]> git.proxmox.com Git - ceph.git/blame - ceph/src/boost/boost/math/interpolators/detail/cubic_b_spline_detail.hpp
import new upstream nautilus stable release 14.2.8
[ceph.git] / ceph / src / boost / boost / math / interpolators / detail / cubic_b_spline_detail.hpp
CommitLineData
b32b8144
FG
1// Copyright Nick Thompson, 2017
2// Use, modification and distribution are subject to the
3// Boost Software License, Version 1.0.
4// (See accompanying file LICENSE_1_0.txt
5// or copy at http://www.boost.org/LICENSE_1_0.txt)
6
7#ifndef CUBIC_B_SPLINE_DETAIL_HPP
8#define CUBIC_B_SPLINE_DETAIL_HPP
9
10#include <limits>
11#include <cmath>
12#include <vector>
13#include <memory>
14#include <boost/math/constants/constants.hpp>
15#include <boost/math/special_functions/fpclassify.hpp>
16
17namespace boost{ namespace math{ namespace detail{
18
19
20template <class Real>
21class cubic_b_spline_imp
22{
23public:
24 // If you don't know the value of the derivative at the endpoints, leave them as nans and the routine will estimate them.
25 // f[0] = f(a), f[length -1] = b, step_size = (b - a)/(length -1).
26 template <class BidiIterator>
27 cubic_b_spline_imp(BidiIterator f, BidiIterator end_p, Real left_endpoint, Real step_size,
28 Real left_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN(),
29 Real right_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN());
30
31 Real operator()(Real x) const;
32
33 Real prime(Real x) const;
34
92f5a8d4
TL
35 Real double_prime(Real x) const;
36
b32b8144
FG
37private:
38 std::vector<Real> m_beta;
39 Real m_h_inv;
40 Real m_a;
41 Real m_avg;
42};
43
44
45
46template <class Real>
47Real b3_spline(Real x)
48{
49 using std::abs;
50 Real absx = abs(x);
51 if (absx < 1)
52 {
53 Real y = 2 - absx;
54 Real z = 1 - absx;
55 return boost::math::constants::sixth<Real>()*(y*y*y - 4*z*z*z);
56 }
57 if (absx < 2)
58 {
59 Real y = 2 - absx;
60 return boost::math::constants::sixth<Real>()*y*y*y;
61 }
62 return (Real) 0;
63}
64
65template<class Real>
66Real b3_spline_prime(Real x)
67{
68 if (x < 0)
69 {
70 return -b3_spline_prime(-x);
71 }
72
73 if (x < 1)
74 {
75 return x*(3*boost::math::constants::half<Real>()*x - 2);
76 }
77 if (x < 2)
78 {
79 return -boost::math::constants::half<Real>()*(2 - x)*(2 - x);
80 }
81 return (Real) 0;
82}
83
92f5a8d4
TL
84template<class Real>
85Real b3_spline_double_prime(Real x)
86{
87 if (x < 0)
88 {
89 return b3_spline_double_prime(-x);
90 }
91
92 if (x < 1)
93 {
94 return 3*x - 2;
95 }
96 if (x < 2)
97 {
98 return (2 - x);
99 }
100 return (Real) 0;
101}
102
b32b8144
FG
103
104template <class Real>
105template <class BidiIterator>
106cubic_b_spline_imp<Real>::cubic_b_spline_imp(BidiIterator f, BidiIterator end_p, Real left_endpoint, Real step_size,
107 Real left_endpoint_derivative, Real right_endpoint_derivative) : m_a(left_endpoint), m_avg(0)
108{
109 using boost::math::constants::third;
110
111 std::size_t length = end_p - f;
112
113 if (length < 5)
114 {
115 if (boost::math::isnan(left_endpoint_derivative) || boost::math::isnan(right_endpoint_derivative))
116 {
117 throw std::logic_error("Interpolation using a cubic b spline with derivatives estimated at the endpoints requires at least 5 points.\n");
118 }
119 if (length < 3)
120 {
121 throw std::logic_error("Interpolation using a cubic b spline requires at least 3 points.\n");
122 }
123 }
124
125 if (boost::math::isnan(left_endpoint))
126 {
127 throw std::logic_error("Left endpoint is NAN; this is disallowed.\n");
128 }
129 if (left_endpoint + length*step_size >= (std::numeric_limits<Real>::max)())
130 {
131 throw std::logic_error("Right endpoint overflows the maximum representable number of the specified precision.\n");
132 }
133 if (step_size <= 0)
134 {
135 throw std::logic_error("The step size must be strictly > 0.\n");
136 }
137 // Storing the inverse of the stepsize does provide a measurable speedup.
138 // It's not huge, but nonetheless worthwhile.
139 m_h_inv = 1/step_size;
140
141 // Following Kress's notation, s'(a) = a1, s'(b) = b1
142 Real a1 = left_endpoint_derivative;
143 // See the finite-difference table on Wikipedia for reference on how
144 // to construct high-order estimates for one-sided derivatives:
145 // https://en.wikipedia.org/wiki/Finite_difference_coefficient#Forward_and_backward_finite_difference
146 // Here, we estimate then to O(h^4), as that is the maximum accuracy we could obtain from this method.
147 if (boost::math::isnan(a1))
148 {
149 // For simple functions (linear, quadratic, so on)
150 // almost all the error comes from derivative estimation.
151 // This does pairwise summation which gives us another digit of accuracy over naive summation.
152 Real t0 = 4*(f[1] + third<Real>()*f[3]);
153 Real t1 = -(25*third<Real>()*f[0] + f[4])/4 - 3*f[2];
154 a1 = m_h_inv*(t0 + t1);
155 }
156
157 Real b1 = right_endpoint_derivative;
158 if (boost::math::isnan(b1))
159 {
160 size_t n = length - 1;
161 Real t0 = 4*(f[n-3] + third<Real>()*f[n - 1]);
162 Real t1 = -(25*third<Real>()*f[n - 4] + f[n])/4 - 3*f[n - 2];
163
164 b1 = m_h_inv*(t0 + t1);
165 }
166
167 // s(x) = \sum \alpha_i B_{3}( (x- x_i - a)/h )
168 // Of course we must reindex from Kress's notation, since he uses negative indices which make C++ unhappy.
169 m_beta.resize(length + 2, std::numeric_limits<Real>::quiet_NaN());
170
171 // Since the splines have compact support, they decay to zero very fast outside the endpoints.
172 // This is often very annoying; we'd like to evaluate the interpolant a little bit outside the
173 // boundary [a,b] without massive error.
174 // A simple way to deal with this is just to subtract the DC component off the signal, so we need the average.
175 // This algorithm for computing the average is recommended in
176 // http://www.heikohoffmann.de/htmlthesis/node134.html
177 Real t = 1;
178 for (size_t i = 0; i < length; ++i)
179 {
180 if (boost::math::isnan(f[i]))
181 {
182 std::string err = "This function you are trying to interpolate is a nan at index " + std::to_string(i) + "\n";
183 throw std::logic_error(err);
184 }
185 m_avg += (f[i] - m_avg) / t;
186 t += 1;
187 }
188
189
190 // Now we must solve an almost-tridiagonal system, which requires O(N) operations.
191 // There are, in fact 5 diagonals, but they only differ from zero on the first and last row,
192 // so we can patch up the tridiagonal row reduction algorithm to deal with two special rows.
193 // See Kress, equations 8.41
194 // The the "tridiagonal" matrix is:
195 // 1 0 -1
196 // 1 4 1
197 // 1 4 1
198 // 1 4 1
199 // ....
200 // 1 4 1
201 // 1 0 -1
202 // Numerical estimate indicate that as N->Infinity, cond(A) -> 6.9, so this matrix is good.
203 std::vector<Real> rhs(length + 2, std::numeric_limits<Real>::quiet_NaN());
204 std::vector<Real> super_diagonal(length + 2, std::numeric_limits<Real>::quiet_NaN());
205
206 rhs[0] = -2*step_size*a1;
207 rhs[rhs.size() - 1] = -2*step_size*b1;
208
209 super_diagonal[0] = 0;
210
211 for(size_t i = 1; i < rhs.size() - 1; ++i)
212 {
213 rhs[i] = 6*(f[i - 1] - m_avg);
214 super_diagonal[i] = 1;
215 }
216
217
218 // One step of row reduction on the first row to patch up the 5-diagonal problem:
219 // 1 0 -1 | r0
220 // 1 4 1 | r1
221 // mapsto:
222 // 1 0 -1 | r0
223 // 0 4 2 | r1 - r0
224 // mapsto
225 // 1 0 -1 | r0
226 // 0 1 1/2| (r1 - r0)/4
227 super_diagonal[1] = 0.5;
228 rhs[1] = (rhs[1] - rhs[0])/4;
229
230 // Now do a tridiagonal row reduction the standard way, until just before the last row:
231 for (size_t i = 2; i < rhs.size() - 1; ++i)
232 {
233 Real diagonal = 4 - super_diagonal[i - 1];
234 rhs[i] = (rhs[i] - rhs[i - 1])/diagonal;
235 super_diagonal[i] /= diagonal;
236 }
237
238 // Now the last row, which is in the form
239 // 1 sd[n-3] 0 | rhs[n-3]
240 // 0 1 sd[n-2] | rhs[n-2]
241 // 1 0 -1 | rhs[n-1]
242 Real final_subdiag = -super_diagonal[rhs.size() - 3];
243 rhs[rhs.size() - 1] = (rhs[rhs.size() - 1] - rhs[rhs.size() - 3])/final_subdiag;
244 Real final_diag = -1/final_subdiag;
245 // Now we're here:
246 // 1 sd[n-3] 0 | rhs[n-3]
247 // 0 1 sd[n-2] | rhs[n-2]
248 // 0 1 final_diag | (rhs[n-1] - rhs[n-3])/diag
249
250 final_diag = final_diag - super_diagonal[rhs.size() - 2];
251 rhs[rhs.size() - 1] = rhs[rhs.size() - 1] - rhs[rhs.size() - 2];
252
253
254 // Back substitutions:
255 m_beta[rhs.size() - 1] = rhs[rhs.size() - 1]/final_diag;
256 for(size_t i = rhs.size() - 2; i > 0; --i)
257 {
258 m_beta[i] = rhs[i] - super_diagonal[i]*m_beta[i + 1];
259 }
260 m_beta[0] = m_beta[2] + rhs[0];
261}
262
263template<class Real>
264Real cubic_b_spline_imp<Real>::operator()(Real x) const
265{
266 // See Kress, 8.40: Since B3 has compact support, we don't have to sum over all terms,
267 // just the (at most 5) whose support overlaps the argument.
268 Real z = m_avg;
269 Real t = m_h_inv*(x - m_a) + 1;
270
271 using std::max;
272 using std::min;
273 using std::ceil;
274 using std::floor;
275
276 size_t k_min = (size_t) (max)(static_cast<long>(0), boost::math::ltrunc(ceil(t - 2)));
277 size_t k_max = (size_t) (max)((min)(static_cast<long>(m_beta.size() - 1), boost::math::ltrunc(floor(t + 2))), (long) 0);
278 for (size_t k = k_min; k <= k_max; ++k)
279 {
280 z += m_beta[k]*b3_spline(t - k);
281 }
282
283 return z;
284}
285
286template<class Real>
287Real cubic_b_spline_imp<Real>::prime(Real x) const
288{
289 Real z = 0;
290 Real t = m_h_inv*(x - m_a) + 1;
291
292 using std::max;
293 using std::min;
294 using std::ceil;
295 using std::floor;
296
297 size_t k_min = (size_t) (max)(static_cast<long>(0), boost::math::ltrunc(ceil(t - 2)));
298 size_t k_max = (size_t) (min)(static_cast<long>(m_beta.size() - 1), boost::math::ltrunc(floor(t + 2)));
299
300 for (size_t k = k_min; k <= k_max; ++k)
301 {
302 z += m_beta[k]*b3_spline_prime(t - k);
303 }
304 return z*m_h_inv;
305}
306
92f5a8d4
TL
307template<class Real>
308Real cubic_b_spline_imp<Real>::double_prime(Real x) const
309{
310 Real z = 0;
311 Real t = m_h_inv*(x - m_a) + 1;
312
313 using std::max;
314 using std::min;
315 using std::ceil;
316 using std::floor;
317
318 size_t k_min = (size_t) (max)(static_cast<long>(0), boost::math::ltrunc(ceil(t - 2)));
319 size_t k_max = (size_t) (min)(static_cast<long>(m_beta.size() - 1), boost::math::ltrunc(floor(t + 2)));
320
321 for (size_t k = k_min; k <= k_max; ++k)
322 {
323 z += m_beta[k]*b3_spline_double_prime(t - k);
324 }
325 return z*m_h_inv*m_h_inv;
326}
327
328
b32b8144
FG
329}}}
330#endif