]> git.proxmox.com Git - ceph.git/blame - ceph/src/boost/libs/geometry/include/boost/geometry/algorithms/detail/vincenty_direct.hpp
bump version to 12.2.2-pve1
[ceph.git] / ceph / src / boost / libs / geometry / include / boost / geometry / algorithms / detail / vincenty_direct.hpp
CommitLineData
7c673cae
FG
1// Boost.Geometry
2
3// Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
4
5// This file was modified by Oracle on 2014.
6// Modifications copyright (c) 2014 Oracle and/or its affiliates.
7
8// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
9
10// Use, modification and distribution is subject to the Boost Software License,
11// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
12// http://www.boost.org/LICENSE_1_0.txt)
13
14#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_VINCENTY_DIRECT_HPP
15#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_VINCENTY_DIRECT_HPP
16
17
18#include <boost/math/constants/constants.hpp>
19
20#include <boost/geometry/core/radius.hpp>
21#include <boost/geometry/core/srs.hpp>
22
23#include <boost/geometry/util/math.hpp>
24
25#include <boost/geometry/algorithms/detail/flattening.hpp>
26
27
28#ifndef BOOST_GEOMETRY_DETAIL_VINCENTY_MAX_STEPS
29#define BOOST_GEOMETRY_DETAIL_VINCENTY_MAX_STEPS 1000
30#endif
31
32
33namespace boost { namespace geometry { namespace detail
34{
35
36template <typename T>
37struct result_direct
38{
39 void set(T const& lo2, T const& la2)
40 {
41 lon2 = lo2;
42 lat2 = la2;
43 }
44 T lon2;
45 T lat2;
46};
47
48/*!
49\brief The solution of the direct problem of geodesics on latlong coordinates, after Vincenty, 1975
50\author See
51 - http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
52 - http://www.icsm.gov.au/gda/gdav2.3.pdf
53\author Adapted from various implementations to get it close to the original document
54 - http://www.movable-type.co.uk/scripts/LatLongVincenty.html
55 - http://exogen.case.edu/projects/geopy/source/geopy.distance.html
56 - http://futureboy.homeip.net/fsp/colorize.fsp?fileName=navigation.frink
57
58*/
59template <typename CT>
60struct vincenty_direct
61{
62 typedef result_direct<CT> result_type;
63
64public:
65 template <typename T, typename Dist, typename Azi, typename Spheroid>
66 static inline result_type apply(T const& lo1,
67 T const& la1,
68 Dist const& distance,
69 Azi const& azimuth12,
70 Spheroid const& spheroid)
71 {
72 result_type result;
73
74 CT const lon1 = lo1;
75 CT const lat1 = la1;
76
77 if ( math::equals(distance, Dist(0)) || distance < Dist(0) )
78 {
79 result.set(lon1, lat1);
80 return result;
81 }
82
83 CT const radius_a = CT(get_radius<0>(spheroid));
84 CT const radius_b = CT(get_radius<2>(spheroid));
85 CT const flattening = geometry::detail::flattening<CT>(spheroid);
86
87 CT const sin_azimuth12 = sin(azimuth12);
88 CT const cos_azimuth12 = cos(azimuth12);
89
90 // U: reduced latitude, defined by tan U = (1-f) tan phi
91 CT const one_min_f = CT(1) - flattening;
92 CT const tan_U1 = one_min_f * tan(lat1);
93 CT const sigma1 = atan2(tan_U1, cos_azimuth12); // (1)
94
95 // may be calculated from tan using 1 sqrt()
96 CT const U1 = atan(tan_U1);
97 CT const sin_U1 = sin(U1);
98 CT const cos_U1 = cos(U1);
99
100 CT const sin_alpha = cos_U1 * sin_azimuth12; // (2)
101 CT const sin_alpha_sqr = math::sqr(sin_alpha);
102 CT const cos_alpha_sqr = CT(1) - sin_alpha_sqr;
103
104 CT const b_sqr = radius_b * radius_b;
105 CT const u_sqr = cos_alpha_sqr * (radius_a * radius_a - b_sqr) / b_sqr;
106 CT const A = CT(1) + (u_sqr/CT(16384)) * (CT(4096) + u_sqr*(CT(-768) + u_sqr*(CT(320) - u_sqr*CT(175)))); // (3)
107 CT const B = (u_sqr/CT(1024))*(CT(256) + u_sqr*(CT(-128) + u_sqr*(CT(74) - u_sqr*CT(47)))); // (4)
108
109 CT s_div_bA = distance / (radius_b * A);
110 CT sigma = s_div_bA; // (7)
111
112 CT previous_sigma;
113 CT sin_sigma;
114 CT cos_sigma;
115 CT cos_2sigma_m;
116 CT cos_2sigma_m_sqr;
117
118 int counter = 0; // robustness
119
120 do
121 {
122 previous_sigma = sigma;
123
124 CT const two_sigma_m = CT(2) * sigma1 + sigma; // (5)
125
126 sin_sigma = sin(sigma);
127 cos_sigma = cos(sigma);
128 CT const sin_sigma_sqr = math::sqr(sin_sigma);
129 cos_2sigma_m = cos(two_sigma_m);
130 cos_2sigma_m_sqr = math::sqr(cos_2sigma_m);
131
132 CT const delta_sigma = B * sin_sigma * (cos_2sigma_m
133 + (B/CT(4)) * ( cos_sigma * (CT(-1) + CT(2)*cos_2sigma_m_sqr)
134 - (B/CT(6) * cos_2sigma_m * (CT(-3)+CT(4)*sin_sigma_sqr) * (CT(-3)+CT(4)*cos_2sigma_m_sqr)) )); // (6)
135
136 sigma = s_div_bA + delta_sigma; // (7)
137
138 ++counter; // robustness
139
140 } while ( geometry::math::abs(previous_sigma - sigma) > CT(1e-12)
141 //&& geometry::math::abs(sigma) < pi
142 && counter < BOOST_GEOMETRY_DETAIL_VINCENTY_MAX_STEPS ); // robustness
143
144 {
145 result.lat2
146 = atan2( sin_U1 * cos_sigma + cos_U1 * sin_sigma * cos_azimuth12,
147 one_min_f * math::sqrt(sin_alpha_sqr + math::sqr(sin_U1 * sin_sigma - cos_U1 * cos_sigma * cos_azimuth12))); // (8)
148 }
149
150 {
151 CT const lambda = atan2( sin_sigma * sin_azimuth12,
152 cos_U1 * cos_sigma - sin_U1 * sin_sigma * cos_azimuth12); // (9)
153 CT const C = (flattening/CT(16)) * cos_alpha_sqr * ( CT(4) + flattening * ( CT(4) - CT(3) * cos_alpha_sqr ) ); // (10)
154 CT const L = lambda - (CT(1) - C) * flattening * sin_alpha
155 * ( sigma + C * sin_sigma * ( cos_2sigma_m + C * cos_sigma * ( CT(-1) + CT(2) * cos_2sigma_m_sqr ) ) ); // (11)
156
157 result.lon2 = lon1 + L;
158 }
159
160 return result;
161 }
162
163 /*
164 inline CT azimuth21() const
165 {
166 // NOTE: signs of X and Y are different than in the original paper
167 return is_distance_zero ?
168 CT(0) :
169 atan2(-sin_alpha, sin_U1 * sin_sigma - cos_U1 * cos_sigma * cos_azimuth12); // (12)
170 }
171 */
172};
173
174}}} // namespace boost::geometry::detail
175
176
177#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_VINCENTY_DIRECT_HPP