]> git.proxmox.com Git - qemu.git/blame - block/qcow2-cluster.c
xilinx_axidma: changed device name
[qemu.git] / block / qcow2-cluster.c
CommitLineData
45aba42f
KW
1/*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25#include <zlib.h>
26
27#include "qemu-common.h"
28#include "block_int.h"
29#include "block/qcow2.h"
3cce16f4 30#include "trace.h"
45aba42f 31
72893756 32int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size)
45aba42f
KW
33{
34 BDRVQcowState *s = bs->opaque;
35 int new_l1_size, new_l1_size2, ret, i;
36 uint64_t *new_l1_table;
5d757b56 37 int64_t new_l1_table_offset;
45aba42f
KW
38 uint8_t data[12];
39
72893756 40 if (min_size <= s->l1_size)
45aba42f 41 return 0;
72893756
SH
42
43 if (exact_size) {
44 new_l1_size = min_size;
45 } else {
46 /* Bump size up to reduce the number of times we have to grow */
47 new_l1_size = s->l1_size;
48 if (new_l1_size == 0) {
49 new_l1_size = 1;
50 }
51 while (min_size > new_l1_size) {
52 new_l1_size = (new_l1_size * 3 + 1) / 2;
53 }
45aba42f 54 }
72893756 55
45aba42f 56#ifdef DEBUG_ALLOC2
35ee5e39 57 fprintf(stderr, "grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
45aba42f
KW
58#endif
59
60 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
7267c094 61 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
45aba42f
KW
62 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
63
64 /* write new table (align to cluster) */
66f82cee 65 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
ed6ccf0f 66 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
5d757b56 67 if (new_l1_table_offset < 0) {
7267c094 68 g_free(new_l1_table);
5d757b56
KW
69 return new_l1_table_offset;
70 }
29c1a730
KW
71
72 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
73 if (ret < 0) {
80fa3341 74 goto fail;
29c1a730 75 }
45aba42f 76
66f82cee 77 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
45aba42f
KW
78 for(i = 0; i < s->l1_size; i++)
79 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
8b3b7206
KW
80 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
81 if (ret < 0)
45aba42f
KW
82 goto fail;
83 for(i = 0; i < s->l1_size; i++)
84 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
85
86 /* set new table */
66f82cee 87 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
45aba42f 88 cpu_to_be32w((uint32_t*)data, new_l1_size);
653df36b 89 cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
8b3b7206
KW
90 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
91 if (ret < 0) {
45aba42f 92 goto fail;
fb8fa77c 93 }
7267c094 94 g_free(s->l1_table);
ed6ccf0f 95 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
45aba42f
KW
96 s->l1_table_offset = new_l1_table_offset;
97 s->l1_table = new_l1_table;
98 s->l1_size = new_l1_size;
99 return 0;
100 fail:
7267c094 101 g_free(new_l1_table);
fb8fa77c 102 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
8b3b7206 103 return ret;
45aba42f
KW
104}
105
45aba42f
KW
106/*
107 * l2_load
108 *
109 * Loads a L2 table into memory. If the table is in the cache, the cache
110 * is used; otherwise the L2 table is loaded from the image file.
111 *
112 * Returns a pointer to the L2 table on success, or NULL if the read from
113 * the image file failed.
114 */
115
55c17e98
KW
116static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
117 uint64_t **l2_table)
45aba42f
KW
118{
119 BDRVQcowState *s = bs->opaque;
55c17e98 120 int ret;
45aba42f 121
29c1a730 122 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
45aba42f 123
29c1a730 124 return ret;
45aba42f
KW
125}
126
6583e3c7
KW
127/*
128 * Writes one sector of the L1 table to the disk (can't update single entries
129 * and we really don't want bdrv_pread to perform a read-modify-write)
130 */
131#define L1_ENTRIES_PER_SECTOR (512 / 8)
66f82cee 132static int write_l1_entry(BlockDriverState *bs, int l1_index)
6583e3c7 133{
66f82cee 134 BDRVQcowState *s = bs->opaque;
6583e3c7
KW
135 uint64_t buf[L1_ENTRIES_PER_SECTOR];
136 int l1_start_index;
f7defcb6 137 int i, ret;
6583e3c7
KW
138
139 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
140 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
141 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
142 }
143
66f82cee 144 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
8b3b7206 145 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
f7defcb6
KW
146 buf, sizeof(buf));
147 if (ret < 0) {
148 return ret;
6583e3c7
KW
149 }
150
151 return 0;
152}
153
45aba42f
KW
154/*
155 * l2_allocate
156 *
157 * Allocate a new l2 entry in the file. If l1_index points to an already
158 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
159 * table) copy the contents of the old L2 table into the newly allocated one.
160 * Otherwise the new table is initialized with zeros.
161 *
162 */
163
c46e1167 164static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
45aba42f
KW
165{
166 BDRVQcowState *s = bs->opaque;
6583e3c7 167 uint64_t old_l2_offset;
f4f0d391
KW
168 uint64_t *l2_table;
169 int64_t l2_offset;
c46e1167 170 int ret;
45aba42f
KW
171
172 old_l2_offset = s->l1_table[l1_index];
173
3cce16f4
KW
174 trace_qcow2_l2_allocate(bs, l1_index);
175
45aba42f
KW
176 /* allocate a new l2 entry */
177
ed6ccf0f 178 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
5d757b56 179 if (l2_offset < 0) {
c46e1167 180 return l2_offset;
5d757b56 181 }
29c1a730
KW
182
183 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
184 if (ret < 0) {
185 goto fail;
186 }
45aba42f 187
45aba42f
KW
188 /* allocate a new entry in the l2 cache */
189
3cce16f4 190 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
29c1a730
KW
191 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
192 if (ret < 0) {
193 return ret;
194 }
195
196 l2_table = *table;
45aba42f 197
8e37f681 198 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
45aba42f
KW
199 /* if there was no old l2 table, clear the new table */
200 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
201 } else {
29c1a730
KW
202 uint64_t* old_table;
203
45aba42f 204 /* if there was an old l2 table, read it from the disk */
66f82cee 205 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
8e37f681
KW
206 ret = qcow2_cache_get(bs, s->l2_table_cache,
207 old_l2_offset & L1E_OFFSET_MASK,
29c1a730
KW
208 (void**) &old_table);
209 if (ret < 0) {
210 goto fail;
211 }
212
213 memcpy(l2_table, old_table, s->cluster_size);
214
215 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
c46e1167 216 if (ret < 0) {
175e1152 217 goto fail;
c46e1167 218 }
45aba42f 219 }
29c1a730 220
45aba42f 221 /* write the l2 table to the file */
66f82cee 222 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
29c1a730 223
3cce16f4 224 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
29c1a730
KW
225 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
226 ret = qcow2_cache_flush(bs, s->l2_table_cache);
c46e1167 227 if (ret < 0) {
175e1152
KW
228 goto fail;
229 }
230
231 /* update the L1 entry */
3cce16f4 232 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
175e1152
KW
233 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
234 ret = write_l1_entry(bs, l1_index);
235 if (ret < 0) {
236 goto fail;
c46e1167 237 }
45aba42f 238
c46e1167 239 *table = l2_table;
3cce16f4 240 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
c46e1167 241 return 0;
175e1152
KW
242
243fail:
3cce16f4 244 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
29c1a730 245 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
68dba0bf 246 s->l1_table[l1_index] = old_l2_offset;
175e1152 247 return ret;
45aba42f
KW
248}
249
2bfcc4a0
KW
250/*
251 * Checks how many clusters in a given L2 table are contiguous in the image
252 * file. As soon as one of the flags in the bitmask stop_flags changes compared
253 * to the first cluster, the search is stopped and the cluster is not counted
254 * as contiguous. (This allows it, for example, to stop at the first compressed
255 * cluster which may require a different handling)
256 */
45aba42f 257static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
2bfcc4a0 258 uint64_t *l2_table, uint64_t start, uint64_t stop_flags)
45aba42f
KW
259{
260 int i;
2bfcc4a0
KW
261 uint64_t mask = stop_flags | L2E_OFFSET_MASK;
262 uint64_t offset = be64_to_cpu(l2_table[0]) & mask;
45aba42f
KW
263
264 if (!offset)
265 return 0;
266
2bfcc4a0
KW
267 for (i = start; i < start + nb_clusters; i++) {
268 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
269 if (offset + (uint64_t) i * cluster_size != l2_entry) {
45aba42f 270 break;
2bfcc4a0
KW
271 }
272 }
45aba42f
KW
273
274 return (i - start);
275}
276
277static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
278{
2bfcc4a0
KW
279 int i;
280
281 for (i = 0; i < nb_clusters; i++) {
282 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
45aba42f 283
2bfcc4a0
KW
284 if (type != QCOW2_CLUSTER_UNALLOCATED) {
285 break;
286 }
287 }
45aba42f
KW
288
289 return i;
290}
291
292/* The crypt function is compatible with the linux cryptoloop
293 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
294 supported */
ed6ccf0f
KW
295void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
296 uint8_t *out_buf, const uint8_t *in_buf,
297 int nb_sectors, int enc,
298 const AES_KEY *key)
45aba42f
KW
299{
300 union {
301 uint64_t ll[2];
302 uint8_t b[16];
303 } ivec;
304 int i;
305
306 for(i = 0; i < nb_sectors; i++) {
307 ivec.ll[0] = cpu_to_le64(sector_num);
308 ivec.ll[1] = 0;
309 AES_cbc_encrypt(in_buf, out_buf, 512, key,
310 ivec.b, enc);
311 sector_num++;
312 in_buf += 512;
313 out_buf += 512;
314 }
315}
316
aef4acb6
SH
317static int coroutine_fn copy_sectors(BlockDriverState *bs,
318 uint64_t start_sect,
319 uint64_t cluster_offset,
320 int n_start, int n_end)
45aba42f
KW
321{
322 BDRVQcowState *s = bs->opaque;
aef4acb6
SH
323 QEMUIOVector qiov;
324 struct iovec iov;
45aba42f 325 int n, ret;
1b9f1491
KW
326
327 /*
328 * If this is the last cluster and it is only partially used, we must only
329 * copy until the end of the image, or bdrv_check_request will fail for the
330 * bdrv_read/write calls below.
331 */
332 if (start_sect + n_end > bs->total_sectors) {
333 n_end = bs->total_sectors - start_sect;
334 }
45aba42f
KW
335
336 n = n_end - n_start;
1b9f1491 337 if (n <= 0) {
45aba42f 338 return 0;
1b9f1491
KW
339 }
340
aef4acb6
SH
341 iov.iov_len = n * BDRV_SECTOR_SIZE;
342 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
343
344 qemu_iovec_init_external(&qiov, &iov, 1);
1b9f1491 345
66f82cee 346 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
aef4acb6
SH
347
348 /* Call .bdrv_co_readv() directly instead of using the public block-layer
349 * interface. This avoids double I/O throttling and request tracking,
350 * which can lead to deadlock when block layer copy-on-read is enabled.
351 */
352 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
1b9f1491
KW
353 if (ret < 0) {
354 goto out;
355 }
356
45aba42f 357 if (s->crypt_method) {
ed6ccf0f 358 qcow2_encrypt_sectors(s, start_sect + n_start,
aef4acb6 359 iov.iov_base, iov.iov_base, n, 1,
45aba42f
KW
360 &s->aes_encrypt_key);
361 }
1b9f1491 362
66f82cee 363 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
aef4acb6 364 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
1b9f1491
KW
365 if (ret < 0) {
366 goto out;
367 }
368
369 ret = 0;
370out:
aef4acb6 371 qemu_vfree(iov.iov_base);
1b9f1491 372 return ret;
45aba42f
KW
373}
374
375
376/*
377 * get_cluster_offset
378 *
1c46efaa
KW
379 * For a given offset of the disk image, find the cluster offset in
380 * qcow2 file. The offset is stored in *cluster_offset.
45aba42f 381 *
d57237f2 382 * on entry, *num is the number of contiguous sectors we'd like to
45aba42f
KW
383 * access following offset.
384 *
d57237f2 385 * on exit, *num is the number of contiguous sectors we can read.
45aba42f 386 *
68d000a3
KW
387 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
388 * cases.
45aba42f 389 */
1c46efaa
KW
390int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
391 int *num, uint64_t *cluster_offset)
45aba42f
KW
392{
393 BDRVQcowState *s = bs->opaque;
80ee15a6 394 unsigned int l1_index, l2_index;
1c46efaa 395 uint64_t l2_offset, *l2_table;
45aba42f 396 int l1_bits, c;
80ee15a6
KW
397 unsigned int index_in_cluster, nb_clusters;
398 uint64_t nb_available, nb_needed;
55c17e98 399 int ret;
45aba42f
KW
400
401 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
402 nb_needed = *num + index_in_cluster;
403
404 l1_bits = s->l2_bits + s->cluster_bits;
405
406 /* compute how many bytes there are between the offset and
407 * the end of the l1 entry
408 */
409
80ee15a6 410 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
45aba42f
KW
411
412 /* compute the number of available sectors */
413
414 nb_available = (nb_available >> 9) + index_in_cluster;
415
416 if (nb_needed > nb_available) {
417 nb_needed = nb_available;
418 }
419
1c46efaa 420 *cluster_offset = 0;
45aba42f
KW
421
422 /* seek the the l2 offset in the l1 table */
423
424 l1_index = offset >> l1_bits;
68d000a3
KW
425 if (l1_index >= s->l1_size) {
426 ret = QCOW2_CLUSTER_UNALLOCATED;
45aba42f 427 goto out;
68d000a3 428 }
45aba42f 429
68d000a3
KW
430 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
431 if (!l2_offset) {
432 ret = QCOW2_CLUSTER_UNALLOCATED;
45aba42f 433 goto out;
68d000a3 434 }
45aba42f
KW
435
436 /* load the l2 table in memory */
437
55c17e98
KW
438 ret = l2_load(bs, l2_offset, &l2_table);
439 if (ret < 0) {
440 return ret;
1c46efaa 441 }
45aba42f
KW
442
443 /* find the cluster offset for the given disk offset */
444
445 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
1c46efaa 446 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
45aba42f
KW
447 nb_clusters = size_to_clusters(s, nb_needed << 9);
448
68d000a3
KW
449 ret = qcow2_get_cluster_type(*cluster_offset);
450 switch (ret) {
451 case QCOW2_CLUSTER_COMPRESSED:
452 /* Compressed clusters can only be processed one by one */
453 c = 1;
454 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
455 break;
6377af48
KW
456 case QCOW2_CLUSTER_ZERO:
457 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
458 &l2_table[l2_index], 0,
459 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
460 *cluster_offset = 0;
461 break;
68d000a3 462 case QCOW2_CLUSTER_UNALLOCATED:
45aba42f
KW
463 /* how many empty clusters ? */
464 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
68d000a3
KW
465 *cluster_offset = 0;
466 break;
467 case QCOW2_CLUSTER_NORMAL:
45aba42f
KW
468 /* how many allocated clusters ? */
469 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
6377af48
KW
470 &l2_table[l2_index], 0,
471 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
68d000a3
KW
472 *cluster_offset &= L2E_OFFSET_MASK;
473 break;
45aba42f
KW
474 }
475
29c1a730
KW
476 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
477
68d000a3
KW
478 nb_available = (c * s->cluster_sectors);
479
45aba42f
KW
480out:
481 if (nb_available > nb_needed)
482 nb_available = nb_needed;
483
484 *num = nb_available - index_in_cluster;
485
68d000a3 486 return ret;
45aba42f
KW
487}
488
489/*
490 * get_cluster_table
491 *
492 * for a given disk offset, load (and allocate if needed)
493 * the l2 table.
494 *
495 * the l2 table offset in the qcow2 file and the cluster index
496 * in the l2 table are given to the caller.
497 *
1e3e8f1a 498 * Returns 0 on success, -errno in failure case
45aba42f 499 */
45aba42f
KW
500static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
501 uint64_t **new_l2_table,
45aba42f
KW
502 int *new_l2_index)
503{
504 BDRVQcowState *s = bs->opaque;
80ee15a6 505 unsigned int l1_index, l2_index;
c46e1167
KW
506 uint64_t l2_offset;
507 uint64_t *l2_table = NULL;
80ee15a6 508 int ret;
45aba42f
KW
509
510 /* seek the the l2 offset in the l1 table */
511
512 l1_index = offset >> (s->l2_bits + s->cluster_bits);
513 if (l1_index >= s->l1_size) {
72893756 514 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
1e3e8f1a
KW
515 if (ret < 0) {
516 return ret;
517 }
45aba42f 518 }
8e37f681
KW
519
520 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
45aba42f
KW
521
522 /* seek the l2 table of the given l2 offset */
523
8e37f681 524 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
45aba42f 525 /* load the l2 table in memory */
55c17e98
KW
526 ret = l2_load(bs, l2_offset, &l2_table);
527 if (ret < 0) {
528 return ret;
1e3e8f1a 529 }
45aba42f 530 } else {
16fde5f2 531 /* First allocate a new L2 table (and do COW if needed) */
c46e1167
KW
532 ret = l2_allocate(bs, l1_index, &l2_table);
533 if (ret < 0) {
534 return ret;
1e3e8f1a 535 }
16fde5f2
KW
536
537 /* Then decrease the refcount of the old table */
538 if (l2_offset) {
539 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
540 }
8e37f681 541 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
45aba42f
KW
542 }
543
544 /* find the cluster offset for the given disk offset */
545
546 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
547
548 *new_l2_table = l2_table;
45aba42f
KW
549 *new_l2_index = l2_index;
550
1e3e8f1a 551 return 0;
45aba42f
KW
552}
553
554/*
555 * alloc_compressed_cluster_offset
556 *
557 * For a given offset of the disk image, return cluster offset in
558 * qcow2 file.
559 *
560 * If the offset is not found, allocate a new compressed cluster.
561 *
562 * Return the cluster offset if successful,
563 * Return 0, otherwise.
564 *
565 */
566
ed6ccf0f
KW
567uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
568 uint64_t offset,
569 int compressed_size)
45aba42f
KW
570{
571 BDRVQcowState *s = bs->opaque;
572 int l2_index, ret;
3948d1d4 573 uint64_t *l2_table;
f4f0d391 574 int64_t cluster_offset;
45aba42f
KW
575 int nb_csectors;
576
3948d1d4 577 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1e3e8f1a 578 if (ret < 0) {
45aba42f 579 return 0;
1e3e8f1a 580 }
45aba42f 581
b0b6862e
KW
582 /* Compression can't overwrite anything. Fail if the cluster was already
583 * allocated. */
45aba42f 584 cluster_offset = be64_to_cpu(l2_table[l2_index]);
b0b6862e 585 if (cluster_offset & L2E_OFFSET_MASK) {
8f1efd00
KW
586 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
587 return 0;
588 }
45aba42f 589
ed6ccf0f 590 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
5d757b56 591 if (cluster_offset < 0) {
29c1a730 592 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
5d757b56
KW
593 return 0;
594 }
595
45aba42f
KW
596 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
597 (cluster_offset >> 9);
598
599 cluster_offset |= QCOW_OFLAG_COMPRESSED |
600 ((uint64_t)nb_csectors << s->csize_shift);
601
602 /* update L2 table */
603
604 /* compressed clusters never have the copied flag */
605
66f82cee 606 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
29c1a730 607 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
45aba42f 608 l2_table[l2_index] = cpu_to_be64(cluster_offset);
29c1a730 609 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
79a31189 610 if (ret < 0) {
29c1a730 611 return 0;
4c1612d9
KW
612 }
613
29c1a730 614 return cluster_offset;
4c1612d9
KW
615}
616
148da7ea 617int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
45aba42f
KW
618{
619 BDRVQcowState *s = bs->opaque;
620 int i, j = 0, l2_index, ret;
3948d1d4 621 uint64_t *old_cluster, start_sect, *l2_table;
250196f1 622 uint64_t cluster_offset = m->alloc_offset;
29c1a730 623 bool cow = false;
45aba42f 624
3cce16f4
KW
625 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
626
45aba42f
KW
627 if (m->nb_clusters == 0)
628 return 0;
629
7267c094 630 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
45aba42f
KW
631
632 /* copy content of unmodified sectors */
633 start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
634 if (m->n_start) {
29c1a730 635 cow = true;
1b9f1491 636 qemu_co_mutex_unlock(&s->lock);
45aba42f 637 ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
1b9f1491 638 qemu_co_mutex_lock(&s->lock);
45aba42f
KW
639 if (ret < 0)
640 goto err;
641 }
642
643 if (m->nb_available & (s->cluster_sectors - 1)) {
644 uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
29c1a730 645 cow = true;
1b9f1491 646 qemu_co_mutex_unlock(&s->lock);
45aba42f
KW
647 ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
648 m->nb_available - end, s->cluster_sectors);
1b9f1491 649 qemu_co_mutex_lock(&s->lock);
45aba42f
KW
650 if (ret < 0)
651 goto err;
652 }
653
29c1a730
KW
654 /*
655 * Update L2 table.
656 *
657 * Before we update the L2 table to actually point to the new cluster, we
658 * need to be sure that the refcounts have been increased and COW was
659 * handled.
660 */
661 if (cow) {
3de0a294 662 qcow2_cache_depends_on_flush(s->l2_table_cache);
29c1a730
KW
663 }
664
665 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
3948d1d4 666 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
1e3e8f1a 667 if (ret < 0) {
45aba42f 668 goto err;
1e3e8f1a 669 }
29c1a730 670 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
45aba42f
KW
671
672 for (i = 0; i < m->nb_clusters; i++) {
673 /* if two concurrent writes happen to the same unallocated cluster
674 * each write allocates separate cluster and writes data concurrently.
675 * The first one to complete updates l2 table with pointer to its
676 * cluster the second one has to do RMW (which is done above by
677 * copy_sectors()), update l2 table with its cluster pointer and free
678 * old cluster. This is what this loop does */
679 if(l2_table[l2_index + i] != 0)
680 old_cluster[j++] = l2_table[l2_index + i];
681
682 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
683 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
684 }
685
9f8e668e 686
29c1a730 687 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
c835d00f 688 if (ret < 0) {
45aba42f 689 goto err;
4c1612d9 690 }
45aba42f 691
7ec5e6a4
KW
692 /*
693 * If this was a COW, we need to decrease the refcount of the old cluster.
694 * Also flush bs->file to get the right order for L2 and refcount update.
695 */
696 if (j != 0) {
7ec5e6a4 697 for (i = 0; i < j; i++) {
8e37f681 698 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1);
7ec5e6a4
KW
699 }
700 }
45aba42f
KW
701
702 ret = 0;
703err:
7267c094 704 g_free(old_cluster);
45aba42f
KW
705 return ret;
706 }
707
bf319ece
KW
708/*
709 * Returns the number of contiguous clusters that can be used for an allocating
710 * write, but require COW to be performed (this includes yet unallocated space,
711 * which must copy from the backing file)
712 */
713static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
714 uint64_t *l2_table, int l2_index)
715{
143550a8 716 int i;
bf319ece 717
143550a8
KW
718 for (i = 0; i < nb_clusters; i++) {
719 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
720 int cluster_type = qcow2_get_cluster_type(l2_entry);
721
722 switch(cluster_type) {
723 case QCOW2_CLUSTER_NORMAL:
724 if (l2_entry & QCOW_OFLAG_COPIED) {
725 goto out;
726 }
bf319ece 727 break;
143550a8
KW
728 case QCOW2_CLUSTER_UNALLOCATED:
729 case QCOW2_CLUSTER_COMPRESSED:
6377af48 730 case QCOW2_CLUSTER_ZERO:
bf319ece 731 break;
143550a8
KW
732 default:
733 abort();
734 }
bf319ece
KW
735 }
736
143550a8 737out:
bf319ece
KW
738 assert(i <= nb_clusters);
739 return i;
740}
741
250196f1
KW
742/*
743 * Allocates new clusters for the given guest_offset.
744 *
745 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
746 * contain the number of clusters that have been allocated and are contiguous
747 * in the image file.
748 *
749 * If *host_offset is non-zero, it specifies the offset in the image file at
750 * which the new clusters must start. *nb_clusters can be 0 on return in this
751 * case if the cluster at host_offset is already in use. If *host_offset is
752 * zero, the clusters can be allocated anywhere in the image file.
753 *
754 * *host_offset is updated to contain the offset into the image file at which
755 * the first allocated cluster starts.
756 *
757 * Return 0 on success and -errno in error cases. -EAGAIN means that the
758 * function has been waiting for another request and the allocation must be
759 * restarted, but the whole request should not be failed.
760 */
761static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
60651f90 762 uint64_t *host_offset, unsigned int *nb_clusters)
250196f1
KW
763{
764 BDRVQcowState *s = bs->opaque;
250196f1
KW
765 QCowL2Meta *old_alloc;
766
767 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
768 *host_offset, *nb_clusters);
769
770 /*
771 * Check if there already is an AIO write request in flight which allocates
772 * the same cluster. In this case we need to wait until the previous
773 * request has completed and updated the L2 table accordingly.
774 */
775 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
776
777 uint64_t start = guest_offset >> s->cluster_bits;
778 uint64_t end = start + *nb_clusters;
779 uint64_t old_start = old_alloc->offset >> s->cluster_bits;
780 uint64_t old_end = old_start + old_alloc->nb_clusters;
781
782 if (end < old_start || start > old_end) {
783 /* No intersection */
784 } else {
785 if (start < old_start) {
786 /* Stop at the start of a running allocation */
787 *nb_clusters = old_start - start;
788 } else {
789 *nb_clusters = 0;
790 }
791
792 if (*nb_clusters == 0) {
793 /* Wait for the dependency to complete. We need to recheck
794 * the free/allocated clusters when we continue. */
795 qemu_co_mutex_unlock(&s->lock);
796 qemu_co_queue_wait(&old_alloc->dependent_requests);
797 qemu_co_mutex_lock(&s->lock);
798 return -EAGAIN;
799 }
800 }
801 }
802
803 if (!*nb_clusters) {
804 abort();
805 }
806
807 /* Allocate new clusters */
808 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
809 if (*host_offset == 0) {
df021791
KW
810 int64_t cluster_offset =
811 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
812 if (cluster_offset < 0) {
813 return cluster_offset;
814 }
815 *host_offset = cluster_offset;
816 return 0;
250196f1 817 } else {
df021791
KW
818 int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
819 if (ret < 0) {
820 return ret;
821 }
822 *nb_clusters = ret;
823 return 0;
250196f1 824 }
250196f1
KW
825}
826
45aba42f
KW
827/*
828 * alloc_cluster_offset
829 *
250196f1
KW
830 * For a given offset on the virtual disk, find the cluster offset in qcow2
831 * file. If the offset is not found, allocate a new cluster.
45aba42f 832 *
250196f1 833 * If the cluster was already allocated, m->nb_clusters is set to 0 and
a7912369 834 * other fields in m are meaningless.
148da7ea
KW
835 *
836 * If the cluster is newly allocated, m->nb_clusters is set to the number of
68d100e9
KW
837 * contiguous clusters that have been allocated. In this case, the other
838 * fields of m are valid and contain information about the first allocated
839 * cluster.
45aba42f 840 *
68d100e9
KW
841 * If the request conflicts with another write request in flight, the coroutine
842 * is queued and will be reentered when the dependency has completed.
148da7ea
KW
843 *
844 * Return 0 on success and -errno in error cases
45aba42f 845 */
f4f0d391
KW
846int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
847 int n_start, int n_end, int *num, QCowL2Meta *m)
45aba42f
KW
848{
849 BDRVQcowState *s = bs->opaque;
250196f1 850 int l2_index, ret, sectors;
3948d1d4 851 uint64_t *l2_table;
250196f1
KW
852 unsigned int nb_clusters, keep_clusters;
853 uint64_t cluster_offset;
45aba42f 854
3cce16f4
KW
855 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
856 n_start, n_end);
857
250196f1 858 /* Find L2 entry for the first involved cluster */
72424114 859again:
3948d1d4 860 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1e3e8f1a 861 if (ret < 0) {
148da7ea 862 return ret;
1e3e8f1a 863 }
45aba42f 864
250196f1
KW
865 /*
866 * Calculate the number of clusters to look for. We stop at L2 table
867 * boundaries to keep things simple.
868 */
250196f1
KW
869 nb_clusters = MIN(size_to_clusters(s, n_end << BDRV_SECTOR_BITS),
870 s->l2_size - l2_index);
45aba42f
KW
871
872 cluster_offset = be64_to_cpu(l2_table[l2_index]);
873
250196f1
KW
874 /*
875 * Check how many clusters are already allocated and don't need COW, and how
876 * many need a new allocation.
877 */
8e37f681
KW
878 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
879 && (cluster_offset & QCOW_OFLAG_COPIED))
880 {
250196f1 881 /* We keep all QCOW_OFLAG_COPIED clusters */
6377af48
KW
882 keep_clusters =
883 count_contiguous_clusters(nb_clusters, s->cluster_size,
884 &l2_table[l2_index], 0,
885 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
250196f1
KW
886 assert(keep_clusters <= nb_clusters);
887 nb_clusters -= keep_clusters;
888 } else {
54e68143
KW
889 keep_clusters = 0;
890 cluster_offset = 0;
891 }
892
893 if (nb_clusters > 0) {
250196f1 894 /* For the moment, overwrite compressed clusters one by one */
54e68143
KW
895 uint64_t entry = be64_to_cpu(l2_table[l2_index + keep_clusters]);
896 if (entry & QCOW_OFLAG_COMPRESSED) {
250196f1
KW
897 nb_clusters = 1;
898 } else {
54e68143
KW
899 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table,
900 l2_index + keep_clusters);
250196f1 901 }
45aba42f
KW
902 }
903
8e37f681 904 cluster_offset &= L2E_OFFSET_MASK;
45aba42f 905
72424114
KW
906 /*
907 * The L2 table isn't used any more after this. As long as the cache works
908 * synchronously, it's important to release it before calling
909 * do_alloc_cluster_offset, which may yield if we need to wait for another
910 * request to complete. If we still had the reference, we could use up the
911 * whole cache with sleeping requests.
912 */
913 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
914 if (ret < 0) {
915 return ret;
916 }
917
250196f1
KW
918 /* If there is something left to allocate, do that now */
919 *m = (QCowL2Meta) {
920 .cluster_offset = cluster_offset,
921 .nb_clusters = 0,
922 };
923 qemu_co_queue_init(&m->dependent_requests);
45aba42f 924
250196f1
KW
925 if (nb_clusters > 0) {
926 uint64_t alloc_offset;
927 uint64_t alloc_cluster_offset;
928 uint64_t keep_bytes = keep_clusters * s->cluster_size;
45aba42f 929
250196f1
KW
930 /* Calculate start and size of allocation */
931 alloc_offset = offset + keep_bytes;
45aba42f 932
250196f1
KW
933 if (keep_clusters == 0) {
934 alloc_cluster_offset = 0;
f214978a 935 } else {
250196f1 936 alloc_cluster_offset = cluster_offset + keep_bytes;
f214978a 937 }
f214978a 938
250196f1
KW
939 /* Allocate, if necessary at a given offset in the image file */
940 ret = do_alloc_cluster_offset(bs, alloc_offset, &alloc_cluster_offset,
60651f90 941 &nb_clusters);
250196f1
KW
942 if (ret == -EAGAIN) {
943 goto again;
944 } else if (ret < 0) {
945 goto fail;
946 }
f214978a 947
250196f1
KW
948 /* save info needed for meta data update */
949 if (nb_clusters > 0) {
950 int requested_sectors = n_end - keep_clusters * s->cluster_sectors;
951 int avail_sectors = (keep_clusters + nb_clusters)
952 << (s->cluster_bits - BDRV_SECTOR_BITS);
953
954 *m = (QCowL2Meta) {
955 .cluster_offset = keep_clusters == 0 ?
956 alloc_cluster_offset : cluster_offset,
957 .alloc_offset = alloc_cluster_offset,
958 .offset = alloc_offset,
959 .n_start = keep_clusters == 0 ? n_start : 0,
960 .nb_clusters = nb_clusters,
961 .nb_available = MIN(requested_sectors, avail_sectors),
962 };
963 qemu_co_queue_init(&m->dependent_requests);
964 QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
965 }
5d757b56 966 }
45aba42f 967
250196f1 968 /* Some cleanup work */
250196f1
KW
969 sectors = (keep_clusters + nb_clusters) << (s->cluster_bits - 9);
970 if (sectors > n_end) {
971 sectors = n_end;
972 }
45aba42f 973
250196f1
KW
974 assert(sectors > n_start);
975 *num = sectors - n_start;
45aba42f 976
148da7ea 977 return 0;
29c1a730
KW
978
979fail:
8dc0a5e7 980 if (m->nb_clusters > 0) {
250196f1
KW
981 QLIST_REMOVE(m, next_in_flight);
982 }
29c1a730 983 return ret;
45aba42f
KW
984}
985
986static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
987 const uint8_t *buf, int buf_size)
988{
989 z_stream strm1, *strm = &strm1;
990 int ret, out_len;
991
992 memset(strm, 0, sizeof(*strm));
993
994 strm->next_in = (uint8_t *)buf;
995 strm->avail_in = buf_size;
996 strm->next_out = out_buf;
997 strm->avail_out = out_buf_size;
998
999 ret = inflateInit2(strm, -12);
1000 if (ret != Z_OK)
1001 return -1;
1002 ret = inflate(strm, Z_FINISH);
1003 out_len = strm->next_out - out_buf;
1004 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1005 out_len != out_buf_size) {
1006 inflateEnd(strm);
1007 return -1;
1008 }
1009 inflateEnd(strm);
1010 return 0;
1011}
1012
66f82cee 1013int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
45aba42f 1014{
66f82cee 1015 BDRVQcowState *s = bs->opaque;
45aba42f
KW
1016 int ret, csize, nb_csectors, sector_offset;
1017 uint64_t coffset;
1018
1019 coffset = cluster_offset & s->cluster_offset_mask;
1020 if (s->cluster_cache_offset != coffset) {
1021 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1022 sector_offset = coffset & 511;
1023 csize = nb_csectors * 512 - sector_offset;
66f82cee
KW
1024 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1025 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
45aba42f 1026 if (ret < 0) {
8af36488 1027 return ret;
45aba42f
KW
1028 }
1029 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1030 s->cluster_data + sector_offset, csize) < 0) {
8af36488 1031 return -EIO;
45aba42f
KW
1032 }
1033 s->cluster_cache_offset = coffset;
1034 }
1035 return 0;
1036}
5ea929e3
KW
1037
1038/*
1039 * This discards as many clusters of nb_clusters as possible at once (i.e.
1040 * all clusters in the same L2 table) and returns the number of discarded
1041 * clusters.
1042 */
1043static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1044 unsigned int nb_clusters)
1045{
1046 BDRVQcowState *s = bs->opaque;
3948d1d4 1047 uint64_t *l2_table;
5ea929e3
KW
1048 int l2_index;
1049 int ret;
1050 int i;
1051
3948d1d4 1052 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
5ea929e3
KW
1053 if (ret < 0) {
1054 return ret;
1055 }
1056
1057 /* Limit nb_clusters to one L2 table */
1058 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1059
1060 for (i = 0; i < nb_clusters; i++) {
1061 uint64_t old_offset;
1062
1063 old_offset = be64_to_cpu(l2_table[l2_index + i]);
8e37f681 1064 if ((old_offset & L2E_OFFSET_MASK) == 0) {
5ea929e3
KW
1065 continue;
1066 }
1067
1068 /* First remove L2 entries */
1069 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1070 l2_table[l2_index + i] = cpu_to_be64(0);
1071
1072 /* Then decrease the refcount */
1073 qcow2_free_any_clusters(bs, old_offset, 1);
1074 }
1075
1076 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1077 if (ret < 0) {
1078 return ret;
1079 }
1080
1081 return nb_clusters;
1082}
1083
1084int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1085 int nb_sectors)
1086{
1087 BDRVQcowState *s = bs->opaque;
1088 uint64_t end_offset;
1089 unsigned int nb_clusters;
1090 int ret;
1091
1092 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1093
1094 /* Round start up and end down */
1095 offset = align_offset(offset, s->cluster_size);
1096 end_offset &= ~(s->cluster_size - 1);
1097
1098 if (offset > end_offset) {
1099 return 0;
1100 }
1101
1102 nb_clusters = size_to_clusters(s, end_offset - offset);
1103
1104 /* Each L2 table is handled by its own loop iteration */
1105 while (nb_clusters > 0) {
1106 ret = discard_single_l2(bs, offset, nb_clusters);
1107 if (ret < 0) {
1108 return ret;
1109 }
1110
1111 nb_clusters -= ret;
1112 offset += (ret * s->cluster_size);
1113 }
1114
1115 return 0;
1116}
621f0589
KW
1117
1118/*
1119 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1120 * all clusters in the same L2 table) and returns the number of zeroed
1121 * clusters.
1122 */
1123static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1124 unsigned int nb_clusters)
1125{
1126 BDRVQcowState *s = bs->opaque;
1127 uint64_t *l2_table;
1128 int l2_index;
1129 int ret;
1130 int i;
1131
1132 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1133 if (ret < 0) {
1134 return ret;
1135 }
1136
1137 /* Limit nb_clusters to one L2 table */
1138 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1139
1140 for (i = 0; i < nb_clusters; i++) {
1141 uint64_t old_offset;
1142
1143 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1144
1145 /* Update L2 entries */
1146 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1147 if (old_offset & QCOW_OFLAG_COMPRESSED) {
1148 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1149 qcow2_free_any_clusters(bs, old_offset, 1);
1150 } else {
1151 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1152 }
1153 }
1154
1155 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1156 if (ret < 0) {
1157 return ret;
1158 }
1159
1160 return nb_clusters;
1161}
1162
1163int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1164{
1165 BDRVQcowState *s = bs->opaque;
1166 unsigned int nb_clusters;
1167 int ret;
1168
1169 /* The zero flag is only supported by version 3 and newer */
1170 if (s->qcow_version < 3) {
1171 return -ENOTSUP;
1172 }
1173
1174 /* Each L2 table is handled by its own loop iteration */
1175 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1176
1177 while (nb_clusters > 0) {
1178 ret = zero_single_l2(bs, offset, nb_clusters);
1179 if (ret < 0) {
1180 return ret;
1181 }
1182
1183 nb_clusters -= ret;
1184 offset += (ret * s->cluster_size);
1185 }
1186
1187 return 0;
1188}