]> git.proxmox.com Git - qemu.git/blame - block/qed.c
tcg/arm: remove fixed map code buffer restriction
[qemu.git] / block / qed.c
CommitLineData
75411d23
SH
1/*
2 * QEMU Enhanced Disk Format
3 *
4 * Copyright IBM, Corp. 2010
5 *
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
12 *
13 */
14
6f321e93 15#include "qemu-timer.h"
eabba580 16#include "trace.h"
75411d23 17#include "qed.h"
10b758e8 18#include "qerror.h"
1ed520c6 19#include "migration.h"
75411d23 20
eabba580
SH
21static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
22{
23 QEDAIOCB *acb = (QEDAIOCB *)blockacb;
24 bool finished = false;
25
26 /* Wait for the request to finish */
27 acb->finished = &finished;
28 while (!finished) {
29 qemu_aio_wait();
30 }
31}
32
33static AIOPool qed_aio_pool = {
34 .aiocb_size = sizeof(QEDAIOCB),
35 .cancel = qed_aio_cancel,
36};
37
75411d23
SH
38static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
39 const char *filename)
40{
41 const QEDHeader *header = (const QEDHeader *)buf;
42
43 if (buf_size < sizeof(*header)) {
44 return 0;
45 }
46 if (le32_to_cpu(header->magic) != QED_MAGIC) {
47 return 0;
48 }
49 return 100;
50}
51
52/**
53 * Check whether an image format is raw
54 *
55 * @fmt: Backing file format, may be NULL
56 */
57static bool qed_fmt_is_raw(const char *fmt)
58{
59 return fmt && strcmp(fmt, "raw") == 0;
60}
61
62static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
63{
64 cpu->magic = le32_to_cpu(le->magic);
65 cpu->cluster_size = le32_to_cpu(le->cluster_size);
66 cpu->table_size = le32_to_cpu(le->table_size);
67 cpu->header_size = le32_to_cpu(le->header_size);
68 cpu->features = le64_to_cpu(le->features);
69 cpu->compat_features = le64_to_cpu(le->compat_features);
70 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
71 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
72 cpu->image_size = le64_to_cpu(le->image_size);
73 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
74 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
75}
76
77static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
78{
79 le->magic = cpu_to_le32(cpu->magic);
80 le->cluster_size = cpu_to_le32(cpu->cluster_size);
81 le->table_size = cpu_to_le32(cpu->table_size);
82 le->header_size = cpu_to_le32(cpu->header_size);
83 le->features = cpu_to_le64(cpu->features);
84 le->compat_features = cpu_to_le64(cpu->compat_features);
85 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
86 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
87 le->image_size = cpu_to_le64(cpu->image_size);
88 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
89 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
90}
91
92static int qed_write_header_sync(BDRVQEDState *s)
93{
94 QEDHeader le;
95 int ret;
96
97 qed_header_cpu_to_le(&s->header, &le);
98 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
99 if (ret != sizeof(le)) {
100 return ret;
101 }
102 return 0;
103}
104
01979a98
SH
105typedef struct {
106 GenericCB gencb;
107 BDRVQEDState *s;
108 struct iovec iov;
109 QEMUIOVector qiov;
110 int nsectors;
111 uint8_t *buf;
112} QEDWriteHeaderCB;
113
114static void qed_write_header_cb(void *opaque, int ret)
115{
116 QEDWriteHeaderCB *write_header_cb = opaque;
117
118 qemu_vfree(write_header_cb->buf);
119 gencb_complete(write_header_cb, ret);
120}
121
122static void qed_write_header_read_cb(void *opaque, int ret)
123{
124 QEDWriteHeaderCB *write_header_cb = opaque;
125 BDRVQEDState *s = write_header_cb->s;
126 BlockDriverAIOCB *acb;
127
128 if (ret) {
129 qed_write_header_cb(write_header_cb, ret);
130 return;
131 }
132
133 /* Update header */
134 qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
135
136 acb = bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
137 write_header_cb->nsectors, qed_write_header_cb,
138 write_header_cb);
139 if (!acb) {
140 qed_write_header_cb(write_header_cb, -EIO);
141 }
142}
143
144/**
145 * Update header in-place (does not rewrite backing filename or other strings)
146 *
147 * This function only updates known header fields in-place and does not affect
148 * extra data after the QED header.
149 */
150static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
151 void *opaque)
152{
153 /* We must write full sectors for O_DIRECT but cannot necessarily generate
154 * the data following the header if an unrecognized compat feature is
155 * active. Therefore, first read the sectors containing the header, update
156 * them, and write back.
157 */
158
159 BlockDriverAIOCB *acb;
160 int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
161 BDRV_SECTOR_SIZE;
162 size_t len = nsectors * BDRV_SECTOR_SIZE;
163 QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
164 cb, opaque);
165
166 write_header_cb->s = s;
167 write_header_cb->nsectors = nsectors;
168 write_header_cb->buf = qemu_blockalign(s->bs, len);
169 write_header_cb->iov.iov_base = write_header_cb->buf;
170 write_header_cb->iov.iov_len = len;
171 qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
172
173 acb = bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
174 qed_write_header_read_cb, write_header_cb);
175 if (!acb) {
176 qed_write_header_cb(write_header_cb, -EIO);
177 }
178}
179
75411d23
SH
180static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
181{
182 uint64_t table_entries;
183 uint64_t l2_size;
184
185 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
186 l2_size = table_entries * cluster_size;
187
188 return l2_size * table_entries;
189}
190
191static bool qed_is_cluster_size_valid(uint32_t cluster_size)
192{
193 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
194 cluster_size > QED_MAX_CLUSTER_SIZE) {
195 return false;
196 }
197 if (cluster_size & (cluster_size - 1)) {
198 return false; /* not power of 2 */
199 }
200 return true;
201}
202
203static bool qed_is_table_size_valid(uint32_t table_size)
204{
205 if (table_size < QED_MIN_TABLE_SIZE ||
206 table_size > QED_MAX_TABLE_SIZE) {
207 return false;
208 }
209 if (table_size & (table_size - 1)) {
210 return false; /* not power of 2 */
211 }
212 return true;
213}
214
215static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
216 uint32_t table_size)
217{
218 if (image_size % BDRV_SECTOR_SIZE != 0) {
219 return false; /* not multiple of sector size */
220 }
221 if (image_size > qed_max_image_size(cluster_size, table_size)) {
222 return false; /* image is too large */
223 }
224 return true;
225}
226
227/**
228 * Read a string of known length from the image file
229 *
230 * @file: Image file
231 * @offset: File offset to start of string, in bytes
232 * @n: String length in bytes
233 * @buf: Destination buffer
234 * @buflen: Destination buffer length in bytes
235 * @ret: 0 on success, -errno on failure
236 *
237 * The string is NUL-terminated.
238 */
239static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
240 char *buf, size_t buflen)
241{
242 int ret;
243 if (n >= buflen) {
244 return -EINVAL;
245 }
246 ret = bdrv_pread(file, offset, buf, n);
247 if (ret < 0) {
248 return ret;
249 }
250 buf[n] = '\0';
251 return 0;
252}
253
eabba580
SH
254/**
255 * Allocate new clusters
256 *
257 * @s: QED state
258 * @n: Number of contiguous clusters to allocate
259 * @ret: Offset of first allocated cluster
260 *
261 * This function only produces the offset where the new clusters should be
262 * written. It updates BDRVQEDState but does not make any changes to the image
263 * file.
264 */
265static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
266{
267 uint64_t offset = s->file_size;
268 s->file_size += n * s->header.cluster_size;
269 return offset;
270}
271
298800ca
SH
272QEDTable *qed_alloc_table(BDRVQEDState *s)
273{
274 /* Honor O_DIRECT memory alignment requirements */
275 return qemu_blockalign(s->bs,
276 s->header.cluster_size * s->header.table_size);
277}
278
eabba580
SH
279/**
280 * Allocate a new zeroed L2 table
281 */
282static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
283{
284 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
285
286 l2_table->table = qed_alloc_table(s);
287 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
288
289 memset(l2_table->table->offsets, 0,
290 s->header.cluster_size * s->header.table_size);
291 return l2_table;
292}
293
294static void qed_aio_next_io(void *opaque, int ret);
295
6f321e93
SH
296static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
297{
298 assert(!s->allocating_write_reqs_plugged);
299
300 s->allocating_write_reqs_plugged = true;
301}
302
303static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
304{
305 QEDAIOCB *acb;
306
307 assert(s->allocating_write_reqs_plugged);
308
309 s->allocating_write_reqs_plugged = false;
310
311 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
312 if (acb) {
313 qed_aio_next_io(acb, 0);
314 }
315}
316
317static void qed_finish_clear_need_check(void *opaque, int ret)
318{
319 /* Do nothing */
320}
321
322static void qed_flush_after_clear_need_check(void *opaque, int ret)
323{
324 BDRVQEDState *s = opaque;
325
326 bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
327
328 /* No need to wait until flush completes */
329 qed_unplug_allocating_write_reqs(s);
330}
331
332static void qed_clear_need_check(void *opaque, int ret)
333{
334 BDRVQEDState *s = opaque;
335
336 if (ret) {
337 qed_unplug_allocating_write_reqs(s);
338 return;
339 }
340
341 s->header.features &= ~QED_F_NEED_CHECK;
342 qed_write_header(s, qed_flush_after_clear_need_check, s);
343}
344
345static void qed_need_check_timer_cb(void *opaque)
346{
347 BDRVQEDState *s = opaque;
348
349 /* The timer should only fire when allocating writes have drained */
350 assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
351
352 trace_qed_need_check_timer_cb(s);
353
354 qed_plug_allocating_write_reqs(s);
355
356 /* Ensure writes are on disk before clearing flag */
357 bdrv_aio_flush(s->bs, qed_clear_need_check, s);
358}
359
360static void qed_start_need_check_timer(BDRVQEDState *s)
361{
362 trace_qed_start_need_check_timer(s);
363
364 /* Use vm_clock so we don't alter the image file while suspended for
365 * migration.
366 */
367 qemu_mod_timer(s->need_check_timer, qemu_get_clock_ns(vm_clock) +
368 get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
369}
370
371/* It's okay to call this multiple times or when no timer is started */
372static void qed_cancel_need_check_timer(BDRVQEDState *s)
373{
374 trace_qed_cancel_need_check_timer(s);
375 qemu_del_timer(s->need_check_timer);
376}
377
75411d23
SH
378static int bdrv_qed_open(BlockDriverState *bs, int flags)
379{
380 BDRVQEDState *s = bs->opaque;
381 QEDHeader le_header;
382 int64_t file_size;
383 int ret;
384
385 s->bs = bs;
eabba580 386 QSIMPLEQ_INIT(&s->allocating_write_reqs);
75411d23
SH
387
388 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
389 if (ret < 0) {
390 return ret;
391 }
75411d23
SH
392 qed_header_le_to_cpu(&le_header, &s->header);
393
394 if (s->header.magic != QED_MAGIC) {
395 return -EINVAL;
396 }
397 if (s->header.features & ~QED_FEATURE_MASK) {
10b758e8
KW
398 /* image uses unsupported feature bits */
399 char buf[64];
400 snprintf(buf, sizeof(buf), "%" PRIx64,
401 s->header.features & ~QED_FEATURE_MASK);
402 qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
403 bs->device_name, "QED", buf);
404 return -ENOTSUP;
75411d23
SH
405 }
406 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
407 return -EINVAL;
408 }
409
410 /* Round down file size to the last cluster */
411 file_size = bdrv_getlength(bs->file);
412 if (file_size < 0) {
413 return file_size;
414 }
415 s->file_size = qed_start_of_cluster(s, file_size);
416
417 if (!qed_is_table_size_valid(s->header.table_size)) {
418 return -EINVAL;
419 }
420 if (!qed_is_image_size_valid(s->header.image_size,
421 s->header.cluster_size,
422 s->header.table_size)) {
423 return -EINVAL;
424 }
425 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
426 return -EINVAL;
427 }
428
429 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
430 sizeof(uint64_t);
431 s->l2_shift = ffs(s->header.cluster_size) - 1;
432 s->l2_mask = s->table_nelems - 1;
433 s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
434
435 if ((s->header.features & QED_F_BACKING_FILE)) {
436 if ((uint64_t)s->header.backing_filename_offset +
437 s->header.backing_filename_size >
438 s->header.cluster_size * s->header.header_size) {
439 return -EINVAL;
440 }
441
442 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
443 s->header.backing_filename_size, bs->backing_file,
444 sizeof(bs->backing_file));
445 if (ret < 0) {
446 return ret;
447 }
448
449 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
450 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
451 }
452 }
453
454 /* Reset unknown autoclear feature bits. This is a backwards
455 * compatibility mechanism that allows images to be opened by older
456 * programs, which "knock out" unknown feature bits. When an image is
457 * opened by a newer program again it can detect that the autoclear
458 * feature is no longer valid.
459 */
460 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
461 !bdrv_is_read_only(bs->file)) {
462 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
463
464 ret = qed_write_header_sync(s);
465 if (ret) {
466 return ret;
467 }
468
469 /* From here on only known autoclear feature bits are valid */
470 bdrv_flush(bs->file);
471 }
472
298800ca
SH
473 s->l1_table = qed_alloc_table(s);
474 qed_init_l2_cache(&s->l2_cache);
475
476 ret = qed_read_l1_table_sync(s);
01979a98
SH
477 if (ret) {
478 goto out;
479 }
480
481 /* If image was not closed cleanly, check consistency */
482 if (s->header.features & QED_F_NEED_CHECK) {
483 /* Read-only images cannot be fixed. There is no risk of corruption
484 * since write operations are not possible. Therefore, allow
485 * potentially inconsistent images to be opened read-only. This can
486 * aid data recovery from an otherwise inconsistent image.
487 */
488 if (!bdrv_is_read_only(bs->file)) {
489 BdrvCheckResult result = {0};
490
491 ret = qed_check(s, &result, true);
6f321e93
SH
492 if (ret) {
493 goto out;
494 }
495 if (!result.corruptions && !result.check_errors) {
01979a98
SH
496 /* Ensure fixes reach storage before clearing check bit */
497 bdrv_flush(s->bs);
498
499 s->header.features &= ~QED_F_NEED_CHECK;
500 qed_write_header_sync(s);
501 }
502 }
503 }
504
6f321e93
SH
505 s->need_check_timer = qemu_new_timer_ns(vm_clock,
506 qed_need_check_timer_cb, s);
507
1ed520c6
AL
508 error_set(&s->migration_blocker,
509 QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
510 "qed", bs->device_name, "live migration");
511 migrate_add_blocker(s->migration_blocker);
512
513
01979a98 514out:
298800ca
SH
515 if (ret) {
516 qed_free_l2_cache(&s->l2_cache);
517 qemu_vfree(s->l1_table);
518 }
75411d23
SH
519 return ret;
520}
521
522static void bdrv_qed_close(BlockDriverState *bs)
523{
298800ca
SH
524 BDRVQEDState *s = bs->opaque;
525
1ed520c6
AL
526 migrate_del_blocker(s->migration_blocker);
527 error_free(s->migration_blocker);
528
6f321e93
SH
529 qed_cancel_need_check_timer(s);
530 qemu_free_timer(s->need_check_timer);
531
01979a98
SH
532 /* Ensure writes reach stable storage */
533 bdrv_flush(bs->file);
534
535 /* Clean shutdown, no check required on next open */
536 if (s->header.features & QED_F_NEED_CHECK) {
537 s->header.features &= ~QED_F_NEED_CHECK;
538 qed_write_header_sync(s);
539 }
540
298800ca
SH
541 qed_free_l2_cache(&s->l2_cache);
542 qemu_vfree(s->l1_table);
75411d23
SH
543}
544
75411d23
SH
545static int qed_create(const char *filename, uint32_t cluster_size,
546 uint64_t image_size, uint32_t table_size,
547 const char *backing_file, const char *backing_fmt)
548{
549 QEDHeader header = {
550 .magic = QED_MAGIC,
551 .cluster_size = cluster_size,
552 .table_size = table_size,
553 .header_size = 1,
554 .features = 0,
555 .compat_features = 0,
556 .l1_table_offset = cluster_size,
557 .image_size = image_size,
558 };
559 QEDHeader le_header;
560 uint8_t *l1_table = NULL;
561 size_t l1_size = header.cluster_size * header.table_size;
562 int ret = 0;
563 BlockDriverState *bs = NULL;
564
565 ret = bdrv_create_file(filename, NULL);
566 if (ret < 0) {
567 return ret;
568 }
569
570 ret = bdrv_file_open(&bs, filename, BDRV_O_RDWR | BDRV_O_CACHE_WB);
571 if (ret < 0) {
572 return ret;
573 }
574
c743849b
SH
575 /* File must start empty and grow, check truncate is supported */
576 ret = bdrv_truncate(bs, 0);
577 if (ret < 0) {
578 goto out;
579 }
580
75411d23
SH
581 if (backing_file) {
582 header.features |= QED_F_BACKING_FILE;
583 header.backing_filename_offset = sizeof(le_header);
584 header.backing_filename_size = strlen(backing_file);
585
586 if (qed_fmt_is_raw(backing_fmt)) {
587 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
588 }
589 }
590
591 qed_header_cpu_to_le(&header, &le_header);
592 ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
593 if (ret < 0) {
594 goto out;
595 }
596 ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
597 header.backing_filename_size);
598 if (ret < 0) {
599 goto out;
600 }
601
7267c094 602 l1_table = g_malloc0(l1_size);
75411d23
SH
603 ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
604 if (ret < 0) {
605 goto out;
606 }
607
608 ret = 0; /* success */
609out:
7267c094 610 g_free(l1_table);
75411d23
SH
611 bdrv_delete(bs);
612 return ret;
613}
614
615static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options)
616{
617 uint64_t image_size = 0;
618 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
619 uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
620 const char *backing_file = NULL;
621 const char *backing_fmt = NULL;
622
623 while (options && options->name) {
624 if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
625 image_size = options->value.n;
626 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
627 backing_file = options->value.s;
628 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
629 backing_fmt = options->value.s;
630 } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
631 if (options->value.n) {
632 cluster_size = options->value.n;
633 }
634 } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
635 if (options->value.n) {
636 table_size = options->value.n;
637 }
638 }
639 options++;
640 }
641
642 if (!qed_is_cluster_size_valid(cluster_size)) {
643 fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n",
644 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
645 return -EINVAL;
646 }
647 if (!qed_is_table_size_valid(table_size)) {
648 fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n",
649 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
650 return -EINVAL;
651 }
652 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
653 fprintf(stderr, "QED image size must be a non-zero multiple of "
654 "cluster size and less than %" PRIu64 " bytes\n",
655 qed_max_image_size(cluster_size, table_size));
656 return -EINVAL;
657 }
658
659 return qed_create(filename, cluster_size, image_size, table_size,
660 backing_file, backing_fmt);
661}
662
298800ca 663typedef struct {
b7d5a5b8 664 Coroutine *co;
298800ca
SH
665 int is_allocated;
666 int *pnum;
667} QEDIsAllocatedCB;
668
669static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
670{
671 QEDIsAllocatedCB *cb = opaque;
672 *cb->pnum = len / BDRV_SECTOR_SIZE;
21df65b6 673 cb->is_allocated = (ret == QED_CLUSTER_FOUND || ret == QED_CLUSTER_ZERO);
b7d5a5b8
SH
674 if (cb->co) {
675 qemu_coroutine_enter(cb->co, NULL);
676 }
298800ca
SH
677}
678
b7d5a5b8
SH
679static int coroutine_fn bdrv_qed_co_is_allocated(BlockDriverState *bs,
680 int64_t sector_num,
681 int nb_sectors, int *pnum)
75411d23 682{
298800ca
SH
683 BDRVQEDState *s = bs->opaque;
684 uint64_t pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
685 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
686 QEDIsAllocatedCB cb = {
687 .is_allocated = -1,
688 .pnum = pnum,
689 };
690 QEDRequest request = { .l2_table = NULL };
691
298800ca
SH
692 qed_find_cluster(s, &request, pos, len, qed_is_allocated_cb, &cb);
693
b7d5a5b8 694 /* Now sleep if the callback wasn't invoked immediately */
298800ca 695 while (cb.is_allocated == -1) {
b7d5a5b8
SH
696 cb.co = qemu_coroutine_self();
697 qemu_coroutine_yield();
298800ca
SH
698 }
699
298800ca
SH
700 qed_unref_l2_cache_entry(request.l2_table);
701
702 return cb.is_allocated;
75411d23
SH
703}
704
705static int bdrv_qed_make_empty(BlockDriverState *bs)
706{
707 return -ENOTSUP;
708}
709
eabba580
SH
710static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
711{
712 return acb->common.bs->opaque;
713}
714
715/**
716 * Read from the backing file or zero-fill if no backing file
717 *
718 * @s: QED state
719 * @pos: Byte position in device
720 * @qiov: Destination I/O vector
721 * @cb: Completion function
722 * @opaque: User data for completion function
723 *
724 * This function reads qiov->size bytes starting at pos from the backing file.
725 * If there is no backing file then zeroes are read.
726 */
727static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
728 QEMUIOVector *qiov,
729 BlockDriverCompletionFunc *cb, void *opaque)
730{
731 BlockDriverAIOCB *aiocb;
732 uint64_t backing_length = 0;
733 size_t size;
734
735 /* If there is a backing file, get its length. Treat the absence of a
736 * backing file like a zero length backing file.
737 */
738 if (s->bs->backing_hd) {
739 int64_t l = bdrv_getlength(s->bs->backing_hd);
740 if (l < 0) {
741 cb(opaque, l);
742 return;
743 }
744 backing_length = l;
745 }
746
747 /* Zero all sectors if reading beyond the end of the backing file */
748 if (pos >= backing_length ||
749 pos + qiov->size > backing_length) {
750 qemu_iovec_memset(qiov, 0, qiov->size);
751 }
752
753 /* Complete now if there are no backing file sectors to read */
754 if (pos >= backing_length) {
755 cb(opaque, 0);
756 return;
757 }
758
759 /* If the read straddles the end of the backing file, shorten it */
760 size = MIN((uint64_t)backing_length - pos, qiov->size);
761
762 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING);
763 aiocb = bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
764 qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
765 if (!aiocb) {
766 cb(opaque, -EIO);
767 }
768}
769
770typedef struct {
771 GenericCB gencb;
772 BDRVQEDState *s;
773 QEMUIOVector qiov;
774 struct iovec iov;
775 uint64_t offset;
776} CopyFromBackingFileCB;
777
778static void qed_copy_from_backing_file_cb(void *opaque, int ret)
779{
780 CopyFromBackingFileCB *copy_cb = opaque;
781 qemu_vfree(copy_cb->iov.iov_base);
782 gencb_complete(&copy_cb->gencb, ret);
783}
784
785static void qed_copy_from_backing_file_write(void *opaque, int ret)
786{
787 CopyFromBackingFileCB *copy_cb = opaque;
788 BDRVQEDState *s = copy_cb->s;
789 BlockDriverAIOCB *aiocb;
790
791 if (ret) {
792 qed_copy_from_backing_file_cb(copy_cb, ret);
793 return;
794 }
795
796 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
797 aiocb = bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
798 &copy_cb->qiov,
799 copy_cb->qiov.size / BDRV_SECTOR_SIZE,
800 qed_copy_from_backing_file_cb, copy_cb);
801 if (!aiocb) {
802 qed_copy_from_backing_file_cb(copy_cb, -EIO);
803 }
804}
805
806/**
807 * Copy data from backing file into the image
808 *
809 * @s: QED state
810 * @pos: Byte position in device
811 * @len: Number of bytes
812 * @offset: Byte offset in image file
813 * @cb: Completion function
814 * @opaque: User data for completion function
815 */
816static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
817 uint64_t len, uint64_t offset,
818 BlockDriverCompletionFunc *cb,
819 void *opaque)
820{
821 CopyFromBackingFileCB *copy_cb;
822
823 /* Skip copy entirely if there is no work to do */
824 if (len == 0) {
825 cb(opaque, 0);
826 return;
827 }
828
829 copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
830 copy_cb->s = s;
831 copy_cb->offset = offset;
832 copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
833 copy_cb->iov.iov_len = len;
834 qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
835
836 qed_read_backing_file(s, pos, &copy_cb->qiov,
837 qed_copy_from_backing_file_write, copy_cb);
838}
839
840/**
841 * Link one or more contiguous clusters into a table
842 *
843 * @s: QED state
844 * @table: L2 table
845 * @index: First cluster index
846 * @n: Number of contiguous clusters
21df65b6
AL
847 * @cluster: First cluster offset
848 *
849 * The cluster offset may be an allocated byte offset in the image file, the
850 * zero cluster marker, or the unallocated cluster marker.
eabba580
SH
851 */
852static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
853 unsigned int n, uint64_t cluster)
854{
855 int i;
856 for (i = index; i < index + n; i++) {
857 table->offsets[i] = cluster;
21df65b6
AL
858 if (!qed_offset_is_unalloc_cluster(cluster) &&
859 !qed_offset_is_zero_cluster(cluster)) {
860 cluster += s->header.cluster_size;
861 }
eabba580
SH
862 }
863}
864
865static void qed_aio_complete_bh(void *opaque)
866{
867 QEDAIOCB *acb = opaque;
868 BlockDriverCompletionFunc *cb = acb->common.cb;
869 void *user_opaque = acb->common.opaque;
870 int ret = acb->bh_ret;
871 bool *finished = acb->finished;
872
873 qemu_bh_delete(acb->bh);
874 qemu_aio_release(acb);
875
876 /* Invoke callback */
877 cb(user_opaque, ret);
878
879 /* Signal cancel completion */
880 if (finished) {
881 *finished = true;
882 }
883}
884
885static void qed_aio_complete(QEDAIOCB *acb, int ret)
886{
887 BDRVQEDState *s = acb_to_s(acb);
888
889 trace_qed_aio_complete(s, acb, ret);
890
891 /* Free resources */
892 qemu_iovec_destroy(&acb->cur_qiov);
893 qed_unref_l2_cache_entry(acb->request.l2_table);
894
895 /* Arrange for a bh to invoke the completion function */
896 acb->bh_ret = ret;
897 acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
898 qemu_bh_schedule(acb->bh);
899
900 /* Start next allocating write request waiting behind this one. Note that
901 * requests enqueue themselves when they first hit an unallocated cluster
902 * but they wait until the entire request is finished before waking up the
903 * next request in the queue. This ensures that we don't cycle through
904 * requests multiple times but rather finish one at a time completely.
905 */
906 if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
907 QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
908 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
909 if (acb) {
910 qed_aio_next_io(acb, 0);
6f321e93
SH
911 } else if (s->header.features & QED_F_NEED_CHECK) {
912 qed_start_need_check_timer(s);
eabba580
SH
913 }
914 }
915}
916
917/**
918 * Commit the current L2 table to the cache
919 */
920static void qed_commit_l2_update(void *opaque, int ret)
921{
922 QEDAIOCB *acb = opaque;
923 BDRVQEDState *s = acb_to_s(acb);
924 CachedL2Table *l2_table = acb->request.l2_table;
e4fc8781 925 uint64_t l2_offset = l2_table->offset;
eabba580
SH
926
927 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
928
929 /* This is guaranteed to succeed because we just committed the entry to the
930 * cache.
931 */
e4fc8781 932 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
eabba580
SH
933 assert(acb->request.l2_table != NULL);
934
935 qed_aio_next_io(opaque, ret);
936}
937
938/**
939 * Update L1 table with new L2 table offset and write it out
940 */
941static void qed_aio_write_l1_update(void *opaque, int ret)
942{
943 QEDAIOCB *acb = opaque;
944 BDRVQEDState *s = acb_to_s(acb);
945 int index;
946
947 if (ret) {
948 qed_aio_complete(acb, ret);
949 return;
950 }
951
952 index = qed_l1_index(s, acb->cur_pos);
953 s->l1_table->offsets[index] = acb->request.l2_table->offset;
954
955 qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
956}
957
958/**
959 * Update L2 table with new cluster offsets and write them out
960 */
961static void qed_aio_write_l2_update(void *opaque, int ret)
962{
963 QEDAIOCB *acb = opaque;
964 BDRVQEDState *s = acb_to_s(acb);
965 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
966 int index;
967
968 if (ret) {
969 goto err;
970 }
971
972 if (need_alloc) {
973 qed_unref_l2_cache_entry(acb->request.l2_table);
974 acb->request.l2_table = qed_new_l2_table(s);
975 }
976
977 index = qed_l2_index(s, acb->cur_pos);
978 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
979 acb->cur_cluster);
980
981 if (need_alloc) {
982 /* Write out the whole new L2 table */
983 qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
984 qed_aio_write_l1_update, acb);
985 } else {
986 /* Write out only the updated part of the L2 table */
987 qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
988 qed_aio_next_io, acb);
989 }
990 return;
991
992err:
993 qed_aio_complete(acb, ret);
994}
995
996/**
997 * Flush new data clusters before updating the L2 table
998 *
999 * This flush is necessary when a backing file is in use. A crash during an
1000 * allocating write could result in empty clusters in the image. If the write
1001 * only touched a subregion of the cluster, then backing image sectors have
1002 * been lost in the untouched region. The solution is to flush after writing a
1003 * new data cluster and before updating the L2 table.
1004 */
1005static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
1006{
1007 QEDAIOCB *acb = opaque;
1008 BDRVQEDState *s = acb_to_s(acb);
1009
1010 if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update, opaque)) {
1011 qed_aio_complete(acb, -EIO);
1012 }
1013}
1014
1015/**
1016 * Write data to the image file
1017 */
1018static void qed_aio_write_main(void *opaque, int ret)
1019{
1020 QEDAIOCB *acb = opaque;
1021 BDRVQEDState *s = acb_to_s(acb);
1022 uint64_t offset = acb->cur_cluster +
1023 qed_offset_into_cluster(s, acb->cur_pos);
1024 BlockDriverCompletionFunc *next_fn;
1025 BlockDriverAIOCB *file_acb;
1026
1027 trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1028
1029 if (ret) {
1030 qed_aio_complete(acb, ret);
1031 return;
1032 }
1033
1034 if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1035 next_fn = qed_aio_next_io;
1036 } else {
1037 if (s->bs->backing_hd) {
1038 next_fn = qed_aio_write_flush_before_l2_update;
1039 } else {
1040 next_fn = qed_aio_write_l2_update;
1041 }
1042 }
1043
1044 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1045 file_acb = bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1046 &acb->cur_qiov,
1047 acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1048 next_fn, acb);
1049 if (!file_acb) {
1050 qed_aio_complete(acb, -EIO);
1051 }
1052}
1053
1054/**
1055 * Populate back untouched region of new data cluster
1056 */
1057static void qed_aio_write_postfill(void *opaque, int ret)
1058{
1059 QEDAIOCB *acb = opaque;
1060 BDRVQEDState *s = acb_to_s(acb);
1061 uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1062 uint64_t len =
1063 qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1064 uint64_t offset = acb->cur_cluster +
1065 qed_offset_into_cluster(s, acb->cur_pos) +
1066 acb->cur_qiov.size;
1067
1068 if (ret) {
1069 qed_aio_complete(acb, ret);
1070 return;
1071 }
1072
1073 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1074 qed_copy_from_backing_file(s, start, len, offset,
1075 qed_aio_write_main, acb);
1076}
1077
1078/**
1079 * Populate front untouched region of new data cluster
1080 */
1081static void qed_aio_write_prefill(void *opaque, int ret)
1082{
1083 QEDAIOCB *acb = opaque;
1084 BDRVQEDState *s = acb_to_s(acb);
1085 uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1086 uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1087
1088 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1089 qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1090 qed_aio_write_postfill, acb);
1091}
1092
0d09c797
SH
1093/**
1094 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1095 */
1096static bool qed_should_set_need_check(BDRVQEDState *s)
1097{
1098 /* The flush before L2 update path ensures consistency */
1099 if (s->bs->backing_hd) {
1100 return false;
1101 }
1102
1103 return !(s->header.features & QED_F_NEED_CHECK);
1104}
1105
eabba580
SH
1106/**
1107 * Write new data cluster
1108 *
1109 * @acb: Write request
1110 * @len: Length in bytes
1111 *
1112 * This path is taken when writing to previously unallocated clusters.
1113 */
1114static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1115{
1116 BDRVQEDState *s = acb_to_s(acb);
1117
6f321e93
SH
1118 /* Cancel timer when the first allocating request comes in */
1119 if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1120 qed_cancel_need_check_timer(s);
1121 }
1122
eabba580
SH
1123 /* Freeze this request if another allocating write is in progress */
1124 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1125 QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1126 }
6f321e93
SH
1127 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1128 s->allocating_write_reqs_plugged) {
eabba580
SH
1129 return; /* wait for existing request to finish */
1130 }
1131
1132 acb->cur_nclusters = qed_bytes_to_clusters(s,
1133 qed_offset_into_cluster(s, acb->cur_pos) + len);
1134 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1135 qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1136
0d09c797
SH
1137 if (qed_should_set_need_check(s)) {
1138 s->header.features |= QED_F_NEED_CHECK;
1139 qed_write_header(s, qed_aio_write_prefill, acb);
1140 } else {
01979a98 1141 qed_aio_write_prefill(acb, 0);
01979a98 1142 }
eabba580
SH
1143}
1144
1145/**
1146 * Write data cluster in place
1147 *
1148 * @acb: Write request
1149 * @offset: Cluster offset in bytes
1150 * @len: Length in bytes
1151 *
1152 * This path is taken when writing to already allocated clusters.
1153 */
1154static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1155{
1156 /* Calculate the I/O vector */
1157 acb->cur_cluster = offset;
1158 qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1159
1160 /* Do the actual write */
1161 qed_aio_write_main(acb, 0);
1162}
1163
1164/**
1165 * Write data cluster
1166 *
1167 * @opaque: Write request
1168 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1169 * or -errno
1170 * @offset: Cluster offset in bytes
1171 * @len: Length in bytes
1172 *
1173 * Callback from qed_find_cluster().
1174 */
1175static void qed_aio_write_data(void *opaque, int ret,
1176 uint64_t offset, size_t len)
1177{
1178 QEDAIOCB *acb = opaque;
1179
1180 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1181
1182 acb->find_cluster_ret = ret;
1183
1184 switch (ret) {
1185 case QED_CLUSTER_FOUND:
1186 qed_aio_write_inplace(acb, offset, len);
1187 break;
1188
1189 case QED_CLUSTER_L2:
1190 case QED_CLUSTER_L1:
21df65b6 1191 case QED_CLUSTER_ZERO:
eabba580
SH
1192 qed_aio_write_alloc(acb, len);
1193 break;
1194
1195 default:
1196 qed_aio_complete(acb, ret);
1197 break;
1198 }
1199}
1200
1201/**
1202 * Read data cluster
1203 *
1204 * @opaque: Read request
1205 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1206 * or -errno
1207 * @offset: Cluster offset in bytes
1208 * @len: Length in bytes
1209 *
1210 * Callback from qed_find_cluster().
1211 */
1212static void qed_aio_read_data(void *opaque, int ret,
1213 uint64_t offset, size_t len)
1214{
1215 QEDAIOCB *acb = opaque;
1216 BDRVQEDState *s = acb_to_s(acb);
1217 BlockDriverState *bs = acb->common.bs;
1218 BlockDriverAIOCB *file_acb;
1219
1220 /* Adjust offset into cluster */
1221 offset += qed_offset_into_cluster(s, acb->cur_pos);
1222
1223 trace_qed_aio_read_data(s, acb, ret, offset, len);
1224
1225 if (ret < 0) {
1226 goto err;
1227 }
1228
1229 qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1230
21df65b6
AL
1231 /* Handle zero cluster and backing file reads */
1232 if (ret == QED_CLUSTER_ZERO) {
1233 qemu_iovec_memset(&acb->cur_qiov, 0, acb->cur_qiov.size);
1234 qed_aio_next_io(acb, 0);
1235 return;
1236 } else if (ret != QED_CLUSTER_FOUND) {
eabba580
SH
1237 qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1238 qed_aio_next_io, acb);
1239 return;
1240 }
1241
1242 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1243 file_acb = bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1244 &acb->cur_qiov,
1245 acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1246 qed_aio_next_io, acb);
1247 if (!file_acb) {
1248 ret = -EIO;
1249 goto err;
1250 }
1251 return;
1252
1253err:
1254 qed_aio_complete(acb, ret);
1255}
1256
1257/**
1258 * Begin next I/O or complete the request
1259 */
1260static void qed_aio_next_io(void *opaque, int ret)
1261{
1262 QEDAIOCB *acb = opaque;
1263 BDRVQEDState *s = acb_to_s(acb);
1264 QEDFindClusterFunc *io_fn =
1265 acb->is_write ? qed_aio_write_data : qed_aio_read_data;
1266
1267 trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1268
1269 /* Handle I/O error */
1270 if (ret) {
1271 qed_aio_complete(acb, ret);
1272 return;
1273 }
1274
1275 acb->qiov_offset += acb->cur_qiov.size;
1276 acb->cur_pos += acb->cur_qiov.size;
1277 qemu_iovec_reset(&acb->cur_qiov);
1278
1279 /* Complete request */
1280 if (acb->cur_pos >= acb->end_pos) {
1281 qed_aio_complete(acb, 0);
1282 return;
1283 }
1284
1285 /* Find next cluster and start I/O */
1286 qed_find_cluster(s, &acb->request,
1287 acb->cur_pos, acb->end_pos - acb->cur_pos,
1288 io_fn, acb);
1289}
1290
1291static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1292 int64_t sector_num,
1293 QEMUIOVector *qiov, int nb_sectors,
1294 BlockDriverCompletionFunc *cb,
1295 void *opaque, bool is_write)
1296{
1297 QEDAIOCB *acb = qemu_aio_get(&qed_aio_pool, bs, cb, opaque);
1298
1299 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1300 opaque, is_write);
1301
1302 acb->is_write = is_write;
1303 acb->finished = NULL;
1304 acb->qiov = qiov;
1305 acb->qiov_offset = 0;
1306 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1307 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1308 acb->request.l2_table = NULL;
1309 qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1310
1311 /* Start request */
1312 qed_aio_next_io(acb, 0);
1313 return &acb->common;
1314}
1315
75411d23
SH
1316static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1317 int64_t sector_num,
1318 QEMUIOVector *qiov, int nb_sectors,
1319 BlockDriverCompletionFunc *cb,
1320 void *opaque)
1321{
eabba580 1322 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, false);
75411d23
SH
1323}
1324
1325static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1326 int64_t sector_num,
1327 QEMUIOVector *qiov, int nb_sectors,
1328 BlockDriverCompletionFunc *cb,
1329 void *opaque)
1330{
eabba580 1331 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, true);
75411d23
SH
1332}
1333
1334static BlockDriverAIOCB *bdrv_qed_aio_flush(BlockDriverState *bs,
1335 BlockDriverCompletionFunc *cb,
1336 void *opaque)
1337{
1338 return bdrv_aio_flush(bs->file, cb, opaque);
1339}
1340
1341static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1342{
77a5a000
SH
1343 BDRVQEDState *s = bs->opaque;
1344 uint64_t old_image_size;
1345 int ret;
1346
1347 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1348 s->header.table_size)) {
1349 return -EINVAL;
1350 }
1351
1352 /* Shrinking is currently not supported */
1353 if ((uint64_t)offset < s->header.image_size) {
1354 return -ENOTSUP;
1355 }
1356
1357 old_image_size = s->header.image_size;
1358 s->header.image_size = offset;
1359 ret = qed_write_header_sync(s);
1360 if (ret < 0) {
1361 s->header.image_size = old_image_size;
1362 }
1363 return ret;
75411d23
SH
1364}
1365
1366static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1367{
1368 BDRVQEDState *s = bs->opaque;
1369 return s->header.image_size;
1370}
1371
1372static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1373{
1374 BDRVQEDState *s = bs->opaque;
1375
1376 memset(bdi, 0, sizeof(*bdi));
1377 bdi->cluster_size = s->header.cluster_size;
1378 return 0;
1379}
1380
1381static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1382 const char *backing_file,
1383 const char *backing_fmt)
1384{
1385 BDRVQEDState *s = bs->opaque;
1386 QEDHeader new_header, le_header;
1387 void *buffer;
1388 size_t buffer_len, backing_file_len;
1389 int ret;
1390
1391 /* Refuse to set backing filename if unknown compat feature bits are
1392 * active. If the image uses an unknown compat feature then we may not
1393 * know the layout of data following the header structure and cannot safely
1394 * add a new string.
1395 */
1396 if (backing_file && (s->header.compat_features &
1397 ~QED_COMPAT_FEATURE_MASK)) {
1398 return -ENOTSUP;
1399 }
1400
1401 memcpy(&new_header, &s->header, sizeof(new_header));
1402
1403 new_header.features &= ~(QED_F_BACKING_FILE |
1404 QED_F_BACKING_FORMAT_NO_PROBE);
1405
1406 /* Adjust feature flags */
1407 if (backing_file) {
1408 new_header.features |= QED_F_BACKING_FILE;
1409
1410 if (qed_fmt_is_raw(backing_fmt)) {
1411 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1412 }
1413 }
1414
1415 /* Calculate new header size */
1416 backing_file_len = 0;
1417
1418 if (backing_file) {
1419 backing_file_len = strlen(backing_file);
1420 }
1421
1422 buffer_len = sizeof(new_header);
1423 new_header.backing_filename_offset = buffer_len;
1424 new_header.backing_filename_size = backing_file_len;
1425 buffer_len += backing_file_len;
1426
1427 /* Make sure we can rewrite header without failing */
1428 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1429 return -ENOSPC;
1430 }
1431
1432 /* Prepare new header */
7267c094 1433 buffer = g_malloc(buffer_len);
75411d23
SH
1434
1435 qed_header_cpu_to_le(&new_header, &le_header);
1436 memcpy(buffer, &le_header, sizeof(le_header));
1437 buffer_len = sizeof(le_header);
1438
feba23b1
PB
1439 if (backing_file) {
1440 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1441 buffer_len += backing_file_len;
1442 }
75411d23
SH
1443
1444 /* Write new header */
1445 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
7267c094 1446 g_free(buffer);
75411d23
SH
1447 if (ret == 0) {
1448 memcpy(&s->header, &new_header, sizeof(new_header));
1449 }
1450 return ret;
1451}
1452
1453static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result)
1454{
01979a98
SH
1455 BDRVQEDState *s = bs->opaque;
1456
1457 return qed_check(s, result, false);
75411d23
SH
1458}
1459
1460static QEMUOptionParameter qed_create_options[] = {
1461 {
1462 .name = BLOCK_OPT_SIZE,
1463 .type = OPT_SIZE,
1464 .help = "Virtual disk size (in bytes)"
1465 }, {
1466 .name = BLOCK_OPT_BACKING_FILE,
1467 .type = OPT_STRING,
1468 .help = "File name of a base image"
1469 }, {
1470 .name = BLOCK_OPT_BACKING_FMT,
1471 .type = OPT_STRING,
1472 .help = "Image format of the base image"
1473 }, {
1474 .name = BLOCK_OPT_CLUSTER_SIZE,
1475 .type = OPT_SIZE,
99cce9fa
KW
1476 .help = "Cluster size (in bytes)",
1477 .value = { .n = QED_DEFAULT_CLUSTER_SIZE },
75411d23
SH
1478 }, {
1479 .name = BLOCK_OPT_TABLE_SIZE,
1480 .type = OPT_SIZE,
1481 .help = "L1/L2 table size (in clusters)"
1482 },
1483 { /* end of list */ }
1484};
1485
1486static BlockDriver bdrv_qed = {
1487 .format_name = "qed",
1488 .instance_size = sizeof(BDRVQEDState),
1489 .create_options = qed_create_options,
1490
1491 .bdrv_probe = bdrv_qed_probe,
1492 .bdrv_open = bdrv_qed_open,
1493 .bdrv_close = bdrv_qed_close,
1494 .bdrv_create = bdrv_qed_create,
b7d5a5b8 1495 .bdrv_co_is_allocated = bdrv_qed_co_is_allocated,
75411d23
SH
1496 .bdrv_make_empty = bdrv_qed_make_empty,
1497 .bdrv_aio_readv = bdrv_qed_aio_readv,
1498 .bdrv_aio_writev = bdrv_qed_aio_writev,
1499 .bdrv_aio_flush = bdrv_qed_aio_flush,
1500 .bdrv_truncate = bdrv_qed_truncate,
1501 .bdrv_getlength = bdrv_qed_getlength,
1502 .bdrv_get_info = bdrv_qed_get_info,
1503 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1504 .bdrv_check = bdrv_qed_check,
1505};
1506
1507static void bdrv_qed_init(void)
1508{
1509 bdrv_register(&bdrv_qed);
1510}
1511
1512block_init(bdrv_qed_init);