]> git.proxmox.com Git - qemu.git/blame - block/qcow2-cluster.c
qcow2: Fail write_compressed when overwriting data
[qemu.git] / block / qcow2-cluster.c
CommitLineData
45aba42f
KW
1/*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25#include <zlib.h>
26
27#include "qemu-common.h"
28#include "block_int.h"
29#include "block/qcow2.h"
3cce16f4 30#include "trace.h"
45aba42f 31
72893756 32int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size)
45aba42f
KW
33{
34 BDRVQcowState *s = bs->opaque;
35 int new_l1_size, new_l1_size2, ret, i;
36 uint64_t *new_l1_table;
5d757b56 37 int64_t new_l1_table_offset;
45aba42f
KW
38 uint8_t data[12];
39
72893756 40 if (min_size <= s->l1_size)
45aba42f 41 return 0;
72893756
SH
42
43 if (exact_size) {
44 new_l1_size = min_size;
45 } else {
46 /* Bump size up to reduce the number of times we have to grow */
47 new_l1_size = s->l1_size;
48 if (new_l1_size == 0) {
49 new_l1_size = 1;
50 }
51 while (min_size > new_l1_size) {
52 new_l1_size = (new_l1_size * 3 + 1) / 2;
53 }
45aba42f 54 }
72893756 55
45aba42f 56#ifdef DEBUG_ALLOC2
35ee5e39 57 fprintf(stderr, "grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
45aba42f
KW
58#endif
59
60 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
7267c094 61 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
45aba42f
KW
62 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
63
64 /* write new table (align to cluster) */
66f82cee 65 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
ed6ccf0f 66 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
5d757b56 67 if (new_l1_table_offset < 0) {
7267c094 68 g_free(new_l1_table);
5d757b56
KW
69 return new_l1_table_offset;
70 }
29c1a730
KW
71
72 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
73 if (ret < 0) {
80fa3341 74 goto fail;
29c1a730 75 }
45aba42f 76
66f82cee 77 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
45aba42f
KW
78 for(i = 0; i < s->l1_size; i++)
79 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
8b3b7206
KW
80 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
81 if (ret < 0)
45aba42f
KW
82 goto fail;
83 for(i = 0; i < s->l1_size; i++)
84 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
85
86 /* set new table */
66f82cee 87 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
45aba42f 88 cpu_to_be32w((uint32_t*)data, new_l1_size);
653df36b 89 cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
8b3b7206
KW
90 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
91 if (ret < 0) {
45aba42f 92 goto fail;
fb8fa77c 93 }
7267c094 94 g_free(s->l1_table);
ed6ccf0f 95 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
45aba42f
KW
96 s->l1_table_offset = new_l1_table_offset;
97 s->l1_table = new_l1_table;
98 s->l1_size = new_l1_size;
99 return 0;
100 fail:
7267c094 101 g_free(new_l1_table);
fb8fa77c 102 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
8b3b7206 103 return ret;
45aba42f
KW
104}
105
45aba42f
KW
106/*
107 * l2_load
108 *
109 * Loads a L2 table into memory. If the table is in the cache, the cache
110 * is used; otherwise the L2 table is loaded from the image file.
111 *
112 * Returns a pointer to the L2 table on success, or NULL if the read from
113 * the image file failed.
114 */
115
55c17e98
KW
116static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
117 uint64_t **l2_table)
45aba42f
KW
118{
119 BDRVQcowState *s = bs->opaque;
55c17e98 120 int ret;
45aba42f 121
29c1a730 122 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
45aba42f 123
29c1a730 124 return ret;
45aba42f
KW
125}
126
6583e3c7
KW
127/*
128 * Writes one sector of the L1 table to the disk (can't update single entries
129 * and we really don't want bdrv_pread to perform a read-modify-write)
130 */
131#define L1_ENTRIES_PER_SECTOR (512 / 8)
66f82cee 132static int write_l1_entry(BlockDriverState *bs, int l1_index)
6583e3c7 133{
66f82cee 134 BDRVQcowState *s = bs->opaque;
6583e3c7
KW
135 uint64_t buf[L1_ENTRIES_PER_SECTOR];
136 int l1_start_index;
f7defcb6 137 int i, ret;
6583e3c7
KW
138
139 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
140 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
141 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
142 }
143
66f82cee 144 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
8b3b7206 145 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
f7defcb6
KW
146 buf, sizeof(buf));
147 if (ret < 0) {
148 return ret;
6583e3c7
KW
149 }
150
151 return 0;
152}
153
45aba42f
KW
154/*
155 * l2_allocate
156 *
157 * Allocate a new l2 entry in the file. If l1_index points to an already
158 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
159 * table) copy the contents of the old L2 table into the newly allocated one.
160 * Otherwise the new table is initialized with zeros.
161 *
162 */
163
c46e1167 164static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
45aba42f
KW
165{
166 BDRVQcowState *s = bs->opaque;
6583e3c7 167 uint64_t old_l2_offset;
f4f0d391
KW
168 uint64_t *l2_table;
169 int64_t l2_offset;
c46e1167 170 int ret;
45aba42f
KW
171
172 old_l2_offset = s->l1_table[l1_index];
173
3cce16f4
KW
174 trace_qcow2_l2_allocate(bs, l1_index);
175
45aba42f
KW
176 /* allocate a new l2 entry */
177
ed6ccf0f 178 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
5d757b56 179 if (l2_offset < 0) {
c46e1167 180 return l2_offset;
5d757b56 181 }
29c1a730
KW
182
183 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
184 if (ret < 0) {
185 goto fail;
186 }
45aba42f 187
45aba42f
KW
188 /* allocate a new entry in the l2 cache */
189
3cce16f4 190 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
29c1a730
KW
191 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
192 if (ret < 0) {
193 return ret;
194 }
195
196 l2_table = *table;
45aba42f
KW
197
198 if (old_l2_offset == 0) {
199 /* if there was no old l2 table, clear the new table */
200 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
201 } else {
29c1a730
KW
202 uint64_t* old_table;
203
45aba42f 204 /* if there was an old l2 table, read it from the disk */
66f82cee 205 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
29c1a730
KW
206 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_offset,
207 (void**) &old_table);
208 if (ret < 0) {
209 goto fail;
210 }
211
212 memcpy(l2_table, old_table, s->cluster_size);
213
214 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
c46e1167 215 if (ret < 0) {
175e1152 216 goto fail;
c46e1167 217 }
45aba42f 218 }
29c1a730 219
45aba42f 220 /* write the l2 table to the file */
66f82cee 221 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
29c1a730 222
3cce16f4 223 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
29c1a730
KW
224 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
225 ret = qcow2_cache_flush(bs, s->l2_table_cache);
c46e1167 226 if (ret < 0) {
175e1152
KW
227 goto fail;
228 }
229
230 /* update the L1 entry */
3cce16f4 231 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
175e1152
KW
232 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
233 ret = write_l1_entry(bs, l1_index);
234 if (ret < 0) {
235 goto fail;
c46e1167 236 }
45aba42f 237
c46e1167 238 *table = l2_table;
3cce16f4 239 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
c46e1167 240 return 0;
175e1152
KW
241
242fail:
3cce16f4 243 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
29c1a730 244 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
68dba0bf 245 s->l1_table[l1_index] = old_l2_offset;
175e1152 246 return ret;
45aba42f
KW
247}
248
2bfcc4a0
KW
249/*
250 * Checks how many clusters in a given L2 table are contiguous in the image
251 * file. As soon as one of the flags in the bitmask stop_flags changes compared
252 * to the first cluster, the search is stopped and the cluster is not counted
253 * as contiguous. (This allows it, for example, to stop at the first compressed
254 * cluster which may require a different handling)
255 */
45aba42f 256static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
2bfcc4a0 257 uint64_t *l2_table, uint64_t start, uint64_t stop_flags)
45aba42f
KW
258{
259 int i;
2bfcc4a0
KW
260 uint64_t mask = stop_flags | L2E_OFFSET_MASK;
261 uint64_t offset = be64_to_cpu(l2_table[0]) & mask;
45aba42f
KW
262
263 if (!offset)
264 return 0;
265
2bfcc4a0
KW
266 for (i = start; i < start + nb_clusters; i++) {
267 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
268 if (offset + (uint64_t) i * cluster_size != l2_entry) {
45aba42f 269 break;
2bfcc4a0
KW
270 }
271 }
45aba42f
KW
272
273 return (i - start);
274}
275
276static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
277{
2bfcc4a0
KW
278 int i;
279
280 for (i = 0; i < nb_clusters; i++) {
281 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
45aba42f 282
2bfcc4a0
KW
283 if (type != QCOW2_CLUSTER_UNALLOCATED) {
284 break;
285 }
286 }
45aba42f
KW
287
288 return i;
289}
290
291/* The crypt function is compatible with the linux cryptoloop
292 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
293 supported */
ed6ccf0f
KW
294void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
295 uint8_t *out_buf, const uint8_t *in_buf,
296 int nb_sectors, int enc,
297 const AES_KEY *key)
45aba42f
KW
298{
299 union {
300 uint64_t ll[2];
301 uint8_t b[16];
302 } ivec;
303 int i;
304
305 for(i = 0; i < nb_sectors; i++) {
306 ivec.ll[0] = cpu_to_le64(sector_num);
307 ivec.ll[1] = 0;
308 AES_cbc_encrypt(in_buf, out_buf, 512, key,
309 ivec.b, enc);
310 sector_num++;
311 in_buf += 512;
312 out_buf += 512;
313 }
314}
315
aef4acb6
SH
316static int coroutine_fn copy_sectors(BlockDriverState *bs,
317 uint64_t start_sect,
318 uint64_t cluster_offset,
319 int n_start, int n_end)
45aba42f
KW
320{
321 BDRVQcowState *s = bs->opaque;
aef4acb6
SH
322 QEMUIOVector qiov;
323 struct iovec iov;
45aba42f 324 int n, ret;
1b9f1491
KW
325
326 /*
327 * If this is the last cluster and it is only partially used, we must only
328 * copy until the end of the image, or bdrv_check_request will fail for the
329 * bdrv_read/write calls below.
330 */
331 if (start_sect + n_end > bs->total_sectors) {
332 n_end = bs->total_sectors - start_sect;
333 }
45aba42f
KW
334
335 n = n_end - n_start;
1b9f1491 336 if (n <= 0) {
45aba42f 337 return 0;
1b9f1491
KW
338 }
339
aef4acb6
SH
340 iov.iov_len = n * BDRV_SECTOR_SIZE;
341 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
342
343 qemu_iovec_init_external(&qiov, &iov, 1);
1b9f1491 344
66f82cee 345 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
aef4acb6
SH
346
347 /* Call .bdrv_co_readv() directly instead of using the public block-layer
348 * interface. This avoids double I/O throttling and request tracking,
349 * which can lead to deadlock when block layer copy-on-read is enabled.
350 */
351 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
1b9f1491
KW
352 if (ret < 0) {
353 goto out;
354 }
355
45aba42f 356 if (s->crypt_method) {
ed6ccf0f 357 qcow2_encrypt_sectors(s, start_sect + n_start,
aef4acb6 358 iov.iov_base, iov.iov_base, n, 1,
45aba42f
KW
359 &s->aes_encrypt_key);
360 }
1b9f1491 361
66f82cee 362 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
aef4acb6 363 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
1b9f1491
KW
364 if (ret < 0) {
365 goto out;
366 }
367
368 ret = 0;
369out:
aef4acb6 370 qemu_vfree(iov.iov_base);
1b9f1491 371 return ret;
45aba42f
KW
372}
373
374
375/*
376 * get_cluster_offset
377 *
1c46efaa
KW
378 * For a given offset of the disk image, find the cluster offset in
379 * qcow2 file. The offset is stored in *cluster_offset.
45aba42f 380 *
d57237f2 381 * on entry, *num is the number of contiguous sectors we'd like to
45aba42f
KW
382 * access following offset.
383 *
d57237f2 384 * on exit, *num is the number of contiguous sectors we can read.
45aba42f 385 *
68d000a3
KW
386 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
387 * cases.
45aba42f 388 */
1c46efaa
KW
389int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
390 int *num, uint64_t *cluster_offset)
45aba42f
KW
391{
392 BDRVQcowState *s = bs->opaque;
80ee15a6 393 unsigned int l1_index, l2_index;
1c46efaa 394 uint64_t l2_offset, *l2_table;
45aba42f 395 int l1_bits, c;
80ee15a6
KW
396 unsigned int index_in_cluster, nb_clusters;
397 uint64_t nb_available, nb_needed;
55c17e98 398 int ret;
45aba42f
KW
399
400 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
401 nb_needed = *num + index_in_cluster;
402
403 l1_bits = s->l2_bits + s->cluster_bits;
404
405 /* compute how many bytes there are between the offset and
406 * the end of the l1 entry
407 */
408
80ee15a6 409 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
45aba42f
KW
410
411 /* compute the number of available sectors */
412
413 nb_available = (nb_available >> 9) + index_in_cluster;
414
415 if (nb_needed > nb_available) {
416 nb_needed = nb_available;
417 }
418
1c46efaa 419 *cluster_offset = 0;
45aba42f
KW
420
421 /* seek the the l2 offset in the l1 table */
422
423 l1_index = offset >> l1_bits;
68d000a3
KW
424 if (l1_index >= s->l1_size) {
425 ret = QCOW2_CLUSTER_UNALLOCATED;
45aba42f 426 goto out;
68d000a3 427 }
45aba42f 428
68d000a3
KW
429 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
430 if (!l2_offset) {
431 ret = QCOW2_CLUSTER_UNALLOCATED;
45aba42f 432 goto out;
68d000a3 433 }
45aba42f
KW
434
435 /* load the l2 table in memory */
436
55c17e98
KW
437 ret = l2_load(bs, l2_offset, &l2_table);
438 if (ret < 0) {
439 return ret;
1c46efaa 440 }
45aba42f
KW
441
442 /* find the cluster offset for the given disk offset */
443
444 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
1c46efaa 445 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
45aba42f
KW
446 nb_clusters = size_to_clusters(s, nb_needed << 9);
447
68d000a3
KW
448 ret = qcow2_get_cluster_type(*cluster_offset);
449 switch (ret) {
450 case QCOW2_CLUSTER_COMPRESSED:
451 /* Compressed clusters can only be processed one by one */
452 c = 1;
453 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
454 break;
455 case QCOW2_CLUSTER_UNALLOCATED:
45aba42f
KW
456 /* how many empty clusters ? */
457 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
68d000a3
KW
458 *cluster_offset = 0;
459 break;
460 case QCOW2_CLUSTER_NORMAL:
45aba42f
KW
461 /* how many allocated clusters ? */
462 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
2bfcc4a0 463 &l2_table[l2_index], 0, QCOW_OFLAG_COMPRESSED);
68d000a3
KW
464 *cluster_offset &= L2E_OFFSET_MASK;
465 break;
45aba42f
KW
466 }
467
29c1a730
KW
468 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
469
68d000a3
KW
470 nb_available = (c * s->cluster_sectors);
471
45aba42f
KW
472out:
473 if (nb_available > nb_needed)
474 nb_available = nb_needed;
475
476 *num = nb_available - index_in_cluster;
477
68d000a3 478 return ret;
45aba42f
KW
479}
480
481/*
482 * get_cluster_table
483 *
484 * for a given disk offset, load (and allocate if needed)
485 * the l2 table.
486 *
487 * the l2 table offset in the qcow2 file and the cluster index
488 * in the l2 table are given to the caller.
489 *
1e3e8f1a 490 * Returns 0 on success, -errno in failure case
45aba42f 491 */
45aba42f
KW
492static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
493 uint64_t **new_l2_table,
45aba42f
KW
494 int *new_l2_index)
495{
496 BDRVQcowState *s = bs->opaque;
80ee15a6 497 unsigned int l1_index, l2_index;
c46e1167
KW
498 uint64_t l2_offset;
499 uint64_t *l2_table = NULL;
80ee15a6 500 int ret;
45aba42f
KW
501
502 /* seek the the l2 offset in the l1 table */
503
504 l1_index = offset >> (s->l2_bits + s->cluster_bits);
505 if (l1_index >= s->l1_size) {
72893756 506 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
1e3e8f1a
KW
507 if (ret < 0) {
508 return ret;
509 }
45aba42f
KW
510 }
511 l2_offset = s->l1_table[l1_index];
512
513 /* seek the l2 table of the given l2 offset */
514
515 if (l2_offset & QCOW_OFLAG_COPIED) {
516 /* load the l2 table in memory */
517 l2_offset &= ~QCOW_OFLAG_COPIED;
55c17e98
KW
518 ret = l2_load(bs, l2_offset, &l2_table);
519 if (ret < 0) {
520 return ret;
1e3e8f1a 521 }
45aba42f 522 } else {
16fde5f2 523 /* First allocate a new L2 table (and do COW if needed) */
c46e1167
KW
524 ret = l2_allocate(bs, l1_index, &l2_table);
525 if (ret < 0) {
526 return ret;
1e3e8f1a 527 }
16fde5f2
KW
528
529 /* Then decrease the refcount of the old table */
530 if (l2_offset) {
531 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
532 }
45aba42f
KW
533 l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
534 }
535
536 /* find the cluster offset for the given disk offset */
537
538 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
539
540 *new_l2_table = l2_table;
45aba42f
KW
541 *new_l2_index = l2_index;
542
1e3e8f1a 543 return 0;
45aba42f
KW
544}
545
546/*
547 * alloc_compressed_cluster_offset
548 *
549 * For a given offset of the disk image, return cluster offset in
550 * qcow2 file.
551 *
552 * If the offset is not found, allocate a new compressed cluster.
553 *
554 * Return the cluster offset if successful,
555 * Return 0, otherwise.
556 *
557 */
558
ed6ccf0f
KW
559uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
560 uint64_t offset,
561 int compressed_size)
45aba42f
KW
562{
563 BDRVQcowState *s = bs->opaque;
564 int l2_index, ret;
3948d1d4 565 uint64_t *l2_table;
f4f0d391 566 int64_t cluster_offset;
45aba42f
KW
567 int nb_csectors;
568
3948d1d4 569 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1e3e8f1a 570 if (ret < 0) {
45aba42f 571 return 0;
1e3e8f1a 572 }
45aba42f 573
b0b6862e
KW
574 /* Compression can't overwrite anything. Fail if the cluster was already
575 * allocated. */
45aba42f 576 cluster_offset = be64_to_cpu(l2_table[l2_index]);
b0b6862e 577 if (cluster_offset & L2E_OFFSET_MASK) {
8f1efd00
KW
578 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
579 return 0;
580 }
45aba42f 581
ed6ccf0f 582 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
5d757b56 583 if (cluster_offset < 0) {
29c1a730 584 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
5d757b56
KW
585 return 0;
586 }
587
45aba42f
KW
588 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
589 (cluster_offset >> 9);
590
591 cluster_offset |= QCOW_OFLAG_COMPRESSED |
592 ((uint64_t)nb_csectors << s->csize_shift);
593
594 /* update L2 table */
595
596 /* compressed clusters never have the copied flag */
597
66f82cee 598 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
29c1a730 599 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
45aba42f 600 l2_table[l2_index] = cpu_to_be64(cluster_offset);
29c1a730 601 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
79a31189 602 if (ret < 0) {
29c1a730 603 return 0;
4c1612d9
KW
604 }
605
29c1a730 606 return cluster_offset;
4c1612d9
KW
607}
608
148da7ea 609int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
45aba42f
KW
610{
611 BDRVQcowState *s = bs->opaque;
612 int i, j = 0, l2_index, ret;
3948d1d4 613 uint64_t *old_cluster, start_sect, *l2_table;
250196f1 614 uint64_t cluster_offset = m->alloc_offset;
29c1a730 615 bool cow = false;
45aba42f 616
3cce16f4
KW
617 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
618
45aba42f
KW
619 if (m->nb_clusters == 0)
620 return 0;
621
7267c094 622 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
45aba42f
KW
623
624 /* copy content of unmodified sectors */
625 start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
626 if (m->n_start) {
29c1a730 627 cow = true;
1b9f1491 628 qemu_co_mutex_unlock(&s->lock);
45aba42f 629 ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
1b9f1491 630 qemu_co_mutex_lock(&s->lock);
45aba42f
KW
631 if (ret < 0)
632 goto err;
633 }
634
635 if (m->nb_available & (s->cluster_sectors - 1)) {
636 uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
29c1a730 637 cow = true;
1b9f1491 638 qemu_co_mutex_unlock(&s->lock);
45aba42f
KW
639 ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
640 m->nb_available - end, s->cluster_sectors);
1b9f1491 641 qemu_co_mutex_lock(&s->lock);
45aba42f
KW
642 if (ret < 0)
643 goto err;
644 }
645
29c1a730
KW
646 /*
647 * Update L2 table.
648 *
649 * Before we update the L2 table to actually point to the new cluster, we
650 * need to be sure that the refcounts have been increased and COW was
651 * handled.
652 */
653 if (cow) {
3de0a294 654 qcow2_cache_depends_on_flush(s->l2_table_cache);
29c1a730
KW
655 }
656
657 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
3948d1d4 658 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
1e3e8f1a 659 if (ret < 0) {
45aba42f 660 goto err;
1e3e8f1a 661 }
29c1a730 662 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
45aba42f
KW
663
664 for (i = 0; i < m->nb_clusters; i++) {
665 /* if two concurrent writes happen to the same unallocated cluster
666 * each write allocates separate cluster and writes data concurrently.
667 * The first one to complete updates l2 table with pointer to its
668 * cluster the second one has to do RMW (which is done above by
669 * copy_sectors()), update l2 table with its cluster pointer and free
670 * old cluster. This is what this loop does */
671 if(l2_table[l2_index + i] != 0)
672 old_cluster[j++] = l2_table[l2_index + i];
673
674 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
675 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
676 }
677
9f8e668e 678
29c1a730 679 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
c835d00f 680 if (ret < 0) {
45aba42f 681 goto err;
4c1612d9 682 }
45aba42f 683
7ec5e6a4
KW
684 /*
685 * If this was a COW, we need to decrease the refcount of the old cluster.
686 * Also flush bs->file to get the right order for L2 and refcount update.
687 */
688 if (j != 0) {
7ec5e6a4
KW
689 for (i = 0; i < j; i++) {
690 qcow2_free_any_clusters(bs,
691 be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
692 }
693 }
45aba42f
KW
694
695 ret = 0;
696err:
7267c094 697 g_free(old_cluster);
45aba42f
KW
698 return ret;
699 }
700
bf319ece
KW
701/*
702 * Returns the number of contiguous clusters that can be used for an allocating
703 * write, but require COW to be performed (this includes yet unallocated space,
704 * which must copy from the backing file)
705 */
706static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
707 uint64_t *l2_table, int l2_index)
708{
709 int i = 0;
710 uint64_t cluster_offset;
711
712 while (i < nb_clusters) {
713 i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
2bfcc4a0
KW
714 &l2_table[l2_index], i,
715 QCOW_OFLAG_COPIED | QCOW_OFLAG_COMPRESSED);
bf319ece
KW
716 if ((i >= nb_clusters) || be64_to_cpu(l2_table[l2_index + i])) {
717 break;
718 }
719
720 i += count_contiguous_free_clusters(nb_clusters - i,
721 &l2_table[l2_index + i]);
722 if (i >= nb_clusters) {
723 break;
724 }
725
726 cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
727
728 if ((cluster_offset & QCOW_OFLAG_COPIED) ||
729 (cluster_offset & QCOW_OFLAG_COMPRESSED))
730 break;
731 }
732
733 assert(i <= nb_clusters);
734 return i;
735}
736
250196f1
KW
737/*
738 * Allocates new clusters for the given guest_offset.
739 *
740 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
741 * contain the number of clusters that have been allocated and are contiguous
742 * in the image file.
743 *
744 * If *host_offset is non-zero, it specifies the offset in the image file at
745 * which the new clusters must start. *nb_clusters can be 0 on return in this
746 * case if the cluster at host_offset is already in use. If *host_offset is
747 * zero, the clusters can be allocated anywhere in the image file.
748 *
749 * *host_offset is updated to contain the offset into the image file at which
750 * the first allocated cluster starts.
751 *
752 * Return 0 on success and -errno in error cases. -EAGAIN means that the
753 * function has been waiting for another request and the allocation must be
754 * restarted, but the whole request should not be failed.
755 */
756static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
757 uint64_t *host_offset, unsigned int *nb_clusters, uint64_t *l2_table)
758{
759 BDRVQcowState *s = bs->opaque;
760 int64_t cluster_offset;
761 QCowL2Meta *old_alloc;
762
763 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
764 *host_offset, *nb_clusters);
765
766 /*
767 * Check if there already is an AIO write request in flight which allocates
768 * the same cluster. In this case we need to wait until the previous
769 * request has completed and updated the L2 table accordingly.
770 */
771 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
772
773 uint64_t start = guest_offset >> s->cluster_bits;
774 uint64_t end = start + *nb_clusters;
775 uint64_t old_start = old_alloc->offset >> s->cluster_bits;
776 uint64_t old_end = old_start + old_alloc->nb_clusters;
777
778 if (end < old_start || start > old_end) {
779 /* No intersection */
780 } else {
781 if (start < old_start) {
782 /* Stop at the start of a running allocation */
783 *nb_clusters = old_start - start;
784 } else {
785 *nb_clusters = 0;
786 }
787
788 if (*nb_clusters == 0) {
789 /* Wait for the dependency to complete. We need to recheck
790 * the free/allocated clusters when we continue. */
791 qemu_co_mutex_unlock(&s->lock);
792 qemu_co_queue_wait(&old_alloc->dependent_requests);
793 qemu_co_mutex_lock(&s->lock);
794 return -EAGAIN;
795 }
796 }
797 }
798
799 if (!*nb_clusters) {
800 abort();
801 }
802
803 /* Allocate new clusters */
804 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
805 if (*host_offset == 0) {
806 cluster_offset = qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
807 } else {
808 cluster_offset = *host_offset;
809 *nb_clusters = qcow2_alloc_clusters_at(bs, cluster_offset, *nb_clusters);
810 }
811
812 if (cluster_offset < 0) {
813 return cluster_offset;
814 }
815 *host_offset = cluster_offset;
816 return 0;
817}
818
45aba42f
KW
819/*
820 * alloc_cluster_offset
821 *
250196f1
KW
822 * For a given offset on the virtual disk, find the cluster offset in qcow2
823 * file. If the offset is not found, allocate a new cluster.
45aba42f 824 *
250196f1 825 * If the cluster was already allocated, m->nb_clusters is set to 0 and
a7912369 826 * other fields in m are meaningless.
148da7ea
KW
827 *
828 * If the cluster is newly allocated, m->nb_clusters is set to the number of
68d100e9
KW
829 * contiguous clusters that have been allocated. In this case, the other
830 * fields of m are valid and contain information about the first allocated
831 * cluster.
45aba42f 832 *
68d100e9
KW
833 * If the request conflicts with another write request in flight, the coroutine
834 * is queued and will be reentered when the dependency has completed.
148da7ea
KW
835 *
836 * Return 0 on success and -errno in error cases
45aba42f 837 */
f4f0d391
KW
838int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
839 int n_start, int n_end, int *num, QCowL2Meta *m)
45aba42f
KW
840{
841 BDRVQcowState *s = bs->opaque;
250196f1 842 int l2_index, ret, sectors;
3948d1d4 843 uint64_t *l2_table;
250196f1
KW
844 unsigned int nb_clusters, keep_clusters;
845 uint64_t cluster_offset;
45aba42f 846
3cce16f4
KW
847 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
848 n_start, n_end);
849
250196f1 850 /* Find L2 entry for the first involved cluster */
3948d1d4 851 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1e3e8f1a 852 if (ret < 0) {
148da7ea 853 return ret;
1e3e8f1a 854 }
45aba42f 855
250196f1
KW
856 /*
857 * Calculate the number of clusters to look for. We stop at L2 table
858 * boundaries to keep things simple.
859 */
68d100e9 860again:
250196f1
KW
861 nb_clusters = MIN(size_to_clusters(s, n_end << BDRV_SECTOR_BITS),
862 s->l2_size - l2_index);
45aba42f
KW
863
864 cluster_offset = be64_to_cpu(l2_table[l2_index]);
865
250196f1
KW
866 /*
867 * Check how many clusters are already allocated and don't need COW, and how
868 * many need a new allocation.
869 */
45aba42f 870 if (cluster_offset & QCOW_OFLAG_COPIED) {
250196f1
KW
871 /* We keep all QCOW_OFLAG_COPIED clusters */
872 keep_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
2bfcc4a0
KW
873 &l2_table[l2_index], 0,
874 QCOW_OFLAG_COPIED);
250196f1
KW
875 assert(keep_clusters <= nb_clusters);
876 nb_clusters -= keep_clusters;
877 } else {
878 /* For the moment, overwrite compressed clusters one by one */
879 if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
880 nb_clusters = 1;
881 } else {
882 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
883 }
45aba42f 884
250196f1
KW
885 keep_clusters = 0;
886 cluster_offset = 0;
45aba42f
KW
887 }
888
250196f1 889 cluster_offset &= ~QCOW_OFLAG_COPIED;
45aba42f 890
250196f1
KW
891 /* If there is something left to allocate, do that now */
892 *m = (QCowL2Meta) {
893 .cluster_offset = cluster_offset,
894 .nb_clusters = 0,
895 };
896 qemu_co_queue_init(&m->dependent_requests);
45aba42f 897
250196f1
KW
898 if (nb_clusters > 0) {
899 uint64_t alloc_offset;
900 uint64_t alloc_cluster_offset;
901 uint64_t keep_bytes = keep_clusters * s->cluster_size;
45aba42f 902
250196f1
KW
903 /* Calculate start and size of allocation */
904 alloc_offset = offset + keep_bytes;
45aba42f 905
250196f1
KW
906 if (keep_clusters == 0) {
907 alloc_cluster_offset = 0;
f214978a 908 } else {
250196f1 909 alloc_cluster_offset = cluster_offset + keep_bytes;
f214978a 910 }
f214978a 911
250196f1
KW
912 /* Allocate, if necessary at a given offset in the image file */
913 ret = do_alloc_cluster_offset(bs, alloc_offset, &alloc_cluster_offset,
914 &nb_clusters, l2_table);
915 if (ret == -EAGAIN) {
916 goto again;
917 } else if (ret < 0) {
918 goto fail;
919 }
f214978a 920
250196f1
KW
921 /* save info needed for meta data update */
922 if (nb_clusters > 0) {
923 int requested_sectors = n_end - keep_clusters * s->cluster_sectors;
924 int avail_sectors = (keep_clusters + nb_clusters)
925 << (s->cluster_bits - BDRV_SECTOR_BITS);
926
927 *m = (QCowL2Meta) {
928 .cluster_offset = keep_clusters == 0 ?
929 alloc_cluster_offset : cluster_offset,
930 .alloc_offset = alloc_cluster_offset,
931 .offset = alloc_offset,
932 .n_start = keep_clusters == 0 ? n_start : 0,
933 .nb_clusters = nb_clusters,
934 .nb_available = MIN(requested_sectors, avail_sectors),
935 };
936 qemu_co_queue_init(&m->dependent_requests);
937 QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
938 }
5d757b56 939 }
45aba42f 940
250196f1 941 /* Some cleanup work */
29c1a730
KW
942 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
943 if (ret < 0) {
9e2a3701 944 goto fail_put;
29c1a730
KW
945 }
946
250196f1
KW
947 sectors = (keep_clusters + nb_clusters) << (s->cluster_bits - 9);
948 if (sectors > n_end) {
949 sectors = n_end;
950 }
45aba42f 951
250196f1
KW
952 assert(sectors > n_start);
953 *num = sectors - n_start;
45aba42f 954
148da7ea 955 return 0;
29c1a730
KW
956
957fail:
958 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
9e2a3701 959fail_put:
8dc0a5e7 960 if (m->nb_clusters > 0) {
250196f1
KW
961 QLIST_REMOVE(m, next_in_flight);
962 }
29c1a730 963 return ret;
45aba42f
KW
964}
965
966static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
967 const uint8_t *buf, int buf_size)
968{
969 z_stream strm1, *strm = &strm1;
970 int ret, out_len;
971
972 memset(strm, 0, sizeof(*strm));
973
974 strm->next_in = (uint8_t *)buf;
975 strm->avail_in = buf_size;
976 strm->next_out = out_buf;
977 strm->avail_out = out_buf_size;
978
979 ret = inflateInit2(strm, -12);
980 if (ret != Z_OK)
981 return -1;
982 ret = inflate(strm, Z_FINISH);
983 out_len = strm->next_out - out_buf;
984 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
985 out_len != out_buf_size) {
986 inflateEnd(strm);
987 return -1;
988 }
989 inflateEnd(strm);
990 return 0;
991}
992
66f82cee 993int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
45aba42f 994{
66f82cee 995 BDRVQcowState *s = bs->opaque;
45aba42f
KW
996 int ret, csize, nb_csectors, sector_offset;
997 uint64_t coffset;
998
999 coffset = cluster_offset & s->cluster_offset_mask;
1000 if (s->cluster_cache_offset != coffset) {
1001 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1002 sector_offset = coffset & 511;
1003 csize = nb_csectors * 512 - sector_offset;
66f82cee
KW
1004 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1005 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
45aba42f 1006 if (ret < 0) {
8af36488 1007 return ret;
45aba42f
KW
1008 }
1009 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1010 s->cluster_data + sector_offset, csize) < 0) {
8af36488 1011 return -EIO;
45aba42f
KW
1012 }
1013 s->cluster_cache_offset = coffset;
1014 }
1015 return 0;
1016}
5ea929e3
KW
1017
1018/*
1019 * This discards as many clusters of nb_clusters as possible at once (i.e.
1020 * all clusters in the same L2 table) and returns the number of discarded
1021 * clusters.
1022 */
1023static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1024 unsigned int nb_clusters)
1025{
1026 BDRVQcowState *s = bs->opaque;
3948d1d4 1027 uint64_t *l2_table;
5ea929e3
KW
1028 int l2_index;
1029 int ret;
1030 int i;
1031
3948d1d4 1032 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
5ea929e3
KW
1033 if (ret < 0) {
1034 return ret;
1035 }
1036
1037 /* Limit nb_clusters to one L2 table */
1038 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1039
1040 for (i = 0; i < nb_clusters; i++) {
1041 uint64_t old_offset;
1042
1043 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1044 old_offset &= ~QCOW_OFLAG_COPIED;
1045
1046 if (old_offset == 0) {
1047 continue;
1048 }
1049
1050 /* First remove L2 entries */
1051 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1052 l2_table[l2_index + i] = cpu_to_be64(0);
1053
1054 /* Then decrease the refcount */
1055 qcow2_free_any_clusters(bs, old_offset, 1);
1056 }
1057
1058 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1059 if (ret < 0) {
1060 return ret;
1061 }
1062
1063 return nb_clusters;
1064}
1065
1066int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1067 int nb_sectors)
1068{
1069 BDRVQcowState *s = bs->opaque;
1070 uint64_t end_offset;
1071 unsigned int nb_clusters;
1072 int ret;
1073
1074 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1075
1076 /* Round start up and end down */
1077 offset = align_offset(offset, s->cluster_size);
1078 end_offset &= ~(s->cluster_size - 1);
1079
1080 if (offset > end_offset) {
1081 return 0;
1082 }
1083
1084 nb_clusters = size_to_clusters(s, end_offset - offset);
1085
1086 /* Each L2 table is handled by its own loop iteration */
1087 while (nb_clusters > 0) {
1088 ret = discard_single_l2(bs, offset, nb_clusters);
1089 if (ret < 0) {
1090 return ret;
1091 }
1092
1093 nb_clusters -= ret;
1094 offset += (ret * s->cluster_size);
1095 }
1096
1097 return 0;
1098}