]> git.proxmox.com Git - ceph.git/blame - ceph/src/boost/libs/geometry/include/boost/geometry/strategies/cartesian/side_of_intersection.hpp
bump version to 12.2.2-pve1
[ceph.git] / ceph / src / boost / libs / geometry / include / boost / geometry / strategies / cartesian / side_of_intersection.hpp
CommitLineData
7c673cae
FG
1// Boost.Geometry (aka GGL, Generic Geometry Library)
2
3// Copyright (c) 2015 Barend Gehrels, Amsterdam, the Netherlands.
4
5// This file was modified by Oracle on 2015.
6// Modifications copyright (c) 2015, Oracle and/or its affiliates.
7
8// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
9
10// Use, modification and distribution is subject to the Boost Software License,
11// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
12// http://www.boost.org/LICENSE_1_0.txt)
13
14#ifndef BOOST_GEOMETRY_STRATEGIES_CARTESIAN_SIDE_OF_INTERSECTION_HPP
15#define BOOST_GEOMETRY_STRATEGIES_CARTESIAN_SIDE_OF_INTERSECTION_HPP
16
17
18#include <limits>
19
20#include <boost/core/ignore_unused.hpp>
21#include <boost/type_traits/is_integral.hpp>
22#include <boost/type_traits/make_unsigned.hpp>
23
24#include <boost/geometry/arithmetic/determinant.hpp>
25#include <boost/geometry/core/access.hpp>
26#include <boost/geometry/core/assert.hpp>
27#include <boost/geometry/core/coordinate_type.hpp>
28#include <boost/geometry/algorithms/detail/assign_indexed_point.hpp>
29#include <boost/geometry/strategies/cartesian/side_by_triangle.hpp>
30#include <boost/geometry/util/math.hpp>
31
32#ifdef BOOST_GEOMETRY_SIDE_OF_INTERSECTION_DEBUG
33#include <boost/math/common_factor_ct.hpp>
34#include <boost/math/common_factor_rt.hpp>
35#include <boost/multiprecision/cpp_int.hpp>
36#endif
37
38namespace boost { namespace geometry
39{
40
41namespace strategy { namespace side
42{
43
44namespace detail
45{
46
47// A tool for multiplication of integers avoiding overflow
48// It's a temporary workaround until we can use Multiprecision
49// The algorithm is based on Karatsuba algorithm
50// see: http://en.wikipedia.org/wiki/Karatsuba_algorithm
51template <typename T>
52struct multiplicable_integral
53{
54 // Currently this tool can't be used with non-integral coordinate types.
55 // Also side_of_intersection strategy sign_of_product() and sign_of_compare()
56 // functions would have to be modified to properly support floating-point
57 // types (comparisons and multiplication).
58 BOOST_STATIC_ASSERT(boost::is_integral<T>::value);
59
60 static const std::size_t bits = CHAR_BIT * sizeof(T);
61 static const std::size_t half_bits = bits / 2;
62 typedef typename boost::make_unsigned<T>::type unsigned_type;
63 static const unsigned_type base = unsigned_type(1) << half_bits; // 2^half_bits
64
65 int m_sign;
66 unsigned_type m_ms;
67 unsigned_type m_ls;
68
69 multiplicable_integral(int sign, unsigned_type ms, unsigned_type ls)
70 : m_sign(sign), m_ms(ms), m_ls(ls)
71 {}
72
73 explicit multiplicable_integral(T const& val)
74 {
75 unsigned_type val_u = val > 0 ?
76 unsigned_type(val)
77 : val == (std::numeric_limits<T>::min)() ?
78 unsigned_type((std::numeric_limits<T>::max)()) + 1
79 : unsigned_type(-val);
80 // MMLL -> S 00MM 00LL
81 m_sign = math::sign(val);
82 m_ms = val_u >> half_bits; // val_u / base
83 m_ls = val_u - m_ms * base;
84 }
85
86 friend multiplicable_integral operator*(multiplicable_integral const& a,
87 multiplicable_integral const& b)
88 {
89 // (S 00MM 00LL) * (S 00MM 00LL) -> (S Z2MM 00LL)
90 unsigned_type z2 = a.m_ms * b.m_ms;
91 unsigned_type z0 = a.m_ls * b.m_ls;
92 unsigned_type z1 = (a.m_ms + a.m_ls) * (b.m_ms + b.m_ls) - z2 - z0;
93 // z0 may be >= base so it must be normalized to allow comparison
94 unsigned_type z0_ms = z0 >> half_bits; // z0 / base
95 return multiplicable_integral(a.m_sign * b.m_sign,
96 z2 * base + z1 + z0_ms,
97 z0 - base * z0_ms);
98 }
99
100 friend bool operator<(multiplicable_integral const& a,
101 multiplicable_integral const& b)
102 {
103 if ( a.m_sign == b.m_sign )
104 {
105 bool u_less = a.m_ms < b.m_ms
106 || (a.m_ms == b.m_ms && a.m_ls < b.m_ls);
107 return a.m_sign > 0 ? u_less : (! u_less);
108 }
109 else
110 {
111 return a.m_sign < b.m_sign;
112 }
113 }
114
115 friend bool operator>(multiplicable_integral const& a,
116 multiplicable_integral const& b)
117 {
118 return b < a;
119 }
120
121 template <typename CmpVal>
122 void check_value(CmpVal const& cmp_val) const
123 {
124 unsigned_type b = base; // a workaround for MinGW - undefined reference base
125 CmpVal val = CmpVal(m_sign) * (CmpVal(m_ms) * CmpVal(b) + CmpVal(m_ls));
126 BOOST_GEOMETRY_ASSERT(cmp_val == val);
127 }
128};
129
130} // namespace detail
131
132// Calculates the side of the intersection-point (if any) of
133// of segment a//b w.r.t. segment c
134// This is calculated without (re)calculating the IP itself again and fully
135// based on integer mathematics; there are no divisions
136// It can be used for either integer (rescaled) points, and also for FP
137class side_of_intersection
138{
139private :
140 template <typename T, typename U>
141 static inline
142 int sign_of_product(T const& a, U const& b)
143 {
144 return a == 0 || b == 0 ? 0
145 : a > 0 && b > 0 ? 1
146 : a < 0 && b < 0 ? 1
147 : -1;
148 }
149
150 template <typename T>
151 static inline
152 int sign_of_compare(T const& a, T const& b, T const& c, T const& d)
153 {
154 // Both a*b and c*d are positive
155 // We have to judge if a*b > c*d
156
157 using side::detail::multiplicable_integral;
158 multiplicable_integral<T> ab = multiplicable_integral<T>(a)
159 * multiplicable_integral<T>(b);
160 multiplicable_integral<T> cd = multiplicable_integral<T>(c)
161 * multiplicable_integral<T>(d);
162
163 int result = ab > cd ? 1
164 : ab < cd ? -1
165 : 0
166 ;
167
168#ifdef BOOST_GEOMETRY_SIDE_OF_INTERSECTION_DEBUG
169 using namespace boost::multiprecision;
170 cpp_int const lab = cpp_int(a) * cpp_int(b);
171 cpp_int const lcd = cpp_int(c) * cpp_int(d);
172
173 ab.check_value(lab);
174 cd.check_value(lcd);
175
176 int result2 = lab > lcd ? 1
177 : lab < lcd ? -1
178 : 0
179 ;
180 BOOST_GEOMETRY_ASSERT(result == result2);
181#endif
182
183 return result;
184 }
185
186 template <typename T>
187 static inline
188 int sign_of_addition_of_two_products(T const& a, T const& b, T const& c, T const& d)
189 {
190 // sign of a*b+c*d, 1 if positive, -1 if negative, else 0
191 int const ab = sign_of_product(a, b);
192 int const cd = sign_of_product(c, d);
193 if (ab == 0)
194 {
195 return cd;
196 }
197 if (cd == 0)
198 {
199 return ab;
200 }
201
202 if (ab == cd)
203 {
204 // Both positive or both negative
205 return ab;
206 }
207
208 // One is positive, one is negative, both are non zero
209 // If ab is positive, we have to judge if a*b > -c*d (then 1 because sum is positive)
210 // If ab is negative, we have to judge if c*d > -a*b (idem)
211 return ab == 1
212 ? sign_of_compare(a, b, -c, d)
213 : sign_of_compare(c, d, -a, b);
214 }
215
216
217public :
218
219 // Calculates the side of the intersection-point (if any) of
220 // of segment a//b w.r.t. segment c
221 // This is calculated without (re)calculating the IP itself again and fully
222 // based on integer mathematics
223 template <typename T, typename Segment, typename Point>
224 static inline T side_value(Segment const& a, Segment const& b,
225 Segment const& c, Point const& fallback_point)
226 {
227 // The first point of the three segments is reused several times
228 T const ax = get<0, 0>(a);
229 T const ay = get<0, 1>(a);
230 T const bx = get<0, 0>(b);
231 T const by = get<0, 1>(b);
232 T const cx = get<0, 0>(c);
233 T const cy = get<0, 1>(c);
234
235 T const dx_a = get<1, 0>(a) - ax;
236 T const dy_a = get<1, 1>(a) - ay;
237
238 T const dx_b = get<1, 0>(b) - bx;
239 T const dy_b = get<1, 1>(b) - by;
240
241 T const dx_c = get<1, 0>(c) - cx;
242 T const dy_c = get<1, 1>(c) - cy;
243
244 // Cramer's rule: d (see cart_intersect.hpp)
245 T const d = geometry::detail::determinant<T>
246 (
247 dx_a, dy_a,
248 dx_b, dy_b
249 );
250
251 T const zero = T();
252 if (d == zero)
253 {
254 // There is no IP of a//b, they are collinear or parallel
255 // Assuming they intersect (this method should be called for
256 // segments known to intersect), they are collinear and overlap.
257 // They have one or two intersection points - we don't know and
258 // have to rely on the fallback intersection point
259
260 Point c1, c2;
261 geometry::detail::assign_point_from_index<0>(c, c1);
262 geometry::detail::assign_point_from_index<1>(c, c2);
263 return side_by_triangle<>::apply(c1, c2, fallback_point);
264 }
265
266 // Cramer's rule: da (see cart_intersect.hpp)
267 T const da = geometry::detail::determinant<T>
268 (
269 dx_b, dy_b,
270 ax - bx, ay - by
271 );
272
273 // IP is at (ax + (da/d) * dx_a, ay + (da/d) * dy_a)
274 // Side of IP is w.r.t. c is: determinant(dx_c, dy_c, ipx-cx, ipy-cy)
275 // We replace ipx by expression above and multiply each term by d
276
277#ifdef BOOST_GEOMETRY_SIDE_OF_INTERSECTION_DEBUG
278 T const result1 = geometry::detail::determinant<T>
279 (
280 dx_c * d, dy_c * d,
281 d * (ax - cx) + dx_a * da, d * (ay - cy) + dy_a * da
282 );
283
284 // Note: result / (d * d)
285 // is identical to the side_value of side_by_triangle
286 // Therefore, the sign is always the same as that result, and the
287 // resulting side (left,right,collinear) is the same
288
289 // The first row we divide again by d because of determinant multiply rule
290 T const result2 = d * geometry::detail::determinant<T>
291 (
292 dx_c, dy_c,
293 d * (ax - cx) + dx_a * da, d * (ay - cy) + dy_a * da
294 );
295 // Write out:
296 T const result3 = d * (dx_c * (d * (ay - cy) + dy_a * da)
297 - dy_c * (d * (ax - cx) + dx_a * da));
298 // Write out in braces:
299 T const result4 = d * (dx_c * d * (ay - cy) + dx_c * dy_a * da
300 - dy_c * d * (ax - cx) - dy_c * dx_a * da);
301 // Write in terms of d * XX + da * YY
302 T const result5 = d * (d * (dx_c * (ay - cy) - dy_c * (ax - cx))
303 + da * (dx_c * dy_a - dy_c * dx_a));
304
305 boost::ignore_unused(result1, result2, result3, result4, result5);
306 //return result;
307#endif
308
309 // We consider the results separately
310 // (in the end we only have to return the side-value 1,0 or -1)
311
312 // To avoid multiplications we judge the product (easy, avoids *d)
313 // and the sign of p*q+r*s (more elaborate)
314 T const result = sign_of_product
315 (
316 d,
317 sign_of_addition_of_two_products
318 (
319 d, dx_c * (ay - cy) - dy_c * (ax - cx),
320 da, dx_c * dy_a - dy_c * dx_a
321 )
322 );
323 return result;
324
325
326 }
327
328 template <typename Segment, typename Point>
329 static inline int apply(Segment const& a, Segment const& b,
330 Segment const& c,
331 Point const& fallback_point)
332 {
333 typedef typename geometry::coordinate_type<Segment>::type coordinate_type;
334 coordinate_type const s = side_value<coordinate_type>(a, b, c, fallback_point);
335 coordinate_type const zero = coordinate_type();
336 return math::equals(s, zero) ? 0
337 : s > zero ? 1
338 : -1;
339 }
340
341};
342
343
344}} // namespace strategy::side
345
346}} // namespace boost::geometry
347
348
349#endif // BOOST_GEOMETRY_STRATEGIES_CARTESIAN_SIDE_OF_INTERSECTION_HPP