]> git.proxmox.com Git - ceph.git/blame - ceph/src/boost/boost/math/tools/simple_continued_fraction.hpp
update ceph source to reef 18.1.2
[ceph.git] / ceph / src / boost / boost / math / tools / simple_continued_fraction.hpp
CommitLineData
20effc67
TL
1// (C) Copyright Nick Thompson 2020.
2// Use, modification and distribution are subject to the
3// Boost Software License, Version 1.0. (See accompanying file
4// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5
6#ifndef BOOST_MATH_TOOLS_SIMPLE_CONTINUED_FRACTION_HPP
7#define BOOST_MATH_TOOLS_SIMPLE_CONTINUED_FRACTION_HPP
8
1e59de90 9#include <array>
20effc67
TL
10#include <vector>
11#include <ostream>
12#include <iomanip>
13#include <cmath>
14#include <limits>
15#include <stdexcept>
1e59de90
TL
16#include <sstream>
17#include <boost/math/tools/is_standalone.hpp>
18
19#ifndef BOOST_MATH_STANDALONE
20effc67 20#include <boost/core/demangle.hpp>
1e59de90 21#endif
20effc67
TL
22
23namespace boost::math::tools {
24
25template<typename Real, typename Z = int64_t>
26class simple_continued_fraction {
27public:
28 simple_continued_fraction(Real x) : x_{x} {
29 using std::floor;
30 using std::abs;
31 using std::sqrt;
32 using std::isfinite;
33 if (!isfinite(x)) {
34 throw std::domain_error("Cannot convert non-finites into continued fractions.");
35 }
36 b_.reserve(50);
37 Real bj = floor(x);
38 b_.push_back(static_cast<Z>(bj));
39 if (bj == x) {
40 b_.shrink_to_fit();
41 return;
42 }
43 x = 1/(x-bj);
44 Real f = bj;
45 if (bj == 0) {
1e59de90 46 f = 16*(std::numeric_limits<Real>::min)();
20effc67
TL
47 }
48 Real C = f;
49 Real D = 0;
50 int i = 0;
51 // the "1 + i++" lets the error bound grow slowly with the number of convergents.
52 // I have not worked out the error propagation of the Modified Lentz's method to see if it does indeed grow at this rate.
53 // Numerical Recipes claims that no one has worked out the error analysis of the modified Lentz's method.
54 while (abs(f - x_) >= (1 + i++)*std::numeric_limits<Real>::epsilon()*abs(x_))
55 {
56 bj = floor(x);
57 b_.push_back(static_cast<Z>(bj));
58 x = 1/(x-bj);
59 D += bj;
60 if (D == 0) {
1e59de90 61 D = 16*(std::numeric_limits<Real>::min)();
20effc67
TL
62 }
63 C = bj + 1/C;
64 if (C==0) {
1e59de90 65 C = 16*(std::numeric_limits<Real>::min)();
20effc67
TL
66 }
67 D = 1/D;
68 f *= (C*D);
69 }
70 // Deal with non-uniqueness of continued fractions: [a0; a1, ..., an, 1] = a0; a1, ..., an + 1].
71 // The shorter representation is considered the canonical representation,
72 // so if we compute a non-canonical representation, change it to canonical:
73 if (b_.size() > 2 && b_.back() == 1) {
74 b_[b_.size() - 2] += 1;
75 b_.resize(b_.size() - 1);
76 }
77 b_.shrink_to_fit();
78
79 for (size_t i = 1; i < b_.size(); ++i) {
80 if (b_[i] <= 0) {
81 std::ostringstream oss;
82 oss << "Found a negative partial denominator: b[" << i << "] = " << b_[i] << "."
1e59de90 83 #ifndef BOOST_MATH_STANDALONE
20effc67 84 << " This means the integer type '" << boost::core::demangle(typeid(Z).name())
1e59de90
TL
85 #else
86 << " This means the integer type '" << typeid(Z).name()
87 #endif
20effc67
TL
88 << "' has overflowed and you need to use a wider type,"
89 << " or there is a bug.";
90 throw std::overflow_error(oss.str());
91 }
92 }
93 }
94
95 Real khinchin_geometric_mean() const {
96 if (b_.size() == 1) {
97 return std::numeric_limits<Real>::quiet_NaN();
98 }
99 using std::log;
100 using std::exp;
101 // Precompute the most probable logarithms. See the Gauss-Kuzmin distribution for details.
1e59de90 102 // Example: b_i = 1 has probability -log_2(3/4) ~ .415:
20effc67
TL
103 // A random partial denominator has ~80% chance of being in this table:
104 const std::array<Real, 7> logs{std::numeric_limits<Real>::quiet_NaN(), Real(0), log(static_cast<Real>(2)), log(static_cast<Real>(3)), log(static_cast<Real>(4)), log(static_cast<Real>(5)), log(static_cast<Real>(6))};
105 Real log_prod = 0;
106 for (size_t i = 1; i < b_.size(); ++i) {
107 if (b_[i] < static_cast<Z>(logs.size())) {
108 log_prod += logs[b_[i]];
109 }
110 else
111 {
112 log_prod += log(static_cast<Real>(b_[i]));
113 }
114 }
115 log_prod /= (b_.size()-1);
116 return exp(log_prod);
117 }
118
119 Real khinchin_harmonic_mean() const {
120 if (b_.size() == 1) {
121 return std::numeric_limits<Real>::quiet_NaN();
122 }
123 Real n = b_.size() - 1;
124 Real denom = 0;
125 for (size_t i = 1; i < b_.size(); ++i) {
126 denom += 1/static_cast<Real>(b_[i]);
127 }
128 return n/denom;
129 }
130
131 const std::vector<Z>& partial_denominators() const {
132 return b_;
133 }
134
135 template<typename T, typename Z2>
136 friend std::ostream& operator<<(std::ostream& out, simple_continued_fraction<T, Z2>& scf);
137
138private:
139 const Real x_;
140 std::vector<Z> b_;
141};
142
143
144template<typename Real, typename Z2>
145std::ostream& operator<<(std::ostream& out, simple_continued_fraction<Real, Z2>& scf) {
146 constexpr const int p = std::numeric_limits<Real>::max_digits10;
147 if constexpr (p == 2147483647) {
148 out << std::setprecision(scf.x_.backend().precision());
149 } else {
150 out << std::setprecision(p);
151 }
152
153 out << "[" << scf.b_.front();
154 if (scf.b_.size() > 1)
155 {
156 out << "; ";
157 for (size_t i = 1; i < scf.b_.size() -1; ++i)
158 {
159 out << scf.b_[i] << ", ";
160 }
161 out << scf.b_.back();
162 }
163 out << "]";
164 return out;
165}
166
167
168}
169#endif