]> git.proxmox.com Git - qemu.git/blame - block/qcow2-cluster.c
qcow2: Refactor qcow2_free_any_clusters
[qemu.git] / block / qcow2-cluster.c
CommitLineData
45aba42f
KW
1/*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25#include <zlib.h>
26
27#include "qemu-common.h"
28#include "block_int.h"
29#include "block/qcow2.h"
3cce16f4 30#include "trace.h"
45aba42f 31
72893756 32int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size)
45aba42f
KW
33{
34 BDRVQcowState *s = bs->opaque;
35 int new_l1_size, new_l1_size2, ret, i;
36 uint64_t *new_l1_table;
5d757b56 37 int64_t new_l1_table_offset;
45aba42f
KW
38 uint8_t data[12];
39
72893756 40 if (min_size <= s->l1_size)
45aba42f 41 return 0;
72893756
SH
42
43 if (exact_size) {
44 new_l1_size = min_size;
45 } else {
46 /* Bump size up to reduce the number of times we have to grow */
47 new_l1_size = s->l1_size;
48 if (new_l1_size == 0) {
49 new_l1_size = 1;
50 }
51 while (min_size > new_l1_size) {
52 new_l1_size = (new_l1_size * 3 + 1) / 2;
53 }
45aba42f 54 }
72893756 55
45aba42f 56#ifdef DEBUG_ALLOC2
35ee5e39 57 fprintf(stderr, "grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
45aba42f
KW
58#endif
59
60 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
7267c094 61 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
45aba42f
KW
62 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
63
64 /* write new table (align to cluster) */
66f82cee 65 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
ed6ccf0f 66 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
5d757b56 67 if (new_l1_table_offset < 0) {
7267c094 68 g_free(new_l1_table);
5d757b56
KW
69 return new_l1_table_offset;
70 }
29c1a730
KW
71
72 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
73 if (ret < 0) {
80fa3341 74 goto fail;
29c1a730 75 }
45aba42f 76
66f82cee 77 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
45aba42f
KW
78 for(i = 0; i < s->l1_size; i++)
79 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
8b3b7206
KW
80 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
81 if (ret < 0)
45aba42f
KW
82 goto fail;
83 for(i = 0; i < s->l1_size; i++)
84 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
85
86 /* set new table */
66f82cee 87 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
45aba42f 88 cpu_to_be32w((uint32_t*)data, new_l1_size);
653df36b 89 cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
8b3b7206
KW
90 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
91 if (ret < 0) {
45aba42f 92 goto fail;
fb8fa77c 93 }
7267c094 94 g_free(s->l1_table);
ed6ccf0f 95 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
45aba42f
KW
96 s->l1_table_offset = new_l1_table_offset;
97 s->l1_table = new_l1_table;
98 s->l1_size = new_l1_size;
99 return 0;
100 fail:
7267c094 101 g_free(new_l1_table);
fb8fa77c 102 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
8b3b7206 103 return ret;
45aba42f
KW
104}
105
45aba42f
KW
106/*
107 * l2_load
108 *
109 * Loads a L2 table into memory. If the table is in the cache, the cache
110 * is used; otherwise the L2 table is loaded from the image file.
111 *
112 * Returns a pointer to the L2 table on success, or NULL if the read from
113 * the image file failed.
114 */
115
55c17e98
KW
116static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
117 uint64_t **l2_table)
45aba42f
KW
118{
119 BDRVQcowState *s = bs->opaque;
55c17e98 120 int ret;
45aba42f 121
29c1a730 122 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
45aba42f 123
29c1a730 124 return ret;
45aba42f
KW
125}
126
6583e3c7
KW
127/*
128 * Writes one sector of the L1 table to the disk (can't update single entries
129 * and we really don't want bdrv_pread to perform a read-modify-write)
130 */
131#define L1_ENTRIES_PER_SECTOR (512 / 8)
66f82cee 132static int write_l1_entry(BlockDriverState *bs, int l1_index)
6583e3c7 133{
66f82cee 134 BDRVQcowState *s = bs->opaque;
6583e3c7
KW
135 uint64_t buf[L1_ENTRIES_PER_SECTOR];
136 int l1_start_index;
f7defcb6 137 int i, ret;
6583e3c7
KW
138
139 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
140 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
141 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
142 }
143
66f82cee 144 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
8b3b7206 145 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
f7defcb6
KW
146 buf, sizeof(buf));
147 if (ret < 0) {
148 return ret;
6583e3c7
KW
149 }
150
151 return 0;
152}
153
45aba42f
KW
154/*
155 * l2_allocate
156 *
157 * Allocate a new l2 entry in the file. If l1_index points to an already
158 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
159 * table) copy the contents of the old L2 table into the newly allocated one.
160 * Otherwise the new table is initialized with zeros.
161 *
162 */
163
c46e1167 164static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
45aba42f
KW
165{
166 BDRVQcowState *s = bs->opaque;
6583e3c7 167 uint64_t old_l2_offset;
f4f0d391
KW
168 uint64_t *l2_table;
169 int64_t l2_offset;
c46e1167 170 int ret;
45aba42f
KW
171
172 old_l2_offset = s->l1_table[l1_index];
173
3cce16f4
KW
174 trace_qcow2_l2_allocate(bs, l1_index);
175
45aba42f
KW
176 /* allocate a new l2 entry */
177
ed6ccf0f 178 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
5d757b56 179 if (l2_offset < 0) {
c46e1167 180 return l2_offset;
5d757b56 181 }
29c1a730
KW
182
183 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
184 if (ret < 0) {
185 goto fail;
186 }
45aba42f 187
45aba42f
KW
188 /* allocate a new entry in the l2 cache */
189
3cce16f4 190 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
29c1a730
KW
191 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
192 if (ret < 0) {
193 return ret;
194 }
195
196 l2_table = *table;
45aba42f 197
8e37f681 198 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
45aba42f
KW
199 /* if there was no old l2 table, clear the new table */
200 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
201 } else {
29c1a730
KW
202 uint64_t* old_table;
203
45aba42f 204 /* if there was an old l2 table, read it from the disk */
66f82cee 205 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
8e37f681
KW
206 ret = qcow2_cache_get(bs, s->l2_table_cache,
207 old_l2_offset & L1E_OFFSET_MASK,
29c1a730
KW
208 (void**) &old_table);
209 if (ret < 0) {
210 goto fail;
211 }
212
213 memcpy(l2_table, old_table, s->cluster_size);
214
215 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
c46e1167 216 if (ret < 0) {
175e1152 217 goto fail;
c46e1167 218 }
45aba42f 219 }
29c1a730 220
45aba42f 221 /* write the l2 table to the file */
66f82cee 222 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
29c1a730 223
3cce16f4 224 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
29c1a730
KW
225 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
226 ret = qcow2_cache_flush(bs, s->l2_table_cache);
c46e1167 227 if (ret < 0) {
175e1152
KW
228 goto fail;
229 }
230
231 /* update the L1 entry */
3cce16f4 232 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
175e1152
KW
233 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
234 ret = write_l1_entry(bs, l1_index);
235 if (ret < 0) {
236 goto fail;
c46e1167 237 }
45aba42f 238
c46e1167 239 *table = l2_table;
3cce16f4 240 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
c46e1167 241 return 0;
175e1152
KW
242
243fail:
3cce16f4 244 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
29c1a730 245 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
68dba0bf 246 s->l1_table[l1_index] = old_l2_offset;
175e1152 247 return ret;
45aba42f
KW
248}
249
2bfcc4a0
KW
250/*
251 * Checks how many clusters in a given L2 table are contiguous in the image
252 * file. As soon as one of the flags in the bitmask stop_flags changes compared
253 * to the first cluster, the search is stopped and the cluster is not counted
254 * as contiguous. (This allows it, for example, to stop at the first compressed
255 * cluster which may require a different handling)
256 */
45aba42f 257static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
2bfcc4a0 258 uint64_t *l2_table, uint64_t start, uint64_t stop_flags)
45aba42f
KW
259{
260 int i;
2bfcc4a0
KW
261 uint64_t mask = stop_flags | L2E_OFFSET_MASK;
262 uint64_t offset = be64_to_cpu(l2_table[0]) & mask;
45aba42f
KW
263
264 if (!offset)
265 return 0;
266
2bfcc4a0
KW
267 for (i = start; i < start + nb_clusters; i++) {
268 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
269 if (offset + (uint64_t) i * cluster_size != l2_entry) {
45aba42f 270 break;
2bfcc4a0
KW
271 }
272 }
45aba42f
KW
273
274 return (i - start);
275}
276
277static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
278{
2bfcc4a0
KW
279 int i;
280
281 for (i = 0; i < nb_clusters; i++) {
282 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
45aba42f 283
2bfcc4a0
KW
284 if (type != QCOW2_CLUSTER_UNALLOCATED) {
285 break;
286 }
287 }
45aba42f
KW
288
289 return i;
290}
291
292/* The crypt function is compatible with the linux cryptoloop
293 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
294 supported */
ed6ccf0f
KW
295void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
296 uint8_t *out_buf, const uint8_t *in_buf,
297 int nb_sectors, int enc,
298 const AES_KEY *key)
45aba42f
KW
299{
300 union {
301 uint64_t ll[2];
302 uint8_t b[16];
303 } ivec;
304 int i;
305
306 for(i = 0; i < nb_sectors; i++) {
307 ivec.ll[0] = cpu_to_le64(sector_num);
308 ivec.ll[1] = 0;
309 AES_cbc_encrypt(in_buf, out_buf, 512, key,
310 ivec.b, enc);
311 sector_num++;
312 in_buf += 512;
313 out_buf += 512;
314 }
315}
316
aef4acb6
SH
317static int coroutine_fn copy_sectors(BlockDriverState *bs,
318 uint64_t start_sect,
319 uint64_t cluster_offset,
320 int n_start, int n_end)
45aba42f
KW
321{
322 BDRVQcowState *s = bs->opaque;
aef4acb6
SH
323 QEMUIOVector qiov;
324 struct iovec iov;
45aba42f 325 int n, ret;
1b9f1491
KW
326
327 /*
328 * If this is the last cluster and it is only partially used, we must only
329 * copy until the end of the image, or bdrv_check_request will fail for the
330 * bdrv_read/write calls below.
331 */
332 if (start_sect + n_end > bs->total_sectors) {
333 n_end = bs->total_sectors - start_sect;
334 }
45aba42f
KW
335
336 n = n_end - n_start;
1b9f1491 337 if (n <= 0) {
45aba42f 338 return 0;
1b9f1491
KW
339 }
340
aef4acb6
SH
341 iov.iov_len = n * BDRV_SECTOR_SIZE;
342 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
343
344 qemu_iovec_init_external(&qiov, &iov, 1);
1b9f1491 345
66f82cee 346 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
aef4acb6
SH
347
348 /* Call .bdrv_co_readv() directly instead of using the public block-layer
349 * interface. This avoids double I/O throttling and request tracking,
350 * which can lead to deadlock when block layer copy-on-read is enabled.
351 */
352 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
1b9f1491
KW
353 if (ret < 0) {
354 goto out;
355 }
356
45aba42f 357 if (s->crypt_method) {
ed6ccf0f 358 qcow2_encrypt_sectors(s, start_sect + n_start,
aef4acb6 359 iov.iov_base, iov.iov_base, n, 1,
45aba42f
KW
360 &s->aes_encrypt_key);
361 }
1b9f1491 362
66f82cee 363 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
aef4acb6 364 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
1b9f1491
KW
365 if (ret < 0) {
366 goto out;
367 }
368
369 ret = 0;
370out:
aef4acb6 371 qemu_vfree(iov.iov_base);
1b9f1491 372 return ret;
45aba42f
KW
373}
374
375
376/*
377 * get_cluster_offset
378 *
1c46efaa
KW
379 * For a given offset of the disk image, find the cluster offset in
380 * qcow2 file. The offset is stored in *cluster_offset.
45aba42f 381 *
d57237f2 382 * on entry, *num is the number of contiguous sectors we'd like to
45aba42f
KW
383 * access following offset.
384 *
d57237f2 385 * on exit, *num is the number of contiguous sectors we can read.
45aba42f 386 *
68d000a3
KW
387 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
388 * cases.
45aba42f 389 */
1c46efaa
KW
390int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
391 int *num, uint64_t *cluster_offset)
45aba42f
KW
392{
393 BDRVQcowState *s = bs->opaque;
80ee15a6 394 unsigned int l1_index, l2_index;
1c46efaa 395 uint64_t l2_offset, *l2_table;
45aba42f 396 int l1_bits, c;
80ee15a6
KW
397 unsigned int index_in_cluster, nb_clusters;
398 uint64_t nb_available, nb_needed;
55c17e98 399 int ret;
45aba42f
KW
400
401 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
402 nb_needed = *num + index_in_cluster;
403
404 l1_bits = s->l2_bits + s->cluster_bits;
405
406 /* compute how many bytes there are between the offset and
407 * the end of the l1 entry
408 */
409
80ee15a6 410 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
45aba42f
KW
411
412 /* compute the number of available sectors */
413
414 nb_available = (nb_available >> 9) + index_in_cluster;
415
416 if (nb_needed > nb_available) {
417 nb_needed = nb_available;
418 }
419
1c46efaa 420 *cluster_offset = 0;
45aba42f
KW
421
422 /* seek the the l2 offset in the l1 table */
423
424 l1_index = offset >> l1_bits;
68d000a3
KW
425 if (l1_index >= s->l1_size) {
426 ret = QCOW2_CLUSTER_UNALLOCATED;
45aba42f 427 goto out;
68d000a3 428 }
45aba42f 429
68d000a3
KW
430 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
431 if (!l2_offset) {
432 ret = QCOW2_CLUSTER_UNALLOCATED;
45aba42f 433 goto out;
68d000a3 434 }
45aba42f
KW
435
436 /* load the l2 table in memory */
437
55c17e98
KW
438 ret = l2_load(bs, l2_offset, &l2_table);
439 if (ret < 0) {
440 return ret;
1c46efaa 441 }
45aba42f
KW
442
443 /* find the cluster offset for the given disk offset */
444
445 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
1c46efaa 446 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
45aba42f
KW
447 nb_clusters = size_to_clusters(s, nb_needed << 9);
448
68d000a3
KW
449 ret = qcow2_get_cluster_type(*cluster_offset);
450 switch (ret) {
451 case QCOW2_CLUSTER_COMPRESSED:
452 /* Compressed clusters can only be processed one by one */
453 c = 1;
454 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
455 break;
456 case QCOW2_CLUSTER_UNALLOCATED:
45aba42f
KW
457 /* how many empty clusters ? */
458 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
68d000a3
KW
459 *cluster_offset = 0;
460 break;
461 case QCOW2_CLUSTER_NORMAL:
45aba42f
KW
462 /* how many allocated clusters ? */
463 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
2bfcc4a0 464 &l2_table[l2_index], 0, QCOW_OFLAG_COMPRESSED);
68d000a3
KW
465 *cluster_offset &= L2E_OFFSET_MASK;
466 break;
45aba42f
KW
467 }
468
29c1a730
KW
469 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
470
68d000a3
KW
471 nb_available = (c * s->cluster_sectors);
472
45aba42f
KW
473out:
474 if (nb_available > nb_needed)
475 nb_available = nb_needed;
476
477 *num = nb_available - index_in_cluster;
478
68d000a3 479 return ret;
45aba42f
KW
480}
481
482/*
483 * get_cluster_table
484 *
485 * for a given disk offset, load (and allocate if needed)
486 * the l2 table.
487 *
488 * the l2 table offset in the qcow2 file and the cluster index
489 * in the l2 table are given to the caller.
490 *
1e3e8f1a 491 * Returns 0 on success, -errno in failure case
45aba42f 492 */
45aba42f
KW
493static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
494 uint64_t **new_l2_table,
45aba42f
KW
495 int *new_l2_index)
496{
497 BDRVQcowState *s = bs->opaque;
80ee15a6 498 unsigned int l1_index, l2_index;
c46e1167
KW
499 uint64_t l2_offset;
500 uint64_t *l2_table = NULL;
80ee15a6 501 int ret;
45aba42f
KW
502
503 /* seek the the l2 offset in the l1 table */
504
505 l1_index = offset >> (s->l2_bits + s->cluster_bits);
506 if (l1_index >= s->l1_size) {
72893756 507 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
1e3e8f1a
KW
508 if (ret < 0) {
509 return ret;
510 }
45aba42f 511 }
8e37f681
KW
512
513 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
45aba42f
KW
514
515 /* seek the l2 table of the given l2 offset */
516
8e37f681 517 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
45aba42f 518 /* load the l2 table in memory */
55c17e98
KW
519 ret = l2_load(bs, l2_offset, &l2_table);
520 if (ret < 0) {
521 return ret;
1e3e8f1a 522 }
45aba42f 523 } else {
16fde5f2 524 /* First allocate a new L2 table (and do COW if needed) */
c46e1167
KW
525 ret = l2_allocate(bs, l1_index, &l2_table);
526 if (ret < 0) {
527 return ret;
1e3e8f1a 528 }
16fde5f2
KW
529
530 /* Then decrease the refcount of the old table */
531 if (l2_offset) {
532 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
533 }
8e37f681 534 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
45aba42f
KW
535 }
536
537 /* find the cluster offset for the given disk offset */
538
539 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
540
541 *new_l2_table = l2_table;
45aba42f
KW
542 *new_l2_index = l2_index;
543
1e3e8f1a 544 return 0;
45aba42f
KW
545}
546
547/*
548 * alloc_compressed_cluster_offset
549 *
550 * For a given offset of the disk image, return cluster offset in
551 * qcow2 file.
552 *
553 * If the offset is not found, allocate a new compressed cluster.
554 *
555 * Return the cluster offset if successful,
556 * Return 0, otherwise.
557 *
558 */
559
ed6ccf0f
KW
560uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
561 uint64_t offset,
562 int compressed_size)
45aba42f
KW
563{
564 BDRVQcowState *s = bs->opaque;
565 int l2_index, ret;
3948d1d4 566 uint64_t *l2_table;
f4f0d391 567 int64_t cluster_offset;
45aba42f
KW
568 int nb_csectors;
569
3948d1d4 570 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1e3e8f1a 571 if (ret < 0) {
45aba42f 572 return 0;
1e3e8f1a 573 }
45aba42f 574
b0b6862e
KW
575 /* Compression can't overwrite anything. Fail if the cluster was already
576 * allocated. */
45aba42f 577 cluster_offset = be64_to_cpu(l2_table[l2_index]);
b0b6862e 578 if (cluster_offset & L2E_OFFSET_MASK) {
8f1efd00
KW
579 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
580 return 0;
581 }
45aba42f 582
ed6ccf0f 583 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
5d757b56 584 if (cluster_offset < 0) {
29c1a730 585 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
5d757b56
KW
586 return 0;
587 }
588
45aba42f
KW
589 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
590 (cluster_offset >> 9);
591
592 cluster_offset |= QCOW_OFLAG_COMPRESSED |
593 ((uint64_t)nb_csectors << s->csize_shift);
594
595 /* update L2 table */
596
597 /* compressed clusters never have the copied flag */
598
66f82cee 599 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
29c1a730 600 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
45aba42f 601 l2_table[l2_index] = cpu_to_be64(cluster_offset);
29c1a730 602 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
79a31189 603 if (ret < 0) {
29c1a730 604 return 0;
4c1612d9
KW
605 }
606
29c1a730 607 return cluster_offset;
4c1612d9
KW
608}
609
148da7ea 610int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
45aba42f
KW
611{
612 BDRVQcowState *s = bs->opaque;
613 int i, j = 0, l2_index, ret;
3948d1d4 614 uint64_t *old_cluster, start_sect, *l2_table;
250196f1 615 uint64_t cluster_offset = m->alloc_offset;
29c1a730 616 bool cow = false;
45aba42f 617
3cce16f4
KW
618 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
619
45aba42f
KW
620 if (m->nb_clusters == 0)
621 return 0;
622
7267c094 623 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
45aba42f
KW
624
625 /* copy content of unmodified sectors */
626 start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
627 if (m->n_start) {
29c1a730 628 cow = true;
1b9f1491 629 qemu_co_mutex_unlock(&s->lock);
45aba42f 630 ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
1b9f1491 631 qemu_co_mutex_lock(&s->lock);
45aba42f
KW
632 if (ret < 0)
633 goto err;
634 }
635
636 if (m->nb_available & (s->cluster_sectors - 1)) {
637 uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
29c1a730 638 cow = true;
1b9f1491 639 qemu_co_mutex_unlock(&s->lock);
45aba42f
KW
640 ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
641 m->nb_available - end, s->cluster_sectors);
1b9f1491 642 qemu_co_mutex_lock(&s->lock);
45aba42f
KW
643 if (ret < 0)
644 goto err;
645 }
646
29c1a730
KW
647 /*
648 * Update L2 table.
649 *
650 * Before we update the L2 table to actually point to the new cluster, we
651 * need to be sure that the refcounts have been increased and COW was
652 * handled.
653 */
654 if (cow) {
3de0a294 655 qcow2_cache_depends_on_flush(s->l2_table_cache);
29c1a730
KW
656 }
657
658 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
3948d1d4 659 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
1e3e8f1a 660 if (ret < 0) {
45aba42f 661 goto err;
1e3e8f1a 662 }
29c1a730 663 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
45aba42f
KW
664
665 for (i = 0; i < m->nb_clusters; i++) {
666 /* if two concurrent writes happen to the same unallocated cluster
667 * each write allocates separate cluster and writes data concurrently.
668 * The first one to complete updates l2 table with pointer to its
669 * cluster the second one has to do RMW (which is done above by
670 * copy_sectors()), update l2 table with its cluster pointer and free
671 * old cluster. This is what this loop does */
672 if(l2_table[l2_index + i] != 0)
673 old_cluster[j++] = l2_table[l2_index + i];
674
675 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
676 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
677 }
678
9f8e668e 679
29c1a730 680 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
c835d00f 681 if (ret < 0) {
45aba42f 682 goto err;
4c1612d9 683 }
45aba42f 684
7ec5e6a4
KW
685 /*
686 * If this was a COW, we need to decrease the refcount of the old cluster.
687 * Also flush bs->file to get the right order for L2 and refcount update.
688 */
689 if (j != 0) {
7ec5e6a4 690 for (i = 0; i < j; i++) {
8e37f681 691 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1);
7ec5e6a4
KW
692 }
693 }
45aba42f
KW
694
695 ret = 0;
696err:
7267c094 697 g_free(old_cluster);
45aba42f
KW
698 return ret;
699 }
700
bf319ece
KW
701/*
702 * Returns the number of contiguous clusters that can be used for an allocating
703 * write, but require COW to be performed (this includes yet unallocated space,
704 * which must copy from the backing file)
705 */
706static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
707 uint64_t *l2_table, int l2_index)
708{
709 int i = 0;
710 uint64_t cluster_offset;
711
712 while (i < nb_clusters) {
713 i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
2bfcc4a0
KW
714 &l2_table[l2_index], i,
715 QCOW_OFLAG_COPIED | QCOW_OFLAG_COMPRESSED);
bf319ece
KW
716 if ((i >= nb_clusters) || be64_to_cpu(l2_table[l2_index + i])) {
717 break;
718 }
719
720 i += count_contiguous_free_clusters(nb_clusters - i,
721 &l2_table[l2_index + i]);
722 if (i >= nb_clusters) {
723 break;
724 }
725
726 cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
727
728 if ((cluster_offset & QCOW_OFLAG_COPIED) ||
729 (cluster_offset & QCOW_OFLAG_COMPRESSED))
730 break;
731 }
732
733 assert(i <= nb_clusters);
734 return i;
735}
736
250196f1
KW
737/*
738 * Allocates new clusters for the given guest_offset.
739 *
740 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
741 * contain the number of clusters that have been allocated and are contiguous
742 * in the image file.
743 *
744 * If *host_offset is non-zero, it specifies the offset in the image file at
745 * which the new clusters must start. *nb_clusters can be 0 on return in this
746 * case if the cluster at host_offset is already in use. If *host_offset is
747 * zero, the clusters can be allocated anywhere in the image file.
748 *
749 * *host_offset is updated to contain the offset into the image file at which
750 * the first allocated cluster starts.
751 *
752 * Return 0 on success and -errno in error cases. -EAGAIN means that the
753 * function has been waiting for another request and the allocation must be
754 * restarted, but the whole request should not be failed.
755 */
756static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
757 uint64_t *host_offset, unsigned int *nb_clusters, uint64_t *l2_table)
758{
759 BDRVQcowState *s = bs->opaque;
760 int64_t cluster_offset;
761 QCowL2Meta *old_alloc;
762
763 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
764 *host_offset, *nb_clusters);
765
766 /*
767 * Check if there already is an AIO write request in flight which allocates
768 * the same cluster. In this case we need to wait until the previous
769 * request has completed and updated the L2 table accordingly.
770 */
771 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
772
773 uint64_t start = guest_offset >> s->cluster_bits;
774 uint64_t end = start + *nb_clusters;
775 uint64_t old_start = old_alloc->offset >> s->cluster_bits;
776 uint64_t old_end = old_start + old_alloc->nb_clusters;
777
778 if (end < old_start || start > old_end) {
779 /* No intersection */
780 } else {
781 if (start < old_start) {
782 /* Stop at the start of a running allocation */
783 *nb_clusters = old_start - start;
784 } else {
785 *nb_clusters = 0;
786 }
787
788 if (*nb_clusters == 0) {
789 /* Wait for the dependency to complete. We need to recheck
790 * the free/allocated clusters when we continue. */
791 qemu_co_mutex_unlock(&s->lock);
792 qemu_co_queue_wait(&old_alloc->dependent_requests);
793 qemu_co_mutex_lock(&s->lock);
794 return -EAGAIN;
795 }
796 }
797 }
798
799 if (!*nb_clusters) {
800 abort();
801 }
802
803 /* Allocate new clusters */
804 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
805 if (*host_offset == 0) {
806 cluster_offset = qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
807 } else {
808 cluster_offset = *host_offset;
809 *nb_clusters = qcow2_alloc_clusters_at(bs, cluster_offset, *nb_clusters);
810 }
811
812 if (cluster_offset < 0) {
813 return cluster_offset;
814 }
815 *host_offset = cluster_offset;
816 return 0;
817}
818
45aba42f
KW
819/*
820 * alloc_cluster_offset
821 *
250196f1
KW
822 * For a given offset on the virtual disk, find the cluster offset in qcow2
823 * file. If the offset is not found, allocate a new cluster.
45aba42f 824 *
250196f1 825 * If the cluster was already allocated, m->nb_clusters is set to 0 and
a7912369 826 * other fields in m are meaningless.
148da7ea
KW
827 *
828 * If the cluster is newly allocated, m->nb_clusters is set to the number of
68d100e9
KW
829 * contiguous clusters that have been allocated. In this case, the other
830 * fields of m are valid and contain information about the first allocated
831 * cluster.
45aba42f 832 *
68d100e9
KW
833 * If the request conflicts with another write request in flight, the coroutine
834 * is queued and will be reentered when the dependency has completed.
148da7ea
KW
835 *
836 * Return 0 on success and -errno in error cases
45aba42f 837 */
f4f0d391
KW
838int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
839 int n_start, int n_end, int *num, QCowL2Meta *m)
45aba42f
KW
840{
841 BDRVQcowState *s = bs->opaque;
250196f1 842 int l2_index, ret, sectors;
3948d1d4 843 uint64_t *l2_table;
250196f1
KW
844 unsigned int nb_clusters, keep_clusters;
845 uint64_t cluster_offset;
45aba42f 846
3cce16f4
KW
847 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
848 n_start, n_end);
849
250196f1 850 /* Find L2 entry for the first involved cluster */
3948d1d4 851 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1e3e8f1a 852 if (ret < 0) {
148da7ea 853 return ret;
1e3e8f1a 854 }
45aba42f 855
250196f1
KW
856 /*
857 * Calculate the number of clusters to look for. We stop at L2 table
858 * boundaries to keep things simple.
859 */
68d100e9 860again:
250196f1
KW
861 nb_clusters = MIN(size_to_clusters(s, n_end << BDRV_SECTOR_BITS),
862 s->l2_size - l2_index);
45aba42f
KW
863
864 cluster_offset = be64_to_cpu(l2_table[l2_index]);
865
250196f1
KW
866 /*
867 * Check how many clusters are already allocated and don't need COW, and how
868 * many need a new allocation.
869 */
8e37f681
KW
870 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
871 && (cluster_offset & QCOW_OFLAG_COPIED))
872 {
250196f1
KW
873 /* We keep all QCOW_OFLAG_COPIED clusters */
874 keep_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
2bfcc4a0
KW
875 &l2_table[l2_index], 0,
876 QCOW_OFLAG_COPIED);
250196f1
KW
877 assert(keep_clusters <= nb_clusters);
878 nb_clusters -= keep_clusters;
879 } else {
880 /* For the moment, overwrite compressed clusters one by one */
881 if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
882 nb_clusters = 1;
883 } else {
884 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
885 }
45aba42f 886
250196f1
KW
887 keep_clusters = 0;
888 cluster_offset = 0;
45aba42f
KW
889 }
890
8e37f681 891 cluster_offset &= L2E_OFFSET_MASK;
45aba42f 892
250196f1
KW
893 /* If there is something left to allocate, do that now */
894 *m = (QCowL2Meta) {
895 .cluster_offset = cluster_offset,
896 .nb_clusters = 0,
897 };
898 qemu_co_queue_init(&m->dependent_requests);
45aba42f 899
250196f1
KW
900 if (nb_clusters > 0) {
901 uint64_t alloc_offset;
902 uint64_t alloc_cluster_offset;
903 uint64_t keep_bytes = keep_clusters * s->cluster_size;
45aba42f 904
250196f1
KW
905 /* Calculate start and size of allocation */
906 alloc_offset = offset + keep_bytes;
45aba42f 907
250196f1
KW
908 if (keep_clusters == 0) {
909 alloc_cluster_offset = 0;
f214978a 910 } else {
250196f1 911 alloc_cluster_offset = cluster_offset + keep_bytes;
f214978a 912 }
f214978a 913
250196f1
KW
914 /* Allocate, if necessary at a given offset in the image file */
915 ret = do_alloc_cluster_offset(bs, alloc_offset, &alloc_cluster_offset,
916 &nb_clusters, l2_table);
917 if (ret == -EAGAIN) {
918 goto again;
919 } else if (ret < 0) {
920 goto fail;
921 }
f214978a 922
250196f1
KW
923 /* save info needed for meta data update */
924 if (nb_clusters > 0) {
925 int requested_sectors = n_end - keep_clusters * s->cluster_sectors;
926 int avail_sectors = (keep_clusters + nb_clusters)
927 << (s->cluster_bits - BDRV_SECTOR_BITS);
928
929 *m = (QCowL2Meta) {
930 .cluster_offset = keep_clusters == 0 ?
931 alloc_cluster_offset : cluster_offset,
932 .alloc_offset = alloc_cluster_offset,
933 .offset = alloc_offset,
934 .n_start = keep_clusters == 0 ? n_start : 0,
935 .nb_clusters = nb_clusters,
936 .nb_available = MIN(requested_sectors, avail_sectors),
937 };
938 qemu_co_queue_init(&m->dependent_requests);
939 QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
940 }
5d757b56 941 }
45aba42f 942
250196f1 943 /* Some cleanup work */
29c1a730
KW
944 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
945 if (ret < 0) {
9e2a3701 946 goto fail_put;
29c1a730
KW
947 }
948
250196f1
KW
949 sectors = (keep_clusters + nb_clusters) << (s->cluster_bits - 9);
950 if (sectors > n_end) {
951 sectors = n_end;
952 }
45aba42f 953
250196f1
KW
954 assert(sectors > n_start);
955 *num = sectors - n_start;
45aba42f 956
148da7ea 957 return 0;
29c1a730
KW
958
959fail:
960 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
9e2a3701 961fail_put:
8dc0a5e7 962 if (m->nb_clusters > 0) {
250196f1
KW
963 QLIST_REMOVE(m, next_in_flight);
964 }
29c1a730 965 return ret;
45aba42f
KW
966}
967
968static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
969 const uint8_t *buf, int buf_size)
970{
971 z_stream strm1, *strm = &strm1;
972 int ret, out_len;
973
974 memset(strm, 0, sizeof(*strm));
975
976 strm->next_in = (uint8_t *)buf;
977 strm->avail_in = buf_size;
978 strm->next_out = out_buf;
979 strm->avail_out = out_buf_size;
980
981 ret = inflateInit2(strm, -12);
982 if (ret != Z_OK)
983 return -1;
984 ret = inflate(strm, Z_FINISH);
985 out_len = strm->next_out - out_buf;
986 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
987 out_len != out_buf_size) {
988 inflateEnd(strm);
989 return -1;
990 }
991 inflateEnd(strm);
992 return 0;
993}
994
66f82cee 995int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
45aba42f 996{
66f82cee 997 BDRVQcowState *s = bs->opaque;
45aba42f
KW
998 int ret, csize, nb_csectors, sector_offset;
999 uint64_t coffset;
1000
1001 coffset = cluster_offset & s->cluster_offset_mask;
1002 if (s->cluster_cache_offset != coffset) {
1003 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1004 sector_offset = coffset & 511;
1005 csize = nb_csectors * 512 - sector_offset;
66f82cee
KW
1006 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1007 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
45aba42f 1008 if (ret < 0) {
8af36488 1009 return ret;
45aba42f
KW
1010 }
1011 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1012 s->cluster_data + sector_offset, csize) < 0) {
8af36488 1013 return -EIO;
45aba42f
KW
1014 }
1015 s->cluster_cache_offset = coffset;
1016 }
1017 return 0;
1018}
5ea929e3
KW
1019
1020/*
1021 * This discards as many clusters of nb_clusters as possible at once (i.e.
1022 * all clusters in the same L2 table) and returns the number of discarded
1023 * clusters.
1024 */
1025static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1026 unsigned int nb_clusters)
1027{
1028 BDRVQcowState *s = bs->opaque;
3948d1d4 1029 uint64_t *l2_table;
5ea929e3
KW
1030 int l2_index;
1031 int ret;
1032 int i;
1033
3948d1d4 1034 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
5ea929e3
KW
1035 if (ret < 0) {
1036 return ret;
1037 }
1038
1039 /* Limit nb_clusters to one L2 table */
1040 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1041
1042 for (i = 0; i < nb_clusters; i++) {
1043 uint64_t old_offset;
1044
1045 old_offset = be64_to_cpu(l2_table[l2_index + i]);
8e37f681 1046 if ((old_offset & L2E_OFFSET_MASK) == 0) {
5ea929e3
KW
1047 continue;
1048 }
1049
1050 /* First remove L2 entries */
1051 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1052 l2_table[l2_index + i] = cpu_to_be64(0);
1053
1054 /* Then decrease the refcount */
1055 qcow2_free_any_clusters(bs, old_offset, 1);
1056 }
1057
1058 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1059 if (ret < 0) {
1060 return ret;
1061 }
1062
1063 return nb_clusters;
1064}
1065
1066int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1067 int nb_sectors)
1068{
1069 BDRVQcowState *s = bs->opaque;
1070 uint64_t end_offset;
1071 unsigned int nb_clusters;
1072 int ret;
1073
1074 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1075
1076 /* Round start up and end down */
1077 offset = align_offset(offset, s->cluster_size);
1078 end_offset &= ~(s->cluster_size - 1);
1079
1080 if (offset > end_offset) {
1081 return 0;
1082 }
1083
1084 nb_clusters = size_to_clusters(s, end_offset - offset);
1085
1086 /* Each L2 table is handled by its own loop iteration */
1087 while (nb_clusters > 0) {
1088 ret = discard_single_l2(bs, offset, nb_clusters);
1089 if (ret < 0) {
1090 return ret;
1091 }
1092
1093 nb_clusters -= ret;
1094 offset += (ret * s->cluster_size);
1095 }
1096
1097 return 0;
1098}