4cd7 986 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
10f0ed8b
KW
987{
988 BDRVQcowState *s = bs->opaque;
989 int l2_index;
990 uint64_t *l2_table;
991 uint64_t entry;
f5bc6350 992 unsigned int nb_clusters;
10f0ed8b
KW
993 int ret;
994
10f0ed8b 995 uint64_t alloc_cluster_offset;
10f0ed8b
KW
996
997 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
998 *bytes);
999 assert(*bytes > 0);
1000
f5bc6350
KW
1001 /*
1002 * Calculate the number of clusters to look for. We stop at L2 table
1003 * boundaries to keep things simple.
1004 */
c37f4cd7
KW
1005 nb_clusters =
1006 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1007
f5bc6350 1008 l2_index = offset_to_l2_index(s, guest_offset);
c37f4cd7 1009 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
f5bc6350 1010
10f0ed8b
KW
1011 /* Find L2 entry for the first involved cluster */
1012 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1013 if (ret < 0) {
1014 return ret;
1015 }
1016
3b8e2e26 1017 entry = be64_to_cpu(l2_table[l2_index]);
10f0ed8b
KW
1018
1019 /* For the moment, overwrite compressed clusters one by one */
1020 if (entry & QCOW_OFLAG_COMPRESSED) {
1021 nb_clusters = 1;
1022 } else {
3b8e2e26 1023 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
10f0ed8b
KW
1024 }
1025
1026 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1027 if (ret < 0) {
1028 return ret;
1029 }
1030
1031 if (nb_clusters == 0) {
1032 *bytes = 0;
1033 return 0;
1034 }
1035
10f0ed8b 1036 /* Allocate, if necessary at a given offset in the image file */
411d62b0 1037 alloc_cluster_offset = start_of_cluster(s, *host_offset);
83baa9a4 1038 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
10f0ed8b
KW
1039 &nb_clusters);
1040 if (ret < 0) {
1041 goto fail;
1042 }
1043
83baa9a4
KW
1044 /* Can't extend contiguous allocation */
1045 if (nb_clusters == 0) {
10f0ed8b
KW
1046 *bytes = 0;
1047 return 0;
1048 }
1049
83baa9a4
KW
1050 /*
1051 * Save info needed for meta data update.
1052 *
1053 * requested_sectors: Number of sectors from the start of the first
1054 * newly allocated cluster to the end of the (possibly shortened
1055 * before) write request.
1056 *
1057 * avail_sectors: Number of sectors from the start of the first
1058 * newly allocated to the end of the last newly allocated cluster.
1059 *
1060 * nb_sectors: The number of sectors from the start of the first
1061 * newly allocated cluster to the end of the area that the write
1062 * request actually writes to (excluding COW at the end)
1063 */
1064 int requested_sectors =
1065 (*bytes + offset_into_cluster(s, guest_offset))
1066 >> BDRV_SECTOR_BITS;
1067 int avail_sectors = nb_clusters
1068 << (s->cluster_bits - BDRV_SECTOR_BITS);
1069 int alloc_n_start = offset_into_cluster(s, guest_offset)
1070 >> BDRV_SECTOR_BITS;
1071 int nb_sectors = MIN(requested_sectors, avail_sectors);
88c6588c 1072 QCowL2Meta *old_m = *m;
83baa9a4 1073
83baa9a4
KW
1074 *m = g_malloc0(sizeof(**m));
1075
1076 **m = (QCowL2Meta) {
88c6588c
KW
1077 .next = old_m,
1078
411d62b0 1079 .alloc_offset = alloc_cluster_offset,
83baa9a4
KW
1080 .offset = start_of_cluster(s, guest_offset),
1081 .nb_clusters = nb_clusters,
1082 .nb_available = nb_sectors,
1083
1084 .cow_start = {
1085 .offset = 0,
1086 .nb_sectors = alloc_n_start,
1087 },
1088 .cow_end = {
1089 .offset = nb_sectors * BDRV_SECTOR_SIZE,
1090 .nb_sectors = avail_sectors - nb_sectors,
1091 },
1092 };
1093 qemu_co_queue_init(&(*m)->dependent_requests);
1094 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1095
411d62b0 1096 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
83baa9a4
KW
1097 *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
1098 - offset_into_cluster(s, guest_offset));
1099 assert(*bytes != 0);
1100
10f0ed8b
KW
1101 return 1;
1102
1103fail:
1104 if (*m && (*m)->nb_clusters > 0) {
1105 QLIST_REMOVE(*m, next_in_flight);
1106 }
1107 return ret;
1108}
1109
45aba42f
KW
1110/*
1111 * alloc_cluster_offset
1112 *
250196f1
KW
1113 * For a given offset on the virtual disk, find the cluster offset in qcow2
1114 * file. If the offset is not found, allocate a new cluster.
45aba42f 1115 *
250196f1 1116 * If the cluster was already allocated, m->nb_clusters is set to 0 and
a7912369 1117 * other fields in m are meaningless.
148da7ea
KW
1118 *
1119 * If the cluster is newly allocated, m->nb_clusters is set to the number of
68d100e9
KW
1120 * contiguous clusters that have been allocated. In this case, the other
1121 * fields of m are valid and contain information about the first allocated
1122 * cluster.
45aba42f 1123 *
68d100e9
KW
1124 * If the request conflicts with another write request in flight, the coroutine
1125 * is queued and will be reentered when the dependency has completed.
148da7ea
KW
1126 *
1127 * Return 0 on success and -errno in error cases
45aba42f 1128 */
f4f0d391 1129int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
f50f88b9 1130 int n_start, int n_end, int *num, uint64_t *host_offset, QCowL2Meta **m)
45aba42f
KW
1131{
1132 BDRVQcowState *s = bs->opaque;
710c2496 1133 uint64_t start, remaining;
250196f1 1134 uint64_t cluster_offset;
65eb2e35 1135 uint64_t cur_bytes;
710c2496 1136 int ret;
45aba42f 1137
3cce16f4
KW
1138 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
1139 n_start, n_end);
1140
710c2496
KW
1141 assert(n_start * BDRV_SECTOR_SIZE == offset_into_cluster(s, offset));
1142 offset = start_of_cluster(s, offset);
1143
72424114 1144again:
710c2496
KW
1145 start = offset + (n_start << BDRV_SECTOR_BITS);
1146 remaining = (n_end - n_start) << BDRV_SECTOR_BITS;
0af729ec
KW
1147 cluster_offset = 0;
1148 *host_offset = 0;
1149
2c3b32d2
KW
1150 while (true) {
1151 /*
1152 * Now start gathering as many contiguous clusters as possible:
1153 *
1154 * 1. Check for overlaps with in-flight allocations
1155 *
1156 * a) Overlap not in the first cluster -> shorten this request and
1157 * let the caller handle the rest in its next loop iteration.
1158 *
1159 * b) Real overlaps of two requests. Yield and restart the search
1160 * for contiguous clusters (the situation could have changed
1161 * while we were sleeping)
1162 *
1163 * c) TODO: Request starts in the same cluster as the in-flight
1164 * allocation ends. Shorten the COW of the in-fight allocation,
1165 * set cluster_offset to write to the same cluster and set up
1166 * the right synchronisation between the in-flight request and
1167 * the new one.
1168 */
1169 cur_bytes = remaining;
1170 ret = handle_dependencies(bs, start, &cur_bytes);
1171 if (ret == -EAGAIN) {
1172 goto again;
1173 } else if (ret < 0) {
1174 return ret;
1175 } else {
1176 /* handle_dependencies() may have decreased cur_bytes (shortened
1177 * the allocations below) so that the next dependency is processed
1178 * correctly during the next loop iteration. */
0af729ec 1179 }
710c2496 1180
2c3b32d2
KW
1181 /*
1182 * 2. Count contiguous COPIED clusters.
1183 */
1184 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1185 if (ret < 0) {
1186 return ret;
1187 } else if (ret) {
1188 if (!*host_offset) {
1189 *host_offset = start_of_cluster(s, cluster_offset);
1190 }
710c2496 1191
2c3b32d2
KW
1192 start += cur_bytes;
1193 remaining -= cur_bytes;
1194 cluster_offset += cur_bytes;
72424114 1195
2c3b32d2
KW
1196 cur_bytes = remaining;
1197 } else if (cur_bytes == 0) {
1198 break;
1199 }
060bee89 1200
2c3b32d2
KW
1201 /* If there is something left to allocate, do that now */
1202 if (remaining == 0) {
1203 break;
710c2496 1204 }
45aba42f 1205
2c3b32d2
KW
1206 /*
1207 * 3. If the request still hasn't completed, allocate new clusters,
1208 * considering any cluster_offset of steps 1c or 2.
1209 */
1210 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1211 if (ret < 0) {
1212 return ret;
1213 } else if (ret) {
1214 if (!*host_offset) {
1215 *host_offset = start_of_cluster(s, cluster_offset);
1216 }
1217
1218 start += cur_bytes;
1219 remaining -= cur_bytes;
1220 cluster_offset += cur_bytes;
1221
1222 break;
1223 } else {
1224 assert(cur_bytes == 0);
1225 break;
1226 }
f5bc6350 1227 }
10f0ed8b 1228
710c2496
KW
1229 *num = (n_end - n_start) - (remaining >> BDRV_SECTOR_BITS);
1230 assert(*num > 0);
1231 assert(*host_offset != 0);
45aba42f 1232
148da7ea 1233 return 0;
45aba42f
KW
1234}
1235
1236static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1237 const uint8_t *buf, int buf_size)
1238{
1239 z_stream strm1, *strm = &strm1;
1240 int ret, out_len;
1241
1242 memset(strm, 0, sizeof(*strm));
1243
1244 strm->next_in = (uint8_t *)buf;
1245 strm->avail_in = buf_size;
1246 strm->next_out = out_buf;
1247 strm->avail_out = out_buf_size;
1248
1249 ret = inflateInit2(strm, -12);
1250 if (ret != Z_OK)
1251 return -1;
1252 ret = inflate(strm, Z_FINISH);
1253 out_len = strm->next_out - out_buf;
1254 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1255 out_len != out_buf_size) {
1256 inflateEnd(strm);
1257 return -1;
1258 }
1259 inflateEnd(strm);
1260 return 0;
1261}
1262
66f82cee 1263int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
45aba42f 1264{
66f82cee 1265 BDRVQcowState *s = bs->opaque;
45aba42f
KW
1266 int ret, csize, nb_csectors, sector_offset;
1267 uint64_t coffset;
1268
1269 coffset = cluster_offset & s->cluster_offset_mask;
1270 if (s->cluster_cache_offset != coffset) {
1271 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1272 sector_offset = coffset & 511;
1273 csize = nb_csectors * 512 - sector_offset;
66f82cee
KW
1274 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1275 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
45aba42f 1276 if (ret < 0) {
8af36488 1277 return ret;
45aba42f
KW
1278 }
1279 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1280 s->cluster_data + sector_offset, csize) < 0) {
8af36488 1281 return -EIO;
45aba42f
KW
1282 }
1283 s->cluster_cache_offset = coffset;
1284 }
1285 return 0;
1286}
5ea929e3
KW
1287
1288/*
1289 * This discards as many clusters of nb_clusters as possible at once (i.e.
1290 * all clusters in the same L2 table) and returns the number of discarded
1291 * clusters.
1292 */
1293static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1294 unsigned int nb_clusters)
1295{
1296 BDRVQcowState *s = bs->opaque;
3948d1d4 1297 uint64_t *l2_table;
5ea929e3
KW
1298 int l2_index;
1299 int ret;
1300 int i;
1301
3948d1d4 1302 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
5ea929e3
KW
1303 if (ret < 0) {
1304 return ret;
1305 }
1306
1307 /* Limit nb_clusters to one L2 table */
1308 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1309
1310 for (i = 0; i < nb_clusters; i++) {
1311 uint64_t old_offset;
1312
1313 old_offset = be64_to_cpu(l2_table[l2_index + i]);
8e37f681 1314 if ((old_offset & L2E_OFFSET_MASK) == 0) {
5ea929e3
KW
1315 continue;
1316 }
1317
1318 /* First remove L2 entries */
1319 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1320 l2_table[l2_index + i] = cpu_to_be64(0);
1321
1322 /* Then decrease the refcount */
1323 qcow2_free_any_clusters(bs, old_offset, 1);
1324 }
1325
1326 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1327 if (ret < 0) {
1328 return ret;
1329 }
1330
1331 return nb_clusters;
1332}
1333
1334int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1335 int nb_sectors)
1336{
1337 BDRVQcowState *s = bs->opaque;
1338 uint64_t end_offset;
1339 unsigned int nb_clusters;
1340 int ret;
1341
1342 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1343
1344 /* Round start up and end down */
1345 offset = align_offset(offset, s->cluster_size);
1346 end_offset &= ~(s->cluster_size - 1);
1347
1348 if (offset > end_offset) {
1349 return 0;
1350 }
1351
1352 nb_clusters = size_to_clusters(s, end_offset - offset);
1353
1354 /* Each L2 table is handled by its own loop iteration */
1355 while (nb_clusters > 0) {
1356 ret = discard_single_l2(bs, offset, nb_clusters);
1357 if (ret < 0) {
1358 return ret;
1359 }
1360
1361 nb_clusters -= ret;
1362 offset += (ret * s->cluster_size);
1363 }
1364
1365 return 0;
1366}
621f0589
KW
1367
1368/*
1369 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1370 * all clusters in the same L2 table) and returns the number of zeroed
1371 * clusters.
1372 */
1373static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1374 unsigned int nb_clusters)
1375{
1376 BDRVQcowState *s = bs->opaque;
1377 uint64_t *l2_table;
1378 int l2_index;
1379 int ret;
1380 int i;
1381
1382 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1383 if (ret < 0) {
1384 return ret;
1385 }
1386
1387 /* Limit nb_clusters to one L2 table */
1388 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1389
1390 for (i = 0; i < nb_clusters; i++) {
1391 uint64_t old_offset;
1392
1393 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1394
1395 /* Update L2 entries */
1396 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1397 if (old_offset & QCOW_OFLAG_COMPRESSED) {
1398 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1399 qcow2_free_any_clusters(bs, old_offset, 1);
1400 } else {
1401 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1402 }
1403 }
1404
1405 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1406 if (ret < 0) {
1407 return ret;
1408 }
1409
1410 return nb_clusters;
1411}
1412
1413int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1414{
1415 BDRVQcowState *s = bs->opaque;
1416 unsigned int nb_clusters;
1417 int ret;
1418
1419 /* The zero flag is only supported by version 3 and newer */
1420 if (s->qcow_version < 3) {
1421 return -ENOTSUP;
1422 }
1423
1424 /* Each L2 table is handled by its own loop iteration */
1425 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1426
1427 while (nb_clusters > 0) {
1428 ret = zero_single_l2(bs, offset, nb_clusters);
1429 if (ret < 0) {
1430 return ret;
1431 }
1432
1433 nb_clusters -= ret;
1434 offset += (ret * s->cluster_size);
1435 }
1436
1437 return 0;
1438}