]> git.proxmox.com Git - ceph.git/blame - ceph/src/boost/libs/asio/example/cpp14/operations/composed_6.cpp
update ceph source to reef 18.1.2
[ceph.git] / ceph / src / boost / libs / asio / example / cpp14 / operations / composed_6.cpp
CommitLineData
92f5a8d4
TL
1//
2// composed_6.cpp
3// ~~~~~~~~~~~~~~
4//
1e59de90 5// Copyright (c) 2003-2022 Christopher M. Kohlhoff (chris at kohlhoff dot com)
92f5a8d4
TL
6//
7// Distributed under the Boost Software License, Version 1.0. (See accompanying
8// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
9//
10
11#include <boost/asio/executor_work_guard.hpp>
12#include <boost/asio/io_context.hpp>
13#include <boost/asio/ip/tcp.hpp>
14#include <boost/asio/steady_timer.hpp>
15#include <boost/asio/use_future.hpp>
16#include <boost/asio/write.hpp>
17#include <functional>
18#include <iostream>
19#include <memory>
20#include <sstream>
21#include <string>
22#include <type_traits>
23#include <utility>
24
25using boost::asio::ip::tcp;
26
27// NOTE: This example requires the new boost::asio::async_initiate function. For
28// an example that works with the Networking TS style of completion tokens,
29// please see an older version of asio.
30
31//------------------------------------------------------------------------------
32
33// This composed operation shows composition of multiple underlying operations.
34// It automatically serialises a message, using its I/O streams insertion
35// operator, before sending it N times on the socket. To do this, it must
36// allocate a buffer for the encoded message and ensure this buffer's validity
37// until all underlying async_write operation complete. A one second delay is
38// inserted prior to each write operation, using a steady_timer.
39
40template <typename T, typename CompletionToken>
41auto async_write_messages(tcp::socket& socket,
42 const T& message, std::size_t repeat_count,
43 CompletionToken&& token)
44 // The return type of the initiating function is deduced from the combination
45 // of CompletionToken type and the completion handler's signature. When the
46 // completion token is a simple callback, the return type is always void.
47 // In this example, when the completion token is boost::asio::yield_context
48 // (used for stackful coroutines) the return type would be also be void, as
49 // there is no non-error argument to the completion handler. When the
50 // completion token is boost::asio::use_future it would be std::future<void>.
51 //
52 // In C++14 we can omit the return type as it is automatically deduced from
53 // the return type of boost::asio::async_initiate.
54{
55 // In addition to determining the mechanism by which an asynchronous
56 // operation delivers its result, a completion token also determines the time
57 // when the operation commences. For example, when the completion token is a
58 // simple callback the operation commences before the initiating function
59 // returns. However, if the completion token's delivery mechanism uses a
60 // future, we might instead want to defer initiation of the operation until
61 // the returned future object is waited upon.
62 //
63 // To enable this, when implementing an asynchronous operation we must
64 // package the initiation step as a function object. The initiation function
65 // object's call operator is passed the concrete completion handler produced
66 // by the completion token. This completion handler matches the asynchronous
67 // operation's completion handler signature, which in this example is:
68 //
69 // void(boost::system::error_code error)
70 //
71 // The initiation function object also receives any additional arguments
72 // required to start the operation. (Note: We could have instead passed these
73 // arguments in the lambda capture set. However, we should prefer to
74 // propagate them as function call arguments as this allows the completion
75 // token to optimise how they are passed. For example, a lazy future which
76 // defers initiation would need to make a decay-copy of the arguments, but
77 // when using a simple callback the arguments can be trivially forwarded
78 // straight through.)
79 auto initiation = [](auto&& completion_handler, tcp::socket& socket,
80 std::unique_ptr<std::string> encoded_message, std::size_t repeat_count,
81 std::unique_ptr<boost::asio::steady_timer> delay_timer)
82 {
83 // In this example, the composed operation's intermediate completion
84 // handler is implemented as a hand-crafted function object.
85 struct intermediate_completion_handler
86 {
87 // The intermediate completion handler holds a reference to the socket as
88 // it is used for multiple async_write operations, as well as for
89 // obtaining the I/O executor (see get_executor below).
90 tcp::socket& socket_;
91
92 // The allocated buffer for the encoded message. The std::unique_ptr
93 // smart pointer is move-only, and as a consequence our intermediate
94 // completion handler is also move-only.
95 std::unique_ptr<std::string> encoded_message_;
96
97 // The repeat count remaining.
98 std::size_t repeat_count_;
99
100 // A steady timer used for introducing a delay.
101 std::unique_ptr<boost::asio::steady_timer> delay_timer_;
102
103 // To manage the cycle between the multiple underlying asychronous
104 // operations, our intermediate completion handler is implemented as a
105 // state machine.
106 enum { starting, waiting, writing } state_;
107
108 // As our composed operation performs multiple underlying I/O operations,
109 // we should maintain a work object against the I/O executor. This tells
110 // the I/O executor that there is still more work to come in the future.
1e59de90 111 boost::asio::executor_work_guard<tcp::socket::executor_type> io_work_;
92f5a8d4
TL
112
113 // The user-supplied completion handler, called once only on completion
114 // of the entire composed operation.
115 typename std::decay<decltype(completion_handler)>::type handler_;
116
117 // By having a default value for the second argument, this function call
118 // operator matches the completion signature of both the async_write and
119 // steady_timer::async_wait operations.
120 void operator()(const boost::system::error_code& error, std::size_t = 0)
121 {
122 if (!error)
123 {
124 switch (state_)
125 {
126 case starting:
127 case writing:
128 if (repeat_count_ > 0)
129 {
130 --repeat_count_;
131 state_ = waiting;
132 delay_timer_->expires_after(std::chrono::seconds(1));
133 delay_timer_->async_wait(std::move(*this));
134 return; // Composed operation not yet complete.
135 }
136 break; // Composed operation complete, continue below.
137 case waiting:
138 state_ = writing;
139 boost::asio::async_write(socket_,
140 boost::asio::buffer(*encoded_message_), std::move(*this));
141 return; // Composed operation not yet complete.
142 }
143 }
144
145 // This point is reached only on completion of the entire composed
146 // operation.
147
1e59de90
TL
148 // We no longer have any future work coming for the I/O executor.
149 io_work_.reset();
150
92f5a8d4
TL
151 // Deallocate the encoded message before calling the user-supplied
152 // completion handler.
153 encoded_message_.reset();
154
155 // Call the user-supplied handler with the result of the operation.
156 handler_(error);
157 }
158
159 // It is essential to the correctness of our composed operation that we
160 // preserve the executor of the user-supplied completion handler. With a
161 // hand-crafted function object we can do this by defining a nested type
162 // executor_type and member function get_executor. These obtain the
163 // completion handler's associated executor, and default to the I/O
164 // executor - in this case the executor of the socket - if the completion
165 // handler does not have its own.
166 using executor_type = boost::asio::associated_executor_t<
167 typename std::decay<decltype(completion_handler)>::type,
168 tcp::socket::executor_type>;
169
170 executor_type get_executor() const noexcept
171 {
172 return boost::asio::get_associated_executor(
173 handler_, socket_.get_executor());
174 }
175
176 // Although not necessary for correctness, we may also preserve the
177 // allocator of the user-supplied completion handler. This is achieved by
178 // defining a nested type allocator_type and member function
179 // get_allocator. These obtain the completion handler's associated
180 // allocator, and default to std::allocator<void> if the completion
181 // handler does not have its own.
182 using allocator_type = boost::asio::associated_allocator_t<
183 typename std::decay<decltype(completion_handler)>::type,
184 std::allocator<void>>;
185
186 allocator_type get_allocator() const noexcept
187 {
188 return boost::asio::get_associated_allocator(
189 handler_, std::allocator<void>{});
190 }
191 };
192
193 // Initiate the underlying async_write operation using our intermediate
194 // completion handler.
195 auto encoded_message_buffer = boost::asio::buffer(*encoded_message);
196 boost::asio::async_write(socket, encoded_message_buffer,
197 intermediate_completion_handler{
198 socket, std::move(encoded_message),
199 repeat_count, std::move(delay_timer),
200 intermediate_completion_handler::starting,
1e59de90 201 boost::asio::make_work_guard(socket.get_executor()),
92f5a8d4
TL
202 std::forward<decltype(completion_handler)>(completion_handler)});
203 };
204
205 // Encode the message and copy it into an allocated buffer. The buffer will
206 // be maintained for the lifetime of the composed asynchronous operation.
207 std::ostringstream os;
208 os << message;
209 std::unique_ptr<std::string> encoded_message(new std::string(os.str()));
210
211 // Create a steady_timer to be used for the delay between messages.
212 std::unique_ptr<boost::asio::steady_timer> delay_timer(
213 new boost::asio::steady_timer(socket.get_executor()));
214
215 // The boost::asio::async_initiate function takes:
216 //
217 // - our initiation function object,
218 // - the completion token,
219 // - the completion handler signature, and
220 // - any additional arguments we need to initiate the operation.
221 //
222 // It then asks the completion token to create a completion handler (i.e. a
223 // callback) with the specified signature, and invoke the initiation function
224 // object with this completion handler as well as the additional arguments.
225 // The return value of async_initiate is the result of our operation's
226 // initiating function.
227 //
228 // Note that we wrap non-const reference arguments in std::reference_wrapper
229 // to prevent incorrect decay-copies of these objects.
230 return boost::asio::async_initiate<
231 CompletionToken, void(boost::system::error_code)>(
232 initiation, token, std::ref(socket),
233 std::move(encoded_message), repeat_count,
234 std::move(delay_timer));
235}
236
237//------------------------------------------------------------------------------
238
239void test_callback()
240{
241 boost::asio::io_context io_context;
242
243 tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
244 tcp::socket socket = acceptor.accept();
245
246 // Test our asynchronous operation using a lambda as a callback.
247 async_write_messages(socket, "Testing callback\r\n", 5,
248 [](const boost::system::error_code& error)
249 {
250 if (!error)
251 {
252 std::cout << "Messages sent\n";
253 }
254 else
255 {
256 std::cout << "Error: " << error.message() << "\n";
257 }
258 });
259
260 io_context.run();
261}
262
263//------------------------------------------------------------------------------
264
265void test_future()
266{
267 boost::asio::io_context io_context;
268
269 tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
270 tcp::socket socket = acceptor.accept();
271
272 // Test our asynchronous operation using the use_future completion token.
273 // This token causes the operation's initiating function to return a future,
274 // which may be used to synchronously wait for the result of the operation.
275 std::future<void> f = async_write_messages(
276 socket, "Testing future\r\n", 5, boost::asio::use_future);
277
278 io_context.run();
279
280 try
281 {
282 // Get the result of the operation.
283 f.get();
284 std::cout << "Messages sent\n";
285 }
286 catch (const std::exception& e)
287 {
288 std::cout << "Error: " << e.what() << "\n";
289 }
290}
291
292//------------------------------------------------------------------------------
293
294int main()
295{
296 test_callback();
297 test_future();
298}