]> git.proxmox.com Git - ceph.git/blame - ceph/src/boost/boost/math/interpolators/cardinal_cubic_b_spline.hpp
update source to Ceph Pacific 16.2.2
[ceph.git] / ceph / src / boost / boost / math / interpolators / cardinal_cubic_b_spline.hpp
CommitLineData
92f5a8d4
TL
1// Copyright Nick Thompson, 2017
2// Use, modification and distribution are subject to the
3// Boost Software License, Version 1.0.
4// (See accompanying file LICENSE_1_0.txt
5// or copy at http://www.boost.org/LICENSE_1_0.txt)
6
7// This implements the compactly supported cubic b spline algorithm described in
8// Kress, Rainer. "Numerical analysis, volume 181 of Graduate Texts in Mathematics." (1998).
9// Splines of compact support are faster to evaluate and are better conditioned than classical cubic splines.
10
11// Let f be the function we are trying to interpolate, and s be the interpolating spline.
12// The routine constructs the interpolant in O(N) time, and evaluating s at a point takes constant time.
13// The order of accuracy depends on the regularity of the f, however, assuming f is
14// four-times continuously differentiable, the error is of O(h^4).
15// In addition, we can differentiate the spline and obtain a good interpolant for f'.
16// The main restriction of this method is that the samples of f must be evenly spaced.
17// Look for barycentric rational interpolation for non-evenly sampled data.
18// Properties:
19// - s(x_j) = f(x_j)
20// - All cubic polynomials interpolated exactly
21
22#ifndef BOOST_MATH_INTERPOLATORS_CARDINAL_CUBIC_B_SPLINE_HPP
f67539c2 23#define BOOST_MATH_INTERPOLATORS_CARDINAL_CUBIC_B_SPLINE_HPP
92f5a8d4
TL
24
25#include <boost/math/interpolators/detail/cardinal_cubic_b_spline_detail.hpp>
26
27namespace boost{ namespace math{ namespace interpolators {
28
29template <class Real>
30class cardinal_cubic_b_spline
31{
32public:
33 // If you don't know the value of the derivative at the endpoints, leave them as nans and the routine will estimate them.
34 // f[0] = f(a), f[length -1] = b, step_size = (b - a)/(length -1).
35 template <class BidiIterator>
36 cardinal_cubic_b_spline(const BidiIterator f, BidiIterator end_p, Real left_endpoint, Real step_size,
37 Real left_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN(),
38 Real right_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN());
39 cardinal_cubic_b_spline(const Real* const f, size_t length, Real left_endpoint, Real step_size,
40 Real left_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN(),
41 Real right_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN());
42
43 cardinal_cubic_b_spline() = default;
44 Real operator()(Real x) const;
45
46 Real prime(Real x) const;
47
48 Real double_prime(Real x) const;
49
50private:
51 std::shared_ptr<detail::cardinal_cubic_b_spline_imp<Real>> m_imp;
52};
53
54template<class Real>
55cardinal_cubic_b_spline<Real>::cardinal_cubic_b_spline(const Real* const f, size_t length, Real left_endpoint, Real step_size,
56 Real left_endpoint_derivative, Real right_endpoint_derivative) : m_imp(std::make_shared<detail::cardinal_cubic_b_spline_imp<Real>>(f, f + length, left_endpoint, step_size, left_endpoint_derivative, right_endpoint_derivative))
57{
58}
59
60template <class Real>
61template <class BidiIterator>
62cardinal_cubic_b_spline<Real>::cardinal_cubic_b_spline(BidiIterator f, BidiIterator end_p, Real left_endpoint, Real step_size,
63 Real left_endpoint_derivative, Real right_endpoint_derivative) : m_imp(std::make_shared<detail::cardinal_cubic_b_spline_imp<Real>>(f, end_p, left_endpoint, step_size, left_endpoint_derivative, right_endpoint_derivative))
64{
65}
66
67template<class Real>
68Real cardinal_cubic_b_spline<Real>::operator()(Real x) const
69{
70 return m_imp->operator()(x);
71}
72
73template<class Real>
74Real cardinal_cubic_b_spline<Real>::prime(Real x) const
75{
76 return m_imp->prime(x);
77}
78
79template<class Real>
80Real cardinal_cubic_b_spline<Real>::double_prime(Real x) const
81{
82 return m_imp->double_prime(x);
83}
84
85
86}}}
87#endif