]> git.proxmox.com Git - ceph.git/blame - ceph/src/boost/boost/geometry/index/detail/rtree/pack_create.hpp
Add patch for failing prerm scripts
[ceph.git] / ceph / src / boost / boost / geometry / index / detail / rtree / pack_create.hpp
CommitLineData
7c673cae
FG
1// Boost.Geometry Index
2//
3// R-tree initial packing
4//
b32b8144 5// Copyright (c) 2011-2017 Adam Wulkiewicz, Lodz, Poland.
7c673cae
FG
6//
7// Use, modification and distribution is subject to the Boost Software License,
8// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
9// http://www.boost.org/LICENSE_1_0.txt)
10
11#ifndef BOOST_GEOMETRY_INDEX_DETAIL_RTREE_PACK_CREATE_HPP
12#define BOOST_GEOMETRY_INDEX_DETAIL_RTREE_PACK_CREATE_HPP
13
14#include <boost/geometry/algorithms/expand.hpp>
15#include <boost/geometry/index/detail/algorithms/bounds.hpp>
b32b8144 16#include <boost/geometry/index/detail/algorithms/nth_element.hpp>
7c673cae
FG
17
18#include <boost/geometry/algorithms/detail/expand_by_epsilon.hpp>
19
20namespace boost { namespace geometry { namespace index { namespace detail { namespace rtree {
21
22namespace pack_utils {
23
24template <std::size_t Dimension>
25struct biggest_edge
26{
27 BOOST_STATIC_ASSERT(0 < Dimension);
28 template <typename Box>
29 static inline void apply(Box const& box, typename coordinate_type<Box>::type & length, std::size_t & dim_index)
30 {
31 biggest_edge<Dimension-1>::apply(box, length, dim_index);
32 typename coordinate_type<Box>::type curr
33 = geometry::get<max_corner, Dimension-1>(box) - geometry::get<min_corner, Dimension-1>(box);
34 if ( length < curr )
35 {
36 dim_index = Dimension - 1;
37 length = curr;
38 }
39 }
40};
41
42template <>
43struct biggest_edge<1>
44{
45 template <typename Box>
46 static inline void apply(Box const& box, typename coordinate_type<Box>::type & length, std::size_t & dim_index)
47 {
48 dim_index = 0;
49 length = geometry::get<max_corner, 0>(box) - geometry::get<min_corner, 0>(box);
50 }
51};
52
53template <std::size_t I>
54struct point_entries_comparer
55{
56 template <typename PointEntry>
57 bool operator()(PointEntry const& e1, PointEntry const& e2) const
58 {
59 return geometry::get<I>(e1.first) < geometry::get<I>(e2.first);
60 }
61};
62
63template <std::size_t I, std::size_t Dimension>
64struct nth_element_and_half_boxes
65{
66 template <typename EIt, typename Box>
67 static inline void apply(EIt first, EIt median, EIt last, Box const& box, Box & left, Box & right, std::size_t dim_index)
68 {
69 if ( I == dim_index )
70 {
b32b8144 71 index::detail::nth_element(first, median, last, point_entries_comparer<I>());
7c673cae
FG
72
73 geometry::convert(box, left);
74 geometry::convert(box, right);
75 typename coordinate_type<Box>::type edge_len
76 = geometry::get<max_corner, I>(box) - geometry::get<min_corner, I>(box);
77 typename coordinate_type<Box>::type median
78 = geometry::get<min_corner, I>(box) + edge_len / 2;
79 geometry::set<max_corner, I>(left, median);
80 geometry::set<min_corner, I>(right, median);
81 }
82 else
83 nth_element_and_half_boxes<I+1, Dimension>::apply(first, median, last, box, left, right, dim_index);
84 }
85};
86
87template <std::size_t Dimension>
88struct nth_element_and_half_boxes<Dimension, Dimension>
89{
90 template <typename EIt, typename Box>
91 static inline void apply(EIt , EIt , EIt , Box const& , Box & , Box & , std::size_t ) {}
92};
93
94} // namespace pack_utils
95
96// STR leafs number are calculated as rcount/max
97// and the number of splitting planes for each dimension as (count/max)^(1/dimension)
98// <-> for dimension==2 -> sqrt(count/max)
99//
100// The main flaw of this algorithm is that the resulting tree will have bad structure for:
101// 1. non-uniformly distributed elements
102// Statistic check could be performed, e.g. based on variance of lengths of elements edges for each dimension
103// 2. elements distributed mainly along one axis
104// Calculate bounding box of all elements and then number of dividing planes for a dimension
105// from the length of BB edge for this dimension (more or less assuming that elements are uniformly-distributed squares)
106//
107// Another thing is that the last node may have less elements than Max or even Min.
108// The number of splitting planes must be chosen more carefully than count/max
109//
110// This algorithm is something between STR and TGS
111// it is more similar to the top-down recursive kd-tree creation algorithm
112// using object median split and split axis of greatest BB edge
113// BB is only used as a hint (assuming objects are distributed uniformly)
114//
115// Implemented algorithm guarantees that the number of elements in nodes will be between Min and Max
116// and that nodes are packed as tightly as possible
117// e.g. for 177 values Max = 5 and Min = 2 it will construct the following tree:
118// ROOT 177
119// L1 125 52
120// L2 25 25 25 25 25 25 17 10
121// L3 5x5 5x5 5x5 5x5 5x5 5x5 3x5+2 2x5
122
123template <typename Value, typename Options, typename Translator, typename Box, typename Allocators>
124class pack
125{
126 typedef typename rtree::node<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type node;
127 typedef typename rtree::internal_node<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type internal_node;
128 typedef typename rtree::leaf<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type leaf;
129
130 typedef typename Allocators::node_pointer node_pointer;
131 typedef rtree::subtree_destroyer<Value, Options, Translator, Box, Allocators> subtree_destroyer;
132 typedef typename Allocators::size_type size_type;
133
134 typedef typename geometry::point_type<Box>::type point_type;
135 typedef typename geometry::coordinate_type<point_type>::type coordinate_type;
136 typedef typename detail::default_content_result<Box>::type content_type;
137 typedef typename Options::parameters_type parameters_type;
138 static const std::size_t dimension = geometry::dimension<point_type>::value;
139
140 typedef typename rtree::container_from_elements_type<
141 typename rtree::elements_type<leaf>::type,
142 std::size_t
143 >::type values_counts_container;
144
145 typedef typename rtree::elements_type<internal_node>::type internal_elements;
146 typedef typename internal_elements::value_type internal_element;
147
148public:
149 // Arbitrary iterators
150 template <typename InIt> inline static
151 node_pointer apply(InIt first, InIt last, size_type & values_count, size_type & leafs_level,
152 parameters_type const& parameters, Translator const& translator, Allocators & allocators)
153 {
154 typedef typename std::iterator_traits<InIt>::difference_type diff_type;
155
156 diff_type diff = std::distance(first, last);
157 if ( diff <= 0 )
158 return node_pointer(0);
159
160 typedef std::pair<point_type, InIt> entry_type;
161 std::vector<entry_type> entries;
162
163 values_count = static_cast<size_type>(diff);
164 entries.reserve(values_count);
165
166 expandable_box<Box> hint_box;
167 for ( ; first != last ; ++first )
168 {
169 // NOTE: support for iterators not returning true references adapted
170 // to Geometry concept and default translator returning true reference
171 // An alternative would be to dereference the iterator and translate
172 // in one expression each time the indexable was needed.
173 typename std::iterator_traits<InIt>::reference in_ref = *first;
174 typename Translator::result_type indexable = translator(in_ref);
175
176 // NOTE: added for consistency with insert()
177 // CONSIDER: alternative - ignore invalid indexable or throw an exception
178 BOOST_GEOMETRY_INDEX_ASSERT(detail::is_valid(indexable), "Indexable is invalid");
179
180 hint_box.expand(indexable);
181
182 point_type pt;
183 geometry::centroid(indexable, pt);
184 entries.push_back(std::make_pair(pt, first));
185 }
186
187 subtree_elements_counts subtree_counts = calculate_subtree_elements_counts(values_count, parameters, leafs_level);
188 internal_element el = per_level(entries.begin(), entries.end(), hint_box.get(), values_count, subtree_counts,
189 parameters, translator, allocators);
190
191 return el.second;
192 }
193
194private:
195 template <typename BoxType>
196 class expandable_box
197 {
198 public:
199 expandable_box()
200 : m_initialized(false)
201 {}
202
203 template <typename Indexable>
204 explicit expandable_box(Indexable const& indexable)
205 : m_initialized(true)
206 {
207 detail::bounds(indexable, m_box);
208 }
209
210 template <typename Indexable>
211 void expand(Indexable const& indexable)
212 {
213 if ( !m_initialized )
214 {
215 // it's guaranteed that the Box will be initialized
216 // only for Points, Boxes and Segments but that's ok
217 // since only those Geometries can be stored
218 detail::bounds(indexable, m_box);
219 m_initialized = true;
220 }
221 else
222 {
223 geometry::expand(m_box, indexable);
224 }
225 }
226
227 void expand_by_epsilon()
228 {
229 geometry::detail::expand_by_epsilon(m_box);
230 }
231
232 BoxType const& get() const
233 {
234 BOOST_GEOMETRY_INDEX_ASSERT(m_initialized, "uninitialized envelope accessed");
235 return m_box;
236 }
237
238 private:
239 bool m_initialized;
240 BoxType m_box;
241 };
242
243 struct subtree_elements_counts
244 {
245 subtree_elements_counts(std::size_t ma, std::size_t mi) : maxc(ma), minc(mi) {}
246 std::size_t maxc;
247 std::size_t minc;
248 };
249
250 template <typename EIt> inline static
251 internal_element per_level(EIt first, EIt last, Box const& hint_box, std::size_t values_count, subtree_elements_counts const& subtree_counts,
252 parameters_type const& parameters, Translator const& translator, Allocators & allocators)
253 {
254 BOOST_GEOMETRY_INDEX_ASSERT(0 < std::distance(first, last) && static_cast<std::size_t>(std::distance(first, last)) == values_count,
255 "unexpected parameters");
256
257 if ( subtree_counts.maxc <= 1 )
258 {
259 // ROOT or LEAF
260 BOOST_GEOMETRY_INDEX_ASSERT(values_count <= parameters.get_max_elements(),
261 "too big number of elements");
262 // if !root check m_parameters.get_min_elements() <= count
263
264 // create new leaf node
265 node_pointer n = rtree::create_node<Allocators, leaf>::apply(allocators); // MAY THROW (A)
266 subtree_destroyer auto_remover(n, allocators);
267 leaf & l = rtree::get<leaf>(*n);
268
269 // reserve space for values
270 rtree::elements(l).reserve(values_count); // MAY THROW (A)
271
272 // calculate values box and copy values
273 // initialize the box explicitly to avoid GCC-4.4 uninitialized variable warnings with O2
274 expandable_box<Box> elements_box(translator(*(first->second)));
275 rtree::elements(l).push_back(*(first->second)); // MAY THROW (A?,C)
276 for ( ++first ; first != last ; ++first )
277 {
278 // NOTE: push_back() must be called at the end in order to support move_iterator.
279 // The iterator is dereferenced 2x (no temporary reference) to support
280 // non-true reference types and move_iterator without boost::forward<>.
281 elements_box.expand(translator(*(first->second)));
282 rtree::elements(l).push_back(*(first->second)); // MAY THROW (A?,C)
283 }
284
285#ifdef BOOST_GEOMETRY_INDEX_EXPERIMENTAL_ENLARGE_BY_EPSILON
286 // Enlarge bounds of a leaf node.
287 // It's because Points and Segments are compared WRT machine epsilon
288 // This ensures that leafs bounds correspond to the stored elements
289 // NOTE: this is done only if the Indexable is a different kind of Geometry
290 // than the bounds (only Box for now). Spatial predicates are checked
291 // the same way for Geometry of the same kind.
292 if ( BOOST_GEOMETRY_CONDITION((
293 ! index::detail::is_bounding_geometry
294 <
295 typename indexable_type<Translator>::type
296 >::value )) )
297 {
298 elements_box.expand_by_epsilon();
299 }
300#endif
301
302 auto_remover.release();
303 return internal_element(elements_box.get(), n);
304 }
305
306 // calculate next max and min subtree counts
307 subtree_elements_counts next_subtree_counts = subtree_counts;
308 next_subtree_counts.maxc /= parameters.get_max_elements();
309 next_subtree_counts.minc /= parameters.get_max_elements();
310
311 // create new internal node
312 node_pointer n = rtree::create_node<Allocators, internal_node>::apply(allocators); // MAY THROW (A)
313 subtree_destroyer auto_remover(n, allocators);
314 internal_node & in = rtree::get<internal_node>(*n);
315
316 // reserve space for values
317 std::size_t nodes_count = calculate_nodes_count(values_count, subtree_counts);
318 rtree::elements(in).reserve(nodes_count); // MAY THROW (A)
319 // calculate values box and copy values
320 expandable_box<Box> elements_box;
321
322 per_level_packets(first, last, hint_box, values_count, subtree_counts, next_subtree_counts,
323 rtree::elements(in), elements_box,
324 parameters, translator, allocators);
325
326 auto_remover.release();
327 return internal_element(elements_box.get(), n);
328 }
329
330 template <typename EIt, typename ExpandableBox> inline static
331 void per_level_packets(EIt first, EIt last, Box const& hint_box,
332 std::size_t values_count,
333 subtree_elements_counts const& subtree_counts,
334 subtree_elements_counts const& next_subtree_counts,
335 internal_elements & elements, ExpandableBox & elements_box,
336 parameters_type const& parameters, Translator const& translator, Allocators & allocators)
337 {
338 BOOST_GEOMETRY_INDEX_ASSERT(0 < std::distance(first, last) && static_cast<std::size_t>(std::distance(first, last)) == values_count,
339 "unexpected parameters");
340
341 BOOST_GEOMETRY_INDEX_ASSERT(subtree_counts.minc <= values_count,
342 "too small number of elements");
343
344 // only one packet
345 if ( values_count <= subtree_counts.maxc )
346 {
347 // the end, move to the next level
348 internal_element el = per_level(first, last, hint_box, values_count, next_subtree_counts,
349 parameters, translator, allocators);
350
351 // in case if push_back() do throw here
352 // and even if this is not probable (previously reserved memory, nonthrowing pairs copy)
353 // this case is also tested by exceptions test.
354 subtree_destroyer auto_remover(el.second, allocators);
355 // this container should have memory allocated, reserve() called outside
356 elements.push_back(el); // MAY THROW (A?,C) - however in normal conditions shouldn't
357 auto_remover.release();
358
359 elements_box.expand(el.first);
360 return;
361 }
362
363 std::size_t median_count = calculate_median_count(values_count, subtree_counts);
364 EIt median = first + median_count;
365
366 coordinate_type greatest_length;
367 std::size_t greatest_dim_index = 0;
368 pack_utils::biggest_edge<dimension>::apply(hint_box, greatest_length, greatest_dim_index);
369 Box left, right;
370 pack_utils::nth_element_and_half_boxes<0, dimension>
371 ::apply(first, median, last, hint_box, left, right, greatest_dim_index);
372
373 per_level_packets(first, median, left,
374 median_count, subtree_counts, next_subtree_counts,
375 elements, elements_box,
376 parameters, translator, allocators);
377 per_level_packets(median, last, right,
378 values_count - median_count, subtree_counts, next_subtree_counts,
379 elements, elements_box,
380 parameters, translator, allocators);
381 }
382
383 inline static
384 subtree_elements_counts calculate_subtree_elements_counts(std::size_t elements_count, parameters_type const& parameters, size_type & leafs_level)
385 {
386 boost::ignore_unused_variable_warning(parameters);
387
388 subtree_elements_counts res(1, 1);
389 leafs_level = 0;
390
391 std::size_t smax = parameters.get_max_elements();
392 for ( ; smax < elements_count ; smax *= parameters.get_max_elements(), ++leafs_level )
393 res.maxc = smax;
394
395 res.minc = parameters.get_min_elements() * (res.maxc / parameters.get_max_elements());
396
397 return res;
398 }
399
400 inline static
401 std::size_t calculate_nodes_count(std::size_t count,
402 subtree_elements_counts const& subtree_counts)
403 {
404 std::size_t n = count / subtree_counts.maxc;
405 std::size_t r = count % subtree_counts.maxc;
406
407 if ( 0 < r && r < subtree_counts.minc )
408 {
409 std::size_t count_minus_min = count - subtree_counts.minc;
410 n = count_minus_min / subtree_counts.maxc;
411 r = count_minus_min % subtree_counts.maxc;
412 ++n;
413 }
414
415 if ( 0 < r )
416 ++n;
417
418 return n;
419 }
420
421 inline static
422 std::size_t calculate_median_count(std::size_t count,
423 subtree_elements_counts const& subtree_counts)
424 {
425 // e.g. for max = 5, min = 2, count = 52, subtree_max = 25, subtree_min = 10
426
427 std::size_t n = count / subtree_counts.maxc; // e.g. 52 / 25 = 2
428 std::size_t r = count % subtree_counts.maxc; // e.g. 52 % 25 = 2
429 std::size_t median_count = (n / 2) * subtree_counts.maxc; // e.g. 2 / 2 * 25 = 25
430
431 if ( 0 != r ) // e.g. 0 != 2
432 {
433 if ( subtree_counts.minc <= r ) // e.g. 10 <= 2 == false
434 {
435 //BOOST_GEOMETRY_INDEX_ASSERT(0 < n, "unexpected value");
436 median_count = ((n+1)/2) * subtree_counts.maxc; // if calculated ((2+1)/2) * 25 which would be ok, but not in all cases
437 }
438 else // r < subtree_counts.second // e.g. 2 < 10 == true
439 {
440 std::size_t count_minus_min = count - subtree_counts.minc; // e.g. 52 - 10 = 42
441 n = count_minus_min / subtree_counts.maxc; // e.g. 42 / 25 = 1
442 r = count_minus_min % subtree_counts.maxc; // e.g. 42 % 25 = 17
443 if ( r == 0 ) // e.g. false
444 {
445 // n can't be equal to 0 because then there wouldn't be any element in the other node
446 //BOOST_GEOMETRY_INDEX_ASSERT(0 < n, "unexpected value");
447 median_count = ((n+1)/2) * subtree_counts.maxc; // if calculated ((1+1)/2) * 25 which would be ok, but not in all cases
448 }
449 else
450 {
451 if ( n == 0 ) // e.g. false
452 median_count = r; // if calculated -> 17 which is wrong!
453 else
454 median_count = ((n+2)/2) * subtree_counts.maxc; // e.g. ((1+2)/2) * 25 = 25
455 }
456 }
457 }
458
459 return median_count;
460 }
461};
462
463}}}}} // namespace boost::geometry::index::detail::rtree
464
465#endif // BOOST_GEOMETRY_INDEX_DETAIL_RTREE_PACK_CREATE_HPP