]> git.proxmox.com Git - qemu.git/blame - block/qed.c
blockdev: open images with BDRV_O_INCOMING on incoming live migration
[qemu.git] / block / qed.c
CommitLineData
75411d23
SH
1/*
2 * QEMU Enhanced Disk Format
3 *
4 * Copyright IBM, Corp. 2010
5 *
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
12 *
13 */
14
6f321e93 15#include "qemu-timer.h"
eabba580 16#include "trace.h"
75411d23 17#include "qed.h"
10b758e8 18#include "qerror.h"
1ed520c6 19#include "migration.h"
75411d23 20
eabba580
SH
21static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
22{
23 QEDAIOCB *acb = (QEDAIOCB *)blockacb;
24 bool finished = false;
25
26 /* Wait for the request to finish */
27 acb->finished = &finished;
28 while (!finished) {
29 qemu_aio_wait();
30 }
31}
32
33static AIOPool qed_aio_pool = {
34 .aiocb_size = sizeof(QEDAIOCB),
35 .cancel = qed_aio_cancel,
36};
37
75411d23
SH
38static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
39 const char *filename)
40{
41 const QEDHeader *header = (const QEDHeader *)buf;
42
43 if (buf_size < sizeof(*header)) {
44 return 0;
45 }
46 if (le32_to_cpu(header->magic) != QED_MAGIC) {
47 return 0;
48 }
49 return 100;
50}
51
52/**
53 * Check whether an image format is raw
54 *
55 * @fmt: Backing file format, may be NULL
56 */
57static bool qed_fmt_is_raw(const char *fmt)
58{
59 return fmt && strcmp(fmt, "raw") == 0;
60}
61
62static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
63{
64 cpu->magic = le32_to_cpu(le->magic);
65 cpu->cluster_size = le32_to_cpu(le->cluster_size);
66 cpu->table_size = le32_to_cpu(le->table_size);
67 cpu->header_size = le32_to_cpu(le->header_size);
68 cpu->features = le64_to_cpu(le->features);
69 cpu->compat_features = le64_to_cpu(le->compat_features);
70 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
71 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
72 cpu->image_size = le64_to_cpu(le->image_size);
73 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
74 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
75}
76
77static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
78{
79 le->magic = cpu_to_le32(cpu->magic);
80 le->cluster_size = cpu_to_le32(cpu->cluster_size);
81 le->table_size = cpu_to_le32(cpu->table_size);
82 le->header_size = cpu_to_le32(cpu->header_size);
83 le->features = cpu_to_le64(cpu->features);
84 le->compat_features = cpu_to_le64(cpu->compat_features);
85 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
86 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
87 le->image_size = cpu_to_le64(cpu->image_size);
88 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
89 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
90}
91
92static int qed_write_header_sync(BDRVQEDState *s)
93{
94 QEDHeader le;
95 int ret;
96
97 qed_header_cpu_to_le(&s->header, &le);
98 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
99 if (ret != sizeof(le)) {
100 return ret;
101 }
102 return 0;
103}
104
01979a98
SH
105typedef struct {
106 GenericCB gencb;
107 BDRVQEDState *s;
108 struct iovec iov;
109 QEMUIOVector qiov;
110 int nsectors;
111 uint8_t *buf;
112} QEDWriteHeaderCB;
113
114static void qed_write_header_cb(void *opaque, int ret)
115{
116 QEDWriteHeaderCB *write_header_cb = opaque;
117
118 qemu_vfree(write_header_cb->buf);
119 gencb_complete(write_header_cb, ret);
120}
121
122static void qed_write_header_read_cb(void *opaque, int ret)
123{
124 QEDWriteHeaderCB *write_header_cb = opaque;
125 BDRVQEDState *s = write_header_cb->s;
01979a98
SH
126
127 if (ret) {
128 qed_write_header_cb(write_header_cb, ret);
129 return;
130 }
131
132 /* Update header */
133 qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
134
ad54ae80
PB
135 bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
136 write_header_cb->nsectors, qed_write_header_cb,
137 write_header_cb);
01979a98
SH
138}
139
140/**
141 * Update header in-place (does not rewrite backing filename or other strings)
142 *
143 * This function only updates known header fields in-place and does not affect
144 * extra data after the QED header.
145 */
146static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
147 void *opaque)
148{
149 /* We must write full sectors for O_DIRECT but cannot necessarily generate
150 * the data following the header if an unrecognized compat feature is
151 * active. Therefore, first read the sectors containing the header, update
152 * them, and write back.
153 */
154
01979a98
SH
155 int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
156 BDRV_SECTOR_SIZE;
157 size_t len = nsectors * BDRV_SECTOR_SIZE;
158 QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
159 cb, opaque);
160
161 write_header_cb->s = s;
162 write_header_cb->nsectors = nsectors;
163 write_header_cb->buf = qemu_blockalign(s->bs, len);
164 write_header_cb->iov.iov_base = write_header_cb->buf;
165 write_header_cb->iov.iov_len = len;
166 qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
167
ad54ae80
PB
168 bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
169 qed_write_header_read_cb, write_header_cb);
01979a98
SH
170}
171
75411d23
SH
172static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
173{
174 uint64_t table_entries;
175 uint64_t l2_size;
176
177 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
178 l2_size = table_entries * cluster_size;
179
180 return l2_size * table_entries;
181}
182
183static bool qed_is_cluster_size_valid(uint32_t cluster_size)
184{
185 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
186 cluster_size > QED_MAX_CLUSTER_SIZE) {
187 return false;
188 }
189 if (cluster_size & (cluster_size - 1)) {
190 return false; /* not power of 2 */
191 }
192 return true;
193}
194
195static bool qed_is_table_size_valid(uint32_t table_size)
196{
197 if (table_size < QED_MIN_TABLE_SIZE ||
198 table_size > QED_MAX_TABLE_SIZE) {
199 return false;
200 }
201 if (table_size & (table_size - 1)) {
202 return false; /* not power of 2 */
203 }
204 return true;
205}
206
207static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
208 uint32_t table_size)
209{
210 if (image_size % BDRV_SECTOR_SIZE != 0) {
211 return false; /* not multiple of sector size */
212 }
213 if (image_size > qed_max_image_size(cluster_size, table_size)) {
214 return false; /* image is too large */
215 }
216 return true;
217}
218
219/**
220 * Read a string of known length from the image file
221 *
222 * @file: Image file
223 * @offset: File offset to start of string, in bytes
224 * @n: String length in bytes
225 * @buf: Destination buffer
226 * @buflen: Destination buffer length in bytes
227 * @ret: 0 on success, -errno on failure
228 *
229 * The string is NUL-terminated.
230 */
231static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
232 char *buf, size_t buflen)
233{
234 int ret;
235 if (n >= buflen) {
236 return -EINVAL;
237 }
238 ret = bdrv_pread(file, offset, buf, n);
239 if (ret < 0) {
240 return ret;
241 }
242 buf[n] = '\0';
243 return 0;
244}
245
eabba580
SH
246/**
247 * Allocate new clusters
248 *
249 * @s: QED state
250 * @n: Number of contiguous clusters to allocate
251 * @ret: Offset of first allocated cluster
252 *
253 * This function only produces the offset where the new clusters should be
254 * written. It updates BDRVQEDState but does not make any changes to the image
255 * file.
256 */
257static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
258{
259 uint64_t offset = s->file_size;
260 s->file_size += n * s->header.cluster_size;
261 return offset;
262}
263
298800ca
SH
264QEDTable *qed_alloc_table(BDRVQEDState *s)
265{
266 /* Honor O_DIRECT memory alignment requirements */
267 return qemu_blockalign(s->bs,
268 s->header.cluster_size * s->header.table_size);
269}
270
eabba580
SH
271/**
272 * Allocate a new zeroed L2 table
273 */
274static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
275{
276 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
277
278 l2_table->table = qed_alloc_table(s);
279 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
280
281 memset(l2_table->table->offsets, 0,
282 s->header.cluster_size * s->header.table_size);
283 return l2_table;
284}
285
286static void qed_aio_next_io(void *opaque, int ret);
287
6f321e93
SH
288static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
289{
290 assert(!s->allocating_write_reqs_plugged);
291
292 s->allocating_write_reqs_plugged = true;
293}
294
295static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
296{
297 QEDAIOCB *acb;
298
299 assert(s->allocating_write_reqs_plugged);
300
301 s->allocating_write_reqs_plugged = false;
302
303 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
304 if (acb) {
305 qed_aio_next_io(acb, 0);
306 }
307}
308
309static void qed_finish_clear_need_check(void *opaque, int ret)
310{
311 /* Do nothing */
312}
313
314static void qed_flush_after_clear_need_check(void *opaque, int ret)
315{
316 BDRVQEDState *s = opaque;
317
318 bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
319
320 /* No need to wait until flush completes */
321 qed_unplug_allocating_write_reqs(s);
322}
323
324static void qed_clear_need_check(void *opaque, int ret)
325{
326 BDRVQEDState *s = opaque;
327
328 if (ret) {
329 qed_unplug_allocating_write_reqs(s);
330 return;
331 }
332
333 s->header.features &= ~QED_F_NEED_CHECK;
334 qed_write_header(s, qed_flush_after_clear_need_check, s);
335}
336
337static void qed_need_check_timer_cb(void *opaque)
338{
339 BDRVQEDState *s = opaque;
340
341 /* The timer should only fire when allocating writes have drained */
342 assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
343
344 trace_qed_need_check_timer_cb(s);
345
346 qed_plug_allocating_write_reqs(s);
347
348 /* Ensure writes are on disk before clearing flag */
349 bdrv_aio_flush(s->bs, qed_clear_need_check, s);
350}
351
352static void qed_start_need_check_timer(BDRVQEDState *s)
353{
354 trace_qed_start_need_check_timer(s);
355
356 /* Use vm_clock so we don't alter the image file while suspended for
357 * migration.
358 */
359 qemu_mod_timer(s->need_check_timer, qemu_get_clock_ns(vm_clock) +
360 get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
361}
362
363/* It's okay to call this multiple times or when no timer is started */
364static void qed_cancel_need_check_timer(BDRVQEDState *s)
365{
366 trace_qed_cancel_need_check_timer(s);
367 qemu_del_timer(s->need_check_timer);
368}
369
75411d23
SH
370static int bdrv_qed_open(BlockDriverState *bs, int flags)
371{
372 BDRVQEDState *s = bs->opaque;
373 QEDHeader le_header;
374 int64_t file_size;
375 int ret;
376
377 s->bs = bs;
eabba580 378 QSIMPLEQ_INIT(&s->allocating_write_reqs);
75411d23
SH
379
380 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
381 if (ret < 0) {
382 return ret;
383 }
75411d23
SH
384 qed_header_le_to_cpu(&le_header, &s->header);
385
386 if (s->header.magic != QED_MAGIC) {
387 return -EINVAL;
388 }
389 if (s->header.features & ~QED_FEATURE_MASK) {
10b758e8
KW
390 /* image uses unsupported feature bits */
391 char buf[64];
392 snprintf(buf, sizeof(buf), "%" PRIx64,
393 s->header.features & ~QED_FEATURE_MASK);
394 qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
395 bs->device_name, "QED", buf);
396 return -ENOTSUP;
75411d23
SH
397 }
398 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
399 return -EINVAL;
400 }
401
402 /* Round down file size to the last cluster */
403 file_size = bdrv_getlength(bs->file);
404 if (file_size < 0) {
405 return file_size;
406 }
407 s->file_size = qed_start_of_cluster(s, file_size);
408
409 if (!qed_is_table_size_valid(s->header.table_size)) {
410 return -EINVAL;
411 }
412 if (!qed_is_image_size_valid(s->header.image_size,
413 s->header.cluster_size,
414 s->header.table_size)) {
415 return -EINVAL;
416 }
417 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
418 return -EINVAL;
419 }
420
421 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
422 sizeof(uint64_t);
423 s->l2_shift = ffs(s->header.cluster_size) - 1;
424 s->l2_mask = s->table_nelems - 1;
425 s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
426
427 if ((s->header.features & QED_F_BACKING_FILE)) {
428 if ((uint64_t)s->header.backing_filename_offset +
429 s->header.backing_filename_size >
430 s->header.cluster_size * s->header.header_size) {
431 return -EINVAL;
432 }
433
434 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
435 s->header.backing_filename_size, bs->backing_file,
436 sizeof(bs->backing_file));
437 if (ret < 0) {
438 return ret;
439 }
440
441 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
442 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
443 }
444 }
445
446 /* Reset unknown autoclear feature bits. This is a backwards
447 * compatibility mechanism that allows images to be opened by older
448 * programs, which "knock out" unknown feature bits. When an image is
449 * opened by a newer program again it can detect that the autoclear
450 * feature is no longer valid.
451 */
452 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
453 !bdrv_is_read_only(bs->file)) {
454 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
455
456 ret = qed_write_header_sync(s);
457 if (ret) {
458 return ret;
459 }
460
461 /* From here on only known autoclear feature bits are valid */
462 bdrv_flush(bs->file);
463 }
464
298800ca
SH
465 s->l1_table = qed_alloc_table(s);
466 qed_init_l2_cache(&s->l2_cache);
467
468 ret = qed_read_l1_table_sync(s);
01979a98
SH
469 if (ret) {
470 goto out;
471 }
472
473 /* If image was not closed cleanly, check consistency */
474 if (s->header.features & QED_F_NEED_CHECK) {
475 /* Read-only images cannot be fixed. There is no risk of corruption
476 * since write operations are not possible. Therefore, allow
477 * potentially inconsistent images to be opened read-only. This can
478 * aid data recovery from an otherwise inconsistent image.
479 */
480 if (!bdrv_is_read_only(bs->file)) {
481 BdrvCheckResult result = {0};
482
483 ret = qed_check(s, &result, true);
6f321e93
SH
484 if (ret) {
485 goto out;
486 }
487 if (!result.corruptions && !result.check_errors) {
01979a98
SH
488 /* Ensure fixes reach storage before clearing check bit */
489 bdrv_flush(s->bs);
490
491 s->header.features &= ~QED_F_NEED_CHECK;
492 qed_write_header_sync(s);
493 }
494 }
495 }
496
6f321e93
SH
497 s->need_check_timer = qemu_new_timer_ns(vm_clock,
498 qed_need_check_timer_cb, s);
499
1ed520c6
AL
500 error_set(&s->migration_blocker,
501 QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
502 "qed", bs->device_name, "live migration");
503 migrate_add_blocker(s->migration_blocker);
504
505
01979a98 506out:
298800ca
SH
507 if (ret) {
508 qed_free_l2_cache(&s->l2_cache);
509 qemu_vfree(s->l1_table);
510 }
75411d23
SH
511 return ret;
512}
513
514static void bdrv_qed_close(BlockDriverState *bs)
515{
298800ca
SH
516 BDRVQEDState *s = bs->opaque;
517
1ed520c6
AL
518 migrate_del_blocker(s->migration_blocker);
519 error_free(s->migration_blocker);
520
6f321e93
SH
521 qed_cancel_need_check_timer(s);
522 qemu_free_timer(s->need_check_timer);
523
01979a98
SH
524 /* Ensure writes reach stable storage */
525 bdrv_flush(bs->file);
526
527 /* Clean shutdown, no check required on next open */
528 if (s->header.features & QED_F_NEED_CHECK) {
529 s->header.features &= ~QED_F_NEED_CHECK;
530 qed_write_header_sync(s);
531 }
532
298800ca
SH
533 qed_free_l2_cache(&s->l2_cache);
534 qemu_vfree(s->l1_table);
75411d23
SH
535}
536
75411d23
SH
537static int qed_create(const char *filename, uint32_t cluster_size,
538 uint64_t image_size, uint32_t table_size,
539 const char *backing_file, const char *backing_fmt)
540{
541 QEDHeader header = {
542 .magic = QED_MAGIC,
543 .cluster_size = cluster_size,
544 .table_size = table_size,
545 .header_size = 1,
546 .features = 0,
547 .compat_features = 0,
548 .l1_table_offset = cluster_size,
549 .image_size = image_size,
550 };
551 QEDHeader le_header;
552 uint8_t *l1_table = NULL;
553 size_t l1_size = header.cluster_size * header.table_size;
554 int ret = 0;
555 BlockDriverState *bs = NULL;
556
557 ret = bdrv_create_file(filename, NULL);
558 if (ret < 0) {
559 return ret;
560 }
561
562 ret = bdrv_file_open(&bs, filename, BDRV_O_RDWR | BDRV_O_CACHE_WB);
563 if (ret < 0) {
564 return ret;
565 }
566
c743849b
SH
567 /* File must start empty and grow, check truncate is supported */
568 ret = bdrv_truncate(bs, 0);
569 if (ret < 0) {
570 goto out;
571 }
572
75411d23
SH
573 if (backing_file) {
574 header.features |= QED_F_BACKING_FILE;
575 header.backing_filename_offset = sizeof(le_header);
576 header.backing_filename_size = strlen(backing_file);
577
578 if (qed_fmt_is_raw(backing_fmt)) {
579 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
580 }
581 }
582
583 qed_header_cpu_to_le(&header, &le_header);
584 ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
585 if (ret < 0) {
586 goto out;
587 }
588 ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
589 header.backing_filename_size);
590 if (ret < 0) {
591 goto out;
592 }
593
7267c094 594 l1_table = g_malloc0(l1_size);
75411d23
SH
595 ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
596 if (ret < 0) {
597 goto out;
598 }
599
600 ret = 0; /* success */
601out:
7267c094 602 g_free(l1_table);
75411d23
SH
603 bdrv_delete(bs);
604 return ret;
605}
606
607static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options)
608{
609 uint64_t image_size = 0;
610 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
611 uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
612 const char *backing_file = NULL;
613 const char *backing_fmt = NULL;
614
615 while (options && options->name) {
616 if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
617 image_size = options->value.n;
618 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
619 backing_file = options->value.s;
620 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
621 backing_fmt = options->value.s;
622 } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
623 if (options->value.n) {
624 cluster_size = options->value.n;
625 }
626 } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
627 if (options->value.n) {
628 table_size = options->value.n;
629 }
630 }
631 options++;
632 }
633
634 if (!qed_is_cluster_size_valid(cluster_size)) {
635 fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n",
636 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
637 return -EINVAL;
638 }
639 if (!qed_is_table_size_valid(table_size)) {
640 fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n",
641 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
642 return -EINVAL;
643 }
644 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
645 fprintf(stderr, "QED image size must be a non-zero multiple of "
646 "cluster size and less than %" PRIu64 " bytes\n",
647 qed_max_image_size(cluster_size, table_size));
648 return -EINVAL;
649 }
650
651 return qed_create(filename, cluster_size, image_size, table_size,
652 backing_file, backing_fmt);
653}
654
298800ca 655typedef struct {
b7d5a5b8 656 Coroutine *co;
298800ca
SH
657 int is_allocated;
658 int *pnum;
659} QEDIsAllocatedCB;
660
661static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
662{
663 QEDIsAllocatedCB *cb = opaque;
664 *cb->pnum = len / BDRV_SECTOR_SIZE;
21df65b6 665 cb->is_allocated = (ret == QED_CLUSTER_FOUND || ret == QED_CLUSTER_ZERO);
b7d5a5b8
SH
666 if (cb->co) {
667 qemu_coroutine_enter(cb->co, NULL);
668 }
298800ca
SH
669}
670
b7d5a5b8
SH
671static int coroutine_fn bdrv_qed_co_is_allocated(BlockDriverState *bs,
672 int64_t sector_num,
673 int nb_sectors, int *pnum)
75411d23 674{
298800ca
SH
675 BDRVQEDState *s = bs->opaque;
676 uint64_t pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
677 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
678 QEDIsAllocatedCB cb = {
679 .is_allocated = -1,
680 .pnum = pnum,
681 };
682 QEDRequest request = { .l2_table = NULL };
683
298800ca
SH
684 qed_find_cluster(s, &request, pos, len, qed_is_allocated_cb, &cb);
685
b7d5a5b8 686 /* Now sleep if the callback wasn't invoked immediately */
298800ca 687 while (cb.is_allocated == -1) {
b7d5a5b8
SH
688 cb.co = qemu_coroutine_self();
689 qemu_coroutine_yield();
298800ca
SH
690 }
691
298800ca
SH
692 qed_unref_l2_cache_entry(request.l2_table);
693
694 return cb.is_allocated;
75411d23
SH
695}
696
697static int bdrv_qed_make_empty(BlockDriverState *bs)
698{
699 return -ENOTSUP;
700}
701
eabba580
SH
702static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
703{
704 return acb->common.bs->opaque;
705}
706
707/**
708 * Read from the backing file or zero-fill if no backing file
709 *
710 * @s: QED state
711 * @pos: Byte position in device
712 * @qiov: Destination I/O vector
713 * @cb: Completion function
714 * @opaque: User data for completion function
715 *
716 * This function reads qiov->size bytes starting at pos from the backing file.
717 * If there is no backing file then zeroes are read.
718 */
719static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
720 QEMUIOVector *qiov,
721 BlockDriverCompletionFunc *cb, void *opaque)
722{
eabba580
SH
723 uint64_t backing_length = 0;
724 size_t size;
725
726 /* If there is a backing file, get its length. Treat the absence of a
727 * backing file like a zero length backing file.
728 */
729 if (s->bs->backing_hd) {
730 int64_t l = bdrv_getlength(s->bs->backing_hd);
731 if (l < 0) {
732 cb(opaque, l);
733 return;
734 }
735 backing_length = l;
736 }
737
738 /* Zero all sectors if reading beyond the end of the backing file */
739 if (pos >= backing_length ||
740 pos + qiov->size > backing_length) {
741 qemu_iovec_memset(qiov, 0, qiov->size);
742 }
743
744 /* Complete now if there are no backing file sectors to read */
745 if (pos >= backing_length) {
746 cb(opaque, 0);
747 return;
748 }
749
750 /* If the read straddles the end of the backing file, shorten it */
751 size = MIN((uint64_t)backing_length - pos, qiov->size);
752
753 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING);
ad54ae80
PB
754 bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
755 qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
eabba580
SH
756}
757
758typedef struct {
759 GenericCB gencb;
760 BDRVQEDState *s;
761 QEMUIOVector qiov;
762 struct iovec iov;
763 uint64_t offset;
764} CopyFromBackingFileCB;
765
766static void qed_copy_from_backing_file_cb(void *opaque, int ret)
767{
768 CopyFromBackingFileCB *copy_cb = opaque;
769 qemu_vfree(copy_cb->iov.iov_base);
770 gencb_complete(&copy_cb->gencb, ret);
771}
772
773static void qed_copy_from_backing_file_write(void *opaque, int ret)
774{
775 CopyFromBackingFileCB *copy_cb = opaque;
776 BDRVQEDState *s = copy_cb->s;
eabba580
SH
777
778 if (ret) {
779 qed_copy_from_backing_file_cb(copy_cb, ret);
780 return;
781 }
782
783 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
ad54ae80
PB
784 bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
785 &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
786 qed_copy_from_backing_file_cb, copy_cb);
eabba580
SH
787}
788
789/**
790 * Copy data from backing file into the image
791 *
792 * @s: QED state
793 * @pos: Byte position in device
794 * @len: Number of bytes
795 * @offset: Byte offset in image file
796 * @cb: Completion function
797 * @opaque: User data for completion function
798 */
799static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
800 uint64_t len, uint64_t offset,
801 BlockDriverCompletionFunc *cb,
802 void *opaque)
803{
804 CopyFromBackingFileCB *copy_cb;
805
806 /* Skip copy entirely if there is no work to do */
807 if (len == 0) {
808 cb(opaque, 0);
809 return;
810 }
811
812 copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
813 copy_cb->s = s;
814 copy_cb->offset = offset;
815 copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
816 copy_cb->iov.iov_len = len;
817 qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
818
819 qed_read_backing_file(s, pos, &copy_cb->qiov,
820 qed_copy_from_backing_file_write, copy_cb);
821}
822
823/**
824 * Link one or more contiguous clusters into a table
825 *
826 * @s: QED state
827 * @table: L2 table
828 * @index: First cluster index
829 * @n: Number of contiguous clusters
21df65b6
AL
830 * @cluster: First cluster offset
831 *
832 * The cluster offset may be an allocated byte offset in the image file, the
833 * zero cluster marker, or the unallocated cluster marker.
eabba580
SH
834 */
835static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
836 unsigned int n, uint64_t cluster)
837{
838 int i;
839 for (i = index; i < index + n; i++) {
840 table->offsets[i] = cluster;
21df65b6
AL
841 if (!qed_offset_is_unalloc_cluster(cluster) &&
842 !qed_offset_is_zero_cluster(cluster)) {
843 cluster += s->header.cluster_size;
844 }
eabba580
SH
845 }
846}
847
848static void qed_aio_complete_bh(void *opaque)
849{
850 QEDAIOCB *acb = opaque;
851 BlockDriverCompletionFunc *cb = acb->common.cb;
852 void *user_opaque = acb->common.opaque;
853 int ret = acb->bh_ret;
854 bool *finished = acb->finished;
855
856 qemu_bh_delete(acb->bh);
857 qemu_aio_release(acb);
858
859 /* Invoke callback */
860 cb(user_opaque, ret);
861
862 /* Signal cancel completion */
863 if (finished) {
864 *finished = true;
865 }
866}
867
868static void qed_aio_complete(QEDAIOCB *acb, int ret)
869{
870 BDRVQEDState *s = acb_to_s(acb);
871
872 trace_qed_aio_complete(s, acb, ret);
873
874 /* Free resources */
875 qemu_iovec_destroy(&acb->cur_qiov);
876 qed_unref_l2_cache_entry(acb->request.l2_table);
877
0e71be19
SH
878 /* Free the buffer we may have allocated for zero writes */
879 if (acb->flags & QED_AIOCB_ZERO) {
880 qemu_vfree(acb->qiov->iov[0].iov_base);
881 acb->qiov->iov[0].iov_base = NULL;
882 }
883
eabba580
SH
884 /* Arrange for a bh to invoke the completion function */
885 acb->bh_ret = ret;
886 acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
887 qemu_bh_schedule(acb->bh);
888
889 /* Start next allocating write request waiting behind this one. Note that
890 * requests enqueue themselves when they first hit an unallocated cluster
891 * but they wait until the entire request is finished before waking up the
892 * next request in the queue. This ensures that we don't cycle through
893 * requests multiple times but rather finish one at a time completely.
894 */
895 if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
896 QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
897 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
898 if (acb) {
899 qed_aio_next_io(acb, 0);
6f321e93
SH
900 } else if (s->header.features & QED_F_NEED_CHECK) {
901 qed_start_need_check_timer(s);
eabba580
SH
902 }
903 }
904}
905
906/**
907 * Commit the current L2 table to the cache
908 */
909static void qed_commit_l2_update(void *opaque, int ret)
910{
911 QEDAIOCB *acb = opaque;
912 BDRVQEDState *s = acb_to_s(acb);
913 CachedL2Table *l2_table = acb->request.l2_table;
e4fc8781 914 uint64_t l2_offset = l2_table->offset;
eabba580
SH
915
916 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
917
918 /* This is guaranteed to succeed because we just committed the entry to the
919 * cache.
920 */
e4fc8781 921 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
eabba580
SH
922 assert(acb->request.l2_table != NULL);
923
924 qed_aio_next_io(opaque, ret);
925}
926
927/**
928 * Update L1 table with new L2 table offset and write it out
929 */
930static void qed_aio_write_l1_update(void *opaque, int ret)
931{
932 QEDAIOCB *acb = opaque;
933 BDRVQEDState *s = acb_to_s(acb);
934 int index;
935
936 if (ret) {
937 qed_aio_complete(acb, ret);
938 return;
939 }
940
941 index = qed_l1_index(s, acb->cur_pos);
942 s->l1_table->offsets[index] = acb->request.l2_table->offset;
943
944 qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
945}
946
947/**
948 * Update L2 table with new cluster offsets and write them out
949 */
0e71be19 950static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
eabba580 951{
eabba580
SH
952 BDRVQEDState *s = acb_to_s(acb);
953 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
954 int index;
955
956 if (ret) {
957 goto err;
958 }
959
960 if (need_alloc) {
961 qed_unref_l2_cache_entry(acb->request.l2_table);
962 acb->request.l2_table = qed_new_l2_table(s);
963 }
964
965 index = qed_l2_index(s, acb->cur_pos);
966 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
0e71be19 967 offset);
eabba580
SH
968
969 if (need_alloc) {
970 /* Write out the whole new L2 table */
971 qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
972 qed_aio_write_l1_update, acb);
973 } else {
974 /* Write out only the updated part of the L2 table */
975 qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
976 qed_aio_next_io, acb);
977 }
978 return;
979
980err:
981 qed_aio_complete(acb, ret);
982}
983
0e71be19
SH
984static void qed_aio_write_l2_update_cb(void *opaque, int ret)
985{
986 QEDAIOCB *acb = opaque;
987 qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
988}
989
eabba580
SH
990/**
991 * Flush new data clusters before updating the L2 table
992 *
993 * This flush is necessary when a backing file is in use. A crash during an
994 * allocating write could result in empty clusters in the image. If the write
995 * only touched a subregion of the cluster, then backing image sectors have
996 * been lost in the untouched region. The solution is to flush after writing a
997 * new data cluster and before updating the L2 table.
998 */
999static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
1000{
1001 QEDAIOCB *acb = opaque;
1002 BDRVQEDState *s = acb_to_s(acb);
1003
0e71be19 1004 if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update_cb, opaque)) {
eabba580
SH
1005 qed_aio_complete(acb, -EIO);
1006 }
1007}
1008
1009/**
1010 * Write data to the image file
1011 */
1012static void qed_aio_write_main(void *opaque, int ret)
1013{
1014 QEDAIOCB *acb = opaque;
1015 BDRVQEDState *s = acb_to_s(acb);
1016 uint64_t offset = acb->cur_cluster +
1017 qed_offset_into_cluster(s, acb->cur_pos);
1018 BlockDriverCompletionFunc *next_fn;
eabba580
SH
1019
1020 trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1021
1022 if (ret) {
1023 qed_aio_complete(acb, ret);
1024 return;
1025 }
1026
1027 if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1028 next_fn = qed_aio_next_io;
1029 } else {
1030 if (s->bs->backing_hd) {
1031 next_fn = qed_aio_write_flush_before_l2_update;
1032 } else {
0e71be19 1033 next_fn = qed_aio_write_l2_update_cb;
eabba580
SH
1034 }
1035 }
1036
1037 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
ad54ae80
PB
1038 bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1039 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1040 next_fn, acb);
eabba580
SH
1041}
1042
1043/**
1044 * Populate back untouched region of new data cluster
1045 */
1046static void qed_aio_write_postfill(void *opaque, int ret)
1047{
1048 QEDAIOCB *acb = opaque;
1049 BDRVQEDState *s = acb_to_s(acb);
1050 uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1051 uint64_t len =
1052 qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1053 uint64_t offset = acb->cur_cluster +
1054 qed_offset_into_cluster(s, acb->cur_pos) +
1055 acb->cur_qiov.size;
1056
1057 if (ret) {
1058 qed_aio_complete(acb, ret);
1059 return;
1060 }
1061
1062 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1063 qed_copy_from_backing_file(s, start, len, offset,
1064 qed_aio_write_main, acb);
1065}
1066
1067/**
1068 * Populate front untouched region of new data cluster
1069 */
1070static void qed_aio_write_prefill(void *opaque, int ret)
1071{
1072 QEDAIOCB *acb = opaque;
1073 BDRVQEDState *s = acb_to_s(acb);
1074 uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1075 uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1076
1077 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1078 qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1079 qed_aio_write_postfill, acb);
1080}
1081
0d09c797
SH
1082/**
1083 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1084 */
1085static bool qed_should_set_need_check(BDRVQEDState *s)
1086{
1087 /* The flush before L2 update path ensures consistency */
1088 if (s->bs->backing_hd) {
1089 return false;
1090 }
1091
1092 return !(s->header.features & QED_F_NEED_CHECK);
1093}
1094
0e71be19
SH
1095static void qed_aio_write_zero_cluster(void *opaque, int ret)
1096{
1097 QEDAIOCB *acb = opaque;
1098
1099 if (ret) {
1100 qed_aio_complete(acb, ret);
1101 return;
1102 }
1103
1104 qed_aio_write_l2_update(acb, 0, 1);
1105}
1106
eabba580
SH
1107/**
1108 * Write new data cluster
1109 *
1110 * @acb: Write request
1111 * @len: Length in bytes
1112 *
1113 * This path is taken when writing to previously unallocated clusters.
1114 */
1115static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1116{
1117 BDRVQEDState *s = acb_to_s(acb);
0e71be19 1118 BlockDriverCompletionFunc *cb;
eabba580 1119
6f321e93
SH
1120 /* Cancel timer when the first allocating request comes in */
1121 if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1122 qed_cancel_need_check_timer(s);
1123 }
1124
eabba580
SH
1125 /* Freeze this request if another allocating write is in progress */
1126 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1127 QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1128 }
6f321e93
SH
1129 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1130 s->allocating_write_reqs_plugged) {
eabba580
SH
1131 return; /* wait for existing request to finish */
1132 }
1133
1134 acb->cur_nclusters = qed_bytes_to_clusters(s,
1135 qed_offset_into_cluster(s, acb->cur_pos) + len);
eabba580
SH
1136 qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1137
0e71be19
SH
1138 if (acb->flags & QED_AIOCB_ZERO) {
1139 /* Skip ahead if the clusters are already zero */
1140 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1141 qed_aio_next_io(acb, 0);
1142 return;
1143 }
1144
1145 cb = qed_aio_write_zero_cluster;
1146 } else {
1147 cb = qed_aio_write_prefill;
1148 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1149 }
1150
0d09c797
SH
1151 if (qed_should_set_need_check(s)) {
1152 s->header.features |= QED_F_NEED_CHECK;
0e71be19 1153 qed_write_header(s, cb, acb);
0d09c797 1154 } else {
0e71be19 1155 cb(acb, 0);
01979a98 1156 }
eabba580
SH
1157}
1158
1159/**
1160 * Write data cluster in place
1161 *
1162 * @acb: Write request
1163 * @offset: Cluster offset in bytes
1164 * @len: Length in bytes
1165 *
1166 * This path is taken when writing to already allocated clusters.
1167 */
1168static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1169{
0e71be19
SH
1170 /* Allocate buffer for zero writes */
1171 if (acb->flags & QED_AIOCB_ZERO) {
1172 struct iovec *iov = acb->qiov->iov;
1173
1174 if (!iov->iov_base) {
1175 iov->iov_base = qemu_blockalign(acb->common.bs, iov->iov_len);
1176 memset(iov->iov_base, 0, iov->iov_len);
1177 }
1178 }
1179
eabba580
SH
1180 /* Calculate the I/O vector */
1181 acb->cur_cluster = offset;
1182 qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1183
1184 /* Do the actual write */
1185 qed_aio_write_main(acb, 0);
1186}
1187
1188/**
1189 * Write data cluster
1190 *
1191 * @opaque: Write request
1192 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1193 * or -errno
1194 * @offset: Cluster offset in bytes
1195 * @len: Length in bytes
1196 *
1197 * Callback from qed_find_cluster().
1198 */
1199static void qed_aio_write_data(void *opaque, int ret,
1200 uint64_t offset, size_t len)
1201{
1202 QEDAIOCB *acb = opaque;
1203
1204 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1205
1206 acb->find_cluster_ret = ret;
1207
1208 switch (ret) {
1209 case QED_CLUSTER_FOUND:
1210 qed_aio_write_inplace(acb, offset, len);
1211 break;
1212
1213 case QED_CLUSTER_L2:
1214 case QED_CLUSTER_L1:
21df65b6 1215 case QED_CLUSTER_ZERO:
eabba580
SH
1216 qed_aio_write_alloc(acb, len);
1217 break;
1218
1219 default:
1220 qed_aio_complete(acb, ret);
1221 break;
1222 }
1223}
1224
1225/**
1226 * Read data cluster
1227 *
1228 * @opaque: Read request
1229 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1230 * or -errno
1231 * @offset: Cluster offset in bytes
1232 * @len: Length in bytes
1233 *
1234 * Callback from qed_find_cluster().
1235 */
1236static void qed_aio_read_data(void *opaque, int ret,
1237 uint64_t offset, size_t len)
1238{
1239 QEDAIOCB *acb = opaque;
1240 BDRVQEDState *s = acb_to_s(acb);
1241 BlockDriverState *bs = acb->common.bs;
eabba580
SH
1242
1243 /* Adjust offset into cluster */
1244 offset += qed_offset_into_cluster(s, acb->cur_pos);
1245
1246 trace_qed_aio_read_data(s, acb, ret, offset, len);
1247
1248 if (ret < 0) {
1249 goto err;
1250 }
1251
1252 qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1253
21df65b6
AL
1254 /* Handle zero cluster and backing file reads */
1255 if (ret == QED_CLUSTER_ZERO) {
1256 qemu_iovec_memset(&acb->cur_qiov, 0, acb->cur_qiov.size);
1257 qed_aio_next_io(acb, 0);
1258 return;
1259 } else if (ret != QED_CLUSTER_FOUND) {
eabba580
SH
1260 qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1261 qed_aio_next_io, acb);
1262 return;
1263 }
1264
1265 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
ad54ae80
PB
1266 bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1267 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1268 qed_aio_next_io, acb);
eabba580
SH
1269 return;
1270
1271err:
1272 qed_aio_complete(acb, ret);
1273}
1274
1275/**
1276 * Begin next I/O or complete the request
1277 */
1278static void qed_aio_next_io(void *opaque, int ret)
1279{
1280 QEDAIOCB *acb = opaque;
1281 BDRVQEDState *s = acb_to_s(acb);
6e4f59bd
SH
1282 QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1283 qed_aio_write_data : qed_aio_read_data;
eabba580
SH
1284
1285 trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1286
1287 /* Handle I/O error */
1288 if (ret) {
1289 qed_aio_complete(acb, ret);
1290 return;
1291 }
1292
1293 acb->qiov_offset += acb->cur_qiov.size;
1294 acb->cur_pos += acb->cur_qiov.size;
1295 qemu_iovec_reset(&acb->cur_qiov);
1296
1297 /* Complete request */
1298 if (acb->cur_pos >= acb->end_pos) {
1299 qed_aio_complete(acb, 0);
1300 return;
1301 }
1302
1303 /* Find next cluster and start I/O */
1304 qed_find_cluster(s, &acb->request,
1305 acb->cur_pos, acb->end_pos - acb->cur_pos,
1306 io_fn, acb);
1307}
1308
1309static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1310 int64_t sector_num,
1311 QEMUIOVector *qiov, int nb_sectors,
1312 BlockDriverCompletionFunc *cb,
6e4f59bd 1313 void *opaque, int flags)
eabba580
SH
1314{
1315 QEDAIOCB *acb = qemu_aio_get(&qed_aio_pool, bs, cb, opaque);
1316
1317 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
6e4f59bd 1318 opaque, flags);
eabba580 1319
6e4f59bd 1320 acb->flags = flags;
eabba580
SH
1321 acb->finished = NULL;
1322 acb->qiov = qiov;
1323 acb->qiov_offset = 0;
1324 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1325 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1326 acb->request.l2_table = NULL;
1327 qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1328
1329 /* Start request */
1330 qed_aio_next_io(acb, 0);
1331 return &acb->common;
1332}
1333
75411d23
SH
1334static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1335 int64_t sector_num,
1336 QEMUIOVector *qiov, int nb_sectors,
1337 BlockDriverCompletionFunc *cb,
1338 void *opaque)
1339{
6e4f59bd 1340 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
75411d23
SH
1341}
1342
1343static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1344 int64_t sector_num,
1345 QEMUIOVector *qiov, int nb_sectors,
1346 BlockDriverCompletionFunc *cb,
1347 void *opaque)
1348{
6e4f59bd
SH
1349 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1350 opaque, QED_AIOCB_WRITE);
75411d23
SH
1351}
1352
0e71be19
SH
1353typedef struct {
1354 Coroutine *co;
1355 int ret;
1356 bool done;
1357} QEDWriteZeroesCB;
1358
1359static void coroutine_fn qed_co_write_zeroes_cb(void *opaque, int ret)
1360{
1361 QEDWriteZeroesCB *cb = opaque;
1362
1363 cb->done = true;
1364 cb->ret = ret;
1365 if (cb->co) {
1366 qemu_coroutine_enter(cb->co, NULL);
1367 }
1368}
1369
1370static int coroutine_fn bdrv_qed_co_write_zeroes(BlockDriverState *bs,
1371 int64_t sector_num,
1372 int nb_sectors)
1373{
1374 BlockDriverAIOCB *blockacb;
1375 QEDWriteZeroesCB cb = { .done = false };
1376 QEMUIOVector qiov;
1377 struct iovec iov;
1378
1379 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1380 * then it will be allocated during request processing.
1381 */
1382 iov.iov_base = NULL,
1383 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1384
1385 qemu_iovec_init_external(&qiov, &iov, 1);
1386 blockacb = qed_aio_setup(bs, sector_num, &qiov, nb_sectors,
1387 qed_co_write_zeroes_cb, &cb,
1388 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1389 if (!blockacb) {
1390 return -EIO;
1391 }
1392 if (!cb.done) {
1393 cb.co = qemu_coroutine_self();
1394 qemu_coroutine_yield();
1395 }
1396 assert(cb.done);
1397 return cb.ret;
1398}
1399
75411d23
SH
1400static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1401{
77a5a000
SH
1402 BDRVQEDState *s = bs->opaque;
1403 uint64_t old_image_size;
1404 int ret;
1405
1406 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1407 s->header.table_size)) {
1408 return -EINVAL;
1409 }
1410
1411 /* Shrinking is currently not supported */
1412 if ((uint64_t)offset < s->header.image_size) {
1413 return -ENOTSUP;
1414 }
1415
1416 old_image_size = s->header.image_size;
1417 s->header.image_size = offset;
1418 ret = qed_write_header_sync(s);
1419 if (ret < 0) {
1420 s->header.image_size = old_image_size;
1421 }
1422 return ret;
75411d23
SH
1423}
1424
1425static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1426{
1427 BDRVQEDState *s = bs->opaque;
1428 return s->header.image_size;
1429}
1430
1431static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1432{
1433 BDRVQEDState *s = bs->opaque;
1434
1435 memset(bdi, 0, sizeof(*bdi));
1436 bdi->cluster_size = s->header.cluster_size;
d68dbee8 1437 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
75411d23
SH
1438 return 0;
1439}
1440
1441static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1442 const char *backing_file,
1443 const char *backing_fmt)
1444{
1445 BDRVQEDState *s = bs->opaque;
1446 QEDHeader new_header, le_header;
1447 void *buffer;
1448 size_t buffer_len, backing_file_len;
1449 int ret;
1450
1451 /* Refuse to set backing filename if unknown compat feature bits are
1452 * active. If the image uses an unknown compat feature then we may not
1453 * know the layout of data following the header structure and cannot safely
1454 * add a new string.
1455 */
1456 if (backing_file && (s->header.compat_features &
1457 ~QED_COMPAT_FEATURE_MASK)) {
1458 return -ENOTSUP;
1459 }
1460
1461 memcpy(&new_header, &s->header, sizeof(new_header));
1462
1463 new_header.features &= ~(QED_F_BACKING_FILE |
1464 QED_F_BACKING_FORMAT_NO_PROBE);
1465
1466 /* Adjust feature flags */
1467 if (backing_file) {
1468 new_header.features |= QED_F_BACKING_FILE;
1469
1470 if (qed_fmt_is_raw(backing_fmt)) {
1471 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1472 }
1473 }
1474
1475 /* Calculate new header size */
1476 backing_file_len = 0;
1477
1478 if (backing_file) {
1479 backing_file_len = strlen(backing_file);
1480 }
1481
1482 buffer_len = sizeof(new_header);
1483 new_header.backing_filename_offset = buffer_len;
1484 new_header.backing_filename_size = backing_file_len;
1485 buffer_len += backing_file_len;
1486
1487 /* Make sure we can rewrite header without failing */
1488 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1489 return -ENOSPC;
1490 }
1491
1492 /* Prepare new header */
7267c094 1493 buffer = g_malloc(buffer_len);
75411d23
SH
1494
1495 qed_header_cpu_to_le(&new_header, &le_header);
1496 memcpy(buffer, &le_header, sizeof(le_header));
1497 buffer_len = sizeof(le_header);
1498
feba23b1
PB
1499 if (backing_file) {
1500 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1501 buffer_len += backing_file_len;
1502 }
75411d23
SH
1503
1504 /* Write new header */
1505 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
7267c094 1506 g_free(buffer);
75411d23
SH
1507 if (ret == 0) {
1508 memcpy(&s->header, &new_header, sizeof(new_header));
1509 }
1510 return ret;
1511}
1512
1513static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result)
1514{
01979a98
SH
1515 BDRVQEDState *s = bs->opaque;
1516
1517 return qed_check(s, result, false);
75411d23
SH
1518}
1519
1520static QEMUOptionParameter qed_create_options[] = {
1521 {
1522 .name = BLOCK_OPT_SIZE,
1523 .type = OPT_SIZE,
1524 .help = "Virtual disk size (in bytes)"
1525 }, {
1526 .name = BLOCK_OPT_BACKING_FILE,
1527 .type = OPT_STRING,
1528 .help = "File name of a base image"
1529 }, {
1530 .name = BLOCK_OPT_BACKING_FMT,
1531 .type = OPT_STRING,
1532 .help = "Image format of the base image"
1533 }, {
1534 .name = BLOCK_OPT_CLUSTER_SIZE,
1535 .type = OPT_SIZE,
99cce9fa
KW
1536 .help = "Cluster size (in bytes)",
1537 .value = { .n = QED_DEFAULT_CLUSTER_SIZE },
75411d23
SH
1538 }, {
1539 .name = BLOCK_OPT_TABLE_SIZE,
1540 .type = OPT_SIZE,
1541 .help = "L1/L2 table size (in clusters)"
1542 },
1543 { /* end of list */ }
1544};
1545
1546static BlockDriver bdrv_qed = {
1547 .format_name = "qed",
1548 .instance_size = sizeof(BDRVQEDState),
1549 .create_options = qed_create_options,
1550
1551 .bdrv_probe = bdrv_qed_probe,
1552 .bdrv_open = bdrv_qed_open,
1553 .bdrv_close = bdrv_qed_close,
1554 .bdrv_create = bdrv_qed_create,
b7d5a5b8 1555 .bdrv_co_is_allocated = bdrv_qed_co_is_allocated,
75411d23
SH
1556 .bdrv_make_empty = bdrv_qed_make_empty,
1557 .bdrv_aio_readv = bdrv_qed_aio_readv,
1558 .bdrv_aio_writev = bdrv_qed_aio_writev,
0e71be19 1559 .bdrv_co_write_zeroes = bdrv_qed_co_write_zeroes,
75411d23
SH
1560 .bdrv_truncate = bdrv_qed_truncate,
1561 .bdrv_getlength = bdrv_qed_getlength,
1562 .bdrv_get_info = bdrv_qed_get_info,
1563 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1564 .bdrv_check = bdrv_qed_check,
1565};
1566
1567static void bdrv_qed_init(void)
1568{
1569 bdrv_register(&bdrv_qed);
1570}
1571
1572block_init(bdrv_qed_init);